JP5968658B2 - Film thickness measuring method and film thickness measuring apparatus - Google Patents

Film thickness measuring method and film thickness measuring apparatus Download PDF

Info

Publication number
JP5968658B2
JP5968658B2 JP2012066892A JP2012066892A JP5968658B2 JP 5968658 B2 JP5968658 B2 JP 5968658B2 JP 2012066892 A JP2012066892 A JP 2012066892A JP 2012066892 A JP2012066892 A JP 2012066892A JP 5968658 B2 JP5968658 B2 JP 5968658B2
Authority
JP
Japan
Prior art keywords
film
conductivity
film thickness
measurement
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012066892A
Other languages
Japanese (ja)
Other versions
JP2013200127A (en
Inventor
正明 久野
正明 久野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2012066892A priority Critical patent/JP5968658B2/en
Publication of JP2013200127A publication Critical patent/JP2013200127A/en
Application granted granted Critical
Publication of JP5968658B2 publication Critical patent/JP5968658B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

本発明は、測定対象物の表面に対し、外部から交流電界を付与して、誘起される渦電流の強度を検知することにより、被膜の膜厚を測定する膜厚測定方法、膜厚測定装置に関するものである。   The present invention relates to a film thickness measuring method and a film thickness measuring apparatus for measuring the film thickness of a film by applying an alternating electric field from the outside to the surface of a measurement object and detecting the strength of an induced eddy current. It is about.

従来、渦電流式膜厚測定装置として、測定対象物の表面に対し、外部から交流電界を付与して、誘起される渦電流の強度を検知することにより、母材上に形成された被膜の厚さを測定する膜厚測定装置が知られている。この渦電流式膜厚測定装置は、電磁誘導の原理を利用したもので、交流電界を発生させるコイルを備えたプローブを、測定対象物の表面に近づけると、当該測定対象物の内部に渦電流が生成されるので、かかる渦電流をコイルで検知することにより、前記被膜の厚さを測定するものである。   Conventionally, as an eddy current type film thickness measuring apparatus, an AC electric field is applied from the outside to the surface of a measurement object, and the strength of the induced eddy current is detected to detect the film formed on the base material. A film thickness measuring device for measuring the thickness is known. This eddy current film thickness measuring device uses the principle of electromagnetic induction. When a probe equipped with a coil that generates an alternating electric field is brought close to the surface of the measurement object, the eddy current film thickness measurement apparatus is brought into the measurement object. Therefore, the thickness of the coating is measured by detecting the eddy current with a coil.

上記の渦電流式膜厚測定装置は、高度な測定技能を必要とせず、測定対象物の表面にプローブの先端をあてるだけの簡単な操作で、測定対象物が脆弱な素材であってもダメージを与えずに、被膜の膜厚を非破壊測定できるので、作業現場での塗装膜や陽酸化被膜の膜厚測定などに広く用いられている。昨今は、小型の携帯型測定装置によって、例えばナノメートルオーダの薄い膜厚まで測定可能となっている。   The above-mentioned eddy current film thickness measurement device does not require advanced measurement skills, and can be damaged even if the measurement object is a fragile material by simply operating the probe tip on the surface of the measurement object. The film thickness of the coating can be measured non-destructively without giving a film, and is therefore widely used for the measurement of the thickness of a coating film or a oxidization film at a work site. Nowadays, it is possible to measure a thin film thickness of, for example, nanometer order with a small portable measuring device.

渦電流式膜厚測定装置の利用場面の一例として、液化天然ガスの気化に用いられるオープンラック式気化器の定期点検が挙げられる。オープンラック式気化器は、この気化器の伝熱管内に液化天然ガスを流す一方、伝熱管の外面に海水を流し、この海水によって液化天然ガスを加熱するものである。   As an example of the use scene of the eddy current type film thickness measuring device, there is a periodic inspection of an open rack type vaporizer used for vaporizing liquefied natural gas. In the open rack type vaporizer, liquefied natural gas flows in the heat transfer tube of the vaporizer, while seawater flows on the outer surface of the heat transfer tube, and the liquefied natural gas is heated by the seawater.

したがって、常に海水と接する伝熱管は腐食しやすいので、母材のアルミニウム合金を腐食から保護するため、従来、伝熱管の表面に400〜600μm程度の厚さのアルミニウム−亜鉛合金膜を溶射(メタリコン)することにより、母材の犠牲防食が図られている。かかる溶射膜は、海水腐食による消耗の他、海水中の貝類や泥砂などの固形物擦過などにより、想定外の早さで消耗する場合があるので、定期的に膜厚検査が施され、測定膜厚が100μm程度以下になると、再溶射などによる補修作業が行われている。   Therefore, heat transfer tubes that are always in contact with seawater are prone to corrosion, so in order to protect the base aluminum alloy from corrosion, conventionally, an aluminum-zinc alloy film having a thickness of about 400 to 600 μm is sprayed onto the surface of the heat transfer tube (metallicon). ), The sacrificial protection of the base material is achieved. Such sprayed coatings may be consumed at unexpected speeds due to the abrasion caused by seawater corrosion and solid matter such as shellfish and mud sand in the seawater. When the film thickness is about 100 μm or less, repair work such as respraying is performed.

従来の渦電流式膜厚測定装置の例として、特許文献1に記載の渦電流式膜厚測定装置が挙げられる。従来の一般的な渦電流式膜厚測定装置による膜厚測定原理は、概ね次のとおりである。   As an example of a conventional eddy current film thickness measuring apparatus, there is an eddy current film thickness measuring apparatus described in Patent Document 1. The principle of film thickness measurement by a conventional general eddy current film thickness measuring apparatus is as follows.

予め、測定対象物と母材が同じで被膜の膜厚が異なり、当該被膜の膜厚が既知の標準サンプルを複数用意する。次いで、各標準サンプルの表面に対して交流電界を付与し、標準サンプル内に渦電流を誘起してその強度を測定することにより導電率を測定し、測定対象物の導電率と被膜の膜厚との相関関係を示す標準曲線(検量線)を作成しておく。そして、実際の膜厚測定時には、測定対象物の表面に対して交流電界を付与し、測定対象物内に渦電流を誘起してその強度を測定することにより測定対象物の導電率を測定し、前記標準曲線を用いて測定導電率の値から被膜の膜厚を導出する。   In advance, a plurality of standard samples are prepared in which the measurement object and the base material are the same, the film thickness of the film is different, and the film thickness of the film is known. Next, an AC electric field is applied to the surface of each standard sample, and the conductivity is measured by inducing an eddy current in the standard sample and measuring its strength. The conductivity of the object to be measured and the film thickness of the coating A standard curve (calibration curve) showing the correlation with is prepared. During actual film thickness measurement, an AC electric field is applied to the surface of the measurement object, and the conductivity of the measurement object is measured by inducing an eddy current in the measurement object and measuring its strength. The film thickness of the film is derived from the measured conductivity value using the standard curve.

特開2007−298292号公報JP 2007-298292 A

しかし、前記従来の渦電流式膜厚測定装置では、測定対象物の被膜が溶射膜である場合、次の理由によって、正確な膜厚測定が困難であった。   However, in the conventional eddy current film thickness measuring apparatus, when the coating film of the object to be measured is a sprayed film, accurate film thickness measurement is difficult for the following reason.

すなわち、溶射によって被膜を形成する場合、形成された溶射膜の膜質は、溶射条件によって大きく異なる。たとえ溶射材の材質が同じであっても、例えば、溶射速度、溶射温度、溶射距離、溶射雰囲気、溶射ガス圧等の各溶射条件が異なれば、形成密度の相違、酸化物の巻き込みの相違などにより、異なる膜質の被膜が形成される。それゆえ、形成された溶射膜の膜質は、溶射処理を実行する装置の特性、作業環境に依存し、例えば製造ロットによってバラツキが生じることがある。さらには、溶射膜の膜質は、周囲温度や経年劣化によって変化することもある。   That is, when a coating is formed by spraying, the film quality of the formed sprayed film varies greatly depending on the spraying conditions. Even if the material of the thermal spray material is the same, for example, if the thermal spraying conditions such as thermal spraying speed, thermal spraying temperature, thermal spraying distance, thermal spraying atmosphere, thermal spraying gas pressure, etc. are different, the formation density is different, the oxide is involved, etc. As a result, films having different film quality are formed. Therefore, the film quality of the formed sprayed film depends on the characteristics of the apparatus for performing the spraying process and the working environment, and may vary depending on the production lot, for example. Furthermore, the film quality of the sprayed film may change depending on the ambient temperature and aging deterioration.

しかしながら、前述のように、従来の渦電流式膜厚測定装置は、標準サンプルと実際に膜厚を測定する測定対象物との間の膜質の相違を考慮、補正等していないので、前提とする標準曲線は、実際の測定対象物における導電率と被膜の膜厚との相関を必ずしも正しく示しておらず、それゆえ、測定対象物が変わるたびに、導出した被膜の膜厚には測定誤差が生じていた。   However, as described above, the conventional eddy current film thickness measurement device does not consider or correct the difference in film quality between the standard sample and the measurement object for actually measuring the film thickness. The standard curve that does not necessarily show the correct correlation between the electrical conductivity of the actual measurement object and the film thickness of the film, so every time the measurement object changes, the derived film film thickness has a measurement error. Has occurred.

本発明は、上記の事情に鑑みなされたものであって、例えば測定対象物上の被膜が溶射膜である場合のように、測定対象物の被膜の膜質にバラツキが存在する場合であっても、誤差の少ない被膜の膜厚測定ができる膜厚測定方法、膜厚測定装置を提供することを目的としている。   The present invention has been made in view of the above circumstances, and for example, even when there is a variation in the film quality of the coating film of the measurement object, such as when the coating film on the measurement object is a sprayed film. An object of the present invention is to provide a film thickness measuring method and a film thickness measuring apparatus capable of measuring a film thickness of a film with little error.

本発明の膜厚測定方法は、母材と母材上の被膜とからなる測定対象物の表面に対し、外部から交流電界を付与して、前記測定対象物に誘起される渦電流の強度を検知することにより、前記被膜の膜厚を測定する膜厚測定方法に係る。   The film thickness measurement method of the present invention provides an AC electric field from the outside to the surface of a measurement object composed of a base material and a coating on the base material, thereby increasing the intensity of eddy currents induced in the measurement object. The present invention relates to a film thickness measuring method for measuring the film thickness of the coating film by detection.

本発明の膜厚測定方法は、
前記渦電流の強度を検知し、検知した渦電流の強度に基づいて前記被膜の固有導電率を測定する被膜導電率測定段階と、
異なる前記被膜の固有導電率に対応し、前記交流電界の周波数を所定の固定値としたときの前記測定対象物の測定導電率と前記被膜の膜厚との相関を示すとともに、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群を用いて予め作成される複数の膜質別標準曲線の中から、前記被膜導電率測定段階で測定された被膜の固有導電率に基づいて、前記被膜の膜厚測定に用いる測定用標準曲線を選択する標準曲線選択段階と、
前記交流電界の周波数を前記所定の固定値とした状態で、前記渦電流の強度を検知し、検知した渦電流の強度に基づいて前記測定対象物の導電率を測定し、測定した前記測定対象物の導電率と前記測定用標準曲線とを用いて、前記被膜の膜厚を測定する膜厚測定段階とを備えるものである。
The film thickness measuring method of the present invention is
A film conductivity measuring step for detecting the intensity of the eddy current and measuring the specific conductivity of the film based on the detected intensity of the eddy current;
Corresponding to the different specific conductivity of the film, the correlation between the measured conductivity of the measurement object and the film thickness when the frequency of the AC electric field is a predetermined fixed value, and the measurement object The film conductivity is measured from a plurality of standard curves according to film quality prepared in advance using a standard sample group in which the material and shape of the base material are substantially the same and the film quality is different, and the film thickness of the film is known. A standard curve selection step for selecting a standard curve for measurement used for measuring the film thickness of the coating film based on the intrinsic conductivity of the coating film measured in the step;
In the state where the frequency of the AC electric field is set to the predetermined fixed value, the intensity of the eddy current is detected, the conductivity of the measurement object is measured based on the detected intensity of the eddy current, and the measurement object is measured. A film thickness measuring step for measuring the film thickness of the coating film using the electrical conductivity of the object and the standard curve for measurement is provided.

