JP5967741B1 - Conveying device and vibration suppression control method thereof - Google Patents

Conveying device and vibration suppression control method thereof Download PDF

Info

Publication number
JP5967741B1
JP5967741B1 JP2015231322A JP2015231322A JP5967741B1 JP 5967741 B1 JP5967741 B1 JP 5967741B1 JP 2015231322 A JP2015231322 A JP 2015231322A JP 2015231322 A JP2015231322 A JP 2015231322A JP 5967741 B1 JP5967741 B1 JP 5967741B1
Authority
JP
Japan
Prior art keywords
time
carriage
angular frequency
natural angular
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015231322A
Other languages
Japanese (ja)
Other versions
JP2017095265A (en
Inventor
小長 龍吉
龍吉 小長
Original Assignee
有限会社Tatsumiハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社Tatsumiハイテク filed Critical 有限会社Tatsumiハイテク
Priority to JP2015231322A priority Critical patent/JP5967741B1/en
Application granted granted Critical
Publication of JP5967741B1 publication Critical patent/JP5967741B1/en
Publication of JP2017095265A publication Critical patent/JP2017095265A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】昇降台車の昇降に伴って刻々と固有角振動数が変化する場合であっても、昇降台車に生じる横振れを低減できる制振制御方法及び搬送装置を提供する。【解決手段】搬送装置10の制振制御方法は、制御部104が、搬送物20を載せた昇降台車102が第1の高さ位置にある場合の振動の第1の固有角振動数を求め、第1の固有角振動数に基づいて導かれた振動が抑制される走行台車の加速時間を仮の加速時間として求めるとともに、搬送物20を載せた昇降台車102が第2の高さ位置にある場合の振動の第2の固有角振動数を求め、第2の固有角振動数に基づいて導かれた振動が抑制される走行台車の減速時間を仮の減速時間として演算するステップを含む。【選択図】図6The present invention provides a vibration suppression control method and a conveying device that can reduce a lateral vibration that occurs in an elevating carriage even when the natural angular frequency changes every moment as the elevating carriage moves up and down. A vibration suppression control method for a conveying apparatus 10 is such that a control unit 104 obtains a first natural angular frequency of vibration when an elevating carriage 102 on which a conveyed product 20 is placed is at a first height position. In addition, the acceleration time of the traveling carriage that suppresses the vibration induced based on the first natural angular frequency is obtained as a provisional acceleration time, and the lifting carriage 102 on which the conveyed product 20 is placed is at the second height position. A step of calculating a second natural angular frequency of vibration in a certain case and calculating a deceleration time of the traveling carriage in which the vibration derived based on the second natural angular frequency is suppressed as a temporary deceleration time. [Selection] Figure 6

Description

本発明は、例えば、設置面に沿って走行する走行台車と、走行台車に設けられて昇降する昇降台車と、を備えた搬送装置及びその制振制御方法に関する。   The present invention relates to, for example, a transport apparatus including a traveling carriage that travels along an installation surface, and a lifting carriage that is provided on the traveling carriage and moves up and down, and a vibration suppression control method thereof.

特許文献1には、走行レール上を往復走行可能な走行台車と、走行台車に立設された昇降マストと、搬送物を搭載し前記昇降マストに沿って昇降する昇降台とを有するスタッカークレーンの制振方法が記載されている。
スタッカークレーンの最も一般的な走行速度パターンの形は、一定加速の時間、一定速度、一定減速の時間及び移動距離の指令に基づいた、いわゆる台形速度パターンである。台形速度パターンによる速度指令が制御装置から走行台車及び搬送物を載せた昇降台に対して出力され、走行台車及び昇降台車は、目標位置に到達する。
しかし、走行台車が停止した際、走行台車から見た昇降台は、慣性力により横振れし、その横振れの大きさが許容値以下に減衰するまで、待ち時間を要する。
ここで、走行台車が一定速度での昇降台車の横振れの無い状態から停止した際の、走行台車から見た昇降台の位置y(横振れ)は、次式で表される。
Patent Document 1 discloses a stacker crane having a traveling carriage capable of reciprocating traveling on a traveling rail, an elevating mast erected on the traveling carriage, and an elevating platform that carries a transport object and moves up and down along the elevating mast. The vibration control method is described.
The most common form of travel speed pattern for a stacker crane is a so-called trapezoidal speed pattern based on commands for constant acceleration time, constant speed, constant deceleration time and travel distance. A speed command based on the trapezoidal speed pattern is outputted from the control device to the traveling carriage and the lifting platform on which the conveyed product is placed, and the traveling carriage and the lifting carriage reach the target position.
However, when the traveling carriage stops, the lifting platform viewed from the traveling carriage swings due to inertial force, and a waiting time is required until the magnitude of the lateral swing is attenuated to an allowable value or less.
Here, when the traveling carriage is stopped at a constant speed from the state where the lifting carriage is not shaken, the position y (side shaking) of the lifting carriage viewed from the running carriage is expressed by the following equation.

y=(β/ω )・(cos(ωt)−1) 式(1) y = (β / ω n 2 ) · (cos (ω n t) −1) Formula (1)

ここで、βは走行台車の減速度、ωは固有角振動数、tは減速開始から減速停止までの減速時間、ωtは減速開始から減速停止までの位相角である。なお、この位相角ωtを位相角θと表記する場合がある。 Here, β is the deceleration of the traveling carriage, ω n is the natural angular frequency, t is the deceleration time from the start of deceleration to the deceleration stop, and ω n t is the phase angle from the start of deceleration to the deceleration stop. In addition, there is a case to be referred to the phase angle ω n t and the phase angle θ.

昇降台の高さ位置が固定されていれば、固有角振動数ωは一定である。従って、位相角ωtが2πの正の整数n倍となるように、減速時間tを次式で表される減速時間T3に設定すれば、(cos(ωt)−1)の値はゼロであり、走行台車から見た昇降台の位置(横振れ)yはゼロとなる。 If the height position of the lifting platform is fixed, the natural angular frequency ω n is constant. Therefore, if the deceleration time t is set to the deceleration time T3 represented by the following equation so that the phase angle ω n t is a positive integer n times 2π, the value of (cos (ω n t) −1) Is zero, and the position (lateral shake) y of the lifting platform as seen from the traveling carriage is zero.

T3=2nπ/ω 式(2) T3 = 2nπ / ω n formula (2)

台形速度パターンにおける加速の開始及び終了並びに減速の開始及び終了となる4ケ所は速度の変曲点であり、速度の微分値である加速度が大きくなるため、機械への強度、振動、異音などが発生することがある。そこで、通常、各変曲点においてS字加減速により、この加速度の減少を図っている。   In the trapezoidal speed pattern, acceleration starts and ends and deceleration starts and ends at four inflection points of speed, and the acceleration, which is a differential value of speed, increases, so the strength to the machine, vibration, abnormal noise, etc. May occur. Therefore, this acceleration is usually reduced by S-shaped acceleration / deceleration at each inflection point.

この点、特許文献2には、走行台車において、S字台形速度の加速の開始及び終了並びに減速の開始及び終了となる4ケ所にて微小時間の間に補正速度指令を加えて、昇降台車の横振れの波形に逆の波形を与えることで打消し、昇降台車の横振れの大きさを低減する技術が記載されている。
一例として、台形速度パターンによる速度指令にS字加減速(2段移動平均加減速)指令を付加し、更に補正速度指令を加えた場合の補正速度指令Vrevは次式で求めることができる。
In this respect, in Patent Document 2, in the traveling carriage, correction speed commands are added during a minute time at the four places where the start and end of acceleration of the S-shaped trapezoidal speed and the start and end of deceleration are added. A technique is described in which a reverse waveform is applied to the lateral vibration waveform to cancel the lateral vibration, thereby reducing the lateral vibration magnitude of the lift carriage.
As an example, a corrected speed command Vrev when an S-curve acceleration / deceleration (two-stage moving average acceleration / deceleration) command is added to a speed command based on a trapezoidal speed pattern and a corrected speed command is further added can be obtained by the following equation.

Vrev=a/ω 式(3) Vrev = a / ω n 2 formula (3)

ここで、aは速度の2階微分値又は加速度の微分値、ωは固有角振動数である。
昇降台車の横振れの固有振動数Ncは小さく、2Hzの場合の固有角振動数ωは下記の式で求まる。
Here, a is a second-order differential value of velocity or a differential value of acceleration, and ω n is a natural angular frequency.
The natural frequency Nc of the horizontal oscillation of the lift carriage is small, and the natural angular frequency ω n at 2 Hz is obtained by the following equation.

ω=2・π・Nc=2・π・2=12.57(rad/s) 式(4) ω n = 2 · π · Nc = 2 · π · 2 = 12.57 (rad / s) Equation (4)

加速開始の微小な時間Δtが0.05s、一定加速度αが1m/sの場合の速度の2階微分値又は加速度の微分値aは次式で求まる。 The second-order differential value of acceleration or the differential value a of acceleration when the minute time Δt of acceleration is 0.05 s and the constant acceleration α is 1 m / s 2 is obtained by the following equation.

a=α/Δt=1/0.05=20(m/s) 式(5) a = α / Δt = 1 / 0.05 = 20 (m / s 3 ) Formula (5)

従って、式(4)及び式(5)を式(3)に代入することによって、補正速度指令Vrevは次式で表される。   Therefore, by substituting Equation (4) and Equation (5) into Equation (3), the corrected speed command Vrev is expressed by the following equation.

Vrev=a/ω =20/12.57=0.127(m/s) 式(6) Vrev = a / ω n 2 = 20 / 12.57 2 = 0.127 (m / s) Equation (6)

補正速度Vrevは微小時間Δtでのステップ状であり、立ち上がりの一定加速度α及び立ち下りの減速度βはそれぞれ次式で求められる。   The correction speed Vrev is stepped in a minute time Δt, and the constant acceleration α at the rising edge and the deceleration β at the falling edge are obtained by the following equations, respectively.

α= dVrev/dt 式(7A)
β=−dVrev/dt 式(7B)
α = dVrev / dt equation (7A)
β = −dVrev / dt Formula (7B)

これら式(7A)及び式(7B)から分かるように、ACサーボの速度応答が良い場合、加速度及び減速度の絶対値は著しく大きい値となる。   As can be seen from these equations (7A) and (7B), when the speed response of the AC servo is good, the absolute values of acceleration and deceleration are remarkably large.

特開2010−30728号公報JP 2010-30728 A 特許第3750633号公報Japanese Patent No. 3750633

特許文献1に記載された技術においては、振動周期の2倍以上の整数倍の時間に、増速領域及び減速領域の時間を設定し、しかも左右対称の絶対値が同じ加速度及び減速度として、搬送物を載せた昇降台車の横振れを低減している。
しかし、走行台車及び昇降台車が同時に運転され、昇降台車が対角線上を移動する場合、搬送物が載った昇降台車は高さの変化に伴って固有振動周期が変化するため、増速領域の時間と減速領域の時間は異なった長さとなり、搬送物を載せた昇降台車の横振れを十分に低減できるものではない。また、搬送物が載った昇降台車の高さ位置での固有振動周期のデータは、搬送物の質量と高さ位置のパラメータの組み合わせとなっており、膨大な量となっている。
In the technique described in Patent Document 1, the time of the acceleration region and the deceleration region is set to a time that is an integer multiple of twice or more of the vibration period, and the symmetrical absolute values are the same acceleration and deceleration, The horizontal run-out of the lift truck carrying the transported goods is reduced.
However, when the traveling carriage and the lifting carriage are operated simultaneously and the lifting carriage moves on a diagonal line, the elevating carriage on which the transported article is placed changes the natural vibration period with the change in height. The time of the deceleration region is different in length, and it is not possible to sufficiently reduce the lateral swing of the lifting carriage on which the conveyed product is placed. In addition, the data of the natural vibration period at the height position of the lifting carriage on which the conveyed product is placed is a combination of the parameters of the mass of the conveyed product and the height position, and is a huge amount.

特許文献2に記載された技術においては、搬送物が載った昇降台車の高さ位置での固有振動数が0.5〜10Hzである場合、走行中の搬送物が載った昇降台車の横振れの抑制の為に補正速度を加えている。
しかし、その補正速度で発生する加速度により、搬送装置に対する悪影響(強度、振動、及び音)が生じる恐れがある。
In the technique described in Patent Document 2, when the natural frequency at the height position of the lifting carriage on which the transported object is placed is 0.5 to 10 Hz, the lateral swing of the lifting carriage on which the traveling object is traveling is placed. The correction speed is added to suppress this.
However, the acceleration generated at the correction speed may cause adverse effects (strength, vibration, and sound) on the transport device.

本発明は、昇降台車の昇降に伴って刻々と固有角振動数が変化する場合であっても、昇降台車に生じる横振れを低減できる制振制御方法及び搬送装置を提供することを目的とする。   An object of the present invention is to provide a vibration damping control method and a conveying device that can reduce the lateral vibration generated in the lifting cart even when the natural angular frequency changes with the lifting and lowering of the lifting cart. .

前記目的に沿う第1の発明に係る搬送装置の制振制御方法は、設置面に沿って走行する走行台車と、
前記走行台車に設けられ、搬送物を載せて昇降する昇降台車と、
前記走行台車及び前記昇降台車を制御する制御部と、を備えた搬送装置の制振制御方法であって、
前記昇降台車の高さ位置と前記昇降台車に生じる振動の固有角振動数との関係を求めるステップと、
前記制御部が、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第1の高さ位置にある場合の前記振動の第1の固有角振動数を求め、2πの正の整数倍を該第1の固有角振動数で除した仮の加速時間を演算するとともに、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第2の高さ位置にある場合の前記振動の第2の固有角振動数を求め、2πの正の整数倍を該第2の固有角振動数で除した仮の減速時間演算するステップと、
前記制御部が、前記仮の加速時間を等分割した微小時間を求め、加速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の加速時間が経過した時点まで積算した第1の仮の位相角を演算し、該第1の仮の位相角が2πの正の整数倍に近づくように、該2πの正の整数倍を該第1の仮の位相角で除した第1の修正係数を求め、前記仮の加速時間に該第1の修正係数を乗じた修正加速時間を演算するとともに、前記仮の減速時間を等分割した微小時間を求め、減速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の減速時間が経過した時点まで積算した第2の仮の位相角を演算し、該第2の仮の位相角が2πの正の整数倍に近づくように、該2πの正の数数倍を該第2の仮の位相角で除した第2の修正係数を求め、前記仮の減速時間に該第2の修正係数を乗じた修正減速時間を演算するステップと、
前記制御部が、前記修正加速時間及び前記修正減速時間によって少なくとも規定された第1の台形速度パターンによる前記走行台車の第1の速度指令を生成するステップと、
前記制御部が、前記第1の速度指令に従って前記走行台車を駆動するステップと、を含み、前記振動を抑制する。
A vibration damping control method for a transfer device according to the first invention that meets the above-described object includes a traveling carriage that travels along an installation surface,
An elevating carriage that is provided in the traveling carriage and moves up and down with a transported object;
A control unit for controlling the traveling carriage and the elevating carriage, and a vibration damping control method for a conveying apparatus comprising:
Obtaining a relationship between a height position of the lifting carriage and a natural angular frequency of vibration generated in the lifting carriage;
Based on the relationship, the control unit obtains a first natural angular frequency of the vibration when the carriage on which the transport object is placed is at a first height position, and is a positive integer multiple of 2π. Is calculated by dividing the first natural angular frequency by a temporary acceleration time , and based on the relationship, the vibration of the lift carriage with the transported object on the second height position is calculated. Obtaining a second natural angular frequency, and calculating a temporary deceleration time obtained by dividing a positive integer multiple of 2π by the second natural angular frequency ;
The control unit obtains a minute time obtained by equally dividing the provisional acceleration time, and each natural angular vibration corresponding to each height position of the lifting carriage according to each elapsed time from the start of acceleration to the center time of each minute time. each micro phase angle multiplied by the fine small time number, up to the point where the acceleration time of the temporary has elapsed calculates the phase angle of the first tentative integrated phase angle of the first tentative positive of 2π A first correction coefficient obtained by dividing the positive integer multiple of 2π by the first temporary phase angle so as to approach an integral multiple is obtained, and a correction obtained by multiplying the temporary acceleration time by the first correction coefficient Calculating acceleration time, obtaining a minute time obtained by equally dividing the temporary deceleration time, and each unique position corresponding to each height position of the lift carriage by each elapsed time from the start of deceleration to the center time of each minute time Each minute phase angle obtained by multiplying the angular frequency by the minute time is used as the temporary deceleration time. Time points until calculates the phase angle of the second tentative integrated, the as the phase angle of the second tentative approaches the positive integer multiple of 2 [pi, the 2 [pi positive number several times said second tentative Calculating a corrected deceleration time obtained by multiplying the provisional deceleration time by the second correction coefficient ;
The control unit generating a first speed command of the traveling carriage according to a first trapezoidal speed pattern defined at least by the corrected acceleration time and the corrected deceleration time;
And a step of driving the traveling carriage in accordance with the first speed command to suppress the vibration.

