JP5966204B2 - Stress distribution measuring device - Google Patents

Stress distribution measuring device Download PDF

Info

Publication number
JP5966204B2
JP5966204B2 JP2012127697A JP2012127697A JP5966204B2 JP 5966204 B2 JP5966204 B2 JP 5966204B2 JP 2012127697 A JP2012127697 A JP 2012127697A JP 2012127697 A JP2012127697 A JP 2012127697A JP 5966204 B2 JP5966204 B2 JP 5966204B2
Authority
JP
Japan
Prior art keywords
order
fringe
absolute
fringe order
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012127697A
Other languages
Japanese (ja)
Other versions
JP2013253788A (en
Inventor
児玉健一
Original Assignee
オプトウエア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オプトウエア株式会社 filed Critical オプトウエア株式会社
Priority to JP2012127697A priority Critical patent/JP5966204B2/en
Publication of JP2013253788A publication Critical patent/JP2013253788A/en
Application granted granted Critical
Publication of JP5966204B2 publication Critical patent/JP5966204B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明材料、高分子材料などの応力分布を測定する応力分布測定装置であってカラー位相シフト光弾性法を利用するものに関する。
The present invention relates to a stress distribution measuring apparatus for measuring a stress distribution of a transparent material, a polymer material, or the like, which uses a color phase shift photoelastic method.


光弾性法は実験的に複屈折物体内の主応力差と主応力方向を全視野で得ることができ、さらにそれらの値からせん断応力差積分法等を利用して応力成分を得ることができる方法である。主応力差と主応力方向は、光弾性法から得られる等色線縞と等傾線縞に対して、それぞれ、光弾性パラメータと呼ばれる縞次数および角度を割当てることにより決定できる。

The photoelastic method can experimentally obtain the principal stress difference and principal stress direction in the birefringent object in all fields, and further obtain the stress component from those values by using the shear stress difference integration method. Is the method. The main stress difference and the main stress direction can be determined by assigning a fringe order and an angle called a photoelastic parameter to the equal color fringe and the isotropic line fringe obtained from the photoelastic method, respectively.


この光弾性法の全視野自動測定法としては、多波長光源を持つ円偏光器(半円偏光器含む)もしくは平面偏光器から、その偏光板などの光学部品を指定角度に回転して得られる複数枚のカラー画像(カラー位相シフト画像と呼ぶ)を利用するカラー位相シフト光弾性法がいくつか考案されている。カラー位相シフト光弾性法から応力成分を決定するには、等色線縞の相対縞次数から位相接続などの何らかの方法により決定した絶対縞次数と、等傾線縞から得られる主応力方向が必要となる。

The full-field automatic measurement method of this photoelastic method is obtained by rotating an optical component such as a polarizing plate to a specified angle from a circular polarizer (including a semicircular polarizer) having a multi-wavelength light source or a plane polarizer. Several color phase shift photoelastic methods using a plurality of color images (referred to as color phase shift images) have been devised. In order to determine the stress component from the color phase shift photoelastic method, the absolute fringe order determined by some method such as phase connection from the relative fringe order of the isochromatic line fringes and the principal stress direction obtained from the isotropic fringes are required. It becomes.

K.Ramesh ,“Digital Photoelasticity”, Springer, (2000)K. Ramesh, “Digital Photoelasticity”, Springer, (2000) K.R. Madhu, R.G.R. Prasath and K. Ramesh ,“Colour Adaptation in Three Fringe Photoelasticity”, Experimental Mechanics (2007), 47:271-276K.R. Madhu, R.G.R.Prasath and K. Ramesh, “Colour Adaptation in Three Fringe Photoelasticity”, Experimental Mechanics (2007), 47: 271-276 梅崎・小池・渡辺:一般化位相シフト法による光弾性しま次数の全域自動測定,日本機械学会論文集(A編), 62-599(1996), pp. 1690-1695Umezaki / Koike / Watanabe: Automatic measurement of photoelastic strip order by generalized phase shift method, Proceedings of the Japan Society of Mechanical Engineers (A), 62-599 (1996), pp. 1690-1695 小笠原・児玉・梅崎:カラー光弾性縞を用いた主応力方向の決定,日本非破壊検査協会,第34回応力・ひずみ測定シンポジウム講演論文集, (2003), pp.3-6Ogasawara, Kodama, and Umezaki: Determination of principal stress direction using colored photoelastic stripes, Proceedings of the 34th Symposium on Stress and Strain Measurement, (2003), pp.3-6


