JP5965703B2 - Building - Google Patents

Building Download PDF

Info

Publication number
JP5965703B2
JP5965703B2 JP2012086749A JP2012086749A JP5965703B2 JP 5965703 B2 JP5965703 B2 JP 5965703B2 JP 2012086749 A JP2012086749 A JP 2012086749A JP 2012086749 A JP2012086749 A JP 2012086749A JP 5965703 B2 JP5965703 B2 JP 5965703B2
Authority
JP
Japan
Prior art keywords
building
vibration
seismic isolation
base plate
bedrock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012086749A
Other languages
Japanese (ja)
Other versions
JP2013217053A (en
Inventor
孝裕 杣木
孝裕 杣木
吉郎 神島
吉郎 神島
茂樹 岡村
茂樹 岡村
剛司 深沢
剛司 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Mitsubishi FBR Systems Inc
Original Assignee
Obayashi Corp
Mitsubishi FBR Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp, Mitsubishi FBR Systems Inc filed Critical Obayashi Corp
Priority to JP2012086749A priority Critical patent/JP5965703B2/en
Publication of JP2013217053A publication Critical patent/JP2013217053A/en
Application granted granted Critical
Publication of JP5965703B2 publication Critical patent/JP5965703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

この発明は、岩盤上に設置された基礎版上に免震装置を介して建屋を構築してなる建築物に関するものである。   The present invention relates to a building constructed by building a building on a base plate installed on a bedrock through a seismic isolation device.

従来、この種の建築物としては、例えば特許文献1及び特許文献2に開示されるような構成が提案されている。これらの従来構成においては、地盤上に基礎版が設置され、その基礎版の上面に免震装置を介して建屋が構築されている。そして、地震の発生時に、建屋に伝達される振動が免震装置により低減されて、建屋が保護される。   Conventionally, as this kind of building, for example, a configuration as disclosed in Patent Literature 1 and Patent Literature 2 has been proposed. In these conventional configurations, a foundation plate is installed on the ground, and a building is constructed on the upper surface of the foundation plate via a seismic isolation device. And at the time of the occurrence of an earthquake, the vibration transmitted to a building is reduced by a seismic isolation apparatus, and a building is protected.

特開2001−288930号公報JP 2001-288930 A 特開2011−95173号公報JP 2011-95173 A

これらの従来構成の建築物においては、免震装置として複数枚のゴム層が鋼板を介在して積層されているのが一般的である。この免震装置は、上下剛性が水平剛性に比較して高くなっている。このため、地震力(水平振動)に対しては免震装置の積層ゴムが大きく変形して免震効果を得ることができるが、上下の振動はむしろ大きくなる傾向にあった。そして、地盤が硬い岩盤で形成されている場合には、岩盤の上下振動と構築物(建屋)との共振周期のピークが短周期側に現れて、建築物内部の設備が大きく共振することがある。   In these conventional constructions, a plurality of rubber layers are generally laminated with steel plates interposed as a seismic isolation device. This seismic isolation device has higher vertical rigidity than horizontal rigidity. For this reason, with respect to seismic force (horizontal vibration), the laminated rubber of the seismic isolation device can be greatly deformed to obtain the seismic isolation effect, but the vertical vibration tends to increase rather. And when the ground is made of hard rock, the vertical vibration of the rock and the peak of the resonance period of the structure (building) appear on the short period side, and the equipment inside the building may resonate greatly. .