第1の発明に係る搬送装置の制振制御方法において、
前記昇降台車の高さ位置及び前記昇降台車に生じる前記振動の前記固有角振動数との関係を求める方法が、
前記搬送物を載せていない前記昇降台車の高さ位置と前記昇降台車に生じる前記振動の前記固有角振動数との関係を実測又は計算によりデータとして求めるステップと、
前記データが直線近似で表されるとみなせる高さ区間毎に、直線回帰式を求めるステップと、
前記直線回帰式により演算される前記固有角振動数から、任意の質量の前記搬送物を載せた前記昇降台車が任意の高さ位置にある場合の前記固有角振動数を演算する関係式を求めるステップと、を含んでいてもよい。
In the vibration damping control method of the transport device according to the first invention,
A method for obtaining a relationship between a height position of the lifting carriage and the natural angular frequency of the vibration generated in the lifting carriage,
Obtaining a relationship between a height position of the lifting carriage on which the transported object is not placed and the natural angular frequency of the vibration generated in the lifting carriage as data by actual measurement or calculation;
Obtaining a linear regression equation for each height interval in which the data can be considered to be represented by linear approximation;
From the natural angular frequency calculated by the linear regression equation, a relational expression for calculating the natural angular frequency when the lifting carriage carrying the transported object of an arbitrary mass is at an arbitrary height position is obtained. And a step.

第1の発明に係る搬送装置の制振制御方法において、
前記制御部が、前記走行台車の前記修正加速時間及び前記修正減速時間によって規定された第2の台形速度パターンによる前記昇降台車の第2の速度指令を生成し、前記第1の速度指令及び前記第2の速度指令をともに出力し、前記走行台車及び前記昇降台車をともに駆動することもできる。
In the vibration damping control method of the transport device according to the first invention,
The control unit generates a second speed command of the lifting cart according to a second trapezoidal speed pattern defined by the corrected acceleration time and the corrected deceleration time of the traveling cart, and the first speed command and the It is also possible to output both the second speed command and drive both the traveling carriage and the lifting carriage.

第1の発明に係る搬送装置の制振制御方法において、
前記制御部が、前記仮の加速時間に対する前記修正加速時間の比率である第1の修正係数が、少なくとも0.98〜1.02の範囲を超える場合は、前記修正加速時間を新たな前記仮の加速時間とし、改めて前記修正加速時間を演算し直すことが好ましい。
In the vibration damping control method of the transport device according to the first invention,
0 and the control unit, the first correction coefficient is the ratio of the corrected acceleration time for acceleration time of the provisional, also reduced. When exceeding the range of 98 to 1.02, it is preferable that the corrected acceleration time is set as a new temporary acceleration time and the corrected acceleration time is calculated again.

第1の発明に係る搬送装置の制振制御方法において、
前記制御部が、前記仮の減速時間に対する前記修正減速時間の比率である第2の修正係数が、少なくとも0.98〜1.02の範囲を超える場合は、前記修正減速時間を新たな前記仮の減速時間とし、改めて前記修正減速時間を演算し直すことが好ましい。
In the vibration damping control method of the transport device according to the first invention,
0 and the control unit, the second correction factor is the ratio of the modified deceleration time for deceleration time of the provisional, also reduced. When exceeding the range of 98 to 1.02, it is preferable that the corrected deceleration time is set as the new temporary deceleration time and the corrected deceleration time is calculated again.

第1の発明に係る搬送装置の制振制御方法において、
前記第1の高さ位置が、前記昇降台車の加速開始位置であることが好ましい。
In the vibration damping control method of the transport device according to the first invention,
The first height position is preferably an acceleration start position of the lifting carriage.

第1の発明に係る搬送装置の制振制御方法において、
前記第2の高さ位置が、前記昇降台車の減速完了位置であることが好ましい。
In the vibration damping control method of the transport device according to the first invention,
The second height position is preferably a deceleration completion position of the lifting carriage.

前記目的に沿う第2の発明に係る搬送装置は、設置面に沿って走行する走行台車と、
前記走行台車に設けられ、搬送物を載せて昇降する昇降台車と、
台形速度パターンで表される速度指令に基づいて、前記走行台車及び前記昇降台車を制御する制御部と、を備えた搬送装置であって、
前記制御部が、予め求められた、前記搬送物の質量と前記昇降台車の高さ位置及び前記昇降台車に生じる振動の固有角振動数との関係に基づいて、前記搬送物を載せた前記昇降台車が第1の高さ位置にある場合の前記振動の第1の固有角振動数を求め、2πの正の整数倍を該第1の固有角振動数で除した仮の加速時間を演算するとともに、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第2の高さ位置にある場合の前記振動の第2の固有角振動数を求め、2πの正の整数倍を該第2の固有角振動数で除した仮の減速時間演算するステップ、前記仮の加速時間を等分割した微小時間を求め、加速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の加速時間が経過した時点まで積算した第1の仮の位相角を演算し、該第1の仮の位相角が2πの正の整数倍に近づくように、該2πの正の整数倍を該第1の仮の位相角で除した第1の修正係数を求め、前記仮の加速時間に該第1の修正係数を乗じた修正加速時間を演算するとともに、前記仮の減速時間を等分割した微小時間を求め、減速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の減速時間が経過した時点まで積算した第2の仮の位相角を演算し、該第2の仮の位相角が2πの正の整数倍に近づくように、該2πの正の数数倍を該第2の仮の位相角で除した第2の修正係数を求め、前記仮の減速時間に該第2の修正係数を乗じた修正減速時間を演算するステップ、並びに前記修正加速時間及び前記修正減速時間によって少なくとも規定された台形速度パターンによる前記走行台車の速度指令を生成するステップを実行する指令発生器を有する。
A transport device according to a second invention that meets the above-described object is a traveling carriage that travels along an installation surface;
An elevating carriage that is provided in the traveling carriage and moves up and down with a transported object;
A controller that controls the traveling carriage and the lifting carriage based on a speed command represented by a trapezoidal speed pattern,
The lifting / lowering on which the transport object is placed based on the relationship between the mass of the transport object, the height position of the lift carriage, and the natural angular frequency of the vibration generated in the lift truck, which is determined in advance by the control unit. A first natural angular frequency of the vibration when the carriage is at the first height position is obtained, and a temporary acceleration time is calculated by dividing a positive integer multiple of 2π by the first natural angular frequency. In addition, based on the relationship, a second natural angular frequency of the vibration when the carriage on which the transported object is placed is at a second height position is obtained, and a positive integer multiple of 2π is calculated . the step of calculating a temporary deceleration time divided by the natural angular frequency of 2 to obtain the minute time obtained by equally dividing the acceleration time of the temporary, the lift according to the elapsed time to the center of the time for each minute time since the start of acceleration Each natural angular frequency corresponding to each height position of the carriage is multiplied by the minute time. The small phase angle, to the point where the acceleration time of the temporary has elapsed calculates the phase angle of the first tentative integrated, so that the phase angle of the first tentative approaches the positive integer multiple of 2 [pi, the 2 [pi A first correction coefficient obtained by dividing a positive integer multiple of the first correction phase angle by the first temporary phase angle is calculated, and a correction acceleration time obtained by multiplying the temporary correction time by the first correction coefficient is calculated. The minute time obtained by equally dividing the deceleration time is obtained, and each natural angular frequency corresponding to each height position of the lifting carriage by each elapsed time from the start of deceleration to the center time of each minute time is multiplied by the minute time. each minute phase angle is, up to the point where the deceleration time of the temporary has elapsed calculates the phase angle of the second tentative integrated, so that the phase angle of the second tentative approaches the positive integer multiple of 2 [pi, A second correction coefficient obtained by dividing the positive multiple of 2π by the second temporary phase angle is obtained, and the second deceleration coefficient is calculated at the temporary deceleration time. A command generator for executing a step of calculating a corrected deceleration time multiplied by a correction coefficient of 2 and a step of generating a speed command of the traveling vehicle based on a trapezoidal speed pattern defined at least by the corrected acceleration time and the corrected deceleration time Have

請求項1記載の発明によれば、昇降台車に生じる横振れを抑制できる。
請求項2記載の発明によれば、搬送物を載せた昇降台車の高さ位置によって変化する固有角振動数を容易に求めることができる。
請求項3記載の発明によれば、昇降台車が目標位置まで到達する時間が低減される。
請求項4記載の発明によれば、昇降台車の横振れを更に抑制できる。
請求項5記載の発明によれば、昇降台車の横振れを更に抑制できる。
請求項6記載の発明によれば、仮の加速時間を容易に求めることができる。
請求項7記載の発明によれば、仮の減速時間を容易に求めることができる。
請求項8記載の発明によれば、昇降台車の横振れが抑制された搬送装置を提供できる。
According to the first aspect of the present invention, it is possible to suppress the lateral shake that occurs in the lift carriage.
According to invention of Claim 2, the natural angular frequency which changes with the height positions of the raising / lowering carriage which carried the conveyed product can be calculated | required easily.
According to the third aspect of the present invention, the time required for the lifting carriage to reach the target position is reduced.
According to the fourth aspect of the present invention, it is possible to further suppress the lateral shake of the lift carriage.
According to the fifth aspect of the present invention, it is possible to further suppress the lateral shake of the lift carriage.
According to the invention described in claim 6, the provisional acceleration time can be easily obtained.
According to the seventh aspect of the present invention, the temporary deceleration time can be easily obtained.
According to the eighth aspect of the present invention, it is possible to provide a transfer apparatus in which the lateral movement of the lifting carriage is suppressed.

本発明の一実施の形態に係る搬送装置の構成図である。It is a block diagram of the conveying apparatus which concerns on one embodiment of this invention. (A)及び(B)は、それぞれ、同搬送装置が備える走行台車及び昇降台車に対する台形速度パターンによる指令を示す説明図である。(A) And (B) is explanatory drawing which shows the instruction | command by the trapezoidal speed pattern with respect to the driving | running | working trolley and the raising / lowering trolley with which the same conveying apparatus is respectively provided. 同搬送装置が有する昇降台車の横振れの解析モデルである。It is an analysis model of the horizontal run-out of the raising / lowering cart which the conveyance apparatus has. 同搬送装置が有する昇降台車の高さ位置と固有角振動数との関係(表1記載のデータ)を示すグラフである。It is a graph which shows the relationship (data of Table 1) between the height position of the raising / lowering cart which this conveyance apparatus has, and a natural angular frequency. (A)、(B)、及び(C)は、それぞれ、可動範囲の下限の位置にある昇降台車、上昇した昇降台車、及び搬送物を積載した昇降台車を示す説明図である。(A), (B), and (C) are explanatory drawings which respectively show the raising / lowering carriage in the position of the lower limit of a movable range, the raising / lowering carriage, and the raising / lowering carriage which loaded the conveyed product. 同搬送装置の制振制御方法を示すフローチャートである。It is a flowchart which shows the vibration suppression control method of the conveyance apparatus. (A)及び(B)は、それぞれ、走行台車及び昇降台車の仮の台形速度パターン示す説明図である。(A) And (B) is explanatory drawing which shows the temporary trapezoidal speed pattern of a driving | running | working cart and a raising / lowering cart, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。なお、図において、説明に関連しない部分は図示を省略する場合がある。
本発明の一実施の形態に係る搬送装置10は、図1に示すように、走行台車101、昇降台車102、及び制御部104を備え、昇降台車102に載せられた搬送物20を所定の高さにある目標位置まで搬送できる。搬送装置10は、例えば、スタッカークレーンである。
なお、図1に示す搬送装置10は、スタッカークレーンの実機を模擬したモデルである。以下、このモデルに基づいて説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. It should be noted that in the drawing, illustration of parts not related to the description may be omitted.
As shown in FIG. 1, the transport apparatus 10 according to an embodiment of the present invention includes a traveling carriage 101, an elevating carriage 102, and a control unit 104, and moves a conveyed product 20 placed on the elevating carriage 102 to a predetermined height. It can be transported to the target position. The conveyance device 10 is, for example, a stacker crane.
1 is a model simulating an actual stacker crane. Hereinafter, description will be made based on this model.

走行台車101は、設置面に沿って、水平方向に移動できる。走行台車101は、ボールネジ22によってボールネジ22の長手方向に移動するスライダ用ナット24に固定されている。ボールネジ22は、カップリング26を介して走行用駆動モータ(ACサーボモータ)SVM1によって駆動される。   The traveling carriage 101 can move in the horizontal direction along the installation surface. The traveling carriage 101 is fixed to a slider nut 24 that moves in the longitudinal direction of the ball screw 22 by a ball screw 22. The ball screw 22 is driven by a travel drive motor (AC servomotor) SVM1 through a coupling 26.

昇降台車102は、搬送物20が載せられ、上下方向に移動できる。昇降台車102は、走行台車101に固定された上下方向に延びる門型マスト30に沿って昇降できる。昇降台車102は、タイミングベルト32に固定され、タイミングベルト32の回転に伴って昇降する。タイミングベルト32は、門型マスト30の上部に設けられた上プーリ34Uと、下プーリ34Lとの間に架け渡され、この下プーリ34Lは、走行台車101に固定された昇降用駆動モータ(ACサーボモータ)SVM2によって駆動される。   The carriage 102 can move in the vertical direction on which the conveyed product 20 is placed. The elevating carriage 102 can move up and down along a portal mast 30 that is fixed to the traveling carriage 101 and extends in the vertical direction. The lifting carriage 102 is fixed to the timing belt 32 and moves up and down as the timing belt 32 rotates. The timing belt 32 is bridged between an upper pulley 34U provided on an upper portion of the portal mast 30 and a lower pulley 34L. The lower pulley 34L is a lifting drive motor (AC) fixed to the traveling carriage 101. Servo motor) Driven by SVM2.

制御部104は、サーボドライバSVA1、SVA2及び指令発生器CNTを有し、走行用駆動モータSVM1及び昇降用駆動モータSVM2を制御できる。
サーボドライバSVA1、SVA2は、それぞれ、走行用駆動モータSVM1及び昇降用駆動モータSVM2に接続され、各モータSVM1、SVM2を駆動できる。
指令発生器CNTは、各サーボドライバSVA1、SVA2に対し、各モータSVM1、SVM2を駆動するための指令を生成し、出力できる。
なお、指令発生器CNTが指令を生成するために行う演算は、指令発生器CNTに搭載されたCPUにて実行されるプログラムにより実現される。
The control unit 104 includes servo drivers SVA1 and SVA2 and a command generator CNT, and can control the travel drive motor SVM1 and the lift drive motor SVM2.
The servo drivers SVA1 and SVA2 are respectively connected to the travel drive motor SVM1 and the lift drive motor SVM2 and can drive the motors SVM1 and SVM2.
The command generator CNT can generate and output commands for driving the motors SVM1 and SVM2 to the servo drivers SVA1 and SVA2.
Note that the calculation performed by the command generator CNT to generate a command is realized by a program executed by a CPU mounted on the command generator CNT.

指令発生器CNTがサーボドライバSVA1及びサーボドライバSVA2に対して出力する指令は、それぞれ、図2(A)及び図2(B)に示すような加速(一定加速)期間I〜II、一定速度期間II〜III、減速(一定減速)期間III〜IVにより定められる台形速度パターンによる速度指令である。
走行台車101及び昇降台車102は、それぞれ、指令発生器CNTが出力する速度指令に従って、並行して移動する。その結果、昇降台車102は、最短軌跡で目標位置に移動する。また、昇降台車102が停止する際の横振れ(走行台車101の走行方向の振動)は抑えられる。
The commands that the command generator CNT outputs to the servo driver SVA1 and the servo driver SVA2 are acceleration (constant acceleration) periods I to II and constant speed periods as shown in FIGS. 2 (A) and 2 (B), respectively. This is a speed command based on a trapezoidal speed pattern determined by II to III and deceleration (constant deceleration) periods III to IV.
The traveling carriage 101 and the lifting carriage 102 move in parallel according to the speed command output from the command generator CNT. As a result, the lifting carriage 102 moves to the target position with the shortest path. Further, the lateral vibration (vibration in the traveling direction of the traveling carriage 101) when the elevating carriage 102 stops can be suppressed.

次に、走行台車101から見た昇降台車102の横振れの大きさについて説明する。
搬送装置10の門型マスト30及び搬送物20が載った昇降台車102を1自由度振動系とみなした解析モデル(図3参照)において、搬送物20を載せた昇降台車102の運動方程式は、下記の式で表される。
なお、同解析モデルにおいては、昇降台車102の高さ位置(門型マスト30の固定端となる下端部から昇降台車102の中央までの高さ位置)h(図1参照)は変化せず、固定されている。また、門型マスト30の粘性減衰係数は極めて小さいので省略されている。
Next, the magnitude of the lateral deflection of the lifting carriage 102 viewed from the traveling carriage 101 will be described.
In an analysis model (see FIG. 3) in which the lifting platform 102 on which the portal mast 30 and the transported article 20 of the transport apparatus 10 are placed is regarded as a one-degree-of-freedom vibration system, the equation of motion of the lifting carriage 102 on which the transported article 20 is placed is It is represented by the following formula.
In the analysis model, the height position of the lifting carriage 102 (the height position from the lower end portion serving as the fixed end of the portal mast 30 to the center of the lifting carriage 102) h (see FIG. 1) does not change. It is fixed. Further, the viscous damping coefficient of the portal mast 30 is omitted because it is extremely small.

−(Mw+Md)・(dx/dt)−k(x−u)=0 式(A1) − (Mw + Md) · (d 2 x / dt 2 ) −k s (x−u) = 0 Formula (A1)

ここで、Mwは搬送物20の質量、Mdは昇降台車102の質量、xは昇降台車102の位置、uは走行台車101の位置、kは門型マスト30の等価バネ定数である。 Here, Mw is the mass of the conveyed product 20, Md is the mass of the lifting carriage 102, x is the position of the lifting carriage 102, u is the position of the traveling carriage 101, and k s is the equivalent spring constant of the portal mast 30.

走行台車101から見た昇降台車102の位置(横振れ)yは次式で表される。   The position (lateral deflection) y of the lifting carriage 102 viewed from the traveling carriage 101 is expressed by the following equation.

y=x−u 式(A2)   y = x-u Formula (A2)

固有角振動数をωとすると、固有角振動数ω、門型マスト30の等価バネ定数k、並びに搬送物20の質量及び昇降台車102の質量(Mw+Md)の関係式は下記の式となる。 When the natural angular frequency and omega n, natural angular frequency omega n, the equivalent spring constant of the portal mast 30 k s, and relational expression below formula mass of the mass and lifting carriage 102 of the transfer material 20 (Mw + Md) It becomes.

/(Mw+Md)=ω 式(A3) k s / (Mw + Md) = ω n 2 formula (A3)

式(A2)及び式(A3)を式(A1)に代入すると、次式が得られる。   Substituting equation (A2) and equation (A3) into equation (A1) yields:

y/dt+ω =−du/dt 式(A4) d 2 y / dt 2 + ω n 2 = −d 2 u / dt 2 formula (A4)

ここで、du/dtは、走行台車101の加速度α1(正の一定値)であるので、式(A4)は次式となる。 Here, since d 2 u / dt 2 is the acceleration α1 (positive constant value) of the traveling carriage 101, the expression (A4) is as follows.

y/dt+ω =−α1 式(A5) d 2 y / dt 2 + ω n 2 = −α1 Formula (A5)

この微分方程式の解は下記の式になる。   The solution of this differential equation is as follows.

y=(α1/ω )・(cos(ωt)−1)
=(α1/ω )・(cos(θ)−1) 式(A6)
y = (α1 / ω n 2 ) · (cos (ω n t) −1)
= (Α1 / ω n 2 ) · (cos (θ) −1) Formula (A6)

ここで、tは加速開始からの経過時間、ωtは時間tにおける位相角、θは位相角である。 Here, t is the elapsed time from the start of acceleration, ω n t is the phase angle at time t, and θ is the phase angle.

式(A6)から以下のことが分かる。
昇降台車102の高さ位置(門型マスト30の下部の固定端から昇降台車102の中央までの高さ位置)hが固定され、固有角振動数ωが一定の場合では、加速時間(加速開始から加速完了までの時間)T1における位相角θは下記の式になる。
The following can be understood from the equation (A6).
When the height position (height position from the fixed end of the lower part of the portal mast 30 to the center of the lift carriage 102) h is fixed and the natural angular frequency ω n is constant, the acceleration time (acceleration Time from start to completion of acceleration) The phase angle θ at T1 is expressed by the following equation.

θ=ω・T1 式(A7) θ = ω n · T1 Formula (A7)

位相角θが2πの正の整数n倍であれば、(cos(θ)−1)はゼロとなり、昇降台車102の横振れ(走行台車101から見た昇降台車102の位置)yは、加速度α1及び固有角振動数ωに関係なく、ゼロとなる。
従って、走行台車101から見た昇降台車102の横振れyをゼロとするには、次式のように、加速時間T1が、2πの正の整数n倍を固有角振動数ωで除した値に設定される必要がある。
If the phase angle θ is a positive integer n times 2π, (cos (θ) −1) becomes zero, and the lateral swing of the lifting carriage 102 (the position of the lifting carriage 102 as viewed from the traveling carriage 101) y is acceleration. It is zero regardless of α1 and the natural angular frequency ω n .
Therefore, in order to make the lateral runout y of the lifting carriage 102 viewed from the traveling carriage 101 zero, the acceleration time T1 is obtained by dividing the positive integer n times 2π by the natural angular frequency ω n as shown in the following equation. Must be set to a value.

T1=2nπ/ω 式(A8) T1 = 2nπ / ω n formula (A8)

式(A8)は、加速時間T1のみならず、減速時間T3についても同様に成立する。
なお、この式(A8)によって求められる加速時間T1は、固有角振動数に基づいて導かれた、横振れ(振動)が抑制される走行台車101の加速時間の一例であり、減速時間T3は、固有角振動数に基づいて導かれた、横振れが抑制される走行台車101の減速時間の一例である。
ところが、昇降台車102が昇降すると、固有角振動数ωは、例えば図4に示すように、刻々と変化する。
従って、搬送装置10の横振れyを抑制するためには、昇降台車102の任意の高さ位置hにおける固有角振動数ωnhを可能な限り正確に求めることが重要となる。
しかし、搬送物20の質量Mwと、昇降台車102の高さ位置hとの組み合わせのデータは膨大な量となり、固有角振動数ωnhを求めることは容易ではない。
そこで、A)搬送物20を積載していない昇降台車102及びB)搬送物20を積載した昇降台車102それぞれについて、高さ位置hにおける固有角振動数ωnhを求める方法を説明する。
Expression (A8) holds true not only for the acceleration time T1 but also for the deceleration time T3.
The acceleration time T1 obtained by this equation (A8) is an example of the acceleration time of the traveling carriage 101 that is derived based on the natural angular frequency and in which lateral vibration (vibration) is suppressed, and the deceleration time T3 is It is an example of the deceleration time of the traveling vehicle 101 that is guided based on the natural angular frequency and in which the lateral vibration is suppressed.
However, when the elevating carriage 102 moves up and down, the natural angular frequency ω n changes every moment, for example, as shown in FIG.
Therefore, in order to suppress the lateral deflection y of the transport apparatus 10, it is important to obtain the natural angular frequency ω nh at an arbitrary height position h of the lifting carriage 102 as accurately as possible.
However, the combination data of the mass Mw of the conveyed product 20 and the height position h of the elevating carriage 102 is an enormous amount, and it is not easy to obtain the natural angular frequency ω nh .
Therefore, a method for obtaining the natural angular frequency ω nh at the height position h for each of A) the lifting carriage 102 not loaded with the transported object 20 and B) the lifting carriage 102 loaded with the transported object 20 will be described.

ここで、固有角振動数ω、固有角振動数ωnh、固有角振動数ωnh(s)、固有角振動数ωnh(s+d)、固有角振動数ωnh(d)、固有角振動数ωnh(d+w)、及び固有角振動数ωnh(s+d+w)を、それぞれ以下の通り定義する。 Here, the natural angular frequency ω n , the natural angular frequency ω nh , the natural angular frequency ω nh (s), the natural angular frequency ω nh (s + d), the natural angular frequency ω nh (d), the natural angular frequency The number ω nh (d + w) and the natural angular frequency ω nh (s + d + w) are respectively defined as follows.

(1)固有角振動数ωnh(s)
固有角振動数ωnh(s)は、昇降台車102や搬送物20を除く、門型マスト30を主体とした横振れyの固有角振動数である。
(1) Natural angular frequency ω nh (s)
The natural angular frequency ω nh (s) is a natural angular frequency of the lateral run-out y mainly composed of the portal mast 30 excluding the lift carriage 102 and the conveyed product 20.

(2)固有角振動数ωnh(s+d)
固有角振動数ωnh(s+d)は、図5(B)に示す状態における横振れyの固有角振動数であり、搬送物20を積載していない昇降台車102が任意の高さ位置hにある場合における固有角振動数である。
(2) Natural angular frequency ω nh (s + d)
The natural angular frequency ω nh (s + d) is the natural angular frequency of the lateral shake y in the state shown in FIG. 5B, and the lifting carriage 102 on which the conveyed product 20 is not loaded is at an arbitrary height position h. It is the natural angular frequency in a certain case.

(3)固有角振動数ωnh(d)
固有角振動数ωnh(d)は、図5(B)に示す状態において門型マスト30及び門型マスト30に取り付けられた上プーリ34U等の部品(走行台車101を除く)の質量がゼロと仮定した場合の、昇降台車102の任意の高さhにおける横振れyの固有角振動数である。
(3) Natural angular frequency ω nh (d)
In the state shown in FIG. 5B, the natural angular frequency ω nh (d) is zero in mass of the portal mast 30 and parts such as the upper pulley 34U attached to the portal mast 30 (excluding the traveling carriage 101). Is the natural angular frequency of the lateral runout y at an arbitrary height h of the lift carriage 102.

(4)固有角振動数ωnh(d+w)
固有角振動数ωnh(d+w)は、図5(C)に示す状態において門型マスト30及び門型マスト30に取り付けられた上プーリ34U等の部品(走行台車101を除く)の質量をゼロと仮定した場合の、搬送物20(質量Mw)を積載した昇降台車102(質量Md)の任意の高さhにおける横振れyの固有角振動数である。
(4) Natural angular frequency ω nh (d + w)
In the state shown in FIG. 5C, the natural angular frequency ω nh (d + w) has zero mass of parts (excluding the traveling carriage 101) such as the portal mast 30 and the upper pulley 34U attached to the portal mast 30. Is the natural angular frequency of the lateral deflection y at an arbitrary height h of the lifting carriage 102 (mass Md) loaded with the conveyed product 20 (mass Mw).

(5)固有角振動数ωnh(s+d+w)
固有角振動数ωnh(s+d+w)は、図5(C)に示す状態における横振れyの固有角振動数であり、搬送物20(質量Mw)を積載した昇降台車102(質量Md)の任意の高さhにおける固有角振動数である。
(5) Natural angular frequency ω nh (s + d + w)
The natural angular frequency ω nh (s + d + w) is the natural angular frequency of the lateral vibration y in the state shown in FIG. 5C, and is an arbitrary value of the lifting carriage 102 (mass Md) loaded with the conveyed product 20 (mass Mw). Is the natural angular frequency at a height h.

(A)搬送物20を積載していない昇降台車102の高さ位置hにおける固有角振動数ωnh(s+d)
搬送物20を積載していない昇降台車102(昇降台車102単体の質量Md)の予め定めた高さ位置における固有角振動数ωnh(s+d)のデータを実測又は計算で求め、直線とみなせる高さ区間にて直線回帰式により各データを集約する。例えば図4においては、最小二乗法を用い、高さ区間1〜区間5ごとに、搬送物20を積載していない昇降台車102の高さ位置h()と固有角振動数ωnh(s+d)(rad/s)との関係が次式のような直線回帰式で表される。
(A) Natural angular frequency ω nh (s + d) at the height position h of the lift carriage 102 on which the conveyed product 20 is not loaded.
The data of the natural angular frequency ω nh (s + d) at a predetermined height position of the lifting / lowering carriage 102 (the mass Md of the lifting / lowering carriage 102 alone) on which the conveyed product 20 is not loaded is obtained by actual measurement or calculation, and can be regarded as a straight line. Each data is aggregated by a linear regression formula in the interval. For example, in FIG. 4, the least square method is used, and the height position h ( m ) and the natural angular frequency ω nh (s + d) of the lifting carriage 102 on which the conveyed product 20 is not loaded are measured for each of the height sections 1 to 5. ) (Rad / s) is expressed by a linear regression equation as shown below.

区間1(0≦h<0.168) :ωnh(s+d)=20.94 式(B1a)
区間2(0.168≦h<0.285):ωnh(s+d)=20.52−8.426h 式(B1b)
区間3(0.285≦h<0.518):ωnh(s+d)=23.77−12.93h 式(B1c)
区間4(0.518≦h<0.672):ωnh(s+d)=22.70−11.02h 式(B1d)
区間5(0.672≦h<0.791):ωnh(s+d)=19.29− 5.92h 式(B1e)
Section 1 (0 ≦ h < 0.168 ): ω nh (s + d) = 20.94 Formula (B1a)
Section 2 ( 0.168 ≦ h < 0.285 ): ω nh (s + d) = 20.52-8.426h Formula (B1b)
Section 3 ( 0.285 ≦ h < 0.518 ): ω nh (s + d) = 23.77-12.93h Formula (B1c)
Section 4 ( 0.518 ≦ h < 0.672 ): ω nh (s + d) = 22.70-11.02h Formula (B1d)
Section 5 ( 0.672 ≦ h < 0.791 ): ω nh (s + d) = 19.29−5.92h Formula (B1e)

なお、図4において、各直線は、高さ区間1〜区間5の境界に位置するデータを通る直線であり、前述の直線回帰式とは相違する。   In FIG. 4, each straight line is a straight line passing through data located at the boundary between the height interval 1 to the interval 5, and is different from the above-described linear regression equation.

(B)搬送物20を積載した昇降台車102の高さ位置hにおける固有角振動数ωnh(s+d+w)
搬送物20の質量Mwを実測又は計算により求めることができれば、搬送物20を積載した昇降台車102の任意の高さ位置hにおける固有角振動数ωnh(s+d+w)を求めることができる。また、搬送物20の質量Mwが、例えば図面に関連付けられた情報等により既知であれば、その情報を用いて固有角振動数ωnh(s+d+w)を求めることができる。
その理論及び具体的な計算式について、以下説明する。
(B) The natural angular frequency ω nh (s + d + w) at the height position h of the lifting carriage 102 loaded with the conveyed product 20.
If the mass Mw of the conveyed product 20 can be obtained by actual measurement or calculation, the natural angular frequency ω nh (s + d + w) at an arbitrary height position h of the lifting carriage 102 loaded with the conveyed product 20 can be obtained. In addition, if the mass Mw of the conveyed product 20 is known from, for example, information associated with the drawing, the natural angular frequency ω nh (s + d + w) can be obtained using the information.
The theory and specific calculation formula will be described below.

固有角振動数ωnh(s+d)は、固有角振動数ωnh(s)と、固有角振動数ωnh(d)とを合成した値となり、ダンカレの式により以下の関係が成立する。 The natural angular frequency ω nh (s + d) is a value obtained by synthesizing the natural angular frequency ω nh (s) and the natural angular frequency ω nh (d), and the following relationship is established by Duncare's equation.

1/(ωnh(s+d))=1/(ωnh(s))+1/(ωnh(d))
式(B2)
1 / (ω nh (s + d)) 2 = 1 / (ω nh (s)) 2 + 1 / (ω nh (d)) 2
Formula (B2)

そうすると、固有角振動数ωnh(d)は、次式により求められる。 Then, the natural angular frequency ω nh (d) is obtained by the following equation.

ωnh(d)=((A・B)/(A−B))1/2 式(B3) ω nh (d) = ((A · B) / (A−B)) 1/2 formula (B3)

ここで、A=(ωnh(s))、B=(ωnh(s+d))である。 Here, A = (ω nh (s)) 2 and B = (ω nh (s + d)) 2 .

すなわち、固有角振動数ωnh(d)は、実測又は計算で求めた固有角振動数ωnh(s)及び固有角振動数ωnh(s+d)を式(B3)に代入することで求めることができる。特に、固有角振動数ωnh(s+d)は、昇降台車102の高さ位置hが分かれば、例えば式(B1a)〜式(B1e)にて表される直線回帰式に代入することで、改めて実測又は計算をすることなく求めることができる。 That is, the natural angular frequency ω nh (d) is obtained by substituting the natural angular frequency ω nh (s) and the natural angular frequency ω nh (s + d) obtained by actual measurement or calculation into the equation (B3). Can do. In particular, if the natural angular frequency ω nh (s + d) is known, if the height position h of the lifting carriage 102 is known, for example, the natural angular frequency ω nh (s + d) is substituted into a linear regression equation represented by the equations (B1a) to (B1e). It can be obtained without actual measurement or calculation.

次に、固有角振動数ωnh(d+w)及び固有角振動数ωnh(d)の関係式を求める。
固有角振動数ωnh(d)は次式で求まる。
Next, a relational expression between the natural angular frequency ω nh (d + w) and the natural angular frequency ω nh (d) is obtained.
The natural angular frequency ω nh (d) is obtained by the following equation.

ωnh(d)=(k/Md)1/2 式(B4) ω nh (d) = (k s / Md) 1/2 formula (B4)

ここで、kは門型マスト30の等価バネ定数、Mdは昇降台車102の質量である。 Here, k s is the equivalent spring constant of the portal mast 30, and Md is the mass of the lifting carriage 102.

固有角振動数ωnh(d+w)は次式で求められる。 The natural angular frequency ω nh (d + w) is obtained by the following equation.

ωnh(d+w)=(k/(Md+Mw))1/2 式(B5) ω nh (d + w) = (k s / (Md + Mw)) 1/2 formula (B5)

固有角振動数ωnh(d+w)と固有角振動数ωnh(d)との関係式は、式(B4)及び式(B5)により次式で示すように表され、門型マスト30の等価バネ定数kに関係なく、昇降台車102の質量Mdと搬送物20の質量Mwのみで決まる。 The relational expression between the natural angular frequency ω nh (d + w) and the natural angular frequency ω nh (d) is expressed as shown in the following expression by the expressions (B4) and (B5). Regardless of the spring constant k s , it is determined only by the mass Md of the lifting carriage 102 and the mass Mw of the conveyed product 20.

ωnh(d+w)=(Md/(Md+Mw))1/2・ωnh(d) 式(B6) ω nh (d + w) = (Md / (Md + Mw)) 1/2 · ω nh (d) Equation (B6)

ここで、固有角振動数ωnh(s+d+w)は、固有角振動数ωnh(s)と、固有角振動数ωnh(d+w)とを合成した値となり、ダンカレの式により以下の関係が成立する。 Here, the natural angular frequency ω nh (s + d + w) is a value obtained by synthesizing the natural angular frequency ω nh (s) and the natural angular frequency ω nh (d + w). To do.

1/(ωnh(s+d+w))=1/(ωnh(s))+1/(ωnh(d+w))
式(B7)
1 / (ω nh (s + d + w)) 2 = 1 / (ω nh (s)) 2 + 1 / (ω nh (d + w)) 2
Formula (B7)

そうすると、固有角振動数ωnh(s+d+w)は、次式(任意の質量の搬送物を載せた昇降台車が任意の高さ位置にある場合の固有角振動数を演算する関係式の一例)により求められる。 Then, the natural angular frequency ω nh (s + d + w) is expressed by the following formula (an example of a relational expression for calculating the natural angular frequency when the lifting carriage on which the transport object of an arbitrary mass is placed is at an arbitrary height position). Desired.

ωnh(s+d+w)=((A・C)/(A+C))1/2 式(B8) ω nh (s + d + w) = ((A · C) / (A + C)) 1/2 formula (B8)

ここで、A=(ωnh(s))、C=(ωnh(d+w))である。 Here, A = (ω nh (s)) 2 and C = (ω nh (d + w)) 2 .

すなわち、固有角振動数ωnh(s+d+w)は、実測又は計算で求めた固有角振動数ωnh(s)及び式(B5)から求めた固有角振動数ωnh(d+w)を式(B8)に代入することで求めることができる。 That is, the natural angular frequency ω nh (s + d + w) is the natural angular frequency ω nh (s) obtained by actual measurement or calculation and the natural angular frequency ω nh (d + w) obtained from the equation (B5). Can be obtained by substituting

このように、実測又は計算で求めた固有角振動数ωnh(s)及び質量Mdの昇降台車102の各高さ位置hにおける固有角振動数ωnh(s+d)のデータを実測又は計算により事前に求め、直線とみなせる高さ区間において直線回帰式により各データを集約することにより、データ量を抑えることができる。
また、搬送物20の質量Mwが分かれば、固有角振動数ωnh(s+d+w)は、予め実測又は計算した固有角振動数ωnh(s)及び固有角振動数ωnh(d+w)の値を式(B8)に代入することにより容易に求めることができる。
In this way, the natural angular frequency ω nh (s) obtained by actual measurement or calculation and the data of the natural angular frequency ω nh (s + d) at each height position h of the lifting carriage 102 of mass Md are obtained beforehand by actual measurement or calculation. The data amount can be suppressed by collecting each data by a linear regression equation in a height section that can be regarded as a straight line.
Further, if the mass Mw of the conveyed product 20 is known, the natural angular frequency ω nh (s + d + w) is a value obtained by measuring or calculating the natural angular frequency ω nh (s) and the natural angular frequency ω nh (d + w) in advance. It can be easily obtained by substituting into the equation (B8).

次に、搬送装置10の制振制御方法(図6参照)について説明する。
前述の通り、走行台車101から見た昇降台車102の位置(横振れ)yをゼロとするには、式(A8)にて示されるように、加速時間T1及び減速時間T3(図2参照)が、2πの正の整数n倍を固有角振動数ωnh(s+d+w)で除した値に設定される必要がある。
そこで、制御部104の指令発生器CNTは、以下のステップに従って、走行台車101及び昇降台車102に対し、それぞれ台形速度パターンによる速度指令を生成する。
Next, a vibration suppression control method (see FIG. 6) of the transport device 10 will be described.
As described above, the acceleration time T1 and the deceleration time T3 (see FIG. 2) are set as shown in the equation (A8) in order to make the position (side roll) y of the lifting carriage 102 viewed from the traveling carriage 101 zero. Needs to be set to a value obtained by dividing a positive integer n times 2π by the natural angular frequency ω nh (s + d + w).
Therefore, the command generator CNT of the control unit 104 generates a speed command based on a trapezoidal speed pattern for the traveling carriage 101 and the lifting carriage 102 according to the following steps.

(ステップS1:各高さ位置hにおける固有角振動数ωnh(s+d)のデータ取得)
ユーザが、固有角振動数ωnh(s+d)のデータを実測又は計算で求める。固有角振動数ωnh(s+d)が図面に関連付けられた情報等により既知である場合には、その情報を用いても良い。その結果、例えば、表1に示すような測定データが得られる。
(Step S1: Data acquisition of natural angular frequency ω nh (s + d) at each height position h)
The user obtains data of the natural angular frequency ω nh (s + d) by actual measurement or calculation. If the natural angular frequency ω nh (s + d) is known from information associated with the drawing, the information may be used. As a result, for example, measurement data as shown in Table 1 is obtained.

次に、ユーザが、得られたデータに基づいて、例えば式(B1a)〜式(B1e)に示すような直線回帰式を求める。求められた直線回帰式は、指令発生器CNT(図1参照)に設定される。   Next, based on the obtained data, the user obtains, for example, a linear regression equation as shown in equations (B1a) to (B1e). The obtained linear regression equation is set in the command generator CNT (see FIG. 1).

(ステップS2:設定パラメータの決定)
ユーザが、走行台車101及び昇降台車102に対する台形速度パターン(図2(A)及び図2(B)参照)を規定する下記設定パラメータPA1〜PA3、PB1、PB2をそれぞれ決定する。なお、走行台車101及び昇降台車102の各台形速度パターンについて、加速時間T1、一定速度時間T2、及び減速時間T3はそれぞれ同一である。
(Step S2: Determination of setting parameters)
The user determines the following setting parameters PA1 to PA3, PB1, and PB2 that define trapezoidal speed patterns (see FIGS. 2A and 2B) for the traveling carriage 101 and the lifting carriage 102, respectively. Note that the acceleration time T1, the constant speed time T2, and the deceleration time T3 are the same for each of the trapezoidal speed patterns of the traveling carriage 101 and the lifting carriage 102.

(1)ユーザが決定する走行台車101に関する設定パラメータ
1)設定パラメータPA1:始点の位置(現在位置)Pstart
2)設定パラメータPA2:終点の位置(目標位置)Pstop
3)設定パラメータPA3:加速度α1
なお、図2(A)に示す運転時間Ttotal1は、走行台車101が、始点の位置Pstartから終点の位置Pstopまで移動するのに要する時間である。
(1) Setting parameter for traveling carriage 101 determined by user 1) Setting parameter PA1: Start point position (current position) Pstart
2) Setting parameter PA2: end point position (target position) Pstop
3) Setting parameter PA3: acceleration α1
The operation time Ttotal1 shown in FIG. 2A is the time required for the traveling carriage 101 to move from the start point position Pstart to the end point position Pstop.

(2)ユーザが決定する昇降台車102に関する設定パラメータ
1)設定パラメータPB1:始点の高さ位置(現在位置)Hbottom
2)設定パラメータPB2:終点の高さ位置(目標位置)Htop
(2) Setting parameter for lifting vehicle 102 determined by user 1) Setting parameter PB1: Height position (current position) H bottom of starting point
2) Setting parameter PB2: End position height position (target position) H top

(ステップS3:仮の加速時間T1tmp及び仮の減速時間T3tmpの設定)
まず、指令発生器CNTは、搬送物20を載せた昇降台車102の始点の高さ位置Hbottom(加速開始位置であって第1の高さ位置の一例)における固有角振動数ωnbottom(第1の固有角振動数の一例)をステップS1にて求めた直線回帰式(例えば式(B1a)〜式(B1e))より求め、式(A8)を満たすように、次式により仮の加速時間T1tmpを設定する。
(Step S3: setting of temporary acceleration time T1tmp and temporary deceleration time T3tmp)
First, command generator CNT is natural angular frequency omega nbottom at the height position of the starting point of the lifting carriage 102 carrying the conveyed object 20 H bottom (an example of a first height position and a acceleration starting position) (the 1 (an example of the natural angular frequency) is obtained from the linear regression equation obtained in step S1 (for example, the equations (B1a) to (B1e)), and the temporary acceleration time is calculated by the following equation so as to satisfy the equation (A8). Set T1tmp.

T1tmp=2nπ/ωnbottom 式(C1a) T1tmp = 2nπ / ω nbottom formula (C1a)

ただし、nは正の整数である。   However, n is a positive integer.

次に、指令発生器CNTは、搬送物20を載せた昇降台車102の走行の終点での高さ位置Htop(減速完了位置であって第2の高さ位置の一例)における固有角振動数ωntop(第2の固有角振動数の一例)をステップS1にて求めた直線回帰式(例えば式(B1a)〜式(B1e))より求め、式(A8)を満たすように、次式により仮の減速時間T3tmpを設定する。 Next, the command generator CNT has a natural angular frequency at a height position H top (an example of the second height position, which is a deceleration completion position) at the end of travel of the lift carriage 102 on which the conveyed product 20 is placed. ω ntop (an example of the second natural angular frequency) is obtained from the linear regression equation obtained in step S1 (for example, Equation (B1a) to Equation (B1e)), and so as to satisfy Equation (A8), A temporary deceleration time T3tmp is set.

T3tmp=2nπ/ωntop 式(C1b) T3tmp = 2nπ / ω ntop equation (C1b)

ただし、nは正の整数である。   However, n is a positive integer.

仮の加速時間T1tmp及び仮の減速時間T3tmpが設定されると、ステップS2にてユーザが決定した設定パラメータPA1〜PA3及び設定パラメータPB1、PB2に基づいて、以下に示す台形速度パターンを規定する仮のパラメータが定まる。
1)走行台車101の仮の一定速度Vc1tmp
2)走行台車101の仮の減速度β1tmp
3)仮の一定速度時間T2tmp
4)昇降台車102の仮の一定速度Vc2tmp
5)昇降台車102の仮の加速度α2tmp
6)昇降台車102の仮の減速度β2tmp
When the provisional acceleration time T1tmp and provisional deceleration time T3tmp are set, the provisional trapezoidal speed pattern shown below is defined based on the setting parameters PA1 to PA3 and the setting parameters PB1 and PB2 determined by the user in step S2. The parameters are determined.
1) Temporary constant speed Vc1tmp of traveling carriage 101
2) Temporary deceleration β1tmp of traveling carriage 101
3) Temporary constant speed time T2tmp
4) Temporary constant speed Vc2tmp of the lifting carriage 102
5) Temporary acceleration α2tmp of the lifting carriage 102
6) Temporary deceleration β2tmp of the lifting carriage 102

(ステップS4:仮の加速時間T1tmp及び仮の減速時間T3tmpの修正)
設定パラメータPA1〜PA3、PB1、PB2及び仮のパラメータに基づいて速度指令を生成すると、横振れyは抑制される。ただし、昇降台車102の上昇に伴い刻々と変化する固有角振動数ωnh(s+d+w)を十分に考慮していないため、その効果は限定的である。
そこで、指令発生器CNTは、仮の加速時間T1tmp及び仮の減速時間T3tmpを以下の通り修正する。
(Step S4: Correction of temporary acceleration time T1tmp and temporary deceleration time T3tmp)
When the speed command is generated based on the setting parameters PA1 to PA3, PB1, PB2, and the temporary parameters, the lateral shake y is suppressed. However, since the natural angular frequency ω nh (s + d + w) that changes every moment as the elevating carriage 102 rises is not sufficiently taken into consideration, the effect is limited.
Therefore, the command generator CNT corrects the temporary acceleration time T1tmp and the temporary deceleration time T3tmp as follows.

(ステップS4−1:走行台車101の仮の加速時間T1tmpの修正) (Step S4-1: Correction of Temporary Acceleration Time T1tmp of Traveling Car 101)

図7(B)に示すような昇降台車102の仮の台形速度パターンにおいて、仮の加速時間T1tmpをN等分した微小時間Δtは次式により求まる。
なお、Nは正の整数である。
In the temporary trapezoidal speed pattern of the lifting carriage 102 as shown in FIG. 7B, a minute time Δt obtained by dividing the temporary acceleration time T1tmp by N is obtained by the following equation.
N is a positive integer.