上記の構成において、被膜導電率測定段階では、前記測定対象物の表面に対し、外部から交流電界を付与して、前記測定対象物に誘起される渦電流の強度が検知され、この検知結果に基づいて、前記被膜の固有導電率が測定される。   In the above configuration, at the coating film conductivity measurement stage, an AC electric field is applied from the outside to the surface of the measurement object, and the intensity of the eddy current induced in the measurement object is detected. Based on this, the intrinsic conductivity of the coating is measured.

前記被膜導電率測定段階では、前記測定対象物の表面に対し、外部から次第に周波数を変化させながら前記交流電界を付与して前記渦電流の強度を検知し、検知した渦電流の強度に基づいて、前記周波数毎に前記測定対象物の導電率の値を測定するとともに、前記周波数の増加に対して測定導電率が飽和した値を、前記被膜の固有導電率として決定する。 In the film conductivity measurement step, the eddy current intensity is detected by applying the alternating electric field while gradually changing the frequency from the outside to the surface of the measurement object, and based on the detected eddy current intensity. , together with measured values of the conductivity of the measurement object for each of the frequency, the values measured conductivity is saturated with respect to an increase of the frequency, that determine the intrinsic conductivity of the coating.

前記交流電界の周波数を増加させるほど、前記渦電流ないし測定導電率は、前記測定対象物のより浅い領域の導電状態を反映したものとなることが知られている。したがって、前記周波数を低い値から高い値に変化させながら、前記渦電流の強度検知ないし前記測定対象物の導電率測定を行っていくと、低周波数での導電率測定では、前記母材と前記被膜との両方の導電状態を反映した導電率の値が得られるが、所定周波数以上の周波数での導電率測定では、前記被膜のみの導電状態を反映した導電率の値が得られる。それゆえ、前記周波数の増加に対して測定導電率は飽和した略一定の値となり、この飽和値は、前記被膜の固有導電率を示しているものと考えられる。   It is known that as the frequency of the AC electric field is increased, the eddy current or measured conductivity reflects the conductivity state of a shallower region of the measurement object. Therefore, when changing the frequency from a low value to a high value while detecting the intensity of the eddy current or measuring the conductivity of the object to be measured, the conductivity measurement at a low frequency, the base material and the The conductivity value reflecting both the conductive state with the film is obtained, but the conductivity value reflecting only the conductive state of the film is obtained in the conductivity measurement at a frequency equal to or higher than the predetermined frequency. Therefore, the measured conductivity becomes a substantially constant value saturated with the increase of the frequency, and this saturation value is considered to indicate the intrinsic conductivity of the coating.

本発明は、前記被膜の固有導電率、または前記周波数の増加に対する測定導電率の飽和値に着目すれば、渦電流式膜厚測定に影響する限りにおいて、前記被膜の膜質の相違や製造バラツキ(密度や硬度、不純物の混合度のバラツキなどを含む)を的確に識別できる、という技術的思想を新規に提供し、技術的に実現するものである。   If the present invention focuses on the intrinsic conductivity of the film or the saturation value of the measured conductivity with respect to the increase in the frequency, as long as it affects the eddy current film thickness measurement, the film quality difference and manufacturing variation ( A new technical idea of accurately discriminating the density, hardness, variation in the mixing degree of impurities, etc.) is provided and technically realized.

とりわけ前記被膜が、前記母材上に形成された溶射膜である場合には、溶射材の材質が同じであっても、例えば、溶射速度、溶射温度、溶射距離、溶射雰囲気、溶射ガス圧等の各溶射条件によって、異なる膜質の被膜が形成される。それゆえ、一般的には、溶射処理を実行する装置の特性、作業環境や製造ロット等によって、前記被膜の膜質は異なることがあるが、本発明によれば、かかる膜質の相違に起因する被膜の膜厚測定の誤差を効果的に抑制することができる。また、本発明によれば、前記被膜が、前記母材上に形成された塗装膜、クラッド層のいずれかであっても、膜質の相違に起因する被膜の膜厚測定の誤差を効果的に抑制することができる。   In particular, when the coating is a sprayed coating formed on the base material, for example, the spraying material is the same, for example, spraying speed, spraying temperature, spraying distance, spraying atmosphere, spraying gas pressure, etc. Depending on the thermal spraying conditions, different film quality films are formed. Therefore, in general, the film quality of the coating may differ depending on the characteristics of the apparatus for performing the thermal spraying process, the working environment, the production lot, and the like. According to the present invention, the coating resulting from the difference in the film quality. It is possible to effectively suppress the error in film thickness measurement. Further, according to the present invention, even if the coating is either a coating film or a clad layer formed on the base material, an error in measuring the thickness of the coating due to a difference in film quality can be effectively prevented. Can be suppressed.

上記の構成において、前記母材は非磁性金属であるとともに、前記被膜は非磁性材料からなることも好ましい。前記母材を構成する非磁性金属としては、アルミや銅など任意の非磁性金属を用いることができ、これらの合金を用いてもよい。また、前記被膜を構成する非磁性材料としては、母材と異なる非磁性金属の他、塗膜材料、メッキなど任意の非磁性材料を用いることができる。   In the above configuration, it is also preferable that the base material is a nonmagnetic metal and the coating is made of a nonmagnetic material. As the nonmagnetic metal constituting the base material, any nonmagnetic metal such as aluminum or copper can be used, and these alloys may be used. Moreover, as a nonmagnetic material which comprises the said film, arbitrary nonmagnetic materials, such as a coating-film material and plating other than the nonmagnetic metal different from a base material, can be used.

前記標準曲線選択段階では、前記被膜導電率測定段階で測定された前記被膜の固有導電率、または前記周波数の増加に対する測定導電率の飽和値に基づいて、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群を用いて予め作成された、複数の膜質別標準曲線の中から、実際に前記被膜の膜厚測定に用いる測定用標準曲線が選択される。この膜質別標準曲線は、前記交流電界の周波数を所定の固定値としたときの前記測定対象物の測定導電率と前記被膜の膜厚との相関を示すものである。   In the standard curve selection step, based on the intrinsic conductivity of the coating measured in the coating conductivity measurement step, or the saturation value of the measured conductivity with respect to the increase in frequency, the measurement object and the base material and Actually used for film thickness measurement from a plurality of standard curves according to film quality prepared in advance using a group of standard samples having the same shape but different film quality and known film thickness. A standard curve for measurement is selected. This standard curve according to film quality shows the correlation between the measured conductivity of the measurement object and the film thickness when the frequency of the alternating electric field is set to a predetermined fixed value.

例えば、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群、を用いて予め作成された複数の膜質別標準曲線の中から、実際に被膜の膜厚を測定する測定対象物における前記導電率の飽和値、または前記被膜の固有導電率に、最も近い値を、前記飽和値ないし前記固有導電率として有する標準サンプルを用いて作成され、これら固有導電率ないし飽和値と関連づけられた一の標準曲線が前記測定用標準曲線として選択される。   For example, a plurality of standard curves according to film quality prepared in advance using a standard sample group in which the material and shape of the measurement object and the base material are substantially the same, the film quality of the film is different, and the film thickness of the film is known. From a standard sample having the saturation value of the conductivity in the measurement object for actually measuring the film thickness of the film, or the closest value to the specific conductivity of the film as the saturation value or the specific conductivity One standard curve created and associated with the intrinsic conductivity or saturation value is selected as the standard curve for measurement.

すなわち、前記標準サンプル群のうち、電気特性上、実際に膜厚を測定する測定対象物の被膜と最も近い膜質を有する被膜を備えた標準サンプルを用いて作成された測定用標準曲線を用いながら、前記交流電界の周波数を前記所定の固定値とした状態で、前記渦電流の強度を検知し、前記測定対象物の被膜の膜厚を測定する。   That is, among the standard sample group, while using a standard curve for measurement created using a standard sample having a film quality that is closest to the film of the measurement object that actually measures the film thickness in terms of electrical characteristics In a state where the frequency of the AC electric field is set to the predetermined fixed value, the intensity of the eddy current is detected and the film thickness of the coating film of the measurement object is measured.

なお、前記標準サンプル群の被膜の材質と、実際に膜厚測定の対象とする測定対象物の被膜の材質とは同じであることが好ましいが、本発明は、被膜の諸性質を捨象して電気特性上の固有導電率のみで識別するので、前記標準サンプル群の被膜の材質と、実際に膜厚測定の対象となる測定対象物の被膜の材質とが異なる場合であっても、本発明を適用することが可能である。   It is preferable that the material of the film of the standard sample group is the same as the material of the film of the measurement object that is actually the object of film thickness measurement, but the present invention excludes various properties of the film. Since only the specific electrical conductivity in terms of electrical characteristics is used for identification, the present invention can be applied to the case where the material of the standard sample film is different from the material of the film of the object to be measured. It is possible to apply.

以上の構成により、本発明の膜厚測定方法を用いれば、実際の測定対象物における導電率と被膜の膜厚との相関をより的確に示した標準曲線に基づいて、被膜の膜厚を測定することができる。これにより、測定対象物の被膜の膜質にバラツキが存在する場合であっても、誤差の少ない被膜の膜厚測定を実現することが可能となる。   With the above configuration, if the film thickness measurement method of the present invention is used, the film thickness of the film is measured based on a standard curve that more accurately shows the correlation between the conductivity of the actual measurement object and the film thickness of the film. can do. As a result, even when there is a variation in the film quality of the film to be measured, it is possible to realize film thickness measurement of the film with less error.

また、本発明の膜厚測定装置は、
母材と母材上の被膜とからなる測定対象物の表面に対し、外部から交流電界を付与して、前記測定対象物に誘起される渦電流の強度を検知することにより、前記被膜の膜厚を測定する膜厚測定装置に係る。
Moreover, the film thickness measuring apparatus of the present invention is
By applying an AC electric field from the outside to the surface of the measurement object consisting of the base material and the film on the base material, and detecting the intensity of the eddy current induced in the measurement object, the film of the film The present invention relates to a film thickness measuring apparatus for measuring thickness.