これまで、逆正接関数もしくは逆余弦関数を用いて得られた相対縞次数から絶対縞次数を決定するためには、0(ゼロ)次縞などの既知となる絶対縞次数を見つけて、そこから画像の左右もしくは上下方向へ走査して、縞次数(位相分布)が連続的になるように位相を足し引きしてつなぎ合わせる必要があった。この方法では、0次縞が出ていない場合や、穴などの不連続点がある場合は絶対縞次数の決定は困難となる。また、絶対縞次数を決定したい点の情報のみだけではなく、その周辺の情報を利用するため、決定誤差が入りやすい問題があった。

Until now, in order to determine the absolute fringe order from the relative fringe order obtained using the arc tangent function or the inverse cosine function, find the known absolute fringe order such as the 0 (zero) order fringe, and from there It was necessary to scan in the horizontal and vertical directions of the image and add and subtract the phases so that the fringe order (phase distribution) is continuous. This method makes it difficult to determine the absolute fringe order when zero-order fringes do not appear or when there are discontinuous points such as holes. Further, since not only the information of the point for which the absolute fringe order is desired to be determined but also the peripheral information, there is a problem that a determination error is likely to occur.


その他の方法として、円偏光器から得られる一枚のカラー等色線縞から、その絶対縞次数を決定する方法が考案されている(非特許文献1)。これはあらかじめ校正実験を実施し、その際の画像のRed、Green、Blueの輝度値と絶対縞次数との関係から校正表を作成しておき、測定画像のRed、Green、Blueの輝度値と校正表を比較し、最も近い次数を絶対縞次数として決めるものである。基本的に各点独立して絶対縞次数を決定できるが、単にRed、Green、Blueの輝度値の比較では、光源の光強度の変動、色むらの影響で、誤った結果が得られるという問題があった。この誤判定を改善する方法が非特許文献2において考案されているが、点の周辺の情報が必要で各点独立に絶対縞次数を決定することができず、また、光源に白色光(ハロゲンランプ)を使用しているため、撮像素子のRed、Green、Blueの内部フィルタの波長のクロストークの影響で縞次数が3次以上の縞は光強度が減衰して解析できない問題があった。

As another method, a method of determining the absolute fringe order from a single color equal color line fringe obtained from a circular polarizer has been devised (Non-Patent Document 1). This is done by carrying out a calibration experiment in advance, creating a calibration table from the relationship between the red, green, and blue luminance values of the image and the absolute fringe order, and calculating the red, green, and blue luminance values of the measurement image. The calibration tables are compared, and the closest order is determined as the absolute fringe order. Basically, the absolute fringe order can be determined independently for each point. However, simply comparing the luminance values of Red, Green, and Blue gives the wrong result due to fluctuations in the light intensity of the light source and the effects of color unevenness. was there. A method for improving this misjudgment has been devised in Non-Patent Document 2, but information around the points is required, the absolute fringe order cannot be determined independently for each point, and white light (halogen) is used as the light source. Therefore, there is a problem that the fringes having a fringe order of 3rd or higher due to the influence of the crosstalk of the wavelengths of the red, green, and blue internal filters of the image sensor cannot be analyzed because the light intensity is attenuated.


波長のクロストークの対策として、各波長の相対スペクトル幅を狭帯域にして、強度レベルをそろえる必要がある。そのため、多波長光源を複数台のレーザとビームエキスパンダの組み合わせ、もしくは白色光源とRed、Green、Blueの複数枚の干渉フィルタとNDフィルタの組み合わせなどが提案されている(非特許文献1)。それによって、6次縞程度の高次の縞まで対応できるようになっているが、構成部品が多いため高価な装置となってしまう問題があった。

As a countermeasure against wavelength crosstalk, it is necessary to make the relative spectral width of each wavelength narrow and make the intensity level uniform. Therefore, a combination of a multi-wavelength light source with a plurality of lasers and a beam expander or a combination of a white light source with a plurality of interference filters of Red, Green, and Blue and an ND filter has been proposed (Non-Patent Document 1). As a result, it is possible to cope with even higher-order stripes of about the sixth stripe, but there is a problem that the apparatus becomes expensive because there are many components.