Δt=T1tmp/N 式(C2)   Δt = T1tmp / N Formula (C2)

N等分した時間の中央の時間Δtcは下記の式により求まる。   The central time Δtc of N equally divided times is obtained by the following equation.

Δtc=Δt/2 式(C3)   Δtc = Δt / 2 Formula (C3)

加速開始からN等分した時間の中央のk番目(kは整数)の経過時間tは次式により求まる。 The k-th (k is an integer) elapsed time t k at the center of the time divided N times from the start of acceleration is obtained by the following equation.

=1・Δt
=3・Δt=3・t
・・・・・・・・
=(2k−1)・Δt=(2k−1)・t 式(C4)
t 1 = 1 · Δt c
t 2 = 3 · Δt c = 3 · t 1
...
t k = (2k−1) · Δt c = (2k−1) · t 1 formula (C4)

上記の経過時間tにおける昇降台車102の高さ位置hは下記の式で求まる。 Height h k of the lifting carriage 102 in the elapsed time t k is calculated by the following equation.

=(1/2)・α2・t +Hbottom
=(1/2)・α2・(2k−1)・t +Hbottom 式(C5)
h k = (1/2) · α 2 · t k 2 + H bottom
= (1/2) · α2 · (2k−1) 2 · t 1 2 + H bottom equation (C5)

昇降台車102の各高さ位置hでの固有角振動数ωnhk(s+d)を、ステップS1にて求めた直線回帰式(例えば式(B1a)〜式(B1e)にて表される直線回帰式)の昇降台車102の各高さ位置hの代わりに高さ位置hを代入することにより求める。同様に、これらの値を使って式(B3)、式(B6)、及び式(B8)に従って、各高さ位置hに対応する固有角振動数ωnhk(d)、固有角振動数ωnhk(d+w)、及び固有角振動数ωnhk(s+d+w)を順次計算してそれぞれ求める。
それぞれの固有角振動数ωnhk(s+d+w)に微小時間Δtを乗じた値の合計が、仮の加速時間T1tmpが経過した時点における仮の位相角θ1tmp(第1の位相角の一例)であり、次式により求められる。
The linear regression represented by the linear regression formula (for example, formula (B1a) to formula (B1e)) obtained in step S1 for the natural angular frequency ω nhk (s + d) at each height position h k of the lifting carriage 102. It is obtained by substituting the height position h k for each of the height positions h of the lifting carriage 102 of the formula. Similarly, using these values, according to the formulas (B3), (B6), and (B8), the natural angular frequency ω nhk (d) corresponding to each height position h k and the natural angular frequency ω nhk (d + w) and natural angular frequency ω nhk (s + d + w) are sequentially calculated to be obtained.
The sum of values obtained by multiplying each natural angular frequency ω nhk (s + d + w) by the minute time Δt is a temporary phase angle θ1tmp (an example of the first phase angle) at the time when the temporary acceleration time T1tmp has elapsed. It is obtained by the following formula.

2πの正の整数n倍を仮の位相角θ1tmpで除した第1の修正係数ζ1を次式より求める。   A first correction coefficient ζ1 obtained by dividing a positive integer n times 2π by a temporary phase angle θ1tmp is obtained from the following equation.

ζ1=2nπ/θ1tmp 式(C7)   ζ1 = 2nπ / θ1tmp (C7)

仮の加速時間T1tmpに第1の修正係数ζ1を乗じた修正加速時間T1revを次式より求める。   A corrected acceleration time T1rev obtained by multiplying the temporary acceleration time T1tmp by the first correction coefficient ζ1 is obtained from the following equation.

T1rev=ζ1・T1tmp 式(C8)   T1rev = ζ1 · T1tmp (C8)

式(C8)によって求められた修正加速時間T1revを正規の加速時間T1とすることで、加速終了時点(定速移動開始時点)での位相角が2πの正の整数n倍に近づき、終点の高さ位置Htopにおける搬送物20を積載した昇降台車102の横振れyが低減される。
なお、式(C7)で求めた第1の修正係数ζ1が少なくとも0.98〜1.02の範囲を超えるのであれば、修正加速時間T1revを新たな仮の加速時間T1tmpとして改めて計算を繰り返す。第1の修正係数ζ1が0.98〜1.02の範囲内であれば、昇降台車102の横振れyはより小さくなる。
By setting the corrected acceleration time T1rev obtained by the equation (C8) as the normal acceleration time T1, the phase angle at the acceleration end time (constant speed movement start time) approaches a positive integer n times 2π, and the end point The lateral deflection y of the lift carriage 102 loaded with the conveyed product 20 at the height position H top is reduced.
Even a small first modification coefficients ζ1 determined by the formula (C7) 0. If it exceeds the range of 98 to 1.02, the calculation is repeated again with the corrected acceleration time T1rev as a new temporary acceleration time T1tmp. The first correction coefficient ζ1 is 0 . If it is in the range of 98 to 1.02, the lateral runout y of the lift carriage 102 becomes smaller.

(ステップS4−2:走行台車101の仮の減速時間T3tmpの修正)
前述の走行台車101の仮の加速時間T1tmpの修正と同様に、仮の減速時間T3tmpが経過した時点における仮の位相角θ3tmp(第2の位相角の一例)及び第1の修正係数ζ1に対応する第2の修正係数ξ3を求める。仮の減速時間T3tmpに第2の修正係数ξ3を乗じた修正減速時間T3revを次式より求め、求めた修正減速時間T3revを正規の減速時間T3とする。
(Step S4-2: Correction of Temporary Deceleration Time T3tmp of Traveling Truck 101)
Corresponding to the provisional phase angle θ3tmp (an example of the second phase angle) and the first modification coefficient ζ1 at the time when the provisional deceleration time T3tmp has passed, similar to the modification of the provisional acceleration time T1tmp of the traveling carriage 101 described above. A second correction coefficient ξ3 is obtained. A corrected deceleration time T3rev obtained by multiplying the temporary deceleration time T3tmp by the second correction coefficient ξ3 is obtained from the following equation, and the obtained corrected deceleration time T3rev is set as a regular deceleration time T3.

T3rev=ξ3・T3tmp 式(C9)   T3rev = ξ3 · T3tmp (C9)

式(C9)によって求められた修正減速時間T3revを正規の減速時間T3とすることで、減速終了時点での位相角が2πの正の整数n倍に近づき、終点の高さ位置Htopにおける搬送物20を積載した昇降台車102の横振れyが低減される。
なお、第2の修正係数ζ3が少なくとも0.98〜1.02の範囲を超えるのであれば、修正減速時間T3revを新たな仮の減速時間T3tmpとして改めて計算を繰り返す。第2の修正係数ζ3が0.98〜1.02の範囲内であれば、昇降台車102の横振れyはより小さくなる。
By setting the corrected deceleration time T3rev obtained by the equation (C9) as the normal deceleration time T3, the phase angle at the end of the deceleration approaches a positive integer n times 2π, and the conveyance at the end position height position H top is performed. The lateral deflection y of the lifting carriage 102 loaded with the objects 20 is reduced.
Even a small second correction coefficient ζ3 is 0. If it exceeds the range of 98 to 1.02, the calculation is repeated again with the corrected deceleration time T3rev as a new temporary deceleration time T3tmp. The second correction coefficient ζ3 is 0 . If it is in the range of 98 to 1.02, the lateral runout y of the lift carriage 102 becomes smaller.

(ステップS5:速度指令の生成)
指令発生器CNTは、ユーザが決定した設定パラメータPA1〜PA3、修正加速時間T1rev、及び修正減速時間T3revに基づいて、走行台車101に対する台形速度パターン(第1の台形速度パターンの一例)を規定するために必要な他のパラメータを改めて演算し、走行台車101の速度指令(第1の速度指令の一例)を生成する。
また、指令発生器CNTは、ユーザが決定した設定パラメータPB1、PB2、修正加速時間T1rev、及び修正減速時間T3revに基づいて、昇降台車102に対する台形速度パターン(第2の台形速度パターンの一例)を規定するために必要な他のパラメータを改めて演算し、昇降台車102の速度指令(第2の速度指令の一例)を生成する。
(Step S5: Generation of speed command)
The command generator CNT defines a trapezoidal speed pattern (an example of a first trapezoidal speed pattern) for the traveling carriage 101 based on the setting parameters PA1 to PA3, the corrected acceleration time T1rev, and the corrected deceleration time T3rev determined by the user. Therefore, other parameters necessary for the calculation are calculated again, and a speed command (an example of a first speed command) for the traveling carriage 101 is generated.
Further, the command generator CNT generates a trapezoidal speed pattern (an example of a second trapezoidal speed pattern) for the lifting carriage 102 based on the setting parameters PB1, PB2, the corrected acceleration time T1rev, and the corrected deceleration time T3rev determined by the user. Other parameters necessary for the regulation are calculated again, and a speed command (an example of a second speed command) for the lifting carriage 102 is generated.

(ステップS6:走行台車及び昇降台車の駆動)
指令発生器CNTによって生成された速度指令がそれぞれサーボドライバSVA1、SVA2に入力され、走行台車101及び昇降台車102がそれぞれ速度指令に従って駆動される。
(Step S6: Driving of traveling cart and lifting cart)
The speed commands generated by the command generator CNT are input to the servo drivers SVA1 and SVA2, respectively, and the traveling carriage 101 and the lifting carriage 102 are driven according to the speed instructions.

その結果、走行台車101は、昇降台車102の横振れyがゼロに近づくような加速時間T1及び減速時間T3で上昇するので、横振れyが抑制される。
また、昇降台車102は、搬送装置10の設置面から見て実質的に最短軌跡で目標位置に到達するので、昇降台車102が目標位置まで到達する時間が低減される。
As a result, since the traveling carriage 101 rises at the acceleration time T1 and the deceleration time T3 such that the lateral shake y of the lifting carriage 102 approaches zero, the lateral shake y is suppressed.
In addition, since the lifting carriage 102 reaches the target position with a substantially shortest path as viewed from the installation surface of the transfer apparatus 10, the time for the lifting carriage 102 to reach the target position is reduced.

このように、搬送装置10の制振制御方法によれば、昇降台車102が目標の高さ位置に到達して停止した際の昇降台車102の横振れyが抑制されているので、横振れyの大きさが許容値以下に減衰するまでの待ち時間が短縮される。また、昇降台車102が目標位置まで到達する時間が低減される。
すなわち、搬送物20の搬送に要する時間が短縮される。
As described above, according to the vibration suppression control method of the transport device 10, the horizontal runout y of the lift carriage 102 when the lift carriage 102 reaches the target height position and stops is suppressed. The waiting time until the magnitude of the signal decays below the allowable value is shortened. Further, the time required for the lifting carriage 102 to reach the target position is reduced.
That is, the time required for transporting the transported object 20 is shortened.

なお、本実施の形態においては、昇降台車が上昇する際の制振制御方法について説明したが、昇降台車が下降する際にも同様の制振制御方法により横振れyを抑制できる。   In the present embodiment, the vibration suppression control method when the lifting carriage is raised has been described. However, the horizontal vibration y can be suppressed by the same vibration suppression control method when the lifting carriage is lowered.

次に図1に示した搬送装置(実機モデル)10を用いた実施例を示し、搬送装置10の制振制御方法について更に説明する。   Next, an embodiment using the transfer device (actual machine model) 10 shown in FIG. 1 will be described, and the vibration suppression control method of the transfer device 10 will be further described.

搬送装置(実機モデル)10の主な諸元は以下の通りである。
(1)門型マスト30
門型マスト30は、間隔を空けて上下方向に延びる2本の板状部材302、304を有している。各板状部材302、304の下端部は走行台車101に固定され、上端部は梁306に固定されている。各板状部材302、304の材質はアルミニウムであり、上下方向の長さ、幅、及び厚さは、それぞれ、880mm、30mm、及び3mmである。
(2)走行台車101
走行用駆動モータ(ACサーボモータ)SVM1の容量は0.1kWである。ボールネジ22のリードピッチは6mmである。
(3)昇降台車102
昇降台車102のみの質量Mdは0.310kg、搬送物20の質量Mwは0.265kgである。昇降用駆動モータ(ACサーボモータ)SVM2の容量は0.1kWである。
The main specifications of the transport device (actual machine model) 10 are as follows.
(1) Portal mast 30
The portal mast 30 includes two plate-like members 302 and 304 extending in the vertical direction with a space therebetween. The lower ends of the plate-like members 302 and 304 are fixed to the traveling carriage 101, and the upper ends are fixed to the beam 306. The material of each of the plate-like members 302 and 304 is aluminum, and the length, width, and thickness in the vertical direction are 880 mm, 30 mm, and 3 mm, respectively.
(2) Traveling cart 101
The traveling drive motor (AC servomotor) SVM1 has a capacity of 0.1 kW. The lead pitch of the ball screw 22 is 6 mm.
(3) Lifting carriage 102
The mass Md of only the lifting carriage 102 is 0.310 kg, and the mass Mw of the conveyed product 20 is 0.265 kg. The capacity of the lifting drive motor (AC servomotor) SVM2 is 0.1 kW.

まず、比較例として、以下の台形速度パターン(図2参照)に従って、搬送装置10を制御した。
その結果、走行台車101及び昇降台車102が目標位置に到達し、停止した際の昇降台車102の横振れyの全振幅は約30mmであった。
(1)走行台車101の台形速度パターン
・移動距離L=0.192(m)
・加速度α1=0.8(m/s
・減速度β1=0.7(m/s
・一定速度Vc1=0.272(m/s)
・加速時間T1=0.34(s)
・一定速度時間T2=0.34(s)
・減速時間T3=0.39(s)
First, as a comparative example, the transport apparatus 10 was controlled according to the following trapezoidal speed pattern (see FIG. 2).
As a result, the total amplitude of the lateral deflection y of the lifting carriage 102 when the traveling carriage 101 and the lifting carriage 102 reached the target position and stopped was about 30 mm.
(1) Trapezoidal speed pattern / travel distance L of the traveling carriage 101 = 0.192 (m)
・ Acceleration α1 = 0.8 (m / s 2 )
・ Deceleration β1 = 0.7 (m / s 2 )
・ Constant speed Vc1 = 0.272 (m / s)
・ Acceleration time T1 = 0.34 (s)
・ Constant speed time T2 = 0.34 (s)
・ Deceleration time T3 = 0.39 (s)

(2)昇降台車102の台形速度パターン
・移動距離L=0.24(m)
・加速度α2=1.0(m/s
・減速度β2=0.87(m/s
・一定速度Vc2=0.34(m/s)
・加速時間T1=0.34(s)
・一定速度時間T2=0.34(s)
・減速時間T3=0.39(s)
(2) Trapezoidal speed pattern / movement distance L = 0.24 (m) of the lifting carriage 102
・ Acceleration α2 = 1.0 (m / s 2 )
・ Deceleration β2 = 0.87 (m / s 2 )
・ Constant speed Vc2 = 0.34 (m / s)
・ Acceleration time T1 = 0.34 (s)
・ Constant speed time T2 = 0.34 (s)
・ Deceleration time T3 = 0.39 (s)

次に、実施例として、前述のステップS1〜S6(図6参照)に従って搬送装置10を制御した。以下、ステップS1〜S6毎に説明する。   Next, as an example, the transport apparatus 10 was controlled according to the above-described steps S1 to S6 (see FIG. 6). Hereinafter, each step S1 to S6 will be described.

(ステップS1:各高さ位置hにおける固有角振動数ωnh(s+d)のデータ取得)
門型マスト30の固定端となる下端部から昇降台車102の中央までの高さ位置hを変え、各高さ位置hにおける固有角振動数のデータを23点測定した。なお、昇降台車102は、搬送物20を積載していない。前掲の表1は、その測定結果(データNo.3〜No.12は省略)を示している。図4は表1に対応するグラフである。
これらのデータは、最小二乗法により5つの直線回帰式(相関係数:0.98〜1.02)である式(B1a)〜式(B1e)にて表された。
(Step S1: Data acquisition of natural angular frequency ω nh (s + d) at each height position h)
The height position h from the lower end portion serving as the fixed end of the portal mast 30 to the center of the lift carriage 102 was changed, and 23 data of the natural angular frequency at each height position h were measured. In addition, the raising / lowering carriage 102 does not load the conveyed product 20. Table 1 above shows the measurement results (data Nos. 3 to 12 are omitted). FIG. 4 is a graph corresponding to Table 1.
These data were expressed by formulas (B1a) to (B1e), which are five linear regression equations (correlation coefficients: 0.98 to 1.02) by the least square method.

