JP5963254B2 - Method and apparatus for measuring plant moisture transpiration - Google Patents

Method and apparatus for measuring plant moisture transpiration Download PDF

Info

Publication number
JP5963254B2
JP5963254B2 JP2012167552A JP2012167552A JP5963254B2 JP 5963254 B2 JP5963254 B2 JP 5963254B2 JP 2012167552 A JP2012167552 A JP 2012167552A JP 2012167552 A JP2012167552 A JP 2012167552A JP 5963254 B2 JP5963254 B2 JP 5963254B2
Authority
JP
Japan
Prior art keywords
amount
light
transpiration
condensation
glass plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012167552A
Other languages
Japanese (ja)
Other versions
JP2013050444A (en
Inventor
竜二 兵頭
竜二 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP2012167552A priority Critical patent/JP5963254B2/en
Publication of JP2013050444A publication Critical patent/JP2013050444A/en
Application granted granted Critical
Publication of JP5963254B2 publication Critical patent/JP5963254B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、植物の葉から蒸散する水分量を、光計測技術を使って計測する方法と、その装置に関する。   The present invention relates to a method and an apparatus for measuring the amount of water transpiration from the leaves of a plant using an optical measurement technique.

従来、植物の葉から蒸散する水分量、あるいはその蒸散速度は、湿度を計測する技法を応用して計測されている。その代表的な方法として、電子部品である水蒸気センサを用いる方法などがある。   Conventionally, the amount of water transpiration from the leaves of plants or the transpiration rate thereof is measured by applying a technique for measuring humidity. As a typical method, there is a method using a water vapor sensor which is an electronic component.

この電子部品である水蒸気センサを用いる方法は、例えば、水分の存在に対して電気抵抗や静電容量などの電子特性が変化する半導体材料などから形成されるセンサ・デバイスを準備し、これを植物緑葉の裏面に固定する。そして、緑葉裏面に存在する気孔から蒸散する水分が、先のセンサ・デバイスを透過することなどによって生じた電子特性の変化を読み取り、目的の蒸散量、あるいは蒸散速度を計測するものである。   This method of using a water vapor sensor, which is an electronic component, prepares a sensor device formed from a semiconductor material whose electronic properties such as electric resistance and capacitance change with the presence of moisture, and uses this as a plant. Fix to the back of the green leaf. Then, the moisture that evaporates from the pores on the backside of the green leaf reads the change in the electronic characteristics caused by the permeation of the previous sensor device and the like, and measures the target evaporation amount or evaporation rate.

なお、電子部品である水蒸気センサを用いるこの方法が引用文献2に開示されているが、電子部品の感度域によっては、草本類などで蒸散の比較的多い植物の測定には適するが、木本類などで蒸散量の比較的少ない植物の測定では、測定限界以下となり、正しい測定値が出てこないなどの問題がある。また、この水蒸気センサが電子部品であるため、蒸散量が極端に激しいとき、水分に直接曝される電子部品が回復不可能な性能劣化を起こすこともある。このため、蒸散が激しいときには測定できないなどの問題もある。   Although this method using a water vapor sensor which is an electronic component is disclosed in Cited Document 2, depending on the sensitivity range of the electronic component, it is suitable for measuring plants with relatively high transpiration such as herbs, but Kimoto When measuring plants with a relatively small amount of transpiration such as varieties, there is a problem that the measurement value is below the measurement limit and correct measurement values are not output. In addition, since the water vapor sensor is an electronic component, when the transpiration amount is extremely severe, the electronic component directly exposed to moisture may cause irrecoverable performance deterioration. For this reason, there is a problem that measurement cannot be performed when transpiration is severe.

気体中の水分量などを安定して測定する方法として、引用文献3〜9の鏡面冷却式露点計などを利用した方法がある。この鏡面冷却式露点計の基本的な測定方式は、内部に持つ鏡面をゆっくりと冷却し、その鏡面に結露が発生した時の温度を読み取る方式である。このため、植物緑葉などから連続して放出される水分量を時間を追って計測するのは難しい。   As a method for stably measuring the amount of moisture in the gas, there is a method using the mirror-cooled dew point meter of Cited Documents 3-9. The basic measurement method of this mirror-cooled dew point meter is a method in which the mirror surface inside is slowly cooled and the temperature when condensation occurs on the mirror surface is read. For this reason, it is difficult to measure the amount of water continuously released from plant green leaves and the like over time.

吸湿性の塩化コバルト紙を植物の葉に貼付させて、その紙の色の変化から植物用体内水分ストレス表示する技術が特許文献1に開示されているが、これでは人間の目視によって確認する方法であり、正確な植物水分蒸散量の計数的な計測はできない。   Patent Document 1 discloses a technique in which hygroscopