JP5964668B2 - Backup power supply system - Google Patents

Backup power supply system Download PDF

Info

Publication number
JP5964668B2
JP5964668B2 JP2012136619A JP2012136619A JP5964668B2 JP 5964668 B2 JP5964668 B2 JP 5964668B2 JP 2012136619 A JP2012136619 A JP 2012136619A JP 2012136619 A JP2012136619 A JP 2012136619A JP 5964668 B2 JP5964668 B2 JP 5964668B2
Authority
JP
Japan
Prior art keywords
power
branch circuit
branch
storage battery
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012136619A
Other languages
Japanese (ja)
Other versions
JP2014003780A (en
Inventor
元 篠原
元 篠原
忠裕 大原
忠裕 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Denso Corp
Toyota Housing Corp
Original Assignee
Yazaki Energy System Corp
Denso Corp
Toyota Housing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp, Denso Corp, Toyota Housing Corp filed Critical Yazaki Energy System Corp
Priority to JP2012136619A priority Critical patent/JP5964668B2/en
Publication of JP2014003780A publication Critical patent/JP2014003780A/en
Application granted granted Critical
Publication of JP5964668B2 publication Critical patent/JP5964668B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/123Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving renewable energy sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/248UPS systems or standby or emergency generators

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Description

本発明は、建物に供給される電力を制御するバックアップ給電システムに関する。   The present invention relates to a backup power supply system that controls power supplied to a building.

以前から、商用電源である系統電量が停電した場合に、自律運転が可能な自家発電装置の技術があった。   In the past, there has been a technology for private power generators that can operate autonomously when the grid power, which is a commercial power source, fails.

例えば、特許文献1に記載では、系統電力が停電の場合に、太陽電池等の自家発電機による電力、及び蓄電池に予め蓄電された電力で負荷への電力供給を可能とすると共に、蓄電池への深夜電力の補充電を可能とする太陽光発電システムが提案されている。   For example, in Patent Document 1, when the system power is a power failure, the power supplied to the load can be supplied to the load with the power generated by a private generator such as a solar battery and the power stored in the storage battery in advance. There has been proposed a solar power generation system capable of supplementing late-night power.

特開2010−178611号公報JP 2010-178611 A

しかしながら、特許文献1に記載の技術は、停電時に太陽光発電の電力又は蓄電池の電力を負荷に供給するのみで、停電時に太陽光発電の電力又は蓄電池の電力が供給される負荷を限定することを考慮していないという問題点があった。   However, the technology described in Patent Document 1 only supplies the power of photovoltaic power generation or storage battery power to the load at the time of a power failure, and limits the load to which the power of solar power generation or power of the storage battery is supplied at the time of power failure. There was a problem of not considering.

本発明は、上記事実を考慮して成されたもので、停電時に蓄電池又は自家発電装置から電力が供給される電力負荷手段を限定できるバックアップ給電システムを提供することを目的とする。   The present invention has been made in consideration of the above-described facts, and an object of the present invention is to provide a backup power supply system capable of limiting power load means to which power is supplied from a storage battery or a private power generator during a power failure.

上記課題を解決するための請求項1の発明は、自家発電手段と、系統電力又は前記自家発電手段から供給された電力で充電される蓄電池と、前記蓄電池の蓄電量を計測する蓄電量計測手段と、複数の分岐回路のいずれか1つを介して前記系統電力、前記自家発電手段又は前記蓄電池から電力が供給される複数の電力負荷手段と、前記複数の電力負荷手段による消費電力量を前記複数の分岐回路の各々について計測すると共に前記複数の分岐回路の各々で電力を消費した時間を計測可能な電力負荷計測手段と、前記複数の分岐回路の少なくともいずれか1つを指定可能な入力手段と前記蓄電量計測手段が計測した前記蓄電池の蓄電量及び前記電力負荷計測手段が計測した消費電力量を表示する表示手段とを含み、前記系統電力が停電した場合は、前記電力負荷計測手段が計測した前記複数の分岐回路の各々における消費電力量及び前記複数の分岐回路の各々で電力を消費した時間に基づいて前記複数の分岐回路の各々に接続されている電力負荷手段の属性を推定することにより前記複数の分岐回路の各々の優先順位を決定し、該優先順位の高い順に前記複数の分岐回路を前記表示手段に表示させ、前記表示手段に表示された分岐回路のうち前記入力手段によって指定された分岐回路に前記自家発電手段又は前記蓄電池の電力を供給する給電制御装置と、を有する。 The invention of claim 1 for solving the above-mentioned problem is a self-power generation means, a storage battery charged with system power or power supplied from the self-power generation means, and a storage amount measuring means for measuring a storage amount of the storage battery. And a plurality of power load means to which power is supplied from the grid power, the private power generation means or the storage battery via any one of a plurality of branch circuits, and the power consumption by the plurality of power load means A power load measuring unit capable of measuring each of the plurality of branch circuits and measuring a time during which power is consumed in each of the plurality of branch circuits , and an input unit capable of designating at least one of the plurality of branch circuits and a display unit the charged amount and the power load measuring means of the said storage battery storage amount measuring means has measured to display the power consumption measured with, when the system power is power failure Power load connected to each of the plurality of branch circuits based on the time consumed power in each of the power consumption and the plurality of branch circuits in each of said plurality of branch circuits power load measuring means has measured The priority of each of the plurality of branch circuits is determined by estimating the attribute of the means, the plurality of branch circuits are displayed on the display means in descending order of the priority, and the branch circuit displayed on the display means And a power supply control device for supplying power from the private power generation means or the storage battery to the branch circuit specified by the input means .

請求項1に記載の発明によれば、停電時には、指定された分岐回路に電力を供給すると共に、分岐回路を指定する際に、蓄電池の蓄電量及び各電力負荷手段に供給される電力量を参酌することが可能となる。また、分岐回路の各々における消費電力量及び電力負荷手段の各々が電力を消費した時間に基づいて分岐回路の各々に接続されている電力負荷手段の属性を推定することにより分岐回路の各々の優先順位を決定することができる。 According to the first aspect of the present invention, in the event of a power failure, the power is supplied to the designated branch circuit, and when the branch circuit is designated, the storage amount of the storage battery and the amount of power supplied to each power load means are determined. It is possible to visit. In addition, the priority of each branch circuit is estimated by estimating the attribute of the power load means connected to each of the branch circuits based on the amount of power consumed in each branch circuit and the time that each of the power load means consumes power. Ranking can be determined.

請求項2の発明は、請求項1に記載の発明において、前記給電制御装置は、冷蔵庫が接続されていると推定された分岐回路に最大の加点を、24時間動作する機器が接続されていると推定された分岐回路に2番目に大きな加点を、停電の直前に使用されていた電力負荷手段が接続されていた分岐回路に3番目に大きな加点を、前回停電時に電力が供給される分岐回路として指定された分岐回路に4番目に大きな加点を、各々行い、加点の和が大きい順に従って前記優先順位を決定するAccording to a second aspect of the present invention, in the first aspect of the present invention, the power supply control device is connected to a branch circuit that is estimated to be connected to a refrigerator and a device that operates for 24 hours with a maximum added point. The second largest added point to the estimated branch circuit, the third largest added point to the branch circuit connected to the power load means used immediately before the power failure, and the branch circuit to which power is supplied at the previous power failure 4 is added to the branch circuit designated as “4”, and the priorities are determined in the descending order of the sum of the added points .

請求項2に記載の発明によれば、分岐回路の各々について、接続されている電力負荷手段の属性に応じたポイントを加算することにより、電力供給の優先順位を決定することができる。 According to the second aspect of the present invention, the priority of power supply can be determined by adding points according to the attributes of the connected power load means for each branch circuit.

請求項3の発明は、請求項2に記載の発明において、前記給電制御装置は、前記複数の分岐回路の各々について最大消費電力と平均消費電力とを算出し、最大消費電力と平均消費電力との差が判定値を超えた分岐回路に冷蔵庫が接続されていると推定するAccording to a third aspect of the present invention, in the invention according to the second aspect, the power supply control device calculates a maximum power consumption and an average power consumption for each of the plurality of branch circuits, and calculates the maximum power consumption and the average power consumption. It is estimated that the refrigerator is connected to the branch circuit where the difference between the two exceeds the determination value .