これらの式(B1a)〜式(B1e)から、最終的に、搬送物20を積載している昇降台車102が任意の高さ位置にある場合の固有角振動数を求めることができる。
一例として、搬送物20(質量Mw=0.265kg)を昇降台車102(質量Md=0.310kg)に積載し、昇降台車102の中央から門型マスト30の固定端までの高さ位置Htop(791mm)における固有角振動数ωnh(s+d+w)を求める具体的手順を以下に示す。
From these formulas (B1a) to (B1e), it is possible to finally determine the natural angular frequency when the lifting carriage 102 on which the conveyed product 20 is loaded is at an arbitrary height position.
As an example, the transported object 20 (mass Mw = 0.265 kg) is loaded on the lifting carriage 102 (mass Md = 0.310 kg), and the height position H top from the center of the lifting carriage 102 to the fixed end of the portal mast 30 is set. A specific procedure for obtaining the natural angular frequency ω nh (s + d + w) at (791 mm) is shown below.

まず、昇降台車102や搬送物20が無い状態で、門型マスト30を主体とした搬送装置の固有角振動数ωnh(s)の実測値は、下記の如くなる。 First, the measured values of the natural angular frequency ω nh (s) of the transport device mainly composed of the portal mast 30 in the state where the lifting carriage 102 and the transported object 20 are not present are as follows.

ωnh(s)=20.94 (rad/s) 式(D1) ω nh (s) = 20.94 (rad / s) Formula (D1)

次に、昇降台車102の高さ位置(h=0.791m)における固有角振動数ωnh(s+d)を式(B1e)から求めると下記の如くなる。 Next, the natural angular frequency ω nh (s + d) at the height position (h = 0.971 m) of the lifting carriage 102 is obtained from the formula (B1e) as follows.

ωnh(s+d)=14.61(rad/s) 式(D2) ω nh (s + d) = 14.61 (rad / s) Formula (D2)

次に、ωnh(d)は、式(B3)により下記の如くなる。 Next, ω nh (d) is as follows according to the equation (B3).

A=(ωnh(s))=20.94=438.5(rad/s)
B=(ωnh(s+d))=14.61=213.5(rad/s)
ωnh(d)=((A・B)/(A−B))1/2=20・39(rad/s)
式(D3)
A = (ω nh (s)) 2 = 20.94 2 = 438.5 (rad / s) 2
B = (ω nh (s + d)) 2 = 14.61 2 = 213.5 (rad / s) 2
ω nh (d) = ((A · B) / (A−B)) 1/2 = 20 · 39 (rad / s)
Formula (D3)

次に、固有角振動数ωnh(d+w)は、式(B6)により、下記の如くなる。 Next, the natural angular frequency ω nh (d + w) is as follows according to the equation (B6).

Md=0.310(kg)
Mw=0.265(kg)
ωnh(d+w)=(Md/(Md+Mw))1/2・ωnh(d)
=14.97(rad/s) 式(D4)
Md = 0.310 (kg)
Mw = 0.265 (kg)
ω nh (d + w) = (Md / (Md + Mw)) 1/2 · ω nh (d)
= 14.97 (rad / s) Formula (D4)

最後に、固有角振動数ωnh(s+d+w)は、固有角振動数ωnh(s)及び固有角振動数ωnh(d+w)を、式(B8)に代入して以下のように求められる。 Finally, the natural angular frequency ω nh (s + d + w) is obtained as follows by substituting the natural angular frequency ω nh (s) and the natural angular frequency ω nh (d + w) into the equation (B8).

A=(ωnh(s))=(20.94)=438.5((rad/s)
C=(ωnh(d+w))=14.97=224.1((rad/s)
ωnh(s+d+w)=((A・C)/(A+C))1/2=12.2(rad/s)
式(D5)
A = (ω nh (s)) 2 = (20.94) 2 = 438.5 ((rad / s) 2 )
C = (ω nh (d + w)) 2 = 14.97 2 = 224.1 ((rad / s) 2 )
ω nh (s + d + w) = ((A · C) / (A + C)) 1/2 = 12.2 (rad / s)
Formula (D5)

ここで、固有角振動数ωnh(s+d+w)を実測したところ、その値(実測値)は、12.1(rad/s)であった。この実測値と前式(D5)に基づいて求められた計算値とを比較すると下記の如くなる。 Here, when the natural angular frequency ω nh (s + d + w) was measured, the value (measured value) was 12.1 (rad / s). A comparison between this measured value and the calculated value obtained based on the previous equation (D5) is as follows.

ωnh(s+d+w)/ωnh(s+d+w)(実測値)=1.01 式(D6) ω nh (s + d + w) / ω nh (s + d + w) (actual value) = 1.01 Formula (D6)

すなわち、誤差は1%以下であり、本実施例にて求められた固有角振動数ωnh(s+d+w)は目標の誤差範囲内の値となった。 That is, the error was 1% or less, and the natural angular frequency ω nh (s + d + w) obtained in this example was a value within the target error range.

(ステップS2:設定パラメータの決定)
走行台車101及び昇降台車102の運転条件は、以下の通りである。加速度α1については、比較例と同一とした。
この運転条件を満たす台形速度パターンを求めた。走行台車101及び昇降台車102の各台形速度パターンについて、加速時間T1、一定速度時間T2、及び減速時間T3はそれぞれ同一である。
(Step S2: Determination of setting parameters)
The operating conditions of the traveling carriage 101 and the lifting carriage 102 are as follows. The acceleration α1 is the same as that in the comparative example.
A trapezoidal speed pattern that satisfies this operating condition was obtained. For each trapezoidal speed pattern of the traveling carriage 101 and the lifting carriage 102, the acceleration time T1, the constant speed time T2, and the deceleration time T3 are the same.

(1)走行台車101の運転条件
・始点の位置Pstart=0(m)
・終点の位置Pstop=0.35(m)
・加速度α1=0.8(m/s
・一定速度Vc1≒0.35(m/s)
・減速度β1≦1(m/s
・運転時間Ttotal1≒1.5(s)
(1) Driving conditions of traveling vehicle 101 / start position Pstart = 0 (m)
・ End point position Pstop = 0.35 (m)
・ Acceleration α1 = 0.8 (m / s 2 )
・ Constant speed Vc1 ≒ 0.35 (m / s)
・ Deceleration β1 ≦ 1 (m / s 2 )
・ Operating time Ttotal1 ≒ 1.5 (s)

(2)昇降台車102の運転条件
・始点の高さ位置Hbottom=0.552(m)
・終点の高さ位置Htop=0.791(m)
・加速度α2≦1(m/s
・一定速度Vc2≦0.35(m/s)
・減速度β2≦1(m/s
・運転時間Ttotal2=Ttotal1≒1.5(s)
(2) Driving conditions of the lifting carriage 102 / height position of the starting point H bottom = 0.552 (m)
・ End position height H top = 0.791 (m)
・ Acceleration α2 ≦ 1 (m / s 2 )
・ Constant speed Vc2 ≦ 0.35 (m / s)
・ Deceleration β2 ≦ 1 (m / s 2 )
・ Operating time Ttotal2 = Ttotal1≈1.5 (s)

上記運転条件を満たすよう、下記設定パラメータを決定した。
1)設定パラメータPA1:始点の位置(現在位置)Pstart=0(m)
2)設定パラメータPA2:終点の位置(目標位置)Pstop=0.35(m)
3)設定パラメータPA3:加速度α1=0.8(m/s
4)設定パラメータPB1:始点の高さ位置(現在位置)Hbottom=0.552(m)
5)設定パラメータPB2:終点の高さ位置(目標位置)Htop=0.791(m)
The following setting parameters were determined so as to satisfy the above operating conditions.
1) Setting parameter PA1: Start point position (current position) Pstart = 0 (m)
2) Setting parameter PA2: end point position (target position) Pstop = 0.35 (m)
3) Setting parameter PA3: acceleration α1 = 0.8 (m / s 2 )
4) Setting parameter PB1: Height position of the starting point (current position) H bottom = 0.552 (m)
5) Setting parameter PB2: End position height position (target position) H top = 0.791 (m)

これら設定パラメータPA1〜PA3、PB1、PB2は、生成される台形速度パターンが最低限満たすべき条件を規定するものである。設定パラメータは、これらの設定パラメータPA1〜PA3、PB1、PB2に限定されるものではない。
第1の例として、設定パラメータPA3(加速度α1)に代えて、一定速度Vc1を設定パラメータとしてもよい。
第2の例として、設定パラメータPA3(加速度α1)に代えて、減速度β1を設定パラメータとしてもよい。
These setting parameters PA1 to PA3, PB1, and PB2 define conditions that the generated trapezoidal velocity pattern should satisfy at least. The setting parameters are not limited to these setting parameters PA1 to PA3, PB1, and PB2.
As a first example, instead of the setting parameter PA3 (acceleration α1), a constant speed Vc1 may be used as the setting parameter.
As a second example, the deceleration β1 may be used as the setting parameter instead of the setting parameter PA3 (acceleration α1).

(ステップS3:仮の加速時間T1tmp及び仮の減速時間T3tmpの設定)
まず、走行台車101の仮の加速時間T1tmp及び仮の減速時間T3tmpを設定した。
搬送物20が積載された昇降台車102の始点の高さ位置Hbottom=0.552(m)における固有角振動数ωnbottomは、式(B8)より、14.48(rad/s)となった。従って、式(C1a)より、仮の加速時間T1tmpを以下のように設定した。
(Step S3: setting of temporary acceleration time T1tmp and temporary deceleration time T3tmp)
First, a temporary acceleration time T1tmp and a temporary deceleration time T3tmp of the traveling carriage 101 were set.
The natural angular frequency ω nbottom at the height position H bottom = 0.552 (m) of the starting point of the lift carriage 102 on which the conveyed product 20 is loaded is 14.48 (rad / s) from the equation (B8). It was. Therefore, the provisional acceleration time T1tmp is set as follows from the formula (C1a).

T1tmp=2π/ωnbottom=0.434(s) 式(E1a) T1tmp = 2π / ω nbottom = 0.434 (s) Formula (E1a)

なお、この仮の加速時間T1tmpは、昇降台車102が高さ位置Hbottomにある場合の固有振動周期である。 The temporary acceleration time T1tmp is a natural vibration period when the lifting carriage 102 is at the height position H bottom .

搬送物20が積載された昇降台車102の終点の高さ位置Htop=0.791(m)における固有角振動数ωntopは、式(B8)より、12.2(rad/s)となった。従って、式(C1b)により、仮の減速時間T3tmpを以下のように設定した。 The natural angular frequency ω ntop at the height position H top = 0.791 (m) of the end point of the lift carriage 102 on which the conveyed product 20 is loaded is 12.2 (rad / s) from the equation (B8). It was. Therefore, the provisional deceleration time T3tmp is set as follows according to the equation (C1b).

T3tmp=2π/ωntop=0.515(s) 式(E1b) T3tmp = 2π / ω ntop = 0.515 (s) Formula (E1b)

なお、この仮の減速時間T3tmpは、昇降台車102が高さ位置Htopにある場合の固有振動周期である。 The temporary deceleration time T3tmp is a natural vibration period when the lifting carriage 102 is at the height position H top .

次に、設定された仮の加速時間T1tmp及び仮の減速時間T3tmp並びにステップS2にてユーザが決定した設定パラメータPA1〜PA3及び設定パラメータPB1、PB2に基づいて、図7(A)に示す走行台車101の仮の一定速度Vc1tmp及び仮の減速度β1tmpを次式より求めた。   Next, based on the provisional acceleration time T1tmp and provisional deceleration time T3tmp set, and the setting parameters PA1 to PA3 and the setting parameters PB1 and PB2 determined by the user in step S2, the traveling vehicle shown in FIG. A temporary constant speed Vc1tmp and a temporary deceleration β1tmp of 101 were obtained from the following equations.

Vc1tmp=α1・T1tmp=0.8・0.434≒0.347(m/s)
式(E2a)
β1tmp=Vc1tmp/T3tmp=0.347/0.515≒0.674(m/s
式(E2b)
Vc1tmp = α1 · T1tmp = 0.8 · 0.434≈0.347 (m / s)
Formula (E2a)
β1tmp = Vc1tmp / T3tmp = 0.347 / 0.515≈0.674 (m / s 2 )
Formula (E2b)

次に、仮の一定速度時間T2tmpを次式から求めた。   Next, a temporary constant speed time T2tmp was obtained from the following equation.

(Vc1tmp)・(T1tmp/2+T2tmp+T3tmp/2)
=(Pstop−Pstart) 式(E3a)
T2tmp=(Pstop−Pstart)
/(Vc1tmp)−(T1tmp/2+T3tmp/2)
=(0.350−0.000)/0.347−(0.434/2+0.515/2)
=0.5345(s) 式(E3b)
(Vc1tmp) · (T1tmp / 2 + T2tmp + T3tmp / 2)
= (Pstop-Pstart) Formula (E3a)
T2tmp = (Pstop-Pstart)
/ (Vc1tmp)-(T1tmp / 2 + T3tmp / 2)
= (0.350-0.000) /0.347- (0.434 / 2 + 0.515 / 2)
= 0.5345 (s) Formula (E3b)

図7(B)に示す昇降台車102の仮の一定速度Vc2tmp、仮の加速度α2tmp、及び仮の減速度β2tmpは、次式より求められた。   The provisional constant speed Vc2tmp, provisional acceleration α2tmp, and provisional deceleration β2tmp of the lifting carriage 102 shown in FIG. 7B were obtained from the following equations.

Vc2tmp・(T1tmp/2+T2tmp+T3tmp/2)
=(Htop−Hbottom) 式(E4a)
Vc2tmp=(Htop−Hbottom)/(T1/2+T2+T3/2)
=(0.791−0.552)
/(0.434/2+0.5345+0.515/2)
=0.239/1.009
≒0.237(m/s) 式(E4b)
α2tmp=Vc2tmp/T1tmp
=0.237/0.434
≒0.546(m/s) 式(E4c)
β2tmp=Vc2tmp/T3tmp
=0.237/0.515
≒0.460(m/s) 式(E4d)
Vc2tmp · (T1tmp / 2 + T2tmp + T3tmp / 2)
= (H top −H bottom ) Formula (E4a)
Vc2tmp = (H top −H bottom ) / (T1 / 2 + T2 + T3 / 2)
= (0.791-0.552)
/(0.434/2+0.5345+0.515/2)
= 0.239 / 1.009
≈ 0.237 (m / s) Formula (E4b)
α2tmp = Vc2tmp / T1tmp
= 0.237 / 0.434
≈ 0.546 (m / s 2 ) Formula (E4c)
β2tmp = Vc2tmp / T3tmp
= 0.237 / 0.515
≈0.460 (m / s 2 ) Formula (E4d)

(ステップS4:仮の加速時間T1tmp及び仮の減速時間T3tmpの修正)
(ステップS4−1:走行台車101の仮の加速時間T1tmpの修正)
Nを5とし、仮の加速時間T1tmpを5等分した微小時間ΔT1を下記の式により求めた(図7(B)参照)。
(Step S4: Correction of temporary acceleration time T1tmp and temporary deceleration time T3tmp)
(Step S4-1: Correction of Temporary Acceleration Time T1tmp of Traveling Car 101)
N was set to 5, and a minute time ΔT1 obtained by dividing the provisional acceleration time T1tmp by 5 was obtained by the following equation (see FIG. 7B).

ΔT1=T1tmp/N=0.434/5=0.0868(s) 式(E5)   ΔT1 = T1tmp / N = 0.434 / 5 = 0.0868 (s) Formula (E5)

上記のN(5)等分した時間の中央の時間ΔTc1は下記の式により求まる。   The central time ΔTc1 of the N (5) equally divided time is obtained by the following equation.

ΔTc1=ΔT1/2=0.0868/2=0.0434(s) 式(E6)   ΔTc1 = ΔT1 / 2 = 0.0868 / 2 = 0.0434 (s) Formula (E6)

加速開始からの5等分した時間の中央のk番目の経過時間tを下記の式により求めた。 5 central k-th elapsed time t k of the equally divided time from the start of acceleration determined by the following equation.

=1・ΔTc1
=3・ΔTc1
・・・・・・・・・
=(2k−1)・ΔTc1=(2k−1)・t 式(E7)
t 1 = 1 · ΔTc1
t 2 = 3 · ΔTc1
...
t k = (2k−1) · ΔTc1 = (2k−1) · t 1 formula (E7)

経過時間t、t、t、t、tを式(E7)に従って計算すると、下記のようになった。
=0.0434(s)
=0.130(s)
=0.217(s)
=0.304(s)
=0.391(s)
The elapsed times t 1 , t 2 , t 3 , t 4 and t 5 were calculated according to the formula (E7), and the results were as follows.
t 1 = 0.0434 (s)
t 2 = 0.130 (s)
t 3 = 0.217 (s)
t 4 = 0.304 (s)
t 5 = 0.391 (s)

上記の時間経過tにおける昇降台車102の高さ位置hを次式により求めた。 The height h k of the lifting carriage 102 at time t k of the determined by the following equation.

=(1/2)・α2・t +0.552 式(E8) h k = (1/2) · α 2 · t k 2 +0.552 Formula (E8)

上記の各時間における昇降台車102の各高さ位置を、式(E8)に従って計算すると、下記のようになった。
=0.553(m)
=0.557(m)
=0.565(m)
=0.577(m)
=0.594(m)
When the height positions of the lift carriage 102 at each time described above were calculated according to the equation (E8), the following results were obtained.
h 1 = 0.553 (m)
h 2 = 0.557 (m)
h 3 = 0.565 (m)
h 4 = 0.577 (m)
h 5 = 0.594 (m)

搬送物20(質量0.265kg)を積載した昇降台車102の各高さ位置における固有角振動数ωnk(s+d+w)を式(B3)、式(B6)、及び式(B8)に従って計算すると、下記のようになった。
ωn1(s+d+w)=14.45(rad/s)
ωn2(s+d+w)=14.40(rad/s)
ωn3(s+d+w)=14.30(rad/s)
ωn4(s+d+w)=14.10(rad/s)
ωn5(s+d+w)=13.90(rad/s)
When the natural angular frequency ω nk (s + d + w) at each height position of the lifting carriage 102 loaded with the conveyed product 20 (mass 0.265 kg) is calculated according to the formula (B3), the formula (B6), and the formula (B8), It became as follows.
ω n1 (s + d + w) = 14.45 (rad / s)
ω n2 (s + d + w) = 14.40 (rad / s)
ω n3 (s + d + w) = 14.30 (rad / s)
ω n4 (s + d + w) = 14.10 (rad / s)
ω n5 (s + d + w) = 13.90 (rad / s)

上記の各固有角振動数ωnk(s+d+w)に、仮の加速時間T1tmpを5等分した微小時間ΔT1=0.0868(s)を乗じた値をそれぞれ計算し、これらの値を合計した値が仮の位相角θ1tmp(rad/s)である。仮の位相角θ1tmpを、式(C6)に従って計算し、以下の値が得られた。 A value obtained by multiplying each natural angular frequency ω nk (s + d + w) by a minute time ΔT1 = 0.0868 (s) obtained by dividing the temporary acceleration time T1tmp by 5 and summing these values. Is the provisional phase angle θ1tmp (rad / s). The provisional phase angle θ1tmp was calculated according to the formula (C6), and the following values were obtained.

この仮の位相角θ1tmpは2π(6.28)より小さい値である。そこで、以下に示すように、第1の修正係数ζ1を式(C7)により求め、仮の加速時間T1tmpに乗ずれば修正位相角θ1revは2πとなる。   This provisional phase angle θ1tmp is a value smaller than 2π (6.28). Therefore, as shown below, if the first correction coefficient ζ1 is obtained by the equation (C7) and multiplied by the provisional acceleration time T1tmp, the correction phase angle θ1rev becomes 2π.

ζ1=2π/θ1tmp=2π/6.175≒1.0175 式(E10)   ζ1 = 2π / θ1tmp = 2π / 6.175≈1.0175 Formula (E10)

従って、修正加速時間T1revを、次の計算式で求めた。   Therefore, the corrected acceleration time T1rev was obtained by the following calculation formula.

T1rev=ζ1・T1tmp=1.0175・0.434≒0.442(s)
式(E11)
T1rev = ζ1 · T1tmp = 1.0175 · 0.434≈0.442 (s)
Formula (E11)

(ステップS4−2:走行台車101の仮の減速時間T3tmpの修正)
修正減速時間T3revも前述の修正加速時間T1revと同様に計算し、下記の結果が得られた。
・仮の減速時間T3tmp=0.515(s)
・減速の終点での仮の位相角θ3tmp=6.3475(rad)
・第2の修正係数ζ3=2π/θ3=0.9899
・修正減速時間T3rev=ζ3・T3≒0.510(s)
(Step S4-2: Correction of Temporary Deceleration Time T3tmp of Traveling Truck 101)
The corrected deceleration time T3rev was calculated in the same manner as the corrected acceleration time T1rev described above, and the following results were obtained.
Temporary deceleration time T3tmp = 0.515 (s)
Temporary phase angle θ3tmp at the end point of deceleration = 6.3475 (rad)
Second correction coefficient ζ3 = 2π / θ3 = 0.9899
・ Modified deceleration time T3rev = ζ3 · T3≈0.510 (s)

(ステップS5:速度指令の生成)
求めた修正加速時間T1rev及び修正減速時間T3revを、それぞれ本来の加速時間T1及び減速時間T3とし、走行台車101の台形速度パターンを規定する他のパラメータを求めた。
なお、走行台車101の加速度α1(設定パラメータPA3)は、変更されることなく0.8(m/s)のままである。
走行台車101の台形速度パターンを規定するパラメータは以下の通りとなった。
(Step S5: Generation of speed command)
The obtained corrected acceleration time T1rev and corrected deceleration time T3rev were respectively set as the original acceleration time T1 and deceleration time T3, and other parameters defining the trapezoidal speed pattern of the traveling carriage 101 were obtained.
It should be noted that the acceleration α1 (setting parameter PA3) of the traveling carriage 101 remains 0.8 (m / s 2 ) without being changed.
The parameters defining the trapezoidal speed pattern of the traveling carriage 101 are as follows.

・加速時間T1=0.442(s)
・減速時間T3=0.510(s)
・一定速度Vc1=0.3536(m/s)
・減速度β1=0.6933(m/s
・一定速度時間T2=0.5138(s)
・ Acceleration time T1 = 0.442 (s)
・ Deceleration time T3 = 0.510 (s)
・ Constant speed Vc1 = 0.53636 (m / s)
Deceleration β1 = 0.6933 (m / s 2 )
-Constant speed time T2 = 0.5138 (s)

なお、一定速度Vc1、減速度β1、及び一定速度時間T2は、次式により求めた。   The constant speed Vc1, the deceleration β1, and the constant speed time T2 were obtained by the following equations.

Vc1=α1・T1rev
=0.8・0.442
=0.3536(m/s) 式(E12)
Vc1 = α1 · T1rev
= 0.8 ・ 0.442
= 0.3536 (m / s) Formula (E12)

β1=Vc1/T3rev
=0.3536/0.510
=0.6933(m/s) 式(E13)
β1 = Vc1 / T3rev
= 0.3536 / 0.510
= 0.6933 (m / s 2 ) Formula (E13)

Vc1・(T1rev/2+T2+T3/2)=(Pstop−Pstart)
式(E14)
T2=(Pstop−Pstart)/(Vc1)−(T1/2+T3/2)
=(0.350−0.000)/0.3536
−(0.442/2+0.510/2)
=0.9898−0.476
=0.5138(s) 式(E15)
Vc1 · (T1rev / 2 + T2 + T3 / 2) = (Pstop−Pstart)
Formula (E14)
T2 = (Pstop−Pstart) / (Vc1) − (T1 / 2 + T3 / 2)
= (0.350-0.000) /0.3536
-(0.442 / 2 + 0.510 / 2)
= 0.9898-0.476
= 0.5138 (s) Formula (E15)

昇降台車102の台形速度パターンを規定する他のパラメータは以下の通りとなった。   Other parameters that define the trapezoidal speed pattern of the lift carriage 102 are as follows.

・加速時間T1=0.442(s)
・一定速度時間T2=0.5138(s)
・減速時間T3=0.510(s)
・一定速度Vc2=0.2415(m/s)
・加速度α2=0.5464(m/s
・減速度β2=0.4735(m/s
・ Acceleration time T1 = 0.442 (s)
-Constant speed time T2 = 0.5138 (s)
・ Deceleration time T3 = 0.510 (s)
・ Constant speed Vc2 = 0.415 (m / s)
・ Acceleration α2 = 0.5464 (m / s 2 )
Deceleration β2 = 0.4735 (m / s 2 )

なお、一定速度Vc2、加速度α2、及び減速度β2は、次式により求めた。   The constant speed Vc2, the acceleration α2, and the deceleration β2 were obtained from the following equations.

Vc2・(T1/2+T2+T3/2)=(Htop−Hbottom
式(E16)
Vc2=(Htop−Hbottom
/(T1rev/2+T2rev+T3rev/2)
=(0.791−0.552)
/(0.442/2+0.5138+0.510/2)
=0.239/0.9898
=0.2415(m/s) 式(E17)
Vc2 · (T1 / 2 + T2 + T3 / 2) = (H top −H bottom )
Formula (E16)
Vc2 = (H top −H bottom )
/ (T1rev / 2 + T2rev + T3rev / 2)
= (0.791-0.552)
/(0.442/2+0.5138+0.510/2)
= 0.239 / 0.9898
= 0.2415 (m / s) Formula (E17)

α2=Vc2/T1
=0.2415/0.442
=0.5464(m/s) 式(E18)
α2 = Vc2 / T1
= 0.2415 / 0.442
= 0.5464 (m / s 2) formula (E18)

β2=Vc2/T1
=0.2415/0.510
=0.4735 (m/s) 式(E19)
β2 = Vc2 / T1
= 0.2415 / 0.510
= 0.4735 (m / s 2) formula (E19)

前述の演算結果より、指令発生器CNTが生成する台形速度パターンは、以下の通りとなった。
(1)走行台車101の台形速度パターン
・移動距離L(設定パラメータPA1、PA2)=0.35(m)
・加速度α1(設定パラメータPA3)=0.8(m/s
・減速度β1=0.6933(m/s
・一定速度Vc=0.3536(m/s)
・加速時間T1=0.442(s)
・一定速度時間T2=0.5138(s)
・減速時間T3=0.510(s)
From the above calculation results, the trapezoidal speed pattern generated by the command generator CNT is as follows.
(1) Trapezoidal speed pattern / travel distance L (setting parameters PA1, PA2) of the traveling carriage 101 = 0.35 (m)
Acceleration α1 (setting parameter PA3) = 0.8 (m / s 2 )
Deceleration β1 = 0.6933 (m / s 2 )
・ Constant speed Vc = 0.3536 (m / s)
・ Acceleration time T1 = 0.442 (s)
-Constant speed time T2 = 0.5138 (s)
・ Deceleration time T3 = 0.510 (s)

(2)昇降台車102の台形速度パターン
・移動距離L(設定パラメータPB1、PB2)=0.239(m)
・加速度α1=0.5464(m/s
・減速度β1=0.4735(m/s
・一定速度Vc=0.2415(m/s)
・加速時間T1=0.442(s)
・一定速度時間T2=0.5138(s)
・減速時間T3=0.510(s)
(ステップS6:速度指令の生成)
前述の台形速度パターンによる速度指令に従って、搬送装置10を制御した。
その結果、走行台車101及び昇降台車102が目標位置に到達し、停止した際の昇降台車102の横振れyの全振幅は1mm以下となった。
(2) Trapezoidal speed pattern / moving distance L (setting parameters PB1, PB2) of the lift carriage 102 = 0.239 (m)
・ Acceleration α1 = 0.5464 (m / s 2 )
・ Deceleration β1 = 0.4735 (m / s 2 )
・ Constant speed Vc = 0.415 (m / s)
・ Acceleration time T1 = 0.442 (s)
-Constant speed time T2 = 0.5138 (s)
・ Deceleration time T3 = 0.510 (s)
(Step S6: Generation of speed command)
The transport device 10 was controlled according to the speed command based on the trapezoidal speed pattern described above.
As a result, the total amplitude of the lateral deflection y of the lifting carriage 102 when the traveling carriage 101 and the lifting carriage 102 reached the target position and stopped was 1 mm or less.

このように、比較例の横振れyが30mmであったのに対し、本実施例の横振れyが1mm以下となった。すなわち、横振れyが大幅に抑制され、本実施の形態にかかる制振制御方法の有効性が確認できた。   Thus, the lateral runout y of the present example was 1 mm or less, while the lateral runout y of the comparative example was 30 mm. That is, the lateral shake y is significantly suppressed, and the effectiveness of the vibration suppression control method according to the present embodiment can be confirmed.

以上、本発明の実施の形態を説明したが、本発明は、上記した形態に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and all changes in conditions and the like that do not depart from the gist are within the scope of the present invention.

昇降台車102の横振れyを抑制することのみを考慮すると、必ずしも走行台車101と昇降台車102はそれぞれ同一の加速時間T1、一定速度時間T2、及び減速時間T3で移動しなくてもよい。昇降台車102の昇降単独運転(走行停止状態)では、昇降台車の横振れyに与える影響は小さいと考えられる。しかし、昇降台車の高さ位置が変化すれば走行方向の固有角振動が変化するので、本制振制御方法に従って走行台車101の加速時間T1及び減速時間T3の終点での位相角が2πの正の整数倍にすることで昇降台車の横振れの低減を図っているのである。   Considering only the suppression of the lateral swing y of the lifting carriage 102, the traveling carriage 101 and the lifting carriage 102 do not necessarily have to move at the same acceleration time T1, constant speed time T2, and deceleration time T3, respectively. In the up-and-down operation of the lifting carriage 102 (running stop state), it is considered that the influence on the lateral deflection y of the lifting carriage is small. However, if the height position of the lift carriage changes, the natural angular vibration in the running direction changes. Therefore, according to this vibration suppression control method, the phase angle at the end point of the acceleration time T1 and the deceleration time T3 of the running carriage 101 is a positive 2π. This is intended to reduce the lateral run-out of the lift truck by making it an integral multiple of.

第1の高さ位置及び第2の高さ位置は、任意に設定することができる。ただし、第1の高さ位置を高さ位置Hbottom、第2の高さ位置を高さ位置Htopに設定することで、演算が容易となる。 The first height position and the second height position can be arbitrarily set. However, the calculation is facilitated by setting the first height position to the height position H bottom and the second height position to the height position H top .