ところで、原子力発電所のような耐震型の建築物は、剛性及び強度が高く、強震を受けても建築物の変形は弾性域にあると考えられる。一方、このような建築物は、支持耐力が高い堅固な岩盤上に設置され、ベタ基礎によって支持地盤と基礎とを密着させており、このような支持地盤も弾性域にあると考えられる。従って、図6(a)(b)に示すように、建築物21及び地盤の表層22下の岩盤30の振動モデルを、地盤バネ23,基礎版24,免震バネ25及び建屋26を含む連成モデルによって表すのが一般的である。図6(b)に示す27は基礎版24や建屋26の各階の床の集中マスを表す。この連成モデルにおいて、地震時には、図6(c)に示すように、上下方向の地盤振動28の振幅は、振動が上層階29に伝播されるにつれて増大する。   By the way, an earthquake-resistant building such as a nuclear power plant has high rigidity and strength, and it is considered that the deformation of the building is in an elastic region even if it receives a strong earthquake. On the other hand, such a building is installed on a solid bedrock having a high bearing strength, and the supporting ground and the foundation are brought into close contact with a solid foundation, and such a supporting ground is considered to be in an elastic region. Accordingly, as shown in FIGS. 6A and 6B, the vibration model of the rock mass 30 under the building 21 and the surface layer 22 of the ground is represented by a series including a ground spring 23, a base plate 24, a seismic isolation spring 25, and a building 26. It is common to express it by a model. Reference numeral 27 shown in FIG. 6B represents a concentrated mass of the floor of each floor of the base plate 24 and the building 26. In this coupled model, during an earthquake, the amplitude of the ground vibration 28 in the vertical direction increases as the vibration propagates to the upper floor 29 as shown in FIG.

このような問題に対処するため、近年では積層ゴムやバネの上下剛性を小さくして、上下免震をも可能にした免震装置も提案されている。しかしながら、上下剛性を小さく設定した場合には、建屋の重量により免震装置の積層ゴムやバネが大きく収縮して建屋が沈み込む。このため、建屋の重量に釣り合って縮んだ状態を免震装置の初期値として、地震時の伸縮代をさらに確保する必要があって、厚肉積層ゴムや上下方向へ長いバネを用いる必要があった。従って、厚肉積層ゴムやバネを設置するためのスペースの確保が困難であるとともに、厚肉積層ゴムや長いバネの緩慢な収縮をともないながら建屋の施工が進行するため、その施工も困難をともなうものであった。   In order to cope with such problems, recently, seismic isolation devices have been proposed in which the vertical rigidity of laminated rubber and springs is reduced to enable vertical isolation. However, when the vertical rigidity is set to be small, the laminated rubber and the spring of the seismic isolation device are greatly contracted by the weight of the building and the building sinks. For this reason, it is necessary to further secure the expansion / contraction allowance during the earthquake, with the initial value of the seismic isolation device being in a state of shrinking in proportion to the weight of the building, and it is necessary to use thick laminated rubber or a vertically long spring. It was. Therefore, it is difficult to secure a space for installing the thick laminated rubber and spring, and the construction of the building progresses with the slow contraction of the thick laminated rubber and long spring, which makes the construction difficult. It was a thing.

このような事情に対応するために、例えば空気圧の力により建屋を浮上させる空気バネを用いた3次元免震装置等の新技術も提案されている。この3次元免震装置においては、地震力(水平振動)及び上下振動を同時に低減することができる反面、装置の構造が複雑で高価である。また、空気圧の管理等の点検や定期的なメンテナンスに伴うランニングコストもかかることや、故障・不測の事態への対応という問題があった。   In order to cope with such circumstances, new technologies such as a three-dimensional seismic isolation device using an air spring that floats a building by the force of air pressure have been proposed. In this three-dimensional seismic isolation device, seismic force (horizontal vibration) and vertical vibration can be reduced at the same time, but the structure of the device is complicated and expensive. In addition, there are problems of running costs associated with air pressure management inspections and regular maintenance, as well as dealing with troubles and unexpected situations.

この発明は、従来の安価な技術に存在する問題点に着目してなされたものである。その目的は、構造が簡単で低コストを達成できるとともに、上下方向の地震力を同時に低減することができる建築物を提供することにある。   The present invention has been made paying attention to the problems existing in the conventional inexpensive technology. The object is to provide a building that is simple in structure and can achieve low cost, and that can simultaneously reduce the vertical seismic force.