そこで、本発明は、光源をLED三波長光源とし、撮像素子に一枚のRGB干渉フィルタを取付けることで、安価な装置構成で高次の縞まで測定でき、0次縞などの既知となる絶対縞次数を必要とせず、各点独立して絶対縞次数を精度よく決定でき、同時に得られる主応力方向を利用して応力成分を決定する応力分布測定装置を提供することを目的とする。

Therefore, in the present invention, the light source is an LED three-wavelength light source, and a single RGB interference filter is attached to the image sensor, so that even higher-order fringes can be measured with an inexpensive apparatus configuration, and zero-order fringes are known. It is an object of the present invention to provide a stress distribution measuring apparatus that can accurately determine the absolute fringe order independently of each point without requiring the fringe order and that determines the stress component using the principal stress direction obtained at the same time.


光源を持つ円偏光器(半円偏光器含む)もしくは平面偏光器内の物体像を撮像素子で撮影して得られるカラー位相シフト画像から相対縞次数を算出するものであって、あらかじめ既知の物体による多波長の相対縞次数から絶対縞次数校正曲線を算出しておき、これを参照することによって物体の多波長の相対縞次数から絶対縞次数を決定することにより応力分布を測定する応力分布測定装置であって、光源を三波長のLED光源とし、撮像素子前に一枚のRGB干渉フィルタを取付け、絶対縞次数算出の際に適用縞次数上限を決定するマスク演算を行うことを特徴とする応力分布測定装置とした。

Calculates the relative fringe order from a color phase shift image obtained by photographing an object image in a circular polarizer (including a semicircular polarizer) having a light source or a plane polarizer with an imaging device, and is a known object in advance. Calculate the absolute fringe order calibration curve from the multi-wavelength relative fringe order by, and refer to this to measure the stress distribution by determining the absolute fringe order from the multi-wavelength relative fringe order of the object The apparatus is characterized in that the light source is a three-wavelength LED light source, a single RGB interference filter is attached in front of the image sensor, and mask calculation is performed to determine the upper limit of the applied fringe order when calculating the absolute fringe order. A stress distribution measuring apparatus was used.


本発明によれば、光源をLED三波長光源とし、撮像素子に一枚のRGB干渉フィルタを取付けることで、安価な装置構成で高次の縞まで測定でき、0次縞などの既知となる絶対縞次数を必要とせず、絶対縞次数を各点独立して決定することが可能となる。その結果、精度よく応力成分を決定できる応力分布測定装置を安価で提供することが可能となる。

According to the present invention, the light source is an LED three-wavelength light source, and a single RGB interference filter is attached to the imaging device, so that even higher-order fringes can be measured with an inexpensive device configuration, and absolute values such as zero-order fringes are known. The fringe order is not required, and the absolute fringe order can be determined independently for each point. As a result, it is possible to provide a stress distribution measuring apparatus capable of accurately determining a stress component at a low cost.

以下に、本発明のカラー位相シフト光弾性法における絶対縞次数の決定方法と、安価な光源と一枚のフィルタを利用することで高次縞まで解析可能とする方法および応力分布測定装置実施の形態を図面とともに詳細に説明する。   In the following, the method of determining the absolute fringe order in the color phase shift photoelastic method of the present invention, the method of enabling analysis up to higher fringes by using an inexpensive light source and one filter, and implementation of the stress distribution measuring device A form is demonstrated in detail with drawing.

図1に、本発明の応力分布測定装置の構成図を示す。応力分布測定装置は、光源部1と、拡散板2と、偏光子3と、検光子5と、フィルタ6と、撮像素子7と、制御信号処理部8、と入力部9と、表示部10などで構成する。試料4は、偏光子3と、検光子5との間に配置する。 In FIG. 1, the block diagram of the stress distribution measuring apparatus of this invention is shown. The stress distribution measuring apparatus includes a light source unit 1, a diffuser plate 2, a polarizer 3, an analyzer 5, a filter 6, an image sensor 7, a control signal processing unit 8, an input unit 9, and a display unit 10. Etc. The sample 4 is disposed between the polarizer 3 and the analyzer 5.


光源部1は、多波長光を構成するためにRed、Green、BlueのLEDと、一枚でRed、Green、Blueの干渉フィルタの機能を有するRGB干渉フィルタを使用する。本実施形態では、複数枚のカラー位相シフト画像の光強度から各波長の相対縞次数を求めて、それらをもとに絶対縞次数を決定するため、光源部1の出射光は同じ点で輝度が時間変動しないように安定化されていて、強度レベルをそろえるために、各波長独立に調整できるものを使用する。

The light source unit 1 uses a red, green, and blue LED and an RGB interference filter that functions as a red, green, and blue interference filter in order to form multi-wavelength light. In the present embodiment, the relative fringe order of each wavelength is obtained from the light intensities of a plurality of color phase shift images, and the absolute fringe order is determined based on the relative fringe orders. Is stabilized so that it does not fluctuate over time, and in order to align the intensity level, one that can be adjusted independently for each wavelength is used.