10 搬送装置
20 搬送物
22 ボールネジ
24 スライダ用ナット
26 カップリング
30 門型マスト
32 タイミングベルト
34L 下プーリ
34U 上プーリ
101 走行台車
102 昇降台車
104 制御部
302、304 板状部材
306 梁
CNT 指令発生器
SVA1、SVA2 サーボドライバ
SVM1 走行用駆動モータ
SVM2 昇降用駆動モータ
DESCRIPTION OF SYMBOLS 10 Conveying device 20 Conveyed object 22 Ball screw 24 Slider nut 26 Coupling 30 Gate type mast 32 Timing belt 34L Lower pulley 34U Upper pulley 101 Traveling carriage 102 Elevating carriage 104 Control part 302, 304 Plate member 306 Beam CNT Command generator SVA1 , SVA2 Servo driver SVM1 Traveling drive motor SVM2 Lifting drive motor

Claims (8)

設置面に沿って走行する走行台車と、
前記走行台車に設けられ、搬送物を載せて昇降する昇降台車と、
前記走行台車及び前記昇降台車を制御する制御部と、を備えた搬送装置の制振制御方法であって、
前記昇降台車の高さ位置と前記昇降台車に生じる振動の固有角振動数との関係を求めるステップと、
前記制御部が、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第1の高さ位置にある場合の前記振動の第1の固有角振動数を求め、2πの正の整数倍を該第1の固有角振動数で除した仮の加速時間を演算するとともに、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第2の高さ位置にある場合の前記振動の第2の固有角振動数を求め、2πの正の整数倍を該第2の固有角振動数で除した仮の減速時間演算するステップと、
前記制御部が、前記仮の加速時間を等分割した微小時間を求め、加速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の加速時間が経過した時点まで積算した第1の仮の位相角を演算し、該第1の仮の位相角が2πの正の整数倍に近づくように、該2πの正の整数倍を該第1の仮の位相角で除した第1の修正係数を求め、前記仮の加速時間に該第1の修正係数を乗じた修正加速時間を演算するとともに、前記仮の減速時間を等分割した微小時間を求め、減速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の減速時間が経過した時点まで積算した第2の仮の位相角を演算し、該第2の仮の位相角が2πの正の整数倍に近づくように、該2πの正の数数倍を該第2の仮の位相角で除した第2の修正係数を求め、前記仮の減速時間に該第2の修正係数を乗じた修正減速時間を演算するステップと、
前記制御部が、前記修正加速時間及び前記修正減速時間によって少なくとも規定された第1の台形速度パターンによる前記走行台車の第1の速度指令を生成するステップと、
前記制御部が、前記第1の速度指令に従って前記走行台車を駆動するステップと、を含み、前記振動を抑制する搬送装置の制御方法。
A traveling carriage that travels along the installation surface;
An elevating carriage that is provided in the traveling carriage and moves up and down with a transported object;
A control unit for controlling the traveling carriage and the elevating carriage, and a vibration damping control method for a conveying apparatus comprising:
Obtaining a relationship between a height position of the lifting carriage and a natural angular frequency of vibration generated in the lifting carriage;
Based on the relationship, the control unit obtains a first natural angular frequency of the vibration when the carriage on which the transport object is placed is at a first height position, and is a positive integer multiple of 2π. Is calculated by dividing the first natural angular frequency by a temporary acceleration time , and based on the relationship, the vibration of the lift carriage with the transported object on the second height position is calculated. Obtaining a second natural angular frequency, and calculating a temporary deceleration time obtained by dividing a positive integer multiple of 2π by the second natural angular frequency ;
The control unit obtains a minute time obtained by equally dividing the provisional acceleration time, and each natural angular vibration corresponding to each height position of the lifting carriage according to each elapsed time from the start of acceleration to the center time of each minute time. each micro phase angle multiplied by the fine small time number, up to the point where the acceleration time of the temporary has elapsed calculates the phase angle of the first tentative integrated phase angle of the first tentative positive of 2π A first correction coefficient obtained by dividing the positive integer multiple of 2π by the first temporary phase angle so as to approach an integral multiple is obtained, and a correction obtained by multiplying the temporary acceleration time by the first correction coefficient Calculating acceleration time, obtaining a minute time obtained by equally dividing the temporary deceleration time, and each unique position corresponding to each height position of the lift carriage by each elapsed time from the start of deceleration to the center time of each minute time Each minute phase angle obtained by multiplying the angular frequency by the minute time is used as the temporary deceleration time. Time points until calculates the phase angle of the second tentative integrated, the as the phase angle of the second tentative approaches the positive integer multiple of 2 [pi, the 2 [pi positive number several times said second tentative Calculating a corrected deceleration time obtained by multiplying the provisional deceleration time by the second correction coefficient ;
The control unit generating a first speed command of the traveling carriage according to a first trapezoidal speed pattern defined at least by the corrected acceleration time and the corrected deceleration time;
And a step of driving the traveling vehicle according to the first speed command, wherein the control unit controls the vibration.
請求項1記載の搬送装置の制振制御方法において、
前記昇降台車の高さ位置及び前記昇降台車に生じる前記振動の前記固有角振動数との関係を求める方法が、
前記搬送物を載せていない前記昇降台車の高さ位置と前記昇降台車に生じる前記振動の前記固有角振動数との関係を実測又は計算によりデータとして求めるステップと、
前記データが直線近似で表されるとみなせる高さ区間毎に、直線回帰式を求めるステップと、
前記直線回帰式により演算される前記固有角振動数から、任意の質量の前記搬送物を載せた前記昇降台車が任意の高さ位置にある場合の前記固有角振動数を演算する関係式を求めるステップと、を含む搬送装置の制振制御方法。
In the vibration damping control method of the conveying apparatus according to claim 1,
A method for obtaining a relationship between a height position of the lifting carriage and the natural angular frequency of the vibration generated in the lifting carriage,
Obtaining a relationship between a height position of the lifting carriage on which the transported object is not placed and the natural angular frequency of the vibration generated in the lifting carriage as data by actual measurement or calculation;
Obtaining a linear regression equation for each height interval in which the data can be considered to be represented by linear approximation;
From the natural angular frequency calculated by the linear regression equation, a relational expression for calculating the natural angular frequency when the lifting carriage carrying the transported object of an arbitrary mass is at an arbitrary height position is obtained. And a vibration damping control method for the transfer device.
請求項2記載の搬送装置の制振制御方法において、
前記制御部が、前記走行台車の前記修正加速時間及び前記修正減速時間によって規定された第2の台形速度パターンによる前記昇降台車の第2の速度指令を生成し、前記第1の速度指令及び前記第2の速度指令をともに出力し、前記走行台車及び前記昇降台車をともに駆動する搬送装置の制振制御方法。
In the vibration suppression control method of the conveying apparatus according to claim 2,
The control unit generates a second speed command of the lifting cart according to a second trapezoidal speed pattern defined by the corrected acceleration time and the corrected deceleration time of the traveling cart, and the first speed command and the A vibration damping control method for a transfer device that outputs a second speed command together and drives both the traveling carriage and the lifting carriage.
請求項1〜3のいずれか1項に記載の搬送装置の制振制御方法において、
前記制御部が、前記仮の加速時間に対する前記修正加速時間の比率である第1の修正係数が、少なくとも0.98〜1.02の範囲を超える場合は、前記修正加速時間を新たな前記仮の加速時間とし、改めて前記修正加速時間を演算し直す搬送装置の制振制御方法。
In the vibration suppression control method of the conveyance apparatus of any one of Claims 1-3,
0 and the control unit, the first correction coefficient is the ratio of the corrected acceleration time for acceleration time of the provisional, also reduced. When exceeding the range of 98-1.02, the vibration suppression control method of the conveying apparatus which makes the said corrected acceleration time the new said temporary acceleration time, and recalculates the said corrected acceleration time.
請求項4記載の搬送装置の制振制御方法において、
前記制御部が、前記仮の減速時間に対する前記修正減速時間の比率である第2の修正係数が、少なくとも0.98〜1.02の範囲を超える場合は、前記修正減速時間を新たな前記仮の減速時間とし、改めて前記修正減速時間を演算し直す搬送装置の制振制御方法。
In the vibration suppression control method of the conveying apparatus according to claim 4,
0 and the control unit, the second correction factor is the ratio of the modified deceleration time for deceleration time of the provisional, also reduced. When exceeding the range of 98 to 1.02, the vibration damping control method of the transport device, in which the corrected deceleration time is set as the new temporary deceleration time and the corrected deceleration time is calculated again.
請求項4又は5記載の搬送装置の制振制御方法において、
前記第1の高さ位置が、前記昇降台車の加速開始位置である搬送装置の制振制御方法。
In the vibration suppression control method of the conveying apparatus according to claim 4 or 5,
The vibration suppression control method for a transfer apparatus, wherein the first height position is an acceleration start position of the lift carriage.
請求項6記載の搬送装置の制振制御方法において、
前記第2の高さ位置が、前記昇降台車の減速完了位置である搬送装置の制振制御方法。
In the vibration suppression control method of the conveying apparatus according to claim 6,
The vibration suppression control method for a transfer apparatus, wherein the second height position is a deceleration completion position of the lifting carriage.
設置面に沿って走行する走行台車と、
前記走行台車に設けられ、搬送物を載せて昇降する昇降台車と、
台形速度パターンで表される速度指令に基づいて、前記走行台車及び前記昇降台車を制御する制御部と、を備えた搬送装置であって、
前記制御部が、予め求められた、前記搬送物の質量と前記昇降台車の高さ位置及び前記昇降台車に生じる振動の固有角振動数との関係に基づいて、前記搬送物を載せた前記昇降台車が第1の高さ位置にある場合の前記振動の第1の固有角振動数を求め、2πの正の整数倍を該第1の固有角振動数で除した仮の加速時間を演算するとともに、前記関係に基づいて、前記搬送物を載せた前記昇降台車が第2の高さ位置にある場合の前記振動の第2の固有角振動数を求め、2πの正の整数倍を該第2の固有角振動数で除した仮の減速時間演算するステップ、前記仮の加速時間を等分割した微小時間を求め、加速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の加速時間が経過した時点まで積算した第1の仮の位相角を演算し、該第1の仮の位相角が2πの正の整数倍に近づくように、該2πの正の整数倍を該第1の仮の位相角で除した第1の修正係数を求め、前記仮の加速時間に該第1の修正係数を乗じた修正加速時間を演算するとともに、前記仮の減速時間を等分割した微小時間を求め、減速開始から各微小時間の中央の時間までの各経過時間による前記昇降台車の各高さ位置に対応する各固有角振動数に該微小時間を乗じた各微小位相角を、前記仮の減速時間が経過した時点まで積算した第2の仮の位相角を演算し、該第2の仮の位相角が2πの正の整数倍に近づくように、該2πの正の数数倍を該第2の仮の位相角で除した第2の修正係数を求め、前記仮の減速時間に該第2の修正係数を乗じた修正減速時間を演算するステップ、並びに前記修正加速時間及び前記修正減速時間によって少なくとも規定された台形速度パターンによる前記走行台車の速度指令を生成するステップを実行する指令発生器を有する搬送装置。
A traveling carriage that travels along the installation surface;
An elevating carriage that is provided in the traveling carriage and moves up and down with a transported object;
A controller that controls the traveling carriage and the lifting carriage based on a speed command represented by a trapezoidal speed pattern,
The lifting / lowering on which the transport object is placed based on the relationship between the mass of the transport object, the height position of the lift carriage, and the natural angular frequency of the vibration generated in the lift truck, which is determined in advance by the control unit. A first natural angular frequency of the vibration when the carriage is at the first height position is obtained, and a temporary acceleration time is calculated by dividing a positive integer multiple of 2π by the first natural angular frequency. In addition, based on the relationship, a second natural angular frequency of the vibration when the carriage on which the transported object is placed is at a second height position is obtained, and a positive integer multiple of 2π is calculated . the step of calculating a temporary deceleration time divided by the natural angular frequency of 2 to obtain the minute time obtained by equally dividing the acceleration time of the temporary, the lift according to the elapsed time to the center of the time for each minute time since the start of acceleration Each natural angular frequency corresponding to each height position of the carriage is multiplied by the minute time. The small phase angle, to the point where the acceleration time of the temporary has elapsed calculates the phase angle of the first tentative integrated, so that the phase angle of the first tentative approaches the positive integer multiple of 2 [pi, the 2 [pi A first correction coefficient obtained by dividing a positive integer multiple of the first correction phase angle by the first temporary phase angle is calculated, and a correction acceleration time obtained by multiplying the temporary correction time by the first correction coefficient is calculated. The minute time obtained by equally dividing the deceleration time is obtained, and each natural angular frequency corresponding to each height position of the lifting carriage by each elapsed time from the start of deceleration to the center time of each minute time is multiplied by the minute time. each minute phase angle is, up to the point where the deceleration time of the temporary has elapsed calculates the phase angle of the second tentative integrated, so that the phase angle of the second tentative approaches the positive integer multiple of 2 [pi, A second correction coefficient obtained by dividing the positive multiple of 2π by the second temporary phase angle is obtained, and the second deceleration coefficient is calculated at the temporary deceleration time. A command generator for executing a step of calculating a corrected deceleration time multiplied by a correction coefficient of 2 and a step of generating a speed command of the traveling vehicle based on a trapezoidal speed pattern defined at least by the corrected acceleration time and the corrected deceleration time Conveying device having
JP2015231322A 2015-11-27 2015-11-27 Conveying device and vibration suppression control method thereof Active JP5967741B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015231322A JP5967741B1 (en) 2015-11-27 2015-11-27 Conveying device and vibration suppression control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015231322A JP5967741B1 (en) 2015-11-27 2015-11-27 Conveying device and vibration suppression control method thereof

Publications (2)

Publication Number Publication Date
JP5967741B1 true JP5967741B1 (en) 2016-08-10
JP2017095265A JP2017095265A (en) 2017-06-01

Family

ID=56689564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015231322A Active JP5967741B1 (en) 2015-11-27 2015-11-27 Conveying device and vibration suppression control method thereof

Country Status (1)

Country Link
JP (1) JP5967741B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851157A (en) * 2021-02-04 2022-08-05 丰田自动车株式会社 Control device, conveyance system, control method, and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339503A (en) * 2004-04-26 2005-12-08 Japan Science & Technology Agency Method and unit for positioning control of driving device
JP2007276962A (en) * 2006-04-07 2007-10-25 Murata Mach Ltd Conveying device
JP2010030728A (en) * 2008-07-28 2010-02-12 Seibu Electric & Mach Co Ltd Method of damping stacker crane
JP2012240810A (en) * 2011-05-20 2012-12-10 Seibu Electric & Mach Co Ltd Control method, program, recording medium, and controller

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005339503A (en) * 2004-04-26 2005-12-08 Japan Science & Technology Agency Method and unit for positioning control of driving device
JP2007276962A (en) * 2006-04-07 2007-10-25 Murata Mach Ltd Conveying device
JP2010030728A (en) * 2008-07-28 2010-02-12 Seibu Electric & Mach Co Ltd Method of damping stacker crane
JP2012240810A (en) * 2011-05-20 2012-12-10 Seibu Electric & Mach Co Ltd Control method, program, recording medium, and controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114851157A (en) * 2021-02-04 2022-08-05 丰田自动车株式会社 Control device, conveyance system, control method, and storage medium

Also Published As

Publication number Publication date
JP2017095265A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5293977B2 (en) Crane steady rest control method and steady rest control apparatus
JP2010030728A (en) Method of damping stacker crane
US10144081B2 (en) Arc welding control system and method
US20210184605A1 (en) Method and Apparatus for Commutation of Drive Coils in a Linear Drive System with Independent Movers
CN101615039A (en) Position control method for vibration attenuation and device
US20090062957A1 (en) Method and Position Regulating Device for Controlling the Operation of a Load Bearing Apparatus, Based on Two Dimensions
JP6552036B2 (en) Single pendulum type transfer device
JP5967741B1 (en) Conveying device and vibration suppression control method thereof
TWI335302B (en) Equipment for vibration damping of a lift cage
JP2019099368A (en) Operation control device of crane
JP2007161393A (en) Swing prevention control method for crane
JP2009026144A (en) Positioning control apparatus and control method thereof
JP2007297179A (en) Damping device
CN101112931A (en) Moving body and controlling method thereof
CN110053042B (en) Robot control device
JP2008285271A (en) Article transport device
JP5163934B2 (en) Article conveying device
KR100293185B1 (en) Unmanned overhead crane control device having anti-swing function
WO2008001581A1 (en) Filling knitting machine
JP5245085B2 (en) Vibration suppression control input determination method for time deformation system, conveyance system, and vibration suppression control input calculation program for time deformation system
CN113023570A (en) Control device for overhead crane and inverter device
JP5649063B2 (en) Control method, program, recording medium, and control apparatus
CN109896422B (en) Operation control device for crane
JP7156848B2 (en) Route search method
JP5688834B2 (en) Crane steady rest control device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5967741

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150