上記の目的を達成するために、この発明は、岩盤上に設置される基礎版上に免震装置を介して建屋を支持した建築物において、前記基礎版の下面に形成された凹部からなり、前記岩盤と前記基礎版とが直接接触しないことにより前記岩盤からの上下振動が前記基礎版に対して伝達されないようにした振動遮断部を備え、前記凹部を、前記岩盤の硬さに応じて、前記建築物の上下振動の共振周期を長周期側に移行させるように決定した面積で構成したことを特徴としている。 In order to achieve the above object, the present invention comprises a recess formed on the lower surface of the foundation plate in a building that supports the building via a seismic isolation device on the foundation plate installed on the bedrock , According to the hardness of the bedrock, comprising a vibration blocker that prevents vertical vibration from the bedrock from being transmitted to the foundation plate by not contacting the bedrock and the foundation plate directly , It is characterized by comprising an area determined so as to shift the resonance period of the vertical vibration of the building to the long period side .

従って、この発明の建築物においては、地震の水平力が免震装置により低減されるとともに、上下振動は振動遮断部による振動の伝達抑制によって低減される。このため、空気バネを含む3次元免震装置を備えた構成と比較して、構造が簡単で安価であるとともに、水平振動及び上下振動を同時に低減することができる。   Therefore, in the building of the present invention, the horizontal force of the earthquake is reduced by the seismic isolation device, and the vertical vibration is reduced by suppressing the transmission of vibration by the vibration blocking unit. For this reason, compared with the structure provided with the three-dimensional seismic isolation apparatus containing an air spring, while being simple and cheap, a horizontal vibration and a vertical vibration can be reduced simultaneously.

更に、地盤(岩盤)の硬さに応じて前記振動遮断部である凹部の面積を変えるだけで、建築物にとって都合のよい共振周期を得ることができる。 Furthermore, a resonance period that is convenient for a building can be obtained simply by changing the area of the concave portion, which is the vibration blocking portion, according to the hardness of the ground (rock).

前記の構成において、前記凹部内に基礎版より軟質の部材を設けてもよい。
前記の構成において、前記振動遮断部を建屋の躯体を支持する位置を外して設けるとよい。
The said structure WHEREIN: You may provide a member softer than a base plate in the said recessed part.
The said structure WHEREIN: It is good to remove the position which supports the said housing body of a building, and to provide the said vibration isolating part.

以上のように、この発明によれば、構造が簡単であることができるとともに、建屋に対する地震の振動伝達を低減できるという効果を発揮する。   As described above, according to the present invention, the structure can be simple, and the effect of reducing the vibration transmission of the earthquake to the building can be exhibited.

第1実施形態の建築物を示す縦断面図。The longitudinal cross-sectional view which shows the building of 1st Embodiment. 図1の2−2線における断面図。Sectional drawing in the 2-2 line of FIG. 図1の建築物における振動遮断部を拡大して示す部分断面図。The fragmentary sectional view which expands and shows the vibration isolating part in the building of FIG. 同振動遮断部を構成する型枠を分解して示す斜視図。The perspective view which decomposes | disassembles and shows the mold which comprises the vibration interruption | blocking part. 第2実施形態の建築物の振動遮断部を示す部分断面図。The fragmentary sectional view which shows the vibration isolating part of the building of 2nd Embodiment. (a)〜(c)は、地震時の連成震動モデルを示す模式図。(A)-(c) is a schematic diagram which shows the coupled vibration model at the time of an earthquake.

(第1実施形態)
以下に、この発明を具体化した建築物10の第1実施形態を、図1〜図4に従って説明する。
(First embodiment)
Below, 1st Embodiment of the building 10 which actualized this invention is described according to FIGS. 1-4.