拡散板2は、光源部1の出射光を拡散し、輝度むらを低減する機能を持つ。

The diffusing plate 2 has a function of diffusing the light emitted from the light source unit 1 and reducing luminance unevenness.


偏光子3と、検光子5にて平面偏光器が構成され、この間に試料4を置いて光を透過させれば、等色線縞と等傾線縞が重なった状態のカラー光弾性縞が得られる。

If the polarizer 3 and the analyzer 5 constitute a plane polarizer, and the sample 4 is placed between them to transmit light, the color photoelastic fringes in a state where the isochromatic stripes and the isoclinic stripes overlap each other. can get.


フィルタ6は、一枚でRed、Green、Blueの干渉フィルタの機能を有するRGB干渉フィルタを使用する。カラーCCDカメラやカラーCMOSカメラの前に取付けることで、Red、Green、Blueの波長クロストークの影響を低減する機能を持つ。その相対スペクトル応答の模式図を図2に示す。

As the filter 6, an RGB interference filter having a function of an interference filter of Red, Green, and Blue is used. By attaching it in front of a color CCD camera or color CMOS camera, it has a function of reducing the influence of red, green, and blue wavelength crosstalk. A schematic diagram of the relative spectral response is shown in FIG.


撮像素子7は、カラーCCDカメラやカラーCMOSカメラなどで構成され、上記で得られるカラー光弾性縞の輝度分布をデジタル信号に変換する機能を持つ。

The image sensor 7 is composed of a color CCD camera, a color CMOS camera, or the like, and has a function of converting the luminance distribution of the color photoelastic fringes obtained above into a digital signal.


制御/信号処理部8は、パーソナルコンピュータなどで構成され、偏光子3と、検光子5を指定角度に回転させながら、撮像素子6にて撮像するタイミングなどを制御し、得られたカラー位相シフト画像のデジタル信号をメモリに記憶して、その信号から試料4の三つの波長の相対縞次数と主応力方向を演算で求め、さらに、絶対縞次数校正曲線を参照して、演算することにより絶対縞次数を各点独立して決定する。これにより、試料4の応力成分も測定可能となる。

The control / signal processing unit 8 is configured by a personal computer or the like, and controls the timing of imaging with the imaging device 6 while rotating the polarizer 3 and the analyzer 5 to a specified angle, and the obtained color phase shift. The digital signal of the image is stored in the memory, and the relative fringe orders and principal stress directions of the three wavelengths of the sample 4 are obtained from the signal by calculation. Further, the absolute signal is calculated by referring to the absolute fringe order calibration curve. The fringe order is determined independently for each point. Thereby, the stress component of the sample 4 can also be measured.


入力部9は、キーボードやポインティングデバイスなどで構成され、使用者が制御/信号処理部8へデータやコマンドを入力するために使用する。

The input unit 9 includes a keyboard, a pointing device, and the like, and is used by a user to input data and commands to the control / signal processing unit 8.


表示部10は、ディスプレイやプリンタなどで構成され、制御/信号処理部8からの演算結果などを使用者に表示する。

The display unit 10 is configured by a display, a printer, or the like, and displays a calculation result from the control / signal processing unit 8 to the user.


本実施形態では、Red、Green、Blueの三つの波長を利用するカラー位相シフト光弾性法を採用している。この方法は、三つの波長それぞれの相対縞次数(0〜0.5次もしくは、0〜0.25次もしくは、0〜1.0次)と主応力方向が得られる。このような位相シフト光弾性法は、光弾性の分野で一般的によく使用されている方法のため、ここでは記述しない。

In this embodiment, a color phase shift photoelastic method using three wavelengths of Red, Green, and Blue is employed. In this method, the relative fringe order (0 to 0.5 order, 0 to 0.25 order, or 0 to 1.0 order) and the principal stress direction of each of the three wavelengths can be obtained. Such a phase shift photoelasticity method is not described here because it is a method commonly used in the field of photoelasticity.