請求項3に記載の発明によれば、冷蔵庫は、誘導モータを作動させて冷媒を圧縮する際に多大な電力を消費するので、最大消費電力と平均消費電力との差が判定値を超える分岐回路には冷蔵庫が接続されていると推定できる。 According to the invention described in claim 3, since the refrigerator consumes a large amount of power when the induction motor is operated to compress the refrigerant, the difference between the maximum power consumption and the average power consumption exceeds the determination value. It can be estimated that a refrigerator is connected to the circuit.

請求項4の発明は、請求項2又は3に記載の発明において、前記給電制御装置は、前記複数の分岐回路の各々について24時間内での最小消費電力を算出し、該最小消費電力が0Wではない分岐回路に24時間動作する機器が接続されていると推定するThe invention according to claim 4 is the invention according to claim 2 or 3, wherein the power supply control device calculates a minimum power consumption within 24 hours for each of the plurality of branch circuits, and the minimum power consumption is 0 W. It is estimated that a device that operates for 24 hours is connected to a branch circuit that is not .

請求項4に記載の発明によれば、24時間内での最小消費電力が0Wではない分岐回路に24時間動作する機器が接続されていると推定することができる。 According to invention of Claim 4, it can be estimated that the apparatus which operate | moves for 24 hours is connected to the branch circuit whose minimum power consumption in 24 hours is not 0W.

請求項5の発明は、請求項1〜4のいずれか1項に記載の発明において、前記給電制御装置は、所定時間内に前記入力手段による分岐回路の指定がない場合には、前記優先順位に従って前記複数の分岐回路に前記自家発電手段又は前記蓄電池の電力を供給するAccording to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the power supply control device is configured such that the priority order is determined when no branch circuit is designated by the input means within a predetermined time. The power of the private power generation means or the storage battery is supplied to the plurality of branch circuits .

請求項5に記載の発明によれば、電力が供給される分岐回路の指定が所定時間内になされなかった場合には、決定した優先順位に従って分岐回路に電力が供給される。 According to the fifth aspect of the present invention, when the branch circuit to which power is supplied is not designated within a predetermined time , power is supplied to the branch circuit according to the determined priority order.

以上説明したように、請求項1に記載の発明は、停電時には、指定された電力負荷手段に電力を供給することにより、停電時に蓄電池又は自家発電装置から電力が供給される電力負荷手段を限定できるという効果を有する。   As described above, the invention according to claim 1 limits the power load means to which power is supplied from the storage battery or the private power generator at the time of power failure by supplying power to the designated power load means at the time of power failure. It has the effect of being able to.

請求項2に記載の発明によれば、電力負荷手段の属性に応じたポイントの加算により、電力供給が優先される分岐回路を適切に決定できるという効果を有する。 According to the second aspect of the present invention, there is an effect that a branch circuit to which power supply is given priority can be appropriately determined by adding points according to the attribute of the power load means .

請求項3に記載の発明によれば、電力供給が最優先される冷蔵庫が接続されている分岐回路を推定できるという効果を有する。 According to invention of Claim 3, it has the effect that the branch circuit to which the refrigerator in which electric power supply has the highest priority is connected can be estimated.

請求項4に記載の発明によれば、電力供給が優先される24時間動作する機器が接続されている分岐回路を推定できるという効果を有する。 According to the fourth aspect of the present invention, there is an effect that it is possible to estimate a branch circuit to which a device operating for 24 hours for which power supply is prioritized is connected.

請求項5に記載の発明によれば、決定した優先順位に基づいて停電時に電力負荷手段に電力を供給できるという効果を有する。 According to invention of Claim 5, it has the effect that electric power can be supplied to an electric power load means at the time of a power failure based on the determined priority .

本発明の実施の形態に係るバックアップ給電システムの一例を示す概略図である。It is the schematic which shows an example of the backup electric power feeding system which concerns on embodiment of this invention. 本発明の実施の形態に係るバックアップ給電システムにおけるHEMSの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of HEMS in the backup electric power feeding system which concerns on embodiment of this invention. 本発明の実施の形態に係る給電システムにおける冷蔵庫が接続されている分岐回路か否かを判定するための処理のフローチャートである。It is a flowchart of the process for determining whether it is a branch circuit to which the refrigerator in the electric power feeding system which concerns on embodiment of this invention is connected. 本発明の実施の形態に係る給電システムにおける冷蔵庫が接続されている分岐回路か否かの判定に用いる各分岐回路の消費電力量の一例を示した図である。It is the figure which showed an example of the power consumption of each branch circuit used for determination whether it is a branch circuit to which the refrigerator in the electric power feeding system which concerns on embodiment of this invention is connected. 本発明の実施の形態に係る給電システムにおける24時間動作している機器が接続されている分岐回路か否かを判定するための処理のフローチャートである。It is a flowchart of the process for determining whether the apparatus which operate | moves for 24 hours in the electric power feeding system which concerns on embodiment of this invention is the branch circuit connected. 本発明の実施の形態に係る給電システムにおける24時間動作している機器が接続されている分岐回路か否かの判定に用いる各分岐回路の消費電力量の一例を示した図である。It is the figure which showed an example of the power consumption of each branch circuit used for determination whether the apparatus which operate | moves for 24 hours in the electric power feeding system which concerns on embodiment of this invention is a connected branch circuit. 本発明の実施の形態において停電時に電力を優先的に供給する分岐回路を判断する際に用いられる判定表の一例を示す図である。It is a figure which shows an example of the determination table used when determining the branch circuit which preferentially supplies electric power at the time of a power failure in embodiment of this invention.

以下、図面を参照して本発明の実施の形態の一例を詳細に説明する。図1は、本発明の実施の形態に係るバックアップ給電システムの一例を示す概略図である。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic diagram showing an example of a backup power supply system according to an embodiment of the present invention.

本実施の形態では、系統電力12からの電力が、主幹ブレーカー100を介して建物10の分電盤14に供給されている。   In the present embodiment, power from the grid power 12 is supplied to the distribution board 14 of the building 10 through the main breaker 100.

主幹ブレーカー100の系統電力側には、系統電力12から供給される電力の電流値を検知する主幹ブレーカー電流センサ120が設けられている。   On the system power side of the main breaker 100, a main breaker current sensor 120 that detects the current value of the power supplied from the system power 12 is provided.

なお、図1において実線は電力が供給される電力線、破線は計測データ又は制御情報が流れる情報線であるとする。   In FIG. 1, it is assumed that a solid line is a power line to which power is supplied and a broken line is an information line through which measurement data or control information flows.

分電盤14には、系統電力12とは別に自家発電装置である太陽光発電装置16からの電力が太陽光発電用ブレーカー102を介して供給されている。太陽光発電装置16には、太陽光発電装置の発電量を計測すると共に、建物内のエネルギーの管理や制御を行うHEMS(Home Energy ManagementSystem)30によって制御される太陽光発電制御装置18が設けられている。   In addition to the grid power 12, the distribution board 14 is supplied with power from a solar power generation device 16 that is a private power generation device via a solar power generation breaker 102. The solar power generation device 16 is provided with a solar power generation control device 18 that is controlled by a HEMS (Home Energy Management System) 30 that measures the power generation amount of the solar power generation device and manages and controls energy in the building. ing.

なお、本実施の形態では、自家発電装置は太陽光発電装置に限定されず、内燃機関による発電装置又は燃料電池等であってもよい。   In the present embodiment, the private power generator is not limited to a solar power generator, and may be a power generator using an internal combustion engine, a fuel cell, or the like.