図1及び図2に示すように、地盤の表層22下の第三紀層またはそれ以前の時代の層からなる硬い岩盤30上には、鉄筋コンクリートよりなる基礎版12が設置されている。基礎版12上には、複数の周知構造の免震装置13を介して建屋14が構築されている。免震装置13は、建屋14の荷重が基礎版12によって有効に支持されるように、かつ、免震効果が発揮されるように、建屋14における柱や壁等の躯体部分と上下に対応する位置に配置されている。   As shown in FIGS. 1 and 2, a foundation slab 12 made of reinforced concrete is installed on a hard bedrock 30 composed of a Tertiary layer below the surface layer 22 of the ground or a layer of an earlier period. A building 14 is constructed on the base plate 12 via a plurality of seismic isolation devices 13 having a known structure. The seismic isolation device 13 corresponds vertically to the frame parts such as columns and walls in the building 14 so that the load of the building 14 is effectively supported by the base plate 12 and the seismic isolation effect is exhibited. Placed in position.

図1〜図3に示すように、前記基礎版12の下面には、複数の振動遮断部15が形成されている。この振動遮断部15は平面四角形等の凹部によって構成され、凹部内は空隙になっており、建屋14における柱や壁等の躯体部分と上下に対応する位置、つまり前記免震装置13の配置位置を外して配置されている。そして、これらの振動遮断部15により、岩盤30に対する基礎版12の下面の接触面積が低減されて、岩盤30から基礎版12側への振動の伝達が抑制されるようになっている。   As shown in FIGS. 1 to 3, a plurality of vibration blocking portions 15 are formed on the lower surface of the foundation plate 12. This vibration isolating portion 15 is constituted by a concave portion such as a plane quadrangle, and the inside of the concave portion is a gap, and a position corresponding to a vertical portion of a building such as a column or a wall in the building 14, that is, an arrangement position of the seismic isolation device 13 Is arranged. The contact area of the lower surface of the foundation plate 12 with respect to the bedrock 30 is reduced by these vibration blocking portions 15 so that transmission of vibration from the bedrock 30 to the foundation plate 12 side is suppressed.

なお、振動遮断部15の空隙は、地盤と縁が切れていれば如何なる形状でも良い。
そして、図3及び図4に示すように、鉄筋コンクリートにより基礎版12を成形する際には、岩盤30の上面に鋼板よりなり、底部を開放した平箱状の型枠16がアンカーボルト17により岩盤30に固定される。そして、この状態で型枠16を鉄筋(図示しない)とともに埋め殺すように基礎版12のコンクリートが打設される。このようにして、基礎版12の下面に凹部よりなる振動遮断部15が形成される。
In addition, the space | gap of the vibration isolator 15 may be any shape as long as the edge of the ground is cut.
As shown in FIGS. 3 and 4, when the base plate 12 is formed from reinforced concrete, a flat box-shaped formwork 16 made of a steel plate on the upper surface of the rock mass 30 and opened at the bottom is rocked by the anchor bolts 17. 30 is fixed. In this state, the concrete of the foundation slab 12 is placed so as to bury the formwork 16 together with the reinforcing bars (not shown). In this way, the vibration isolating portion 15 composed of the concave portion is formed on the lower surface of the base plate 12.

前記型枠16は、複数のボルト挿通孔18aを有する下板18、長四角枠状の側枠19,側枠19内の補強板19a及び上板20を相互に溶接することによって構成されている。   The mold 16 is formed by welding a lower plate 18 having a plurality of bolt insertion holes 18a, a long rectangular frame-shaped side frame 19, a reinforcing plate 19a in the side frame 19 and an upper plate 20. .

次に、この実施形態の作用を説明する。
この建築物10では、免震装置13が基礎版12と建屋14との間において建屋14の柱や壁等の躯体部分と上下に対応する位置に配置されている。このため、免震装置13を介して建屋14からの鉛直支持荷重及び地震発生時の水平荷重が基礎版12から岩盤30に対して有効に伝達される。
Next, the operation of this embodiment will be described.
In the building 10, the seismic isolation device 13 is disposed between the base plate 12 and the building 14 at a position corresponding to the vertical portion of the building 14 such as a column or wall of the building 14. For this reason, the vertical support load from the building 14 and the horizontal load at the time of the occurrence of the earthquake are effectively transmitted from the foundation plate 12 to the rock mass 30 via the seismic isolation device 13.