次に、本発明の原理について詳しく説明する。まず校正曲線決定のため、図1の構成にて既知の物体の例として四点曲げ負荷を受ける梁の実験をおこない、カラー位相シフト光弾性法により得られるRed, Green, Blueの三つの波長の相対縞次数を得る。その縞の例を図3に示す。(a)はRedの相対縞次数を示す画像であり、(b)はGreenの相対縞次数を示す画像であり、(c)はBlueの相対縞次数を示す画像である。黒色は0次、白色は0.5次に相当し、これらの中間色はグレーで表示している。

Next, the principle of the present invention will be described in detail. First, in order to determine the calibration curve, an experiment is performed on a beam subjected to a four-point bending load as an example of a known object in the configuration shown in FIG. 1, and the three wavelengths Red, Green, and Blue obtained by the color phase shift photoelastic method are used. Get the relative fringe order. An example of the stripe is shown in FIG. (A) is an image showing the relative fringe order of Red, (b) is an image showing the relative fringe order of Green, and (c) is an image showing the relative fringe order of Blue. Black corresponds to the 0th order and white corresponds to the 0.5th order, and these intermediate colors are displayed in gray.


この四点曲げ負荷を受ける梁の場合は、中央垂直断面の絶対縞次数は梁中央の黒色部から上下方向に向かって直線的に増加して上下端で最大値をとる。図3の中央垂直断面の中央の黒色部0次縞から、上方向のRed、Green、Blueの相対縞次数と、絶対縞次数との関係から作成できる絶対縞次数校正曲線を図4に示す。これは、絶対縞次数が6次縞までの例である。

In the case of a beam subjected to this four-point bending load, the absolute fringe order of the central vertical section increases linearly from the black part at the center of the beam in the vertical direction, and takes the maximum value at the upper and lower ends. FIG. 4 shows an absolute fringe order calibration curve that can be created from the relationship between the relative fringe order of red, green, and blue in the upward direction and the absolute fringe order from the black portion zeroth order fringe at the center of the central vertical section of FIG. This is an example in which the absolute fringe order is up to the sixth fringe.


この絶対縞次数校正曲線を作成し、制御信号処理部のメモリに保存しておけば、以下の関係式のEが最小となる相対縞次数の組み合わせを見つけることにより、各点独立して絶対縞次数を決定できる。

E = Wr(Rc−Re)^2 + Wg(Gc−Ge)^2 + Wb(Bc−Be)^2

ここで、Rc、Gc、Bcは、上記、梁の実験により得られる絶対縞次数校正曲線のRed、Green、Blueの相対縞次数であり、Re、Ge、Beは、解析したい試料の実験から得られるRed、Green、Blueの相対縞次数であり、Wr、Wg、Wbは、Red、Green、Blueの比率の重みづけをおこなう係数である。

If this absolute fringe order calibration curve is created and stored in the memory of the control signal processing unit, the absolute fringe order can be determined independently for each point by finding a combination of relative fringe orders that minimizes E in the following relational expression. The order can be determined.

E = Wr (Rc-Re) ^ 2 + Wg (Gc-Ge) ^ 2 + Wb (Bc-Be) ^ 2

Here, Rc, Gc, and Bc are relative fringe orders of Red, Green, and Blue of the absolute fringe order calibration curve obtained by the above-mentioned beam experiment, and Re, Ge, and Be are obtained from the experiment of the sample to be analyzed. The relative fringe orders of Red, Green, and Blue, and Wr, Wg, and Wb are coefficients that weight the ratio of Red, Green, and Blue.


なお、本発明の絶対縞次数決定方法は、逆正接関数(ノコギリ波状分布)もしくは逆余弦関数(三角波状分布)で得られる縞次数どちらでも適用可能である。よって、使用する偏光器が円偏光器、半円偏光器、平面偏光器であっても対応できる。

Note that the method of determining the absolute fringe order of the present invention can be applied to either the fringe order obtained by the inverse tangent function (sawtooth wave distribution) or the inverse cosine function (triangular wave distribution). Therefore, even if the used polarizer is a circular polarizer, a semicircular polarizer, and a plane polarizer, it can respond.


次に、上下対向集中圧縮荷重を受ける円板の場合の縞画像例を示す。図5の(a)はRedの相対縞次数を示す画像であり、(b)はGreenの相対縞次数を示す画像であり、(c)はBlueの相対縞次数を示す画像である。黒色は0次、白色は0.5次に相当し、これらの中間色はグレーで表示している。

Next, an example of a fringe image in the case of a disk that receives a concentrated compressive load facing the upper and lower sides is shown. 5A is an image showing the relative fringe order of Red, FIG. 5B is an image showing the relative fringe order of Green, and FIG. 5C is an image showing the relative fringe order of Blue. Black corresponds to the 0th order and white corresponds to the 0.5th order, and these intermediate colors are displayed in gray.