系統電力12及び太陽光発電装置16から分電盤14に供給された電力は、電力負荷手段である家電機器32及び住設機器34に分岐回路22A及び22Bを各々介して供給される。また、系統電力12から供給された電力を充電できる蓄電池60が分岐回路22Cを介して分電盤14に接続されている。   The power supplied from the grid power 12 and the photovoltaic power generation device 16 to the distribution board 14 is supplied to the home appliances 32 and the housing equipment 34, which are power load means, via the branch circuits 22A and 22B, respectively. In addition, a storage battery 60 capable of charging the power supplied from the system power 12 is connected to the distribution board 14 via the branch circuit 22C.

分岐回路20A〜20Cには分岐回路20A〜20Cの電流値を計測する電流センサ22A〜22Cが各々設けられている。電流センサ22A〜22Cからの情報線は、HEMS30が分電盤14を制御するための情報線と共にHEMS30に接続されている。   The branch circuits 20A to 20C are provided with current sensors 22A to 22C for measuring the current values of the branch circuits 20A to 20C, respectively. Information lines from the current sensors 22 </ b> A to 22 </ b> C are connected to the HEMS 30 together with information lines for the HEMS 30 to control the distribution board 14.

分電盤14の分岐回路20A〜20Cには、分岐回路20A〜20Cをオン状態又はオフ状態に切り替えるための分岐ブレーカー24A〜24Cが各々設けられ、分岐ブレーカー24A〜24Cは、HEMS30によって制御される。   The branch circuits 20A to 20C of the distribution board 14 are respectively provided with branch breakers 24A to 24C for switching the branch circuits 20A to 20C to an on state or an off state, and the branch breakers 24A to 24C are controlled by the HEMS 30. .

なお、図1では、記載の簡略化のために分岐回路は3系統のみ記載しているが、本実施の形態では3系統以上でも3系統以下でもよく、分岐回路の本数に特段の限定はない。   In FIG. 1, only three systems of branch circuits are shown for simplification of description, but in this embodiment, three or more systems or three systems or less may be used, and the number of branch circuits is not particularly limited. .

蓄電池60には、鉛蓄電池、ニッケル水素電池又はリチウムイオン電池等の、充放電が可能な二次電池が使用される。これらの二次電池の1セルは、起電力が略1〜2Vなので、本実施の形態では、複数のセルを直列にして所望の電圧が得られるようにしている。さらに所望の電圧を得られるように直列に接続された複数のセルからなる集合体を複数並列に束ねパッケージ化することで、所望の電流が得られるようにしている。   The storage battery 60 is a secondary battery that can be charged and discharged, such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery. Since one cell of these secondary batteries has an electromotive force of approximately 1 to 2 V, in this embodiment, a plurality of cells are connected in series so that a desired voltage can be obtained. Further, a desired current can be obtained by bundling a plurality of aggregates composed of a plurality of cells connected in series so as to obtain a desired voltage.

また、パッケージ化された蓄電池60には、分電盤14を介して供給される交流(例えば、100V、50Hz)を、蓄電池の充電に適した電圧の直流に変換すると共に、蓄電池60が放電した直流を分電盤14から家電機器32及び住設機器34に供給される交流に変換可能な双方向インバータ等の変換手段(図示せず)が設けられている。   In addition, the packaged storage battery 60 converts alternating current (for example, 100 V, 50 Hz) supplied through the distribution board 14 into direct current having a voltage suitable for charging the storage battery, and the storage battery 60 is discharged. Conversion means (not shown) such as a bidirectional inverter capable of converting direct current into alternating current supplied from the distribution board 14 to the home appliance 32 and the housing equipment 34 is provided.

さらに、蓄電池60は、蓄電池60の充放電を制御すると共に、蓄電池60の電圧値を計測する蓄電池制御装置62を備え、前述のインバータと共にHEMS30によって制御される。   Furthermore, the storage battery 60 includes a storage battery control device 62 that controls charging / discharging of the storage battery 60 and measures the voltage value of the storage battery 60, and is controlled by the HEMS 30 together with the above-described inverter.

HEMS30は、蓄電池60に設けられた蓄電池制御装置62が計測した蓄電池60の電圧値に基づいて、蓄電池60の蓄電量をモニターしている。   The HEMS 30 monitors the amount of power stored in the storage battery 60 based on the voltage value of the storage battery 60 measured by the storage battery control device 62 provided in the storage battery 60.

HEMS30には、分電盤14へ電力を供給する電力線とは別に、停電時にHEMS30をバックアップするための電力を供給するHEMSバックアップ電力線72及び74が、太陽光発電装置16及び蓄電池60からHEMS30に接続されている。   HEMS backup power lines 72 and 74 for supplying power for backing up the HEMS 30 in the event of a power failure are connected to the HEMS 30 from the photovoltaic power generation device 16 and the storage battery 60 to the HEMS 30 separately from the power line for supplying power to the distribution board 14. Has been.

HEMS30は、停電時には、太陽光発電装置16又は蓄電池60の電力を自機並びに電力負荷手段である家電機器32及び住設機器34に供給する   In the event of a power failure, the HEMS 30 supplies the power of the solar power generation device 16 or the storage battery 60 to the home appliance 32 and the housing equipment 34 that are the self-machine and the power load means.

図2は、本実施の形態に係るバックアップ給電システムに係るHEMS30の概略構成を示すブロック図である。   FIG. 2 is a block diagram showing a schematic configuration of the HEMS 30 according to the backup power supply system according to the present embodiment.

HEMS30は、コンピュータを含んで構成されており、図2に示すように、CPU36、ROM38、RAM40、及び入出力ポート42を備えて、これらがアドレスバス、データバス、及び制御バス等のバス44を介して互いに接続されている。   As shown in FIG. 2, the HEMS 30 includes a CPU 36, a ROM 38, a RAM 40, and an input / output port 42. These include a bus 44 such as an address bus, a data bus, and a control bus. Are connected to each other.

入出力ポート42には、各種入出力機器として、表示部46、操作部48、及びメモリ50が接続されている。なお、表示部46及び操作部48は一体で構成され、操作部48は、表示部46に設けられたタッチパネルを適用することができる。   A display unit 46, an operation unit 48, and a memory 50 are connected to the input / output port 42 as various input / output devices. The display unit 46 and the operation unit 48 are integrally configured, and a touch panel provided on the display unit 46 can be applied to the operation unit 48.

表示部46には一例として、太陽光発電装置16の発電量、蓄電池60の蓄電量、並びに家電機器32及び住設機器34の消費電力量が表示される。   As an example, the display unit 46 displays the power generation amount of the solar power generation device 16, the power storage amount of the storage battery 60, and the power consumption amounts of the home appliance 32 and the residential equipment 34.

また、操作部48が、停電時に電力負荷手段の一覧を表示することができる表示部46に設けられたタッチパネルの場合には、表示された電力負荷手段を指定する操作が可能となる。   Further, when the operation unit 48 is a touch panel provided on the display unit 46 that can display a list of power load means at the time of a power failure, an operation for designating the displayed power load means can be performed.

HEMS30は、操作部48で指定された電力負荷手段、例えば家電機器32と接続されている分岐ブレーカー24Aをオン状態にすることにより、指定された電力負荷手段に太陽光発電装置16又は蓄電池60の電力を供給することができる。   The HEMS 30 turns on the power load means designated by the operation unit 48, for example, the branch breaker 24 </ b> A connected to the home appliance 32, so that the solar power generation device 16 or the storage battery 60 is connected to the designated power load means. Electric power can be supplied.

メモリ50には、分岐ブレーカー24A〜24Cを制御するプログラム、蓄電池制御装置62を制御するプログラム、太陽光発電制御装置18を制御するプログラム及びこれらのプログラムを実行するための各種情報等が記憶されている。   The memory 50 stores a program for controlling the branch breakers 24A to 24C, a program for controlling the storage battery control device 62, a program for controlling the photovoltaic power generation control device 18, various information for executing these programs, and the like. Yes.

HEMSは、メモリ50に記憶されたプログラムをRAM40等に展開してCPU36で実行することにより、建物10へ供給する電力の制御等の各種制御を行うようになっている。   The HEMS performs various types of control such as control of power supplied to the building 10 by developing a program stored in the memory 50 in the RAM 40 and executing it by the CPU 36.

また、メモリ50には、電力負荷手段の優先順位を予め記憶しておいてもよい。   The memory 50 may store the priority order of the power load means in advance.

HEMS30は、メモリ50に記憶されている優先順位において上位に規定されている電力負荷手段に太陽光発電装置16又は蓄電池60の電力を供給するようにしてもよい。   The HEMS 30 may supply the power of the solar power generation device 16 or the storage battery 60 to the power load means that is defined in the higher order in the priority order stored in the memory 50.

さらに、入出力ポート42には、分電盤14、太陽光発電制御装置18及び蓄電池制御装置62等が接続されている。   Further, the distribution board 14, the photovoltaic power generation control device 18, the storage battery control device 62, and the like are connected to the input / output port 42.

続いて、本実施の形態に係るHEMS30の制御について説明する。本実施の形態では、停電時に太陽光発電装置16又は蓄電池60の電力が共有される優先順位を予めメモリ50に記憶しておくことが可能である。   Subsequently, control of the HEMS 30 according to the present embodiment will be described. In this Embodiment, it is possible to memorize | store in the memory 50 previously the priority in which the electric power of the solar power generation device 16 or the storage battery 60 is shared at the time of a power failure.

かかる優先順位は、操作部48からの操作に基づいて作成され、メモリ50に記憶するようにしてもよいが、各電力負荷手段の消費電力量及び各電力負荷手段が電力を消費した時間に基づいて決定してもよい。   Such priorities may be created based on an operation from the operation unit 48 and stored in the memory 50, but based on the amount of power consumed by each power load means and the time when each power load means consumes power. May be determined.

以下、本実施の形態では、電流センサ22A〜22Cの計測結果に基づいて、各分岐回路に接続されている電力負荷手段の属性を推定することにより、電力負荷手段の優先順位を決定する手順を説明する。   Hereinafter, in the present embodiment, a procedure for determining the priority order of the power load means by estimating the attribute of the power load means connected to each branch circuit based on the measurement results of the current sensors 22A to 22C. explain.

より具体的には、電力負荷手段が接続された分岐回路の消費電力量に基づいて、各分岐回路に冷蔵庫が接続されているか否か、各分岐回路に24時間動作する機器が接続されているか否かを判定する。   More specifically, based on the power consumption of the branch circuit to which the power load means is connected, whether or not a refrigerator is connected to each branch circuit and whether or not a device that operates for 24 hours is connected to each branch circuit Determine whether or not.

冷蔵庫は、冷蔵品を保存するために、優先的に電力が供給されるべきであるし、ファクシミリ等の24時間稼動が要求される機器も優先的に電力が供給されるべきだからである。   This is because the refrigerator should be preferentially supplied with electric power in order to store refrigerated goods, and equipment such as a facsimile machine that is required to operate for 24 hours should also be preferentially supplied with electric power.

まず、冷蔵庫が接続されている分岐回路か否かを判定する制御について説明する。図3は、本実施の形態に係る給電システムにおける冷蔵庫が接続されている分岐回路か否かを判定するための処理のフローチャートである。なお、図3に示した各手順は各分岐回路において個別に行われるものとする。   First, control for determining whether or not the branch circuit is connected to the refrigerator will be described. FIG. 3 is a flowchart of a process for determining whether the branch circuit is connected to the refrigerator in the power supply system according to the present embodiment. Note that each procedure shown in FIG. 3 is individually performed in each branch circuit.

ステップ300では、判定に係る分岐回路の電流値を電流センサによって所定時間毎に計測する。   In step 300, the current value of the branch circuit related to the determination is measured every predetermined time by the current sensor.

なお、所定時間は種々の長さが考えられ、本実施の形態では10分程度とするが、この所定時間は接続されている冷蔵庫等の機器の特性等を考慮して変更可能であり、数分程度でもよい。   The predetermined time may be various lengths, and in this embodiment, it is about 10 minutes. However, this predetermined time can be changed in consideration of the characteristics of the connected equipment such as a refrigerator. It may be about minutes.

ステップ302では、計測した電流値から当該分岐回路の消費電力量を算出する。建物等の施設内に供給される電力の電圧は概ね100Vなので、各分岐回路の電流値が計測できれば、各分岐回路の消費電力量は、計測した電流値と電圧値100Vとの積で算出されるので、別途電圧を測定する手段を本実施の形態では要しない。   In step 302, the power consumption of the branch circuit is calculated from the measured current value. Since the voltage of power supplied to facilities such as buildings is approximately 100V, if the current value of each branch circuit can be measured, the power consumption of each branch circuit is calculated by the product of the measured current value and the voltage value of 100V. Therefore, a separate means for measuring the voltage is not required in this embodiment.

しかしながら、電圧の変動等が生じ得る分岐回路においては、電流センサ22A〜22Cに加えて、別途、電圧を計測する手段を各分岐回路に設けてもよい。   However, in a branch circuit in which voltage fluctuation or the like may occur, in addition to the current sensors 22A to 22C, a means for measuring a voltage may be separately provided in each branch circuit.

ステップ304では、計測した電流値及び算出した消費電力量をメモリ50に記憶する。   In step 304, the measured current value and the calculated power consumption are stored in the memory 50.

ステップ306では、電流の計測を規定の回数だけ行ったか否かを判定し、規定の回数だけ計測した場合は手順をステップ308に移行させる。規定の回数だけ測定したか否かは、メモリ50に記憶した電流値が規定の回数に相当する数であるか否かで判定できる。   In step 306, it is determined whether or not the current has been measured a prescribed number of times. If the prescribed number of times has been measured, the procedure proceeds to step 308. Whether or not the measurement has been performed a specified number of times can be determined by whether or not the current value stored in the memory 50 is a number corresponding to the specified number of times.

なお、規定の回数は、各分岐回路に冷蔵庫が接続されているか否かを判定可能なだけの回数である。当該回数は種々の回数が考えられるが、消費電力量から機器の特徴を把握するには1日の各時刻における消費電力量の変化を把握する必要があることと、本実施の形態のように、10分毎に計測するのが望ましいのであれば、24時間分、合計144回計測することが考えられる。   The specified number of times is the number of times that it can be determined whether or not a refrigerator is connected to each branch circuit. The number of times can be various, but in order to grasp the characteristics of the device from the power consumption, it is necessary to grasp the change in the power consumption at each time of day, as in this embodiment. If it is desirable to measure every 10 minutes, it is possible to measure a total of 144 times for 24 hours.

ステップ306で、電流の計測を規定の回数行っていないと判定された場合は、手順をステップ300以前に戻し、再度、電流の計測を実行する。   If it is determined in step 306 that the current measurement has not been performed a predetermined number of times, the procedure is returned to step 300 or earlier, and the current measurement is performed again.

ステップ308では、メモリ50に記憶した規定回数分の消費電力量から最大消費電力及び平均消費電力を算出する。   In step 308, the maximum power consumption and the average power consumption are calculated from the power consumption for the specified number of times stored in the memory 50.

図4は、本実施の形態において冷蔵庫が接続されている分岐回路か否かの判定に用いる各分岐回路の消費電力量の一例を示した図であり、規定回数分の消費電力量の結果から平均消費電力、最大消費電力及び最小消費電力が各々算出されている。   FIG. 4 is a diagram showing an example of the power consumption of each branch circuit used for determining whether or not it is a branch circuit to which a refrigerator is connected in the present embodiment. Average power consumption, maximum power consumption, and minimum power consumption are respectively calculated.

ステップ310では、以下の式(1)に従って、当該分岐回路に冷蔵庫が接続されているか否かを判定する。
最大消費電力−平均消費電力>規定値 ・・・(1)
In step 310, it is determined whether a refrigerator is connected to the branch circuit according to the following equation (1).
Maximum power consumption-average power consumption> specified value (1)

冷蔵庫は、誘導モータを作動させて冷媒を圧縮する際に、待機状態に対して5〜10倍に相当する電力消費が突発的にあるので、平均消費電力に対して突出した最大消費電力が認められる分岐回路には冷蔵庫が接続されていると判定できる。   When the refrigerator compresses the refrigerant by operating the induction motor, the power consumption corresponding to 5 to 10 times that of the standby state suddenly occurs, so that the maximum power consumption protruding from the average power consumption is recognized. It can be determined that a refrigerator is connected to the branch circuit.

判定値は各冷蔵庫の電力消費の特性によって種々の値が考えられるので、試験を通じて統計的に算出されることが望ましい。本実施の形態では、一例として、判定値を300Wとした。   Since various values are conceivable depending on the power consumption characteristics of each refrigerator, it is desirable that the determination value be calculated statistically through tests. In this embodiment, as an example, the determination value is 300 W.

ステップ310において、式(1)に従って、最大消費電力と平均消費電力との差が規定値を上回った場合は、当該分岐回路には冷蔵庫が接続されているとステップ312で判定し、図3のフローチャートによる処理を終了する。   In step 310, if the difference between the maximum power consumption and the average power consumption exceeds a specified value according to the equation (1), it is determined in step 312 that a refrigerator is connected to the branch circuit, The process according to the flowchart ends.

ステップ310において、式(1)に従って、最大消費電力と平均消費電力との差が規定値以下の場合は、当該分岐回路には冷蔵庫が接続されていないとステップ314で判定し、図3のフローチャートによる処理を終了する。   In step 310, when the difference between the maximum power consumption and the average power consumption is equal to or less than a specified value according to the equation (1), it is determined in step 314 that the refrigerator is not connected to the branch circuit, and the flowchart of FIG. The process by is terminated.

以上説明したように、図3のフローチャートの手順によれば、当該分岐回路の電力消費の傾向から、当該分岐回路に冷蔵庫が接続されているか否かを判定できる。   As described above, according to the procedure of the flowchart of FIG. 3, it is possible to determine whether or not a refrigerator is connected to the branch circuit from the tendency of power consumption of the branch circuit.

続いて、図5を用いて、本実施の形態における、24時間動作する機器が当該分岐回路に接続されているか否かを判定する処理について説明する。図5は、本発明の実施の形態に係る給電システムにおける24時間動作している機器が接続されている分岐回路か否かを判定するための処理のフローチャートである。なお、図5に示した各手順は各分岐回路において個別に行われるものとする。   Next, a process of determining whether or not a device that operates for 24 hours is connected to the branch circuit in the present embodiment will be described with reference to FIG. FIG. 5 is a flowchart of processing for determining whether or not a device operating for 24 hours in the power feeding system according to the embodiment of the present invention is a branch circuit connected thereto. Note that each procedure shown in FIG. 5 is performed individually in each branch circuit.

ステップ500では、24時間計を0にリセットし、ステップ502において所定時間毎に電流の計測を開始する。所定時間は種々の長さが考えられ、本実施の形態では10分とする。   In step 500, the 24-hour counter is reset to 0, and in step 502, current measurement is started every predetermined time. The predetermined time may have various lengths, and is 10 minutes in the present embodiment.

ステップ504では、計測した電流値から当該分岐回路の消費電力量を算出する。   In step 504, the power consumption of the branch circuit is calculated from the measured current value.

ステップ506では、計測した電流値及び算出した消費電力量をメモリ50に記憶する。   In step 506, the measured current value and the calculated power consumption are stored in the memory 50.

ステップ508では、24時間計を参照して電流の計測を開始してから24時間が経過したか否かを判定し、計測開始から24時間を経過していない場合は、手順をステップ500以前に戻す。   In step 508, it is determined whether or not 24 hours have elapsed since the start of current measurement with reference to the 24-hour meter. If 24 hours have not elapsed since the start of measurement, the procedure is changed to step 500 or earlier. return.

ステップ508で、電流の計測を開始してから24時間が経過したと判定された場合は、ステップ510で当該分岐回路の最小消費電力を算出する。   If it is determined in step 508 that 24 hours have elapsed since the start of current measurement, the minimum power consumption of the branch circuit is calculated in step 510.

図6は、本実施の形態に係る給電システムにおける24時間動作している機器が接続されている分岐回路か否かの判定に用いる各分岐回路の消費電力量の一例を示した図である。図6では、24時間にわたって、10分毎に各分岐回路の電流値が計測され、計測された電流値から各分岐回路の消費電力量が算出され、さらに各分岐回路の最小消費電力が算出されている。   FIG. 6 is a diagram showing an example of the power consumption of each branch circuit used for determining whether or not a device operating for 24 hours in the power supply system according to the present embodiment is a connected branch circuit. In FIG. 6, the current value of each branch circuit is measured every 10 minutes for 24 hours, the power consumption of each branch circuit is calculated from the measured current value, and the minimum power consumption of each branch circuit is further calculated. ing.

ステップ512では、最小消費電力が0Wか否かが判定され、0Wの場合は、ステップ514において、その分岐回路には24時間動作する機器が接続されていないとして、図5の処理を終了する。なお、機器によっては、待機状態で微弱な電力を消費するものがあるので、ステップ512では最小消費電力が所定の閾値未満の場合は、最小消費電力が0Wであると判定してよい。当該閾値は種々の値が考えられるが、一例として3〜5W程度とすることが考えられる。   In step 512, it is determined whether or not the minimum power consumption is 0 W. If 0 W, in step 514, the branch circuit is not connected to a device that operates for 24 hours, and the processing in FIG. Since some devices consume weak power in a standby state, in step 512, when the minimum power consumption is less than a predetermined threshold, it may be determined that the minimum power consumption is 0 W. Although various values can be considered as the threshold, it can be considered to be about 3 to 5 W as an example.

ステップ512で、最小消費電力が0Wではないと判定された場合は、ステップ516において、その分岐回路には24時間動作する機器が接続されているとして、図5の処理を終了する。   If it is determined in step 512 that the minimum power consumption is not 0 W, it is determined in step 516 that a device that operates for 24 hours is connected to the branch circuit, and the processing in FIG.

以上説明したように、図5の処理によれば、各分岐回路に24時間動作する機器が接続されているか否かを判定することができる。   As described above, according to the processing of FIG. 5, it is possible to determine whether or not a device that operates for 24 hours is connected to each branch circuit.

本実施の形態では、上述の各分岐回路に冷蔵庫が接続されているか否か、及び各分岐回路に24時間動作する機器が接続されているか否かの判定に加えて、停電の直前に使用されていた分岐回路及び前回の停電時に電力が供給される分岐回路として指定された分岐回路を特定する。   In this embodiment, in addition to determining whether or not a refrigerator is connected to each branch circuit described above and whether or not a device that operates for 24 hours is connected to each branch circuit, it is used immediately before a power failure. And the branch circuit designated as the branch circuit to which power is supplied at the time of the previous power failure.

まず、停電の直前に使用されていた分岐回路の特定について説明する。   First, identification of the branch circuit used immediately before the power failure will be described.

停電の直前に使用すなわち電力が供給されていた分岐回路には、停電になっても引き続き電力が供給された方が望ましい。本実施の形態では、メモリ50に各分岐回路の時系列での消費電力量が記憶されているので、当該記憶に基づいて、停電が発生した直前に使用していた分岐回路を特定する。   It is desirable that the branch circuit, which is used immediately before the power failure, that is, supplied with power, is continuously supplied with power even if a power failure occurs. In the present embodiment, since the power consumption in time series of each branch circuit is stored in the memory 50, the branch circuit used immediately before the occurrence of the power failure is specified based on the storage.

具体的には、HEMS30は、系統電力12から主幹ブレーカー100への電流を検知する主幹ブレーカー電流センサ120が電流値0Aを検知した時を停電と判断する。また、メモリ50に記憶された各分岐回路における時系列での電流値と、前述の停電と判断した時の時刻とから、停電の直前に使用されていた分岐回路を特定する。   Specifically, the HEMS 30 determines that a power failure occurs when the main breaker current sensor 120 that detects a current from the grid power 12 to the main breaker 100 detects a current value 0A. Further, the branch circuit used immediately before the power failure is specified from the time-series current value in each branch circuit stored in the memory 50 and the time when the power failure is determined.

次に、前回の停電時に電力が供給される分岐回路として指定された分岐回路について説明する。   Next, a branch circuit designated as a branch circuit to which power is supplied at the previous power failure will be described.

前回の停電時に電力が供給される分岐回路として指定された分岐回路は、重要な機器が接続されている可能性が高いので、次の停電時にも電力が供給された方が望ましい。本実施の形態では、メモリ50に記憶されているユーザが特定の電力負荷手段をオン状態にするために分岐ブレーカー24A〜24Cを操作した履歴を参照して、前回の停電時に電力が供給される分岐回路として指定された分岐回路を特定する。   Since the branch circuit designated as the branch circuit to which power is supplied at the previous power failure is highly likely to be connected to an important device, it is desirable that power be supplied at the next power failure. In the present embodiment, the power stored in the memory 50 is supplied at the time of the previous power failure with reference to the history of operating the branch breakers 24A to 24C in order to turn on the specific power load means. Identify the branch circuit designated as the branch circuit.

本実施の形態では、停電時に使用する電力負荷手段を指定する操作が操作部48から可能なので、メモリ50に操作部48からの操作の履歴を記憶しておくことにより、前回の停電時に使用した電力負荷手段、当該電力負荷手段に係る分岐ブレーカー及び分岐回路をメモリ50に記憶されている操作部48の操作の履歴から特定できる。   In the present embodiment, since the operation of designating the power load means to be used at the time of a power failure is possible from the operation unit 48, the history of operations from the operation unit 48 is stored in the memory 50, so that it was used at the time of the previous power failure. The power load unit, the branch breaker and the branch circuit related to the power load unit can be identified from the operation history of the operation unit 48 stored in the memory 50.

以上のように、本実施の形態では、(1)冷蔵庫が接続されている分岐回路、(2)24時間動作する機器が接続されている分岐回路、(3)停電の直前に使用されていた分岐回路、(4)前回停電時に電力が供給される分岐回路として指定された分岐回路の各々を判定した。   As described above, in this embodiment, (1) a branch circuit to which a refrigerator is connected, (2) a branch circuit to which a device that operates for 24 hours is connected, and (3) it is used immediately before a power failure. Branch circuit, (4) Each branch circuit designated as a branch circuit to which power is supplied at the time of the previous power failure was determined.

本実施の形態では、上記(1)〜(4)の事項に基づいて、停電の場合に電力供給を優先すべき分岐回路を判断する。   In the present embodiment, based on the items (1) to (4), a branch circuit to which power supply should be prioritized in the event of a power failure is determined.

具体的には、(1)冷蔵庫が接続されていると判定された分岐回路に最大の加点を、(2)24時間動作する機器が接続されていると判定された分岐回路に2番目に大きな加点を、(3)停電の直前に使用されていた分岐回路に3番目に大きな加点を、(4)前回停電時に電力が供給される分岐回路として指定された分岐回路に4番目に大きな加点を各々行い、加点の和が大きな分岐回路を停電の場合に電力供給を優先すべき分岐回路と判断する。   Specifically, (1) the largest added point to the branch circuit determined to be connected to the refrigerator, and (2) the second largest to the branch circuit determined to be connected to a device that operates for 24 hours. (3) Add the third largest point to the branch circuit used immediately before the power failure. (4) Add the fourth largest point to the branch circuit designated as the branch circuit to which power is supplied at the previous power failure. Each is performed, and a branch circuit with a large sum of added points is determined as a branch circuit to which power supply should be prioritized in the event of a power failure.

本実施の形態では、複数の分岐回路すべてにおいて、上記(1)〜(4)の事項に係る判定が行われる。従って、上記(1)〜(4)の全事項についての加点の和が最大となった分岐回路が停電時に最優先で電力が供給されるべき分岐回路となる。   In the present embodiment, the determination relating to the items (1) to (4) is performed in all of the plurality of branch circuits. Therefore, the branch circuit in which the sum of the added points for all the items (1) to (4) is maximized is the branch circuit to which power is to be supplied with the highest priority in the event of a power failure.

図7は、本実施の形態において停電時に電力を優先的に供給する分岐回路を判断する際に用いられる判定表の一例を示す図である。   FIG. 7 is a diagram illustrating an example of a determination table used when determining a branch circuit that preferentially supplies power during a power failure in the present embodiment.

図7では、(1)冷蔵庫が接続されていると判定された分岐回路に5点を、(2)24時間動作する機器が接続されていると判定された分岐回路に4点を、(3)停電の直前に使用されていた分岐回路に2点を、(4)前回停電時に電力が供給される分岐回路として指定された分岐回路に1点を各々加点して、各分岐回路について加点の和を求め、加点の和が大きい順に従って優先順位をつけている。   In FIG. 7, (1) 5 points to the branch circuit determined to be connected to the refrigerator, (2) 4 points to the branch circuit determined to be connected to a device that operates for 24 hours, (3 ) Add 2 points to the branch circuit used immediately before the power failure, and (4) Add 1 point to the branch circuit designated as the branch circuit to which power is supplied at the previous power failure. Sums are calculated, and priorities are given in descending order of the sum of points.

本実施の形態では、図7のようにして求めた各分岐回路の優先順位を表示部46に表示し、ユーザが停電時に使用する分岐回路を指定する際に参照できるようにする。また、表示された優先順位に従ってHEMS30が自動制御で停電時に使用する分岐回路を選択してもよい。   In the present embodiment, the priority order of each branch circuit obtained as shown in FIG. 7 is displayed on the display unit 46 so that the user can refer to the branch circuit to be used at the time of a power failure. Moreover, you may select the branch circuit which HEMS30 uses at the time of a power failure by automatic control according to the displayed priority.

自動制御による停電時に使用する分岐回路の選択は、所定時間以内にユーザが停電時に使用する分岐回路を指定しなかった場合に実行されるようにしてもよい。所定時間は、数分〜10分程度でもよいし、数時間〜24時間程度であってもよい。また、停電時に使用する分岐回路を自動制御で選択した場合は、その旨を表示部46に報知するようにしてもよい。   The selection of a branch circuit to be used at the time of a power failure by automatic control may be executed when the user does not designate a branch circuit to be used at the time of a power failure within a predetermined time. The predetermined time may be about several minutes to 10 minutes, or may be about several hours to 24 hours. Moreover, when the branch circuit used at the time of a power failure is selected by automatic control, you may make it alert | report to the display part 46 to that effect.

本実施の形態では、上述の加点の和が最大の分岐回路を停電時に電力供給が優先される分岐回路として表示するようにしてもよい。また、上述の加点の和が最大の分岐回路を停電時に使用する分岐回路としてHEMSが自動制御で選択してもよいし、HEMSによる自動制御を、ユーザがあとからカスタマイズできるようにしてもよい。   In the present embodiment, the branch circuit having the maximum sum of the above points may be displayed as a branch circuit in which power supply is given priority in the event of a power failure. Further, the HEMS may select the branch circuit having the maximum sum of the above points as a branch circuit to be used in the event of a power failure by automatic control, or the user may be able to customize the automatic control by HEMS later.

また、本実施の形態では、停電が起きた時間帯に応じて、停電時に電力供給が最優先される分岐回路、上記の優先順位の1位及び2位、又は上記の優先順位の1位から3位までを停電時に電力供給が優先される分岐回路として表示するようにしてもよい。   Further, in the present embodiment, depending on the time zone when the power failure occurs, from the branch circuit where power supply is given the highest priority in the event of a power failure, the first and second priority of the above priority, or the first priority of the above priority Up to the third place may be displayed as a branch circuit in which power supply is prioritized during a power failure.

例えば深夜であれば、電力消費量は少ないと思われるので、優先順位の1位から3位までを停電時に電力供給が優先される分岐回路として表示し、昼間等の電力消費量の多い時間帯の停電では、電力供給が最優先される分岐回路を表示することが考えられる。   For example, power consumption is considered to be small at midnight, so the 1st to 3rd priority orders are displayed as branch circuits where power supply is prioritized during a power outage, and hours when power consumption is high during the daytime etc. In the case of a power failure, it may be possible to display a branch circuit where power supply is given the highest priority.

また、HEMS30は、蓄電池及び自家発電装置から供給可能な電力を予め把握しておき、いわゆる計画停電で、停電が開始される時刻及び該停電が終了する時刻が予め明らかである場合に、加点の和が大きく優先順位が高い分岐回路の中から当該計画停電の間に電力の供給が可能な分岐回路を判断し、当該判断結果を表示部46に表示するようにしてもよい。   In addition, the HEMS 30 knows in advance the power that can be supplied from the storage battery and the private power generator, and when the time at which the blackout is started and the time at which the blackout ends is clear in advance in a so-called planned power outage, A branch circuit that can supply power during the planned power failure may be determined from branch circuits having a high sum and high priority, and the determination result may be displayed on the display unit 46.

計画停電の情報は、ネットワークを経由して取得可能であってもよいし、操作部48から入力されたものであってもよい。   The information on the planned power outage may be acquired via a network or may be input from the operation unit 48.

例えば、HEMS30は、計画停電の情報から当該計画停電の期間を抽出し、メモリ50に記憶した複数の分岐回路の各々の消費電力量に基づいて当該計画停電の期間に各分岐回路が消費する電力量を推定する。   For example, the HEMS 30 extracts the period of the planned power outage from the information on the planned power outage, and the power consumed by each branch circuit during the period of the planned power outage based on the power consumption amount of each of the plurality of branch circuits stored in the memory 50. Estimate the amount.

推定した電力量と蓄電池60の蓄電量とを比較し、推定した電力量が蓄電池60の蓄電量以下の場合は、計画停電時にすべての分岐回路に蓄電池60の電力を供給する。   The estimated amount of electric power is compared with the amount of electricity stored in the storage battery 60. If the estimated amount of electric power is equal to or less than the amount of electricity stored in the storage battery 60, the electric power of the storage battery 60 is supplied to all branch circuits at the time of a planned power outage.

推定した電力量が蓄電池60の蓄電量を超える場合は、計画停電時に優先順位において上位に規定されている分岐回路に蓄電池60の電力を供給する。   When the estimated electric power amount exceeds the electric storage amount of the storage battery 60, the electric power of the storage battery 60 is supplied to the branch circuit defined in the higher order in the priority order at the time of the planned power outage.

蓄電池60の蓄電量は、蓄電池制御装置62が計測した蓄電池60の電圧値から算出可能であり、各分岐回路の消費電力量は、電流センサ22A〜22Cによって計測された電流値から算出できる。   The storage amount of the storage battery 60 can be calculated from the voltage value of the storage battery 60 measured by the storage battery control device 62, and the power consumption amount of each branch circuit can be calculated from the current values measured by the current sensors 22A to 22C.

また、蓄電池60に加えて太陽光発電装置16のような自家発電装置による電力を利用できる場合には、計画停電の期間に各分岐回路が消費する電力量として推定した電力量と蓄電池60の蓄電量と自家発電装置の発電量とを比較する。   Moreover, when the electric power by a private power generation device such as the solar power generation device 16 can be used in addition to the storage battery 60, the amount of power estimated as the amount of power consumed by each branch circuit during the planned power outage and the storage of the storage battery 60 Compare the amount of power with the amount of power generated by the private power generator.

推定した電力量が蓄電池60の蓄電量と自家発電装置の発電量との合計以下の場合は、計画停電時にすべての分岐回路に蓄電池及び自家発電装置の電力を供給する。   When the estimated power amount is equal to or less than the sum of the power storage amount of the storage battery 60 and the power generation amount of the private power generation device, the power of the storage battery and the private power generation device is supplied to all branch circuits at the time of the planned power outage.

推定した電力量が蓄電池60の蓄電量と自家発電装置の発電量との合計を超える場合は、計画停電時に優先順位において上位に規定されている分岐回路に蓄電池及び自家発電装置の電力を供給する。   When the estimated power amount exceeds the sum of the power storage amount of the storage battery 60 and the power generation amount of the private power generation device, the power of the storage battery and the private power generation device is supplied to the branch circuit defined in the higher order in the priority order at the time of the planned power outage .

本実施の形態では、自家発電装置が内燃機関による発電装置、燃料電池又は太陽光発電装置の場合は、これらの発電装置の定格出力等に基づいて、自家発電装置が供給可能な電力を把握することができる。   In the present embodiment, when the private power generation device is a power generation device by an internal combustion engine, a fuel cell, or a solar power generation device, the power that can be supplied by the private power generation device is grasped based on the rated output of these power generation devices. be able to.

又は、自家発電装置の発電量を計測するための電流センサ及び電圧センサを別途備えるようにしてもよい。   Or you may make it provide separately the current sensor and voltage sensor for measuring the electric power generation amount of a private power generation device.

当該電流センサ及び電圧センサが計測した結果をメモリ50に累積的に記憶しておき、所定期間における当該電流センサ及び電圧センサが計測した結果の平均値に基づいて、自家発電装置が供給可能な電力を把握することができる。   The electric power that can be supplied by the private power generation device based on the average value of the results measured by the current sensor and the voltage sensor in a predetermined period, cumulatively stored in the memory 50, the results measured by the current sensor and the voltage sensor. Can be grasped.

なお、所定期間は、最近1週間、最近1カ月等のある程度の長さの期間であればよい。   The predetermined period may be a period of a certain length such as the last week or the last month.

また、本実施の形態では、表示部46に、蓄電池又は自家発電装置が供給可能な電力と各分岐回路の消費電力量とから蓄電池又は自家発電装置によって電力供給が可能な時間を表示するようにしてもよい。   In the present embodiment, the display unit 46 displays the time during which power can be supplied by the storage battery or the private power generator from the power that can be supplied by the storage battery or the private power generator and the power consumption of each branch circuit. May be.

例えば、表示部46に、「冷蔵庫及び24時間動作機器以外の全機器の電源をOFFとすることとで、あと5時間電力を供給できます」というメッセージを表示させ、ユーザに節電を促すことも可能である。   For example, the display unit 46 may display a message “Power can be supplied for another 5 hours by turning off the power of all devices other than the refrigerator and the 24-hour operation device” to prompt the user to save power. Is possible.

以上説明したように、本実施の形態では、各分岐回路の電力の消費の傾向から優先的に電力を供給すべき分岐回路を決定し、停電時に蓄電池又は自家発電装置から電力が供給される電力負荷手段を限定できるバックアップ給電システムを提供することができる。   As described above, in the present embodiment, the branch circuit to which power is to be preferentially supplied is determined based on the power consumption tendency of each branch circuit, and the power supplied from the storage battery or the private power generator during a power failure A backup power supply system capable of limiting the load means can be provided.

10 建物
12 系統電力
14 分電盤
16 太陽光発電装置
18 太陽光発電制御装置
20A、20B、20C 分岐回路
22A、22B、22C 電流センサ
22A、22B、22C 分岐回路
24A、24B、24C 分岐ブレーカー
30 HEMS
32 家電機器
34 住設機器
36 CPU
38 ROM
40 RAM
46 表示部
48 操作部
50 メモリ
60 蓄電池
62 蓄電池制御装置
72、74 HEMSバックアップ電力線
100 主幹ブレーカー
120 主幹ブレーカー電流センサ
DESCRIPTION OF SYMBOLS 10 Building 12 System electric power 14 Distribution board 16 Photovoltaic power generation device 18 Photovoltaic power generation control device 20A, 20B, 20C Branch circuit 22A, 22B, 22C Current sensor 22A, 22B, 22C Branch circuit 24A, 24B, 24C Branch breaker 30 HEMS
32 Home appliance 34 Housing equipment 36 CPU
38 ROM
40 RAM
46 Display Unit 48 Operation Unit 50 Memory 60 Storage Battery 62 Storage Battery Control Device 72, 74 HEMS Backup Power Line 100 Main Breaker 120 Main Breaker Current Sensor

Claims (5)

自家発電手段と、
系統電力又は前記自家発電手段から供給された電力で充電される蓄電池と、
前記蓄電池の蓄電量を計測する蓄電量計測手段と、
複数の分岐回路のいずれか1つを介して前記系統電力、前記自家発電手段又は前記蓄電池から電力が供給される複数の電力負荷手段と、
前記複数の電力負荷手段による消費電力量を前記複数の分岐回路の各々について計測すると共に前記複数の分岐回路の各々で電力を消費した時間を計測可能な電力負荷計測手段と、
前記複数の分岐回路の少なくともいずれか1つを指定可能な入力手段と前記蓄電量計測手段が計測した前記蓄電池の蓄電量及び前記電力負荷計測手段が計測した消費電力量を表示する表示手段とを含み、前記系統電力が停電した場合は、前記電力負荷計測手段が計測した前記複数の分岐回路の各々における消費電力量及び前記複数の分岐回路の各々で電力を消費した時間に基づいて前記複数の分岐回路の各々に接続されている電力負荷手段の属性を推定することにより前記複数の分岐回路の各々の優先順位を決定し、該優先順位の高い順に前記複数の分岐回路を前記表示手段に表示させ、前記表示手段に表示された分岐回路のうち前記入力手段によって指定された分岐回路に前記自家発電手段又は前記蓄電池の電力を供給する給電制御装置と、
を有するバックアップ給電システム。
Own power generation means,
A storage battery charged with system power or power supplied from the private power generation means;
A storage amount measuring means for measuring a storage amount of the storage battery;
A plurality of power load means to which power is supplied from the grid power, the private power generation means or the storage battery via any one of a plurality of branch circuits ;
A power load measuring means capable of measuring the amount of power consumed by each of the plurality of power load means for each of the plurality of branch circuits and measuring the time consumed by each of the plurality of branch circuits;
Input means capable of designating at least one of the plurality of branch circuits , and display means for displaying the storage amount of the storage battery measured by the storage amount measurement means and the power consumption measured by the power load measurement means. Including the plurality of branch circuits based on the amount of power consumed in each of the plurality of branch circuits measured by the power load measuring means and the time when power is consumed in each of the plurality of branch circuits. The priority of each of the plurality of branch circuits is determined by estimating the attribute of the power load means connected to each of the branch circuits, and the plurality of branch circuits are displayed on the display means in descending order of priority. is allowed, and the power supply control device supplies electric power of the private power generation means or the storage battery to the designated branch circuit by the input means of the branch circuit which is displayed on the display means
A backup power supply system.
前記給電制御装置は、冷蔵庫が接続されていると推定された分岐回路に最大の加点を、24時間動作する機器が接続されていると推定された分岐回路に2番目に大きな加点を、停電の直前に使用されていた電力負荷手段が接続されていた分岐回路に3番目に大きな加点を、前回停電時に電力が供給される分岐回路として指定された分岐回路に4番目に大きな加点を、各々行い、加点の和が大きい順に従って前記優先順位を決定する請求項1記載のバックアップ給電システム。The power supply control device gives the largest additional point to the branch circuit estimated to be connected to the refrigerator, the second largest additional point to the branch circuit estimated to be connected to a device that operates for 24 hours, and The third largest point is added to the branch circuit to which the power load means used immediately before is connected, and the fourth largest point is added to the branch circuit designated as the branch circuit to which power is supplied at the previous power failure. The backup power supply system according to claim 1, wherein the priority order is determined in descending order of the sum of added points. 前記給電制御装置は、前記複数の分岐回路の各々について最大消費電力と平均消費電力とを算出し、最大消費電力と平均消費電力との差が判定値を超えた分岐回路に冷蔵庫が接続されていると推定する請求項2に記載のバックアップ給電システム。The power supply control device calculates a maximum power consumption and an average power consumption for each of the plurality of branch circuits, and a refrigerator is connected to the branch circuit in which a difference between the maximum power consumption and the average power consumption exceeds a determination value. The backup power supply system according to claim 2, which is estimated to be present. 前記給電制御装置は、前記複数の分岐回路の各々について24時間内での最小消費電力を算出し、該最小消費電力が0Wではない分岐回路に24時間動作する機器が接続されていると推定する請求項2又は3に記載のバックアップ給電システム。The power supply control device calculates a minimum power consumption within 24 hours for each of the plurality of branch circuits, and estimates that a device that operates for 24 hours is connected to a branch circuit whose minimum power consumption is not 0 W. The backup power supply system according to claim 2 or 3. 前記給電制御装置は、所定時間内に前記入力手段による分岐回路の指定がない場合には、前記優先順位に従って前記複数の分岐回路に前記自家発電手段又は前記蓄電池の電力を供給する請求項1〜4のいずれか1項に記載のバックアップ給電システム。The power supply control device supplies power of the private power generation means or the storage battery to the plurality of branch circuits according to the priority when there is no branch circuit designation by the input means within a predetermined time. 5. The backup power supply system according to any one of 4 above.
JP2012136619A 2012-06-18 2012-06-18 Backup power supply system Active JP5964668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012136619A JP5964668B2 (en) 2012-06-18 2012-06-18 Backup power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012136619A JP5964668B2 (en) 2012-06-18 2012-06-18 Backup power supply system

Publications (2)

Publication Number Publication Date
JP2014003780A JP2014003780A (en) 2014-01-09
JP5964668B2 true JP5964668B2 (en) 2016-08-03

Family

ID=50036415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012136619A Active JP5964668B2 (en) 2012-06-18 2012-06-18 Backup power supply system

Country Status (1)

Country Link
JP (1) JP5964668B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6275020B2 (en) * 2014-01-14 2018-02-07 三菱電機株式会社 Energy management system
JP6292515B2 (en) * 2014-04-08 2018-03-14 パナソニックIpマネジメント株式会社 Demand forecasting device, program
US10817789B2 (en) * 2015-06-09 2020-10-27 Opower, Inc. Determination of optimal energy storage methods at electric customer service points

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002279572A (en) * 2001-03-22 2002-09-27 Osaka Gas Co Ltd Utility use quantity measurement system and method
JP4606389B2 (en) * 2006-06-28 2011-01-05 大阪瓦斯株式会社 Distributed generator control system
JP2009153304A (en) * 2007-12-20 2009-07-09 Panasonic Electric Works Co Ltd Power supply system
JP5513819B2 (en) * 2009-09-15 2014-06-04 パナソニック株式会社 Power distribution system
WO2012014731A1 (en) * 2010-07-30 2012-02-02 三洋電機株式会社 Demand control device

Also Published As

Publication number Publication date
JP2014003780A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
EP2479867B1 (en) Power distribution system
US20120229077A1 (en) Electric power supply system and method for controlling electric power discharge
JP5845066B2 (en) Power supply system
JP5690618B2 (en) Battery charge control system
KR101318891B1 (en) Power management system and operating method thereof
CN102334261A (en) Power control device and method
JP2012147621A (en) Blackout relief system
JP2013110944A (en) Power management system
JP2012095424A (en) Power managing system
JP2013020488A (en) Home energy management system
WO2015118844A1 (en) Energy management device and energy management method
JPWO2015056634A1 (en) Power storage system
JP2018038238A (en) Power control system and power control method
JP2013255394A (en) Energy management control system
JP5964668B2 (en) Backup power supply system
JP2011200102A (en) Power storage system
JP6246091B2 (en) Power supply system
JP2014023276A (en) Storage battery control system
JPWO2018047415A1 (en) Power storage device and power supply system
JP2020061800A (en) Charging method and control device
JP6037678B2 (en) Storage battery charge / discharge control device and storage battery charge / discharge control system
JP6054670B2 (en) Power supply system
JP5940321B2 (en) Power supply system
JP2017195752A (en) Electric power control system and power control method
JP5851359B2 (en) Storage battery control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160630

R150 Certificate of patent or registration of utility model

Ref document number: 5964668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250