本発明の膜厚測定装置は、
コイルに交流電圧を印加して前記測定対象物の表面に対し、交流電界を付与する交流電圧印加部と、
前記交流電圧印加部によって付与された交流電界によって、前記測定対象物に誘起される渦電流の強度を検知する渦電流強度検知部と、
前記渦電流強度検知部が検知した渦電流の強度に基づいて、前記測定対象物の導電率を測定する導電率測定部と、
前記コイルに印加する交流電圧の周波数を次第に変化させる周波数調整部と、
前記周波数調整部が前記周波数を次第に変化させたときに前記導電率測定部が測定する前記測定対象物の導電率の値を前記周波数毎に格納する周波数別導電率格納部と、
前記周波数別導電率格納部に格納された前記周波数毎の前記測定対象物の導電率の値から、前記周波数の増加に対する前記測定対象物の導電率の飽和値を決定する飽和導電率決定部と、
異なる前記被膜の固有導電率に対応し、前記交流電界の周波数を所定の固定値としたときの前記測定対象物の測定導電率と前記被膜の膜厚との相関を示すとともに、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群を用いて予め作成される複数の膜質別標準曲線を格納する標準曲線群格納部と、
前記飽和導電率決定部が決定した前記飽和値に基づいて、前記標準曲線群格納部に格納された複数の膜質別標準曲線の中から、前記被膜の膜厚測定に用いる測定用標準曲線を選択する標準曲線選択部と、
前記交流電界の周波数を前記所定の固定値とした状態で、前記導電率測定部が測定した前記測定対象物の導電率と前記標準曲線選択部が選択した前記測定用標準曲線とに基づいて、前記被膜の膜厚を測定する膜厚測定部とを備えるものである。
The film thickness measuring device of the present invention is
An alternating voltage application unit that applies an alternating electric field to the surface of the object to be measured by applying an alternating voltage to the coil;
An eddy current intensity detector that detects the intensity of eddy current induced in the measurement object by an AC electric field applied by the AC voltage application unit;
Based on the intensity of eddy current detected by the eddy current intensity detection unit, a conductivity measurement unit that measures the conductivity of the measurement object;
A frequency adjusting unit that gradually changes the frequency of the AC voltage applied to the coil;
A frequency-specific conductivity storage unit that stores, for each frequency, a conductivity value of the measurement object measured by the conductivity measurement unit when the frequency adjustment unit gradually changes the frequency;
A saturation conductivity determining unit that determines a saturation value of the conductivity of the measurement object with respect to an increase in the frequency from a value of the conductivity of the measurement object for each frequency stored in the conductivity storage unit for each frequency; ,
Corresponding to the different specific conductivity of the film, the correlation between the measured conductivity of the measurement object and the film thickness when the frequency of the AC electric field is a predetermined fixed value, and the measurement object A standard curve group storage unit for storing a plurality of standard curves according to film quality, which are prepared in advance using a standard sample group in which the material and shape of the base material are substantially the same, the film quality of the film is different, and the film thickness of the film is known. ,
Based on the saturation value determined by the saturation conductivity determination unit, a standard curve for measurement used for measuring the film thickness of the coating is selected from the plurality of standard curves according to film quality stored in the standard curve group storage unit A standard curve selection unit,
Based on the measurement standard curve selected by the conductivity of the measurement object measured by the conductivity measurement unit and the standard curve selection unit, with the frequency of the alternating electric field set to the predetermined fixed value, A film thickness measuring unit for measuring the film thickness of the coating.

上記の構成により、本発明の膜厚測定装置は、前記膜厚測定方法と同様の作用効果を奏し、測定対象物の被膜の膜質にバラツキが存在する場合であっても、誤差の少ない被膜の膜厚測定を実現することができる。   With the above configuration, the film thickness measuring apparatus of the present invention has the same effect as the film thickness measuring method, and even when there is a variation in the film quality of the film of the object to be measured, Film thickness measurement can be realized.

本発明に係る膜厚測定方法、膜厚測定装置によれば、測定対象物の被膜の膜質にバラツキが存在する場合であっても、誤差の少ない被膜の膜厚測定を実現することができる。   According to the film thickness measuring method and the film thickness measuring apparatus according to the present invention, it is possible to realize the film thickness measurement of a film with few errors even when there is a variation in the film quality of the film of the measurement object.

本発明の一実施形態に係る膜厚測定装置の制御ブロックを示した機能ブロック図である。It is the functional block diagram which showed the control block of the film thickness measuring apparatus which concerns on one Embodiment of this invention. 図1の膜厚測定装置の外観図である。It is an external view of the film thickness measuring apparatus of FIG. 膜厚測定処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a film thickness measurement process. 被膜導電率測定の流れを示すフローチャートである。It is a flowchart which shows the flow of film conductivity measurement. コイルに付与する交流電圧の周波数と測定対象物の測定導電率との関係を示すグラフである。It is a graph which shows the relationship between the frequency of the alternating voltage provided to a coil, and the measurement electrical conductivity of a measuring object. 図5のグラフを複数種類の測定対象物(試料A,試料B)について実験的に得たものである。The graph of FIG. 5 was experimentally obtained for a plurality of types of measurement objects (sample A and sample B). 標準曲線選択から被膜膜厚測定までの流れを示すフローチャートである。It is a flowchart which shows the flow from standard curve selection to film thickness measurement. 複数の膜質別標準曲線の分類を示すリストである。It is a list | wrist which shows the classification | category of several standard curve according to film quality. 交流電界の周波数別の導電率と膜厚との関係を示すグラフである。It is a graph which shows the relationship between the electrical conductivity according to frequency of an alternating electric field, and a film thickness. 被膜膜厚測定の流れを示すフローチャートである。It is a flowchart which shows the flow of a film thickness measurement.

以下、本発明の具体的な実施形態について、図面に基づき説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

〔1.膜厚測定装置の構成例〕
図2は、本発明の一実施形態に係る膜厚測定装置1の外観を示す図である。同図に示すように、膜厚測定装置1は、筐体とこの筐体に接続されたプローブ10とから構成されている。プローブ10は、測定対象物の表面に近接させるものであって、かかる表面に交流電界を付与するためのコイルを内蔵している。
[1. Configuration example of film thickness measuring device]
FIG. 2 is a diagram showing an appearance of the film thickness measuring apparatus 1 according to one embodiment of the present invention. As shown in the figure, the film thickness measuring device 1 is composed of a housing and a probe 10 connected to the housing. The probe 10 is brought close to the surface of the measurement object, and has a built-in coil for applying an alternating electric field to the surface.

図1は、膜厚測定装置1の主な制御ブロックを示す機能ブロック図である。膜厚測定装置1は、母材Mと母材M上の被膜Fとからなる測定対象物の表面に対して、プローブ10によって交流電界を付与し、測定対象物に誘起される渦電流の強度を検知することにより被膜Fの膜厚を測定するものである。同図に示すように、膜厚測定装置1の制御ブロックは、交流電圧印加部11,渦電流強度検知部12,導電率測定部13,周波数調整部14,周波数別導電率格納部15,飽和導電率決定部16,標準曲線群格納部17,標準曲線選択部18,膜厚測定部19から構成されている。また、膜厚測定装置1は、ユーザインタフェースとして、ユーザからの入力指示を受け付ける各種入力・選択キーや、各種情報を表示するディスプレイからなる入出力部20を備えている。   FIG. 1 is a functional block diagram showing main control blocks of the film thickness measuring apparatus 1. The film thickness measuring device 1 applies an AC electric field to the surface of the measurement object composed of the base material M and the coating F on the base material M by the probe 10, and the intensity of the eddy current induced in the measurement object. The film thickness of the film F is measured by detecting. As shown in the figure, the control block of the film thickness measuring device 1 includes an AC voltage application unit 11, an eddy current intensity detection unit 12, a conductivity measurement unit 13, a frequency adjustment unit 14, a frequency-specific conductivity storage unit 15, and a saturation. It comprises a conductivity determination unit 16, a standard curve group storage unit 17, a standard curve selection unit 18, and a film thickness measurement unit 19. The film thickness measuring apparatus 1 also includes, as a user interface, an input / output unit 20 including various input / selection keys that accept input instructions from the user and a display that displays various information.

交流電圧印加部11は、プローブ10内蔵のコイルに接続されており、このコイルに交流電圧を印加する電源部である。なお、プローブ10内蔵のコイルは、出力ないし検知感度を調整するために、測定対象物の被膜Fが厚いときに用いるものと、測定対象物の被膜Fが薄いときに用いるものとで、設計や仕様を変えることも好ましい。   The AC voltage application unit 11 is connected to a coil built in the probe 10 and is a power supply unit that applies an AC voltage to the coil. The coil built in the probe 10 is designed to be used when the coating film F of the measurement object is thick and to be used when the coating film F of the measurement object is thin in order to adjust the output or detection sensitivity. It is also preferable to change the specifications.

渦電流強度検知部12は、交流電圧印加部11の交流電圧によって付与された交流電界に起因して測定対象物の内部に誘起される渦電流の強度を、プローブ10内蔵のコイルを通じて検知する。   The eddy current intensity detector 12 detects the intensity of the eddy current induced in the measurement object due to the AC electric field applied by the AC voltage of the AC voltage application unit 11 through a coil built in the probe 10.

導電率測定部13は、渦電流強度検知部12が検知した渦電流の強度に基づいて、測定対象物の導電率を測定する。なお、導電率測定部13は、測定対象物の導電率を絶対的な値として測定する構成でなくとも、かかる導電率に比例する値を相対的に測定する構成であってもよい。渦電流強度検知部12が検知する渦電流の強度は、検知感度に依存して異なるからである。   The conductivity measuring unit 13 measures the conductivity of the measurement object based on the eddy current intensity detected by the eddy current intensity detecting unit 12. Note that the conductivity measuring unit 13 may not be configured to measure the conductivity of the measurement object as an absolute value, but may be configured to relatively measure a value proportional to the conductivity. This is because the eddy current intensity detected by the eddy current intensity detection unit 12 varies depending on the detection sensitivity.

周波数調整部14は、交流電圧印加部11がプローブ10内蔵のコイルに印加する交流電圧の周波数を任意の値に調整する。周波数調整部14の働きによって、プローブ10に対峙する測定対象物の表面に対し、調整した周波数の交流電界を付与することが可能となる。後述のように、周波数調整部14は、プローブ10内蔵のコイルに印加する交流電圧の周波数を低周波数から高周波数へと次第に増加させることができる。   The frequency adjustment unit 14 adjusts the frequency of the AC voltage applied to the coil built in the probe 10 by the AC voltage application unit 11 to an arbitrary value. By the function of the frequency adjusting unit 14, an AC electric field having an adjusted frequency can be applied to the surface of the measurement object facing the probe 10. As will be described later, the frequency adjusting unit 14 can gradually increase the frequency of the AC voltage applied to the coil built in the probe 10 from a low frequency to a high frequency.

周波数別導電率格納部15は、周波数調整部14がプローブ10内蔵のコイルに印加する交流電圧の周波数を次第に増加させたときに、導電率測定部13が測定する測定対象物の導電率の値を前記周波数毎に格納する格納部である。すなわち、周波数別導電率格納部15は、前記交流電圧を低周波数としたときの測定導電率、前記交流電圧を高周波数としたときの測定導電率などを、周波数別に格納している。   The frequency-specific conductivity storage unit 15 is a value of the conductivity of the measurement object measured by the conductivity measurement unit 13 when the frequency adjustment unit 14 gradually increases the frequency of the AC voltage applied to the coil built in the probe 10. Is a storage unit for storing each frequency. That is, the frequency-specific conductivity storage unit 15 stores, for each frequency, the measured conductivity when the AC voltage is set to a low frequency, the measured conductivity when the AC voltage is set to a high frequency, and the like.

飽和導電率決定部16は、周波数別導電率格納部15に格納された周波数毎の測定導電率の値に基づいて、前記周波数の増加に対する測定対象物の導電率の飽和値を決定する。かかる導電率の飽和値の意義については後述する。   The saturation conductivity determining unit 16 determines the saturation value of the conductivity of the measurement object with respect to the increase in frequency based on the measured conductivity value for each frequency stored in the frequency-specific conductivity storage unit 15. The significance of the saturation value of the conductivity will be described later.

標準曲線群格納部17は、実際に膜厚を測定する測定対象物と、母材Mの材質および形状が略同じで被膜Fの膜質が異なり、被膜Fの膜厚が既知の標準サンプル群を用いて予め作成された複数の膜質別標準曲線を格納するデータ格納部である。この膜質別標準曲線は、異なる前記飽和値に対応しており、測定対象物の測定導電率と被膜Fの膜厚との相関を示すものとなっている。標準曲線群格納部17は、デジタル記憶構成により、例えば数百〜数千パターンの膜質別標準曲線を格納することができ、任意の膜質別標準曲線を簡単にデータ呼び出し可能な構成である。   The standard curve group storage unit 17 is a standard sample group in which the film thickness of the coating film F is known and the measurement object that actually measures the film thickness is substantially the same as the base material M and the film quality of the coating film F is different. It is a data storage unit for storing a plurality of standard curves according to film quality that are created in advance. This standard curve according to film quality corresponds to the different saturation values, and shows a correlation between the measured conductivity of the measurement object and the film thickness of the coating F. The standard curve group storage unit 17 can store, for example, hundreds to thousands of patterns of standard curves classified by film quality by a digital storage configuration, and can easily call data of standard curves classified by film quality.

標準曲線選択部18は、飽和導電率決定部16が決定した前記飽和値に基づいて、標準曲線群格納部17に格納された複数の前記膜質別標準曲線の中から、実際の被膜Fの膜厚測定に用いる測定用標準曲線を選択する構成である。より具体的には、標準曲線選択部18は、前記複数の膜質別標準曲線の中から、実際に膜厚を測定する測定対象物における前記飽和値(被膜Fの固有導電率)と最も近い飽和値(被膜Fの固有導電率)に関連づけられた一の標準曲線を、前記測定用標準曲線として選択する。これにより、前述の標準サンプル群のうち、電気特性上、実際に膜厚を測定する測定対象物の被膜Fと、最も近い性質を有する被膜Fを備えた標準サンプルを用いて作成された標準曲線を、前記測定対象物の被膜Fの膜厚測定に用いることになる。   Based on the saturation value determined by the saturation conductivity determination unit 16, the standard curve selection unit 18 selects a film of the actual coating F from the plurality of standard curves according to film quality stored in the standard curve group storage unit 17. In this configuration, a measurement standard curve used for thickness measurement is selected. More specifically, the standard curve selection unit 18 saturates closest to the saturation value (the specific conductivity of the coating F) in the measurement object that actually measures the film thickness from among the plurality of film quality standard curves. One standard curve associated with the value (the intrinsic conductivity of coating F) is selected as the standard curve for measurement. Thereby, among the above-mentioned standard sample group, the standard curve created by using the standard sample provided with the coating F of the measurement object for actually measuring the film thickness and the coating F having the closest property in terms of electrical characteristics. Is used for the film thickness measurement of the coating film F of the measurement object.

膜厚測定部19は、導電率測定部13が測定した測定対象物の導電率と標準曲線選択部18が選択した測定用標準曲線とに基づいて、被膜Fの膜厚を測定する構成である。膜厚測定部19による被膜Fの膜厚測定結果は、入出力部20のディスプレイに適宜表示される。また、膜厚測定部19は、膜厚測定装置1の制御動作全体を司るセンター制御部として、膜厚測定装置1の各制御動作を統合的に制御する働きを有している。   The film thickness measurement unit 19 is configured to measure the film thickness of the coating F based on the conductivity of the measurement object measured by the conductivity measurement unit 13 and the measurement standard curve selected by the standard curve selection unit 18. . The film thickness measurement result of the coating F by the film thickness measuring unit 19 is appropriately displayed on the display of the input / output unit 20. In addition, the film thickness measuring unit 19 has a function of integrally controlling each control operation of the film thickness measuring device 1 as a center control unit that controls the entire control operation of the film thickness measuring device 1.

〔2.膜厚測定処理の流れ〕
次に、図3〜図10を参照しながら、膜厚測定装置1による膜厚測定処理の詳細について説明する。
[2. Flow of film thickness measurement process
Next, the details of the film thickness measurement process performed by the film thickness measurement apparatus 1 will be described with reference to FIGS.

図3は、膜厚測定装置1の実行する膜厚測定処理(膜厚測定方法)の流れを示すフローチャートである。本実施形態では、母材Mと母材M上に溶射(メタリコン)した被膜Fとからなる測定対象物(オープンラック式気化器の一部)において、被膜Fの膜厚を測定する場合を考える。本実施形態において、母材Mは、非磁性金属のアルミニウム合金(例えば、Znを含有しないAl−Mn系,Al−Mg系,Al−Mg−Si系)から構成し、具体的な組成としては、例えばA3004,A5052,A5083材を用いる。また、被膜Fには、非磁性材料の一例としてアルミニウム−亜鉛合金の溶射膜を用いる。   FIG. 3 is a flowchart showing the flow of the film thickness measurement process (film thickness measurement method) executed by the film thickness measurement apparatus 1. In the present embodiment, a case where the film thickness of the coating F is measured on a measurement object (a part of an open rack vaporizer) composed of the base material M and the coating F (metallized) sprayed on the base material M is considered. . In the present embodiment, the base material M is made of a nonmagnetic metal aluminum alloy (for example, Al—Mn, Al—Mg, or Al—Mg—Si not containing Zn), and the specific composition is as follows. For example, A3004, A5052, A5083 material is used. For the coating F, a sprayed aluminum-zinc alloy film is used as an example of a nonmagnetic material.

図3に示すとおり、この膜厚測定処理は、被膜の固有導電率の測定処理S1,標準曲線の選択処理S2,被膜膜厚の測定処理S3の三段階から構成されている。   As shown in FIG. 3, this film thickness measurement process is composed of three steps: a film specific conductivity measurement process S 1, a standard curve selection process S 2, and a film thickness measurement process S 3.

被膜の固有導電率の測定処理S1は、母材Mと母材M上の被膜Fとからなる測定対象物の表面に対し、外部から交流電界を付与しながら、測定対象物に誘起される渦電流の強度を検知し、検知した渦電流の強度に基づいて被膜Fの固有導電率を測定する処理である。   The measurement process S1 of the intrinsic conductivity of the coating is a vortex induced in the measurement target while applying an AC electric field from the outside to the surface of the measurement target composed of the base material M and the coating F on the base material M. In this process, the current intensity is detected, and the intrinsic conductivity of the coating F is measured based on the detected eddy current intensity.

標準曲線の選択処理S2は、異なる被膜Fの固有導電率に対応し、前記交流電界の周波数を所定の固定値としたときの測定対象物の測定導電率と被膜Fの膜厚との相関を示す複数の膜質別標準曲線の中から、実際の膜厚測定に用いる測定用標準曲線を選択する処理である。かかる膜質別標準曲線は、測定対象物と母材Mの材質および形状が略同じで被膜Fの膜質が異なり、被膜Fの膜厚が既知の標準サンプル群を用いて予め作成される。   The standard curve selection process S2 corresponds to the intrinsic conductivity of different coatings F, and correlates the measured conductivity of the measurement object with the film thickness of the coating F when the frequency of the alternating electric field is set to a predetermined fixed value. This is a process of selecting a standard curve for measurement used for actual film thickness measurement from a plurality of standard curves according to film quality. Such a standard curve for each film quality is prepared in advance using a standard sample group in which the material and shape of the measurement object and the base material M are substantially the same, the film quality of the film F is different, and the film thickness of the film F is known.

被膜膜厚の測定処理S3は、外部から交流電界を付与して、測定対象物に誘起される渦電流の強度を検知し、検知した渦電流の強度に基づいて測定対象物の導電率を測定し、測定した測定対象物の導電率と測定用標準曲線とを用いて、被膜Fの膜厚を測定する処理である。   In the coating film thickness measurement process S3, an AC electric field is applied from the outside, the intensity of the eddy current induced in the measurement object is detected, and the conductivity of the measurement object is measured based on the detected intensity of the eddy current. Then, the film thickness of the coating F is measured using the measured conductivity of the measurement object and the standard curve for measurement.

図4は、被膜の固有導電率の測定処理S1の流れ(サブルーチン)をより詳しく示すフローチャートである。   FIG. 4 is a flowchart showing in more detail the flow (subroutine) of the measurement process S1 for the intrinsic conductivity of the film.

被膜の固有導電率の測定処理S1は、前述のように、被膜Fの固有導電率を測定する処理であり、主に、膜厚測定装置1の飽和導電率決定部16の司令に基づいて実行される。具体的には、膜厚測定装置1は、飽和導電率決定部16の司令に基づいて、図4に示すS10〜S13の各処理によって、前記交流電界の周波数を次第に増加させながら測定対象物に付与して、渦電流の強度を検知し、検知した渦電流の強度に基づいて、周波数毎に測定対象物の導電率の値を測定したうえで、前記周波数の増加に対して測定導電率が飽和した値を、被膜Fの固有導電率として決定する。   The measurement process S1 of the intrinsic conductivity of the film is a process of measuring the intrinsic conductivity of the film F as described above, and is mainly executed based on the command of the saturation conductivity determining unit 16 of the film thickness measuring device 1. Is done. Specifically, the film thickness measurement apparatus 1 is used as a measurement object while gradually increasing the frequency of the AC electric field by each process of S10 to S13 shown in FIG. 4 based on the command of the saturation conductivity determination unit 16. The intensity of the eddy current is detected, and based on the detected intensity of the eddy current, the conductivity value of the measurement object is measured for each frequency. The saturated value is determined as the intrinsic conductivity of the coating F.

すなわち、飽和導電率決定部16の司令に基づいて、膜厚測定装置1は、図4に示すように、低周波数(例えば約100KHz)の交流電界を付与して測定対象物の導電率を測定し(S10)、中周波数(例えば約250KHz)の交流電界を付与して測定対象物の導電率を測定し(S11)、高周波数(例えば約500KHz)の交流電界を付与して測定対象物の導電率を測定する(S13)。そして、これら測定結果を周波数別に周波数別導電率格納部15に格納する。なお、何通りの周波数で導電率を測定すべきかは、測定に要する時間と後述の飽和値(固有導電率)を導出するのに必要なデータ数とを考慮して適宜設定すればよい。一般には、データ数が多くなるほど、飽和値(固有導電率)の導出は正確となる。   That is, based on the command of the saturation conductivity determining unit 16, the film thickness measuring apparatus 1 measures the conductivity of the measurement object by applying an alternating electric field of a low frequency (for example, about 100 KHz) as shown in FIG. (S10), applying an alternating electric field of medium frequency (for example, about 250 KHz) to measure the conductivity of the measurement object (S11), applying an alternating electric field of high frequency (for example, about 500 KHz) The conductivity is measured (S13). These measurement results are stored in the frequency-specific conductivity storage unit 15 for each frequency. Note that the frequency at which the conductivity should be measured may be appropriately set in consideration of the time required for the measurement and the number of data necessary for deriving a saturation value (specific conductivity) described later. In general, as the number of data increases, the derivation of the saturation value (specific conductivity) becomes more accurate.

このように、交流電界の周波数を変化させながら、測定対象物の導電率を測定する理由は、渦電流式膜厚測定の測定可能深さが、交流電界の周波数の2乗に反比例することが知られているからである。すなわち、測定導電率の値は、交流電界の周波数を増加させるほど、測定対象物のより浅い領域の導電状態を反映したものとなる。したがって、交流電界の周波数を低い値から高い値に増加させながら、測定対象物の導電率を測定していくと、低周波数領域の導電率測定では、母材Mと被膜Fとの両方の導電状態を反映した導電率の値が得られるが、所定周波数以上の高周波数領域の導電率測定では、被膜Fのみの導電状態を反映した導電率の値が得られると考えられる。   Thus, the reason for measuring the conductivity of the measurement object while changing the frequency of the AC electric field is that the measurable depth of the eddy current film thickness measurement is inversely proportional to the square of the frequency of the AC electric field. Because it is known. That is, the value of the measured conductivity reflects the conductive state of the shallower region of the measurement object as the frequency of the alternating electric field is increased. Therefore, when the conductivity of the measurement object is measured while increasing the frequency of the AC electric field from a low value to a high value, the conductivity of both the base material M and the coating F is measured in the low frequency region conductivity measurement. Although the conductivity value reflecting the state is obtained, it is considered that the conductivity value reflecting the conduction state of only the coating F can be obtained in the conductivity measurement in the high frequency region above the predetermined frequency.

図5は、前記コイルに付与する交流電圧の周波数(測定対象物に付与する交流電界の周波数)と測定対象物の測定導電率との関係を概念的に示すグラフである。同図に示すように、交流電圧の周波数が所定以上の領域では、測定導電率は、周波数の増加に対して飽和(サチュレイト)し、略一定の値となっている。この飽和値は、被膜Fのみの導電率、すなわち被膜Fの固有導電率を示していると考えられる。このように、測定周波数を低周波数から高周波数に増加させながら飽和導電率を測定することにより、被膜Fが薄い場合であっても、被膜Fの固有導電率を的確に測定することが可能となる。   FIG. 5 is a graph conceptually showing the relationship between the frequency of the AC voltage applied to the coil (the frequency of the AC electric field applied to the measurement object) and the measurement conductivity of the measurement object. As shown in the figure, in a region where the frequency of the AC voltage is equal to or higher than a predetermined value, the measured conductivity is saturated (saturated) with respect to the increase in frequency and has a substantially constant value. This saturation value is considered to indicate the conductivity of the coating film F only, that is, the intrinsic conductivity of the coating film F. In this way, by measuring the saturation conductivity while increasing the measurement frequency from a low frequency to a high frequency, it is possible to accurately measure the specific conductivity of the coating F even when the coating F is thin. Become.

なお、交流電界の周波数があまりに高すぎると、測定対象物の表面ざらつきの影響が強くなるほか、ごく表層だけの状態を反映した測定導電率の値となり、適切な固有導電率が得られないことがある。一般に、測定対象物の膜厚が厚いときには、測定周波数を低めに設定する一方、測定対象物の膜厚が薄いときには、測定周波数を高めに設定することが好ましい。   In addition, if the frequency of the AC electric field is too high, the surface roughness of the measurement object will become stronger, and the measured conductivity will reflect the state of only the surface layer, and appropriate intrinsic conductivity will not be obtained. There is. In general, when the thickness of the measurement object is thick, it is preferable to set the measurement frequency lower, while when the measurement object is thin, it is preferable to set the measurement frequency higher.

図4において、飽和導電率の決定(S13)は、S10〜S12の各処理にて測定された周波数別導電率の値に基づいて、周波数の増加に対する導電率の上記飽和値を求めることによって行われる。   In FIG. 4, the determination of the saturation conductivity (S13) is performed by obtaining the saturation value of the conductivity with respect to the frequency increase based on the value of the conductivity for each frequency measured in each process of S10 to S12. Is called.

図6は、異なる測定対象物(試料Aの被膜はクラッド層,試料Bの被膜は溶射膜である。)について、交流電界の周波数と測定導電率との関係を実測した結果を示すグラフである。図6をみると、試料の構成によって、交流電界の周波数が増加したときに測定導電率が増加する場合と、交流電界の周波数が増加したときに測定導電率が減少する場合とがあることがわかる。この違いは、母材Mの導電率と被膜Fの導電率との大小関係の違いに起因して生ずるものである。   FIG. 6 is a graph showing the results of actual measurement of the relationship between the frequency of the alternating electric field and the measured conductivity for different objects to be measured (the coating of sample A is a cladding layer and the coating of sample B is a sprayed coating). . Referring to FIG. 6, depending on the configuration of the sample, the measured conductivity may increase when the frequency of the alternating electric field increases, and the measured conductivity may decrease when the frequency of the alternating electric field increases. Recognize. This difference is caused by the difference in magnitude between the conductivity of the base material M and the conductivity of the coating F.

しかし、図6の試料A,試料Bのいずれについても、交流電界の周波数増加につれて各測定導電率の値は飽和しており、この飽和値から測定対象物のごく浅い領域の導電率、すなわち被膜Fの固有導電率を読み取ることができる。膜厚測定装置1の飽和導電率決定部16は、前記飽和値の具体的算出方法として、十分に飽和した高周波領域の導電率の値をそのまま前記飽和値として用いてもよいし、所定の算出式により適宜のフィッティング処理や補間処理などを施して前記飽和値を算出してもよい。   However, for both Sample A and Sample B in FIG. 6, the value of each measured conductivity is saturated as the frequency of the AC electric field increases, and from this saturation value, the conductivity of a very shallow region of the object to be measured, that is, the film The intrinsic conductivity of F can be read. The saturation conductivity determining unit 16 of the film thickness measuring apparatus 1 may use a sufficiently saturated high-frequency conductivity value as the saturation value as a specific calculation method of the saturation value, or may perform a predetermined calculation. The saturation value may be calculated by applying an appropriate fitting process or interpolation process according to an equation.

図7は、標準曲線(検量線)の選択処理S2の流れ(サブルーチン)をより詳しく示すフローチャートである。   FIG. 7 is a flowchart showing in more detail the flow (subroutine) of the standard curve (calibration curve) selection process S2.

標準曲線の選択処理S2は、前述のように、測定対象物の測定導電率と被膜Fの膜厚との相関を示す複数の膜質別標準曲線の中から、実際の膜厚測定に用いる測定用標準曲線を選択する処理であり、主に、膜厚測定装置1の膜厚測定部19の司令に基づいて実行される。具体的には、膜厚測定装置1は、膜厚測定部19の司令に基づいて、S20〜S22の各処理によって前記測定用標準曲線を選択する。   As described above, the standard curve selection process S2 is for measurement used for actual film thickness measurement from among a plurality of film quality standard curves indicating the correlation between the measurement conductivity of the measurement object and the film thickness of the film F. This is a process of selecting a standard curve, and is mainly executed based on the command of the film thickness measuring unit 19 of the film thickness measuring apparatus 1. Specifically, the film thickness measuring device 1 selects the measurement standard curve by each process of S20 to S22 based on the command of the film thickness measuring unit 19.

膜厚測定部19は、図7に示すように、実際の膜厚測定の対象となる測定対象物の母材材質の選択(S20)と母材形状の選択(S21)として、入出力部20を介し、ユーザからの入力指示を受け付ける。このような選択が必要となるのは、渦電流式膜厚測定においては、原理上、測定対象物の母材Mの材質および形状が、測定用標準曲線を得る標準サンプルの母材Mの材質および形状と略同じであることが前提となるので、膜厚測定に用いる測定用標準曲線を的確に選択するためには、母材Mの材質および形状の情報が必要となるからである。   As shown in FIG. 7, the film thickness measuring unit 19 includes an input / output unit 20 as a base material selection (S 20) and a base material shape selection (S 21) of an object to be measured actually. An input instruction from the user is accepted via Such selection is necessary in eddy current film thickness measurement, in principle, the material and shape of the base material M of the measurement object is the material of the base material M of the standard sample that obtains the standard curve for measurement. This is because the information on the material and the shape of the base material M is necessary to accurately select the measurement standard curve used for the film thickness measurement.

ここで、標準サンプルとは、膜厚測定に用いる標準曲線を作成するための試料のことであり、測定対象物と母材Mの材質および形状が略同じで、被膜Fの膜厚が既知のものをいう。このような標準サンプルの具体的作成要領としては、例えば、測定対象物と同一の母材Mの上に、溶射回数を一回、二回、三回・・・と変えて被膜Fを溶射することにより膜厚の異なる試料を作成し、この試料の被膜Fの膜厚を実際に測定すればよい。例えば、後述の標準曲線作成後に、破壊試験によって膜厚測定を実施することもできる。後述の標準曲線を得るにあたっては、標準サンプルの膜厚バリエーションは多いほどデータが豊富となって好ましい。   Here, the standard sample is a sample for creating a standard curve used for film thickness measurement, and the material and shape of the measurement object and the base material M are substantially the same, and the film thickness of the coating F is known. Say things. As a specific preparation procedure of such a standard sample, for example, the coating F is sprayed on the same base material M as the object to be measured with the number of spraying being changed once, twice, three times, etc. Thus, samples having different film thicknesses are prepared, and the film thickness of the film F of the sample may be actually measured. For example, the film thickness can be measured by a destructive test after creating a standard curve described later. In obtaining a standard curve to be described later, the more the thickness variation of the standard sample, the more data is preferable.

前述した溶射プロセスの不安定さにより、標準サンプルの作成時に、上記溶射処理を実行する装置や溶射処理ロット、作業環境を異なるものとすれば、自然と膜質の異なる標準サンプル群ができあがるので、例えば、装置Aにて溶射した標準サンプル群や装置Bにて溶射した標準サンプル群、工場Cで溶射した標準サンプル群や工場Dで溶射した標準サンプル群を作成するなどすれば、母材Mおよび被膜Fの材質が同じでも、被膜Fの膜質状態が異なる標準サンプル群を準備することができる。このような標準サンプル群は、測定対象となる母材Mの材質および形状別に準備される他、被膜Fの膜質状態が異なるものを極力他種類ないし多数準備することが好ましい。   Due to the instability of the thermal spraying process described above, if the equipment, the thermal spraying lot, and the working environment that perform the thermal spraying process are different when creating a standard sample, a standard sample group with different film quality can be created. If the standard sample group sprayed by the apparatus A, the standard sample group sprayed by the apparatus B, the standard sample group sprayed by the factory C, or the standard sample group sprayed by the factory D is prepared, the base material M and the coating Even if the material of F is the same, a standard sample group in which the film quality state of the coating F is different can be prepared. Such a standard sample group is preferably prepared according to the material and shape of the base material M to be measured, and other types or a large number of samples having different film quality states of the coating F are prepared as much as possible.

そして、予め、測定対象物の母材Mの各材質と各形状とで分類して、異なる膜質の各標準サンプルについて、前記被膜の固有導電率の測定処理S1と同様の手順により、前記飽和導電率ないし被膜Fの固有導電率を測定しておく。これにより、各標準サンプルをその飽和導電率ないし被膜Fの固有導電率によって識別することが可能となり、この飽和導電率ないし被膜Fの固有導電率は、被膜Fの膜質を反映した代表値となる。   And it classify | categorizes beforehand with each material and each shape of the base material M of a measuring object, About the standard sample of different film quality, it carries out the said saturated electric conduction according to the procedure similar to the measurement process S1 of the intrinsic | native conductivity of the said film. The rate or the intrinsic conductivity of the coating F is measured in advance. Thus, each standard sample can be identified by its saturated conductivity or the intrinsic conductivity of the coating F, and this saturated conductivity or the intrinsic conductivity of the coating F is a representative value reflecting the film quality of the coating F. .

次いで、膜厚測定装置1の膜厚測定部19は、前記交流電界の周波数を実際の膜厚測定時に用いる交流電界の周波数(測定周波数)と同じに設定した状態で、全ての標準サンプルについて、導電率と既知の膜厚との相関を示す標準曲線を測定し、データベース化された数値群や数値プロットしたグラフの形式等で標準曲線群格納部17に格納しておく。これら標準曲線は、標準サンプル毎に異なっており、各標準サンプルの前記飽和導電率ないし被膜Fの固有導電率の値と対応づけられている。なお、実際の膜厚測定時に用いる交流電界の周波数(測定周波数)は、所定の固定値であるが、その設定要領の詳細については後述する。   Next, the film thickness measuring unit 19 of the film thickness measuring device 1 sets the frequency of the AC electric field to be the same as the frequency of the AC electric field (measurement frequency) used at the time of actual film thickness measurement. A standard curve indicating the correlation between the conductivity and the known film thickness is measured, and stored in the standard curve group storage unit 17 in the form of a numerical value group created in a database or a graph of numerical values plotted. These standard curves are different for each standard sample, and correspond to the saturated conductivity of each standard sample or the specific conductivity value of the coating F. The frequency (measurement frequency) of the alternating electric field used at the time of actual film thickness measurement is a predetermined fixed value, and details of the setting procedure will be described later.

このようにして、標準サンプル群に基づいて、測定対象物の母材Mの材質および形状ごとに分類されるとともに、異なる被膜Fの固有導電率に対応し、測定対象物の測定導電率と測定対象物の被膜Fの膜厚との相関を示す複数の膜質別標準曲線を得ることができる。   Thus, based on the standard sample group, it is classified for each material and shape of the base material M of the measurement object, and corresponds to the specific conductivity of the different coating F, and the measurement conductivity and measurement of the measurement object. A plurality of standard curves according to film quality showing a correlation with the film thickness of the coating film F of the object can be obtained.

本発明の特徴は、被膜F、とりわけ溶射された被膜Fの膜質(材質の他、密度や硬度などを含む)を、前記飽和導電率ないし被膜Fの固有導電率によって的確に示すことが可能であることを本発明者が見出し、実証したことにある。すなわち、かかる飽和導電率ないし固有導電率のみに着目して整理すれば、多数準備された膜質別標準曲線のデータから、実際に測定対象となる被膜Fの膜質を的確に反映した測定用標準曲線を的確に選択することができる。   A feature of the present invention is that the film quality (including density, hardness, etc. in addition to the material) of the coating F, particularly the sprayed coating F, can be accurately indicated by the saturated conductivity or the intrinsic conductivity of the coating F. The present inventors have found and verified that this is the case. In other words, if the arrangement is focused on only the saturated conductivity or the specific conductivity, a standard curve for measurement that accurately reflects the film quality of the coating F that is actually measured from the data of the standard curve for each film quality prepared in large numbers. Can be selected accurately.

図8は、膜厚測定装置1の標準曲線群格納部17が格納する標準曲線の分類例を示すリストである。膜厚測定装置1では、標準曲線選択部18が、図8のリストを保有しており、同リストは、第一に母材Mの材質によって、第二に母材Mの形状(測定対象部材に対応している)によって、前記標準曲線を分類している。   FIG. 8 is a list showing an example of standard curve classification stored in the standard curve group storage unit 17 of the film thickness measuring apparatus 1. In the film thickness measuring device 1, the standard curve selection unit 18 holds the list of FIG. 8, and the list is based first on the material of the base material M and secondly on the shape of the base material M (measurement target member). The standard curve is classified.

図8の「A3004」「A5052」「A5083」は、前述した母材Mの材質(前述したアルミニウム合金の組成名)を示す一方、同図の「フィン」「付根」「ヘッダ」とは、オープンラック式気化器のいずれの部材を膜厚測定するのかを示しており、これら部材名は母材Mの形状に対応している。具体的には、「フィン」は、オープンラック式気化器のフィン部に相当する平板(幅約10mm)の形状を示し、「付根」は、オープンラック式気化器のチューブ付根部に相当するパイプ(約30mmφ)の形状を示し、「ヘッダ」は、オープンラック式気化器の下ヘッダ部に相当するパイプ(約200mmφ)の形状を示している。   “A3004”, “A5052” and “A5083” in FIG. 8 indicate the material of the base material M (composition name of the aluminum alloy described above), while “fin”, “root” and “header” in FIG. It shows which member of the rack type vaporizer is to be measured for film thickness, and the names of these members correspond to the shape of the base material M. Specifically, “fin” indicates the shape of a flat plate (width of about 10 mm) corresponding to the fin portion of the open rack type vaporizer, and “root” is a pipe corresponding to the tube root portion of the open rack type vaporizer. The shape of (about 30 mmφ) is shown, and “header” shows the shape of a pipe (about 200 mmφ) corresponding to the lower header portion of the open rack type vaporizer.

図8のリストでは、前提として母材Mの材質および形状に基づいて、標準サンプル群の標準曲線データ(No.1〜27)を分類しているので、前記S20における母材Mの材質の選択結果(例えば「A3004」)と、前記S21における母材Mの形状の選択結果(例えば「フィン」)とに基づいて標準曲線データを絞り込んだ上で、さらに、前記飽和導電率ないし被膜Fの固有導電率に基づいて、一の標準曲線データを選択することができる。これにより、標準曲線群格納部17が格納する多数の標準曲線(膜質別標準曲線)の中から、実際に被膜Fの膜厚測定に用いる測定用標準曲線が選択される。   In the list of FIG. 8, the standard curve data (No. 1 to 27) of the standard sample group is classified based on the material and shape of the base material M as a premise, so the selection of the material of the base material M in S20 is performed. After narrowing down the standard curve data based on the result (for example, “A3004”) and the selection result of the shape of the base material M in S21 (for example, “fin”), the saturation conductivity or the characteristic of the coating F is further reduced. One standard curve data can be selected based on the conductivity. As a result, a standard curve for measurement actually used for measuring the film thickness of the coating F is selected from among a large number of standard curves (standard curves classified by film quality) stored in the standard curve group storage unit 17.

例えば、測定対象物と母材Mの材質および形状が略同じで被膜Fの膜質が異なり、被膜Fの膜厚が既知の標準サンプル群、を用いて予め作成された複数の膜質別標準曲線の中から、実際に被膜Fの膜厚を測定する測定対象物における導電率の飽和値、または被膜Fの固有導電率に、最も近い値を、前記飽和値ないし前記固有導電率として有する標準サンプルを用いて作成され、これら固有導電率ないし飽和値と関連づけられた一の標準曲線が前記測定用標準曲線として選択される。   For example, a plurality of standard curves according to film quality prepared in advance using a standard sample group in which the measurement object and the base material M have substantially the same material and shape, the film quality of the film F is different, and the film thickness of the film F is known. A standard sample having, as the saturation value or the intrinsic conductivity, the value closest to the saturation value of the conductivity in the measurement object for actually measuring the film thickness of the coating F or the intrinsic conductivity of the coating F. A standard curve that is created and associated with these intrinsic conductivity or saturation values is selected as the standard curve for measurement.

図8のリストを参照すれば、例えば、母材材質「A3004」の母材形状「フィン」について、異なる三種類の飽和導電率の値A,B,Cに各々対応づけられた膜質別標準曲線No.1〜3が存在することがわかる。膜厚測定装置1の膜厚測定部19は、膜質別標準曲線No.1〜3の中から、S13において決定した測定対象物の飽和導電率の値が最も近い飽和導電率(例えばA)を有する標準曲線(No.1)を、後述の膜厚測定に用いる測定用標準曲線として選択する(図7のS22)。   Referring to the list of FIG. 8, for example, for the base material shape “fin” of the base material “A3004”, standard curves according to film quality respectively associated with three different types of saturation conductivity values A, B, and C. No. 1 to 3 exist. The film thickness measuring unit 19 of the film thickness measuring apparatus 1 has a standard curve No. by film quality. A standard curve (No. 1) having a saturation conductivity (for example, A) having the closest saturation conductivity value of the measurement object determined in S13 from 1 to 3 is used for measurement of film thickness described later. It selects as a standard curve (S22 of FIG. 7).

標準サンプル群を用いて得ておく標準曲線に関するデータは、図8に示した母材Mの材質,形状,飽和導電率による分類の他、さらに、被膜Fを形成した溶射装置の違いなどの各要素によって細分化されていてもよい。もちろん、かかる場合には、ユーザは、適切な標準曲線を選択するために、母材Mの材質,形状,飽和導電率だけでなく、上記の細分化項目についても指示入力することが必要である。   The data relating to the standard curve obtained using the standard sample group includes the classification of the base material M shown in FIG. 8 according to the material, shape, and saturation conductivity, as well as the difference in the thermal spraying apparatus on which the coating F is formed. It may be subdivided by element. Of course, in such a case, in order to select an appropriate standard curve, the user needs to input an instruction not only for the material, shape, and saturation conductivity of the base material M, but also for the above-described subdivision items. .

なお、前述のように、プローブ10のコイルを、主に測定対象物の被膜Fが厚いときに用いるものと、主に測定対象物の被膜Fが薄いときに用いるものとで、設計や仕様を変えて使い分ける場合には、プローブ10の種類毎に分類して、各標準サンプル群の標準曲線を準備しておく。   As described above, the design and specifications of the coil of the probe 10 are mainly used when the coating film F of the measurement object is thick, and when the coating film F of the measurement object is thin. In the case of using differently, the standard curve of each standard sample group is prepared by classifying each type of probe 10.

次いで、図7のS23に示すように、膜厚測定装置1は、膜厚測定部19の司令に基づいて、実際の膜厚測定時に用いる交流電界の周波数(測定周波数)を設定する。一般に、前記測定周波数を低く設定するほど、測定対象物のより深い領域の情報を得ることができる一方、膜厚の測定感度(精度)が悪くなることが知られている。他方、前記測定周波数を高くしすぎると、測定対象物のごく浅い領域の情報しか得られないので、被膜Fと母材Mとの境界周辺の情報が測定結果にうまく反映されず、適切な膜厚測定ができない。したがって、上記のトレードオフ関係を考慮すると、測定対象物における被膜Fの膜厚をある程度把握し、前記測定周波数を、被膜Fの膜厚を適切に測定できる範囲で、できるだけ高く設定することが好ましい。   Next, as shown in S <b> 23 of FIG. 7, the film thickness measuring device 1 sets the frequency (measurement frequency) of the AC electric field used at the time of actual film thickness measurement based on the command of the film thickness measuring unit 19. In general, it is known that as the measurement frequency is set lower, information on a deeper region of the measurement object can be obtained, while the measurement sensitivity (accuracy) of the film thickness is deteriorated. On the other hand, if the measurement frequency is set too high, only information on a very shallow region of the measurement object can be obtained, so information around the boundary between the coating F and the base material M is not reflected well in the measurement result, and an appropriate film is obtained. Thickness cannot be measured. Therefore, in consideration of the above trade-off relationship, it is preferable to grasp the film thickness of the coating F on the measurement object to some extent and set the measurement frequency as high as possible within a range where the film thickness of the coating F can be appropriately measured. .

図9は、同一の測定対象物に対して、前記測定周波数を60kHz〜480kHzの範囲内で変化させた場合の測定導電率と膜厚との関係を例示するグラフ(標準曲線)である。同図においては、測定導電率の値を、単位を有する絶対的な導電率に換算せず、相対導電率として記載している。   FIG. 9 is a graph (standard curve) illustrating the relationship between the measured conductivity and the film thickness when the measurement frequency is changed within the range of 60 kHz to 480 kHz for the same measurement object. In the figure, the value of the measured conductivity is not converted to an absolute conductivity having a unit, but is described as a relative conductivity.

図9のグラフを参照すると、測定周波数が60kHz,120kHz,240kHz,480kHzと高くなるにつれて、所定値の膜厚に対応する導電率の値が次第に大きくなることがわかる。同図では、全ての測定周波数において、グラフは略右上がりの単調増加曲線となっており、膜厚と導電率とは、略一対一の対応関係を示している(ただし、480kHzのグラフでは、約300μm以上の膜厚領域において、膜厚の増加に対する導電率の減少が生じている)。   Referring to the graph of FIG. 9, it can be seen that the conductivity value corresponding to the predetermined film thickness gradually increases as the measurement frequency increases to 60 kHz, 120 kHz, 240 kHz, and 480 kHz. In this figure, the graph is a monotonically increasing curve that rises to the right at all measurement frequencies, and the film thickness and the conductivity show a substantially one-to-one correspondence (however, in the graph of 480 kHz, In the film thickness region of about 300 μm or more, there is a decrease in conductivity with an increase in film thickness).

したがって、測定対象物の被膜Fの膜厚が約300μm未満の範囲内であるならば、測定周波数の値を、前述のうち480kHzに設定することにより、測定導電率の広いダイナミックレンジを最大限に活用した感度の高い膜厚測定を実施することができる。特に、測定対象物の被膜Fの膜厚が約100μm未満の範囲内であるならば、測定周波数を480kHzに設定した場合は、測定周波数を60kHz,120kHz,240kHzに設定した場合よりも、膜厚の変化に対する導電率の変化が大きくなるので、膜厚測定の感度を向上することが可能となる。   Therefore, if the film thickness of the coating F of the measurement object is within the range of less than about 300 μm, setting the measurement frequency value to 480 kHz among the above will maximize the wide dynamic range of the measurement conductivity. The film thickness measurement with high sensitivity can be performed. In particular, if the film thickness of the coating F of the measurement object is within a range of less than about 100 μm, when the measurement frequency is set to 480 kHz, the film thickness is larger than when the measurement frequency is set to 60 kHz, 120 kHz, and 240 kHz. Since the change in conductivity with respect to the change in thickness increases, the sensitivity of film thickness measurement can be improved.

標準曲線群格納部17に格納した標準曲線を測定するときに用いた前記実際の膜厚測定時に用いる交流電界の周波数(測定周波数)とは、S23にて設定される測定周波数のことである。例えば、膜厚測定装置1は、膜厚測定部19の司令に基づき、例えば図9のグラフを基に決定するに際して、測定対象物の被膜Fの膜厚が約300μm未満の範囲内と想定されるならば(例えば、前回の膜厚測定結果の値を参考にする)、測定周波数を480kHzに設定する一方、測定対象物の被膜Fの膜厚が約300〜400μmの範囲内と想定されるならば、測定周波数を60kHz(膜厚が約300〜400μmの範囲内において最も測定感度が優れている)に設定する。   The frequency (measurement frequency) of the alternating electric field used for the actual film thickness measurement used when measuring the standard curve stored in the standard curve group storage unit 17 is the measurement frequency set in S23. For example, when the film thickness measuring device 1 determines based on the command of the film thickness measuring unit 19 based on, for example, the graph of FIG. 9, the film thickness of the coating film F of the measurement object is assumed to be within a range of less than about 300 μm. (For example, referring to the value of the previous film thickness measurement result), the measurement frequency is set to 480 kHz, while the film thickness of the coating F of the measurement object is assumed to be in the range of about 300 to 400 μm. Then, the measurement frequency is set to 60 kHz (the measurement sensitivity is the best when the film thickness is in the range of about 300 to 400 μm).

S23において、膜厚測定装置1は、測定周波数を決定するための前提情報として、測定対象物の被膜Fの膜厚の大凡の値や設計値、範囲に関する情報を、入出力部20を介して、ユーザから受け付けることも好ましい。なお、膜厚測定装置1は、測定周波数をユーザの直接的な指示ないし選択に基づいて決定してもよい。   In S <b> 23, the film thickness measurement apparatus 1 uses the input / output unit 20 to provide information on approximate values, design values, and ranges of the film thickness of the coating F of the measurement object as prerequisite information for determining the measurement frequency. It is also preferable to accept from the user. Note that the film thickness measuring apparatus 1 may determine the measurement frequency based on a user's direct instruction or selection.

図10は、被膜膜厚の測定処理S3の流れ(サブルーチン)をより詳しく示すフローチャートである。   FIG. 10 is a flowchart showing in more detail the flow (subroutine) of the coating film thickness measurement process S3.

被膜膜厚の測定処理S3は、前述のように、前記交流電界の周波数を前記所定の固定値とした状態で、前記渦電流の強度を検知し、検知した渦電流の強度に基づいて前記測定対象物の導電率を測定し、測定した前記測定対象物の導電率とS22で選択された測定用標準曲線とを用いて、被膜Fの膜厚を測定する処理であり、主に、膜厚測定装置1の膜厚測定部19の司令に基づいて実行される。具体的には、膜厚測定装置1は、膜厚測定部19の司令に基づいて、図7に示すS20〜S22の各処理によって前記測定用標準曲線を選択する。   As described above, the film thickness measurement process S3 detects the intensity of the eddy current in a state where the frequency of the AC electric field is set to the predetermined fixed value, and performs the measurement based on the detected intensity of the eddy current. This is a process of measuring the conductivity of the object, and measuring the film thickness of the coating F using the measured conductivity of the object to be measured and the standard curve for measurement selected in S22. This is executed based on the command of the film thickness measuring unit 19 of the measuring apparatus 1. Specifically, the film thickness measuring apparatus 1 selects the measurement standard curve by each process of S20 to S22 shown in FIG. 7 based on the command of the film thickness measuring unit 19.

校正処理(S30)とは、S22で選択された測定用標準曲線を用いて実際に膜厚測定を実施する準備段階として、測定導電率が許容されるダイナミックレンジ(測定レンジ)の範囲内に収まっているかを試験ないし確認し、測定導電率が所定の測定レンジ内に適切に収まるように感度調整する処理である。   The calibration process (S30) means that the measurement conductivity is within the allowable dynamic range (measurement range) as a preparatory stage for actually carrying out the film thickness measurement using the measurement standard curve selected in S22. In this process, the sensitivity is adjusted so that the measured conductivity is appropriately within a predetermined measurement range.

上記の感度調整は、電気的増幅量を調整する手法の他、前述したようなプローブ10の使い分けによっても実現することができる。すなわち、巻き数の異なるコイルを内蔵した複数種類のプローブ10を準備し、被膜Fが厚いときには、厚膜用のプローブ10を用いる一方、被膜Fが薄いときには、薄膜用のプローブ10を用いることにより感度調整を行うことができる。このような感度調整を行う場合には、膜厚測定装置1の膜厚測定部19は、入出力部20のディスプレイにメッセージ表示して、適宜ユーザにプローブ10の交換を促す。一般的に、被膜Fが厚いときには、測定導電率の値が大きくなりやすく、被膜Fが薄いときには、測定導電率の値が小さくなりやすい。   The sensitivity adjustment described above can be realized by properly using the probe 10 as described above, in addition to the method of adjusting the electrical amplification amount. That is, by preparing a plurality of types of probes 10 incorporating coils with different winding numbers, the thick film probe 10 is used when the film F is thick, while the thin film probe 10 is used when the film F is thin. Sensitivity adjustment can be performed. When performing such sensitivity adjustment, the film thickness measuring unit 19 of the film thickness measuring apparatus 1 displays a message on the display of the input / output unit 20 to prompt the user to replace the probe 10 as appropriate. Generally, when the film F is thick, the value of measured conductivity tends to increase, and when the film F is thin, the value of measured conductivity tends to decrease.

なお、上記の感度調整を行う場合には、測定用標準曲線を用いて膜厚測定するに際し、電気的増幅量の調整分を勘案して測定導電率の値を適宜補正したり、測定用標準曲線を異なる種類のプローブ10に対応する別の標準曲線に変更したりする処理が必要となる。   When performing the sensitivity adjustment described above, when measuring the film thickness using the measurement standard curve, the measurement conductivity value may be appropriately corrected taking into account the adjustment amount of the electrical amplification amount, or the measurement standard A process of changing the curve to another standard curve corresponding to a different type of probe 10 is required.

前記校正処理が終われば、膜厚測定装置1の膜厚測定部19は、測定対象物の導電率測定を開始し(S31)、測定導電率が上記で許容されたダイナミックレンジ(測定レンジ)内に入っているかどうかを判定する(S32)。前記判定の結果、測定導電率が測定レンジ内に入っていなければ、S30に戻って再び校正処理を行う一方、前記判定の結果、測定導電率が測定レンジ内に入っていれば、膜厚測定装置1の膜厚測定部19は、S33の処理に進み、前記交流電界の周波数をS23で設定された固定値として、S22で選択された測定用標準曲線とS31で測定した導電率の値とに基づいて、測定対象物における被膜Fの膜厚を算出する。そして、膜厚測定装置1の膜厚測定部19は、算出した膜厚を入出力部20のディスプレイに表示して処理を終了する(S34)。   When the calibration process is completed, the film thickness measuring unit 19 of the film thickness measuring apparatus 1 starts measuring the conductivity of the measurement object (S31), and the measured conductivity is within the allowable dynamic range (measurement range) described above. It is determined whether or not (S32). If the measurement conductivity is not within the measurement range as a result of the determination, the process returns to S30 and the calibration process is performed again. On the other hand, if the measurement conductivity is within the measurement range as a result of the determination, the film thickness is measured. The film thickness measurement unit 19 of the apparatus 1 proceeds to the process of S33, and sets the frequency of the alternating electric field as a fixed value set in S23, the standard curve for measurement selected in S22, and the conductivity value measured in S31. Based on the above, the film thickness of the coating F on the measurement object is calculated. And the film thickness measurement part 19 of the film thickness measurement apparatus 1 displays the calculated film thickness on the display of the input-output part 20, and complete | finishes a process (S34).

以上、本発明の具体的な実施形態について説明したが、本発明が採り得る態様は、何らこれらに限定されるものではない。例えば、上記の説明において、膜厚測定装置1が自動的ないし自律的に実行するものとした処理の一部を、膜厚測定装置1ではなく、ユーザが行うようにしてもよい。また、上記の説明においては、主に、溶射膜からなる被膜Fの膜厚を測定する実施形態を示したが、本発明による膜厚測定の対象は、溶射膜に限られず、塗装膜、クラッド層の他、任意の被膜Fを用いることができる。   As mentioned above, although specific embodiment of this invention was described, the aspect which this invention can take is not limited to these at all. For example, in the above description, a part of the processing that is automatically or autonomously executed by the film thickness measuring device 1 may be performed by the user instead of the film thickness measuring device 1. Moreover, in the above description, the embodiment for measuring the film thickness of the coating F made of a sprayed film has been mainly shown. In addition to the layer, any coating F can be used.

以上説明したように、本発明は、測定対象物の表面に対し、外部から交流電界を付与して、誘起される渦電流の強度を検知することにより、被膜の膜厚を測定する膜厚測定方法、膜厚測定装置に好適に利用できるものである。   As described above, the present invention is a film thickness measurement that measures the film thickness of a film by applying an AC electric field from the outside to the surface of the object to be measured and detecting the intensity of the induced eddy current. The method and the film thickness measuring device can be suitably used.

1 膜厚測定装置
10 プローブ
11 交流電圧印加部
12 電流強度検知部
13 導電率測定部
14 周波数調整部
15 周波数別導電率格納部
16 飽和導電率決定部
17 標準曲線群格納部
18 標準曲線選択部
19 膜厚測定部
20 入出力部
DESCRIPTION OF SYMBOLS 1 Film thickness measurement apparatus 10 Probe 11 AC voltage application part 12 Current intensity detection part 13 Conductivity measurement part 14 Frequency adjustment part 15 Conductivity storage part according to frequency 16 Saturation conductivity determination part 17 Standard curve group storage part 18 Standard curve selection part 19 Film thickness measurement unit 20 Input / output unit

Claims (5)

母材と母材上の被膜とからなる測定対象物の表面に対し、外部から交流電界を付与して、前記測定対象物に誘起される渦電流の強度を検知することにより、前記被膜の膜厚を測定する膜厚測定方法であって、
前記渦電流の強度を検知し、検知した渦電流の強度に基づいて前記被膜の固有導電率を測定する被膜導電率測定段階と、
異なる前記被膜の固有導電率に対応し、前記交流電界の周波数を所定の固定値としたときの前記測定対象物の測定導電率と前記被膜の膜厚との相関を示すとともに、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群を用いて予め作成される複数の膜質別標準曲線の中から、前記被膜導電率測定段階で測定された被膜の固有導電率に基づいて、前記被膜の膜厚測定に用いる測定用標準曲線を選択する標準曲線選択段階と、
前記交流電界の周波数を前記所定の固定値とした状態で、前記渦電流の強度を検知し、検知した渦電流の強度に基づいて前記測定対象物の導電率を測定し、測定した前記測定対象物の導電率と前記測定用標準曲線とを用いて、前記被膜の膜厚を測定する膜厚測定段階とを備え
前記被膜導電率測定段階では、
前記測定対象物の表面に対し、外部から次第に周波数を変化させながら前記交流電界を付与して前記渦電流の強度を検知し、検知した渦電流の強度に基づいて、前記周波数毎に前記測定対象物の導電率の値を測定するとともに、前記周波数の増加に対して測定導電率が飽和した値を、前記被膜の固有導電率として決定することを特徴とする膜厚測定方法。
By applying an AC electric field from the outside to the surface of the measurement object consisting of the base material and the film on the base material, and detecting the intensity of the eddy current induced in the measurement object, the film of the film A film thickness measuring method for measuring thickness,
A film conductivity measuring step for detecting the intensity of the eddy current and measuring the specific conductivity of the film based on the detected intensity of the eddy current;
Corresponding to the different specific conductivity of the film, the correlation between the measured conductivity of the measurement object and the film thickness when the frequency of the AC electric field is a predetermined fixed value, and the measurement object The film conductivity is measured from a plurality of standard curves according to film quality prepared in advance using a standard sample group in which the material and shape of the base material are substantially the same and the film quality is different, and the film thickness of the film is known. A standard curve selection step for selecting a standard curve for measurement used for measuring the film thickness of the coating film based on the intrinsic conductivity of the coating film measured in the step;
In the state where the frequency of the AC electric field is set to the predetermined fixed value, the intensity of the eddy current is detected, the conductivity of the measurement object is measured based on the detected intensity of the eddy current, and the measurement object is measured. Using the electrical conductivity of the object and the standard curve for measurement, a film thickness measuring step for measuring the film thickness of the film ,
In the film conductivity measurement step,
Applying the alternating electric field to the surface of the measurement object while gradually changing the frequency from the outside to detect the intensity of the eddy current, and based on the detected intensity of the eddy current, the measurement object for each frequency with measuring the conductivity value of the object, the film thickness measuring method a value measured conductivity is saturated with respect to an increase of the frequency, characterized that you determined as intrinsic conductivity of the coating.
前記被膜は、前記母材上に形成された溶射膜、塗装膜、クラッド層のいずれかであることを特徴とする請求項1記載の膜厚測定方法。 The coating is sprayed film formed on the base material, the coating film, the film thickness measuring method according to claim 1 Symbol mounting, characterized in that either of the cladding layers. 前記母材は非磁性金属であるとともに、前記被膜は非磁性材料からなることを特徴とする請求項1または2に記載の膜厚測定方法。 The film thickness measuring method according to claim 1 or 2, wherein the base material is a nonmagnetic metal and the coating is made of a nonmagnetic material. 前記母材はアルミまたはアルミ合金であることを特徴とする請求項1乃至のいずれか1項に記載の膜厚測定方法。 The base material is a film thickness measuring method according to any one of claims 1 to 3, characterized in that aluminum or an aluminum alloy. 母材と母材上の被膜とからなる測定対象物の表面に対し、外部から交流電界を付与して、前記測定対象物に誘起される渦電流の強度を検知することにより、前記被膜の膜厚を測定する膜厚測定装置であって、
コイルに交流電圧を印加して前記測定対象物の表面に対し、交流電界を付与する交流電圧印加部と、
前記交流電圧印加部によって付与された交流電界によって、前記測定対象物に誘起される渦電流の強度を検知する渦電流強度検知部と、
前記渦電流強度検知部が検知した渦電流の強度に基づいて、前記測定対象物の導電率を測定する導電率測定部と、
前記コイルに印加する交流電圧の周波数を次第に変化させる周波数調整部と、
前記周波数調整部が前記周波数を次第に変化させたときに前記導電率測定部が測定する前記測定対象物の導電率の値を前記周波数毎に格納する周波数別導電率格納部と、
前記周波数別導電率格納部に格納された前記周波数毎の前記測定対象物の導電率の値から、前記周波数の増加に対する前記測定対象物の導電率の飽和値を決定する飽和導電率決定部と、
異なる前記被膜の固有導電率に対応し、前記交流電界の周波数を所定の固定値としたときの前記測定対象物の測定導電率と前記被膜の膜厚との相関を示すとともに、前記測定対象物と母材の材質および形状が略同じで被膜の膜質が異なり、当該被膜の膜厚が既知の標準サンプル群を用いて予め作成される複数の膜質別標準曲線を格納する標準曲線群格納部と、
前記飽和導電率決定部が決定した前記飽和値に基づいて、前記標準曲線群格納部に格納された複数の膜質別標準曲線の中から、前記被膜の膜厚測定に用いる測定用標準曲線を選択する標準曲線選択部と、
前記交流電界の周波数を前記所定の固定値とした状態で、前記導電率測定部が測定した前記測定対象物の導電率と前記標準曲線選択部が選択した前記測定用標準曲線とに基づいて、前記被膜の膜厚を測定する膜厚測定部とを備えることを特徴とする膜厚測定装置。
By applying an AC electric field from the outside to the surface of the measurement object consisting of the base material and the film on the base material, and detecting the intensity of the eddy current induced in the measurement object, the film of the film A film thickness measuring device for measuring thickness,
An alternating voltage application unit that applies an alternating electric field to the surface of the object to be measured by applying an alternating voltage to the coil;
An eddy current intensity detector that detects the intensity of eddy current induced in the measurement object by an AC electric field applied by the AC voltage application unit;
Based on the intensity of eddy current detected by the eddy current intensity detection unit, a conductivity measurement unit that measures the conductivity of the measurement object;
A frequency adjusting unit that gradually changes the frequency of the AC voltage applied to the coil;
A frequency-specific conductivity storage unit that stores, for each frequency, a conductivity value of the measurement object measured by the conductivity measurement unit when the frequency adjustment unit gradually changes the frequency;
A saturation conductivity determining unit that determines a saturation value of the conductivity of the measurement object with respect to an increase in the frequency from a value of the conductivity of the measurement object for each frequency stored in the conductivity storage unit for each frequency; ,
Corresponding to the different specific conductivity of the film, the correlation between the measured conductivity of the measurement object and the film thickness when the frequency of the AC electric field is a predetermined fixed value, and the measurement object A standard curve group storage unit for storing a plurality of standard curves according to film quality, which are prepared in advance using a standard sample group in which the material and shape of the base material are substantially the same, the film quality of the film is different, and the film thickness of the film is known. ,
Based on the saturation value determined by the saturation conductivity determination unit, a standard curve for measurement used for measuring the film thickness of the coating is selected from the plurality of standard curves according to film quality stored in the standard curve group storage unit A standard curve selection unit,
Based on the measurement standard curve selected by the conductivity of the measurement object measured by the conductivity measurement unit and the standard curve selection unit, with the frequency of the alternating electric field set to the predetermined fixed value, A film thickness measuring apparatus comprising: a film thickness measuring unit that measures the film thickness of the coating film.
JP2012066892A 2012-03-23 2012-03-23 Film thickness measuring method and film thickness measuring apparatus Active JP5968658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012066892A JP5968658B2 (en) 2012-03-23 2012-03-23 Film thickness measuring method and film thickness measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012066892A JP5968658B2 (en) 2012-03-23 2012-03-23 Film thickness measuring method and film thickness measuring apparatus

Publications (2)

Publication Number Publication Date
JP2013200127A JP2013200127A (en) 2013-10-03
JP5968658B2 true JP5968658B2 (en) 2016-08-10

Family

ID=49520492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012066892A Active JP5968658B2 (en) 2012-03-23 2012-03-23 Film thickness measuring method and film thickness measuring apparatus

Country Status (1)

Country Link
JP (1) JP5968658B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999026062A1 (en) * 1997-11-14 1999-05-27 Jentek Sensors, Inc. Multiple frequency quantitative coating characterization

Also Published As

Publication number Publication date
JP2013200127A (en) 2013-10-03

Similar Documents

Publication Publication Date Title
CN101131314B (en) Nondestructive thickness measuring method for nickel coat on Fe substrate
ATE355550T1 (en) METHOD FOR MEASURING THE TEMPERATURE OF A METAL COOKING VESSEL
JP6317619B2 (en) Induction heating roller device
JP5968658B2 (en) Film thickness measuring method and film thickness measuring apparatus
CN111999378B (en) Method for measuring conductivity and thickness of metal material based on TMR sensor
JP2013095983A (en) Method for evaluating quality of thermally sprayed film
JP4752366B2 (en) Multi-frequency eddy current mold powder melt thickness measurement method
Beck et al. Temperature measurement and control methods in TMF testing–a comparison and evaluation
JP6189395B2 (en) Film thickness measuring device
US10928178B2 (en) Method and device for measuring the thickness of non-magnetisable layers on a magnetisable base material
Ansari et al. Single-frequency apparent eddy current conductivity assessment of metallic coating thicknesses over nonmagnetic metals
JP5373541B2 (en) Metal part magnetic field detection sensor and metal part pass / fail judgment method
RU2351924C1 (en) Heat eddy current method of hyperfine metal coatings parameters control
CN108106585B (en) Detection method for surface coating of metal substrate
JP4693084B2 (en) Nondestructive method for estimating the temperature reached by a high-temperature member
RU2456589C1 (en) Method for eddy current-measurement of thickness of metal coatings
JP2021043160A (en) Hardness change part detection device, hardness change part detection method and program
EP4158275A1 (en) Surface profile measuring instrument and method
JP2015220050A (en) Induction heating apparatus
Lee et al. Characterization of niobium, tantalum and chromium sputtered coatings on steel using eddy currents
JP4591989B2 (en) Coating thickness inspection method
US12000697B2 (en) Surface profile measuring instrument and method
JP5203832B2 (en) Film thickness measurement method
Tanaka et al. Identification of delamination through TGO stresses due to indentation testing of an EB-PVD TBC
JP6153904B2 (en) Thermal spray film thickness measuring method and film thickness measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160706

R150 Certificate of patent or registration of utility model

Ref document number: 5968658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250