図7(a)に、図4の絶対縞次数校正曲線と上述の式により決定した絶対縞次数画像の例を示す。黒色は0次、白色は6次に相当し、これらの中間色はグレーで表示している。画像中の低次縞領域に高次の縞が割当てられており、決定誤差があることがわかる。

FIG. 7A shows an example of an absolute fringe order image determined by the absolute fringe order calibration curve of FIG. 4 and the above-described equation. Black corresponds to the 0th order, white corresponds to the 6th order, and these intermediate colors are displayed in gray. It can be seen that high-order fringes are assigned to low-order fringe regions in the image, and there is a determination error.


これは、低次縞と高次縞で縞の勾配、密集度が異なることから、絶対縞次数校正曲線における相対縞次数の比率が近い点が出てくるためである。

This is because the fringe gradient and the density are different between the low-order fringes and the high-order fringes, and the relative fringe order ratio in the absolute fringe order calibration curve is close.


それを回避するために、低次縞と高次縞で絶対縞次数校正曲線の使用範囲を使い分けることとし、解析したい試料の縞の勾配、密集度が高い箇所を抽出して、マスク画像を作成する。

In order to avoid this, we decided to use the range of the absolute fringe order calibration curve for low-order fringes and high-order fringes, extract the fringe gradient of the sample to be analyzed, and create a mask image by extracting the parts with high density. To do.


そのマスク領域の抽出は、低次縞中に高次縞の孤立点が出ない絶対縞次数校正曲線の上限値を探すために、0〜1次、0〜2次縞と、校正曲線の範囲を変えながら、絶対縞次数を算出する。この例では、校正曲線の上限を4次未満とすれば、低次縞領域に高次縞の孤立点が少なくなるため、上限4次未満までの領域を黒色、それ以外の領域を白色で2値化した。その画像を図6に示す。この前処理は、縞の勾配画像を求めて、適切なしきい値で2値化してもよい。なお、これらの前処理は、自動的に実施できる。

The extraction of the mask area is performed in order to find the upper limit value of the absolute fringe order calibration curve in which the isolated point of the high order fringe does not appear in the low order fringe, and the range of the calibration curve. The absolute fringe order is calculated while changing. In this example, if the upper limit of the calibration curve is less than the fourth order, the number of isolated points of the higher order stripes is reduced in the low order stripe area. Therefore, the area up to the upper limit of the fourth order is black and the other areas are white. Priced. The image is shown in FIG. In this preprocessing, a stripe gradient image may be obtained and binarized with an appropriate threshold value. These pretreatments can be automatically performed.

マスク画像の黒色部を低次縞候補領域、白色部を高次縞候補領域とし、図6のマスク画像の黒色部は0〜4次未満までの絶対縞次数校正曲線を使用し、図6のマスク画像の白色部は0〜6次までの絶対縞次数校正曲線を使用して各点独立して決定した絶対縞次数の例を図7(b)に示す。黒色は0次、白色は6次に相当し、これらの中間色はグレーで表示している。マスク処理をおこなうことにより6次の高次縞まで絶対縞次数を安定して決定できている例である。 The black portion of the mask image is a low-order fringe candidate region, the white portion is a high-order stripe candidate region, and the black portion of the mask image of FIG. 6 uses an absolute fringe order calibration curve from 0 to less than 4th order, as shown in FIG. FIG. 7B shows an example of the absolute fringe order in which the white portion of the mask image is determined independently for each point using the absolute fringe order calibration curve from 0th to 6th. Black corresponds to the 0th order, white corresponds to the 6th order, and these intermediate colors are displayed in gray. This is an example in which the absolute fringe order can be stably determined up to the 6th-order higher-order fringes by performing mask processing.


図8に主応力方向を示す。黒色は0°、白色は45°に相当し、これらの中間色はグレーで表示している。

FIG. 8 shows the principal stress direction. Black corresponds to 0 ° and white corresponds to 45 °, and these intermediate colors are displayed in gray.