そして、地震が発生した場合において、各免震装置13が変形することにより、建屋の水平応答は大幅に低減される。一方、上下応答は、基礎版12の下面に凹部よりなる振動遮断部15を形成したことにより岩盤11に対する基礎版12の接触面積が小さくなるので、地盤バネ23のバネ剛性が低下するため、図6(a)〜(c)の連成モデルにおける振動系が変わって、共振周期のピークが長周期化する。これにより、建屋14内部の設備等の固有振動と共振することを防止できる。   And when an earthquake occurs, the horizontal response of a building is significantly reduced by deforming each seismic isolation device 13. On the other hand, since the contact area of the base plate 12 with respect to the rock mass 11 is reduced by forming the vibration isolating portion 15 formed of the concave portion on the lower surface of the base plate 12, the vertical response is reduced because the spring rigidity of the ground spring 23 is reduced. The vibration system in the coupled models 6 (a) to (c) changes, and the peak of the resonance period becomes longer. Thereby, it can prevent resonating with the natural vibration of the equipment or the like inside the building 14.

従って、この実施形態によれば、以下のような効果を得ることができる。
(1) この建築物10においては、基礎版12の下面には、岩盤30との界面に凹部よりなる振動遮断部15を形成しているため、図6(b)に示す建屋に作用する地盤バネ23のバネ剛性が低下することになり、建築物10の上下振動の共振周期を長周期側に移行させることができる。このため、共振を回避して、建物内に配置する重要な機器設備等の健全性・安全性を保持することができる。そして、振動遮断部15の構成として、凹部を形成しただけであるから、空気バネを含む3次元免震装置を備えた複雑な機構の従来構成に比較して、構造が簡単で施工やメンテナンスのコストダウンが可能になる。
Therefore, according to this embodiment, the following effects can be obtained.
(1) In this building 10, since the vibration shielding part 15 which consists of a recessed part is formed in the lower surface of the base plate 12 in the interface with the rock mass 30, the ground which acts on the building shown in FIG.6 (b). The spring rigidity of the spring 23 is lowered, and the resonance period of the vertical vibration of the building 10 can be shifted to the long period side. Therefore, it is possible to avoid resonance and maintain the soundness and safety of important equipment and the like arranged in the building. And since only the recessed part was formed as a structure of the vibration isolation | separation part 15, compared with the conventional structure of the complicated mechanism provided with the three-dimensional seismic isolation apparatus containing an air spring, a structure is simple and construction and maintenance are easy. Cost reduction is possible.

(2) この建築物10においては、前記振動遮断部15が、建屋14の躯体部分と対応する位置を外して設けられている。このため、建屋14の躯体部分と対応する位置において、基礎版12の下面が岩盤30に支持されて、建屋14の鉛直支持荷重及び地震発生時の水平荷重を基礎版12から岩盤30に受承させることができるとともに、岩盤30によって建屋14を適切に支持できる。   (2) In the building 10, the vibration isolating portion 15 is provided by removing a position corresponding to the housing portion of the building 14. Therefore, the lower surface of the foundation plate 12 is supported by the rock mass 30 at a position corresponding to the frame portion of the building 14, and the vertical support load of the building 14 and the horizontal load when an earthquake occurs are received from the foundation plate 12 to the rock mass 30. And the building 14 can be appropriately supported by the bedrock 30.

(3) 振動遮断部15の凹部の面積を適宜に設定することにより、たとえ建屋の設計を変更しなくても、異なる建設サイトの地盤(岩盤)条件において上下振動共振周期の長周期側への移行を得ることができる。   (3) By appropriately setting the area of the concave portion of the vibration isolating portion 15, even if the design of the building is not changed, the vertical vibration resonance period toward the long period side in the ground (rock) conditions of different construction sites Transition can be obtained.

(第2実施形態)
次に、この発明を具体化した建築物10の第2実施形態を前記第1実施形態と異なる部分を中心に説明する。
(Second Embodiment)
Next, a second embodiment of the building 10 embodying the present invention will be described with a focus on differences from the first embodiment.

この第2実施形態においては、図5に示すように、振動遮断部15が基礎版12の下面に基礎版12より軟質の部材としての発泡スチロール等の緩衝材15aを埋設することによって形成されている。従って、緩衝材15aが変形することによって、岩盤30の上下振動の伝達が抑制される。   In the second embodiment, as shown in FIG. 5, the vibration isolating portion 15 is formed by embedding a cushioning material 15 a such as polystyrene foam as a softer member than the base plate 12 on the lower surface of the base plate 12. . Therefore, transmission of the vertical vibration of the rock mass 30 is suppressed by the deformation of the cushioning material 15a.

従って、この第2実施形態においても、前記第1実施形態における効果とほぼ同等の効果を得ることができるとともに、この実施形態においては、以下の効果を得ることができる。   Therefore, in this second embodiment, it is possible to obtain an effect substantially equivalent to the effect in the first embodiment, and in this embodiment, the following effect can be obtained.

(4) この実施形態においては、発泡スチロール等の緩衝材15aを設置するのみで、振動遮断部15が形成されるため、型枠が不要になり、さらなるコストダウンが可能となる。   (4) In this embodiment, since the vibration shielding part 15 is formed only by installing the cushioning material 15a such as polystyrene foam, the mold is not necessary, and the cost can be further reduced.

(変更例)
なお、この実施形態は、次のように変更して具体化することも可能である。
・ 振動遮断部15を円形,三角形等の矩形以外の平面形状とすること。
(Example of change)
In addition, this embodiment can also be changed and embodied as follows.
-The vibration isolator 15 should have a planar shape other than a rectangle such as a circle or triangle.

・ 振動遮断部15を形成するための型枠16を木製板材により構成すること。
・ 基礎版12の下面に基礎版より軟質の部材として角材等の木材を埋設することによってその部分を振動遮断部15とすること。
-The mold 16 for forming the vibration isolator 15 is made of a wooden board.
-By embedding wood such as square wood as a softer member than the base plate on the lower surface of the base plate 12, that portion should be used as the vibration isolating portion 15.

・ 振動遮断部15をより確実に形成するための型枠16の上板20等の上面にスタッドや板を立設して、打設コンクリートに対する型枠16の補強や一体性を高めるように構成すること。   -Studs and plates are erected on the upper surface of the upper plate 20 or the like of the mold 16 for more reliably forming the vibration isolating portion 15 to enhance the reinforcement and integrity of the mold 16 with respect to the cast concrete To do.

10…建築物、12…基礎版、13…免震装置、14…建屋、15…振動遮断部、30…岩盤。   DESCRIPTION OF SYMBOLS 10 ... Building, 12 ... Base version, 13 ... Seismic isolation device, 14 ... Building, 15 ... Vibration isolation part, 30 ... Bedrock.

Claims (3)

岩盤上に設置される基礎版上に免震装置を介して建屋を支持した建築物において、
前記基礎版の下面に形成された凹部からなり、前記岩盤と前記基礎版とが直接接触しないことにより前記岩盤からの上下振動が前記基礎版に対して伝達されないようにした振動遮断部を備え、
前記凹部を、前記岩盤の硬さに応じて、前記建築物の上下振動の共振周期を長周期側に移行させるように決定した面積で構成したことを特徴とする建築物。
In a building that supports the building via a seismic isolation device on the base plate installed on the bedrock,
It comprises a recess formed on the bottom surface of the foundation plate, and includes a vibration isolating portion that prevents vertical vibration from the rock mass from being transmitted to the foundation plate by not directly contacting the bedrock and the foundation plate ,
The said recessed part was comprised with the area determined so that the resonance period of the vertical vibration of the said building might be shifted to a long period side according to the hardness of the said rock mass .
前記凹部内に基礎版より軟質の部材を設けたことを特徴とする請求項に記載の建築物。 The building according to claim 1 , wherein a member softer than a base plate is provided in the recess. 前記振動遮断部を、建屋の躯体を支持する位置を外して設けたことを特徴とする請求項1又は2に記載の建築物。 The building according to claim 1 or 2, wherein the vibration isolating portion is provided by removing a position for supporting a building frame.
JP2012086749A 2012-04-05 2012-04-05 Building Active JP5965703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012086749A JP5965703B2 (en) 2012-04-05 2012-04-05 Building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086749A JP5965703B2 (en) 2012-04-05 2012-04-05 Building

Publications (2)

Publication Number Publication Date
JP2013217053A JP2013217053A (en) 2013-10-24
JP5965703B2 true JP5965703B2 (en) 2016-08-10

Family

ID=49589481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086749A Active JP5965703B2 (en) 2012-04-05 2012-04-05 Building

Country Status (1)

Country Link
JP (1) JP5965703B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5725400U (en) * 1980-07-18 1982-02-09
JPS626073A (en) * 1985-06-28 1987-01-13 鹿島建設株式会社 Earthquake damping house structure
JPH04270992A (en) * 1991-02-27 1992-09-28 Toshiba Corp Earthquake isolation fast breeder reactor
JPH0978880A (en) * 1995-09-18 1997-03-25 Ishikawajima Harima Heavy Ind Co Ltd Three-dimensional base isolation structure
JPH1181741A (en) * 1997-09-10 1999-03-26 Dynamic Art Kenkyusho:Kk Sliding base isolation element
JP2980604B1 (en) * 1998-11-19 1999-11-22 中村物産有限会社 Vibration isolation foundation structure of building and its construction method

Also Published As

Publication number Publication date
JP2013217053A (en) 2013-10-24

Similar Documents

Publication Publication Date Title
JP5872091B1 (en) Deformation limiting device for seismic isolation structures
CN103233607B (en) Reinforced concrete periodic damping structure and construction method thereof
JP6058332B2 (en) Seismic reinforcement structure for concrete column and seismic reinforcement method for concrete column
JP2017014853A (en) Method for replacing seismic isolator
JP2011099544A (en) Base isolation device
JP5480682B2 (en) Liquefaction countermeasure structure
JP6378494B2 (en) Seismic isolation structure
JP5965703B2 (en) Building
JP2008031682A (en) Aseismically supporting structure during temporary bearing of building, and aseismically supporting method during temporary bearing of building
JP2013119710A (en) Foundation structure of building
KR20120127902A (en) Spring Jack-up Mount and Floating Floor Structure
JP2019094643A (en) Subsurface structure of new building
JP3740599B2 (en) Seismic isolation device mounting structure
JP4210682B2 (en) Seismic isolation structure
JP5189334B2 (en) Underground structure
KR102015561B1 (en) Vibration control system for lateral force reduction of apartment building
KR200467787Y1 (en) The friction damper for the earthquake-proof
JP6383532B2 (en) Seismic isolation method for existing structures
JP2016199910A (en) Seismic isolation structure and seismic isolation repair method of existing building
KR101841927B1 (en) Seismic Unit for fixed water tanks
JP5172899B2 (en) Vibration relaxation structure
JP2017036560A (en) Seismic isolator replacement method
JP7040718B2 (en) How to build a seismic isolated building
JP7355126B2 (en) Construction methods for building buffer members, buildings, and building foundations
JP6303736B2 (en) Seismic isolation structure and seismic isolation device having the seismic isolation structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160704

R150 Certificate of patent or registration of utility model

Ref document number: 5965703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250