図9に発明した絶対縞次数決定法により得られた絶対縞次数と、それと同時に得られる主応力方向に、せん断応力差積分法を適用して得られた応力成分の分布例を示す。これは円板の半径をRとして、y=0.5Rの線に沿った分布である。理論値は円板の弾性論から得られる値である。この例から、本発明により応力成分を安定して決定できていることがわかる。

FIG. 9 shows an example of the distribution of stress components obtained by applying the shear stress difference integration method to the absolute fringe order obtained by the absolute fringe order determining method invented and the principal stress direction obtained at the same time. This is a distribution along the line y = 0.5R, where R is the radius of the disc. The theoretical value is a value obtained from the elasticity theory of a disk. From this example, it can be seen that the stress component can be stably determined according to the present invention.

本発明は、複屈折物体内の絶対縞次数を安定的に決定でき、それらの結果から応力成分を精度よく決定できる。また、光源をLED三波長光源と一枚のRGB干渉フィルタの組合せとすることで、安価な応力分布測定装置を提供できる点で、産業上極めて有用である。
The present invention can stably determine the absolute fringe order in the birefringent object, and can accurately determine the stress component from those results. In addition, the combination of the LED three-wavelength light source and one RGB interference filter as the light source is extremely useful industrially in that an inexpensive stress distribution measuring device can be provided.

本発明の実施例における応力分布測定装置の構成図である。It is a block diagram of the stress distribution measuring apparatus in the Example of this invention. LED三波長光源と、RGB干渉フィルタと、撮像素子のRed、Green、Blueの内部フィルタの相対スペクトル応答の模式図である。It is a schematic diagram of the relative spectral response of the LED three-wavelength light source, the RGB interference filter, and the red, green, and blue internal filters of the image sensor. (a)はRedの相対縞次数を示す画像であり、(b)はGreenの相対縞次数を示す画像であり、(c)はBlueの相対縞次数を示す画像である。(A) is an image showing the relative fringe order of Red, (b) is an image showing the relative fringe order of Green, and (c) is an image showing the relative fringe order of Blue. 図3より作成された絶対縞次数校正曲線である。It is an absolute fringe order calibration curve created from FIG. (a)はRedの相対縞次数を示す画像であり、(b)はGreenの相対縞次数を示す画像であり、(c)はBlueの相対縞次数を示す画像である。(A) is an image showing the relative fringe order of Red, (b) is an image showing the relative fringe order of Green, and (c) is an image showing the relative fringe order of Blue. 絶対縞次数が上限4次未満までの領域を黒色、それ以外の領域を白色で2値化して抽出したマスク画像である。This is a mask image obtained by binarizing and extracting the area where the absolute fringe order is less than the upper limit of the fourth order in black and the other area in white. (a)は図5の画像によるマスク処理をおこなわない場合の絶対縞次数を示す画像であり、(b)は図5の画像によるマスク処理をおこなった場合の絶対縞次数を示す画像である。(A) is an image which shows the absolute fringe order when the mask process by the image of FIG. 5 is not performed, and (b) is an image which shows the absolute fringe order when the mask process by the image of FIG. 5 is performed. 主応力方向を示す画像である。It is an image which shows the principal stress direction. 応力成分の分布を示す。The distribution of stress components is shown.

1 光源
2 拡散板
3 偏光子
4 試料
5 検光子

6 フィルタ
7 撮像素子
8 制御/信号処理部

9 入力部

10 表示部

1 Light Source 2 Diffuser 3 Polarizer 4 Sample 5 Analyzer

6 Filter 7 Image sensor 8 Control / signal processing section

9 Input section

10 Display section

Claims (1)

光源を持つ円偏光器(半円偏光器含む)もしくは平面偏光器内の物体像を撮像素子にて撮影して得られるカラー位相シフト画像から相対縞次数を算出するものであって、あらかじめ既知の物体による多波長の相対縞次数から絶対縞次数校正曲線を算出しておき、これを参照することによって物体の多波長の相対縞次数から絶対縞次数を決定することにより応力分布を測定する応力分布測定装置であって、光源を三波長のLED光源とし、撮像素子前に一枚のRGB干渉フィルタを取り付け、絶対縞次数算出の際に適用する前記絶対縞次数校正曲線の上限次数を決定するため、縞の勾配または密集度に応じてマスク画像を作成し、
低次縞候補領域と高次縞候補領域を設定して演算することを特徴とする応力分布測定装置。
A relative fringe order is calculated from a color phase shift image obtained by photographing an object image in a circular polarizer (including a semicircular polarizer) or a plane polarizer with a light source with an imaging device, and is known in advance. Calculate the absolute fringe order calibration curve from the multi-wavelength relative fringe order by the object and refer to this to determine the absolute fringe order from the multi-wavelength relative fringe order of the object and measure the stress distribution. In order to determine the upper limit order of the absolute fringe order calibration curve to be applied when calculating the absolute fringe order by using a three-wavelength LED light source as the light source and attaching a single RGB interference filter in front of the image sensor Create a mask image according to the stripe gradient or density,
A stress distribution measuring apparatus, wherein a low-order fringe candidate region and a high-order fringe candidate region are set and calculated.
JP2012127697A 2012-06-05 2012-06-05 Stress distribution measuring device Expired - Fee Related JP5966204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012127697A JP5966204B2 (en) 2012-06-05 2012-06-05 Stress distribution measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012127697A JP5966204B2 (en) 2012-06-05 2012-06-05 Stress distribution measuring device

Publications (2)

Publication Number Publication Date
JP2013253788A JP2013253788A (en) 2013-12-19
JP5966204B2 true JP5966204B2 (en) 2016-08-10

Family

ID=49951414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012127697A Expired - Fee Related JP5966204B2 (en) 2012-06-05 2012-06-05 Stress distribution measuring device

Country Status (1)

Country Link
JP (1) JP5966204B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105973843B (en) * 2016-05-05 2018-08-17 四川南玻节能玻璃有限公司 A kind of tempering/semi-tempered glass stress pattern strength quantifies method of inspection
CN107999847B (en) * 2017-12-14 2019-10-11 西安交通大学 The visual experimental apparatus and method of cutting stress wave in a kind of vertical knee-type milling machine
JP6922866B2 (en) * 2018-08-10 2021-08-18 Jfeエンジニアリング株式会社 Stress evaluation method
CN109632830B (en) * 2019-01-09 2021-05-25 深圳市杰普特光电股份有限公司 Sample detection method, sample detection apparatus, and computer-readable storage medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4578674B2 (en) * 2000-12-18 2010-11-10 富士フイルム株式会社 Analysis method of fringe image with separated region

Also Published As

Publication number Publication date
JP2013253788A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
Zhang et al. Time efficient color fringe projection system for 3D shape and color using optimum 3-frequency selection
US11361474B2 (en) Method and system for subgrid calibration of a display device
JP5966204B2 (en) Stress distribution measuring device
US8358835B2 (en) Method for detecting and correcting chromatic aberration, and apparatus and method for processing image using the same
JP6633624B2 (en) Image processing apparatus, image processing method, and image processing program
Swain et al. A modified regularized scheme for isochromatic demodulation in RGB photoelasticity
Swain et al. Novel calibration and color adaptation schemes in three-fringe RGB photoelasticity
JP2006220714A (en) Liquid crystal display apparatus, display control method thereof, and display control program for liquid crystal display apparatus
WO2013088871A1 (en) Film thickness measurement method and device by interference color model conformity
US8589104B2 (en) Device and method for compensating color shifts in fiber-optic imaging systems
KR100982762B1 (en) Method for fast and automatically adjusting color temperature
Yin et al. High-speed 3D profilometry employing HSI color model for color surface with discontinuities
Wang et al. Single-shot phase measuring profilometry based on color binary grating with intervals
US10274307B2 (en) Film thickness measurement device using interference of light and film thickness measurement method using interference of light
JP5997578B2 (en) Crosstalk correction coefficient calculation method and transparent film thickness measurement apparatus having crosstalk correction coefficient calculation function
JP5701159B2 (en) Method and apparatus for measuring surface shape by fitting interference fringe model
JP2011089840A (en) System and method for color evaluation
JP2015055547A (en) Multi wavelength radiation thermometer and multi wavelength radiation temperature measuring method
US9293113B2 (en) Image processing apparatus and control method thereof
Chen et al. A flexible lateral chromatic aberration correction method for a color-encoded fringe projection system
JP6750813B2 (en) Shape measuring method and shape measuring device for transparent plate
JP7279596B2 (en) Three-dimensional measuring device
Bae Image-quality metric system for color filter array evaluation
Sutkowski et al. Research of digital camera dynamic range on the imaging processing basis
Liu et al. Cubic polynomial curve-guided method for isochromatic determination in three-fringe photoelasticity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160322

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160609

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160614

R150 Certificate of patent or registration of utility model

Ref document number: 5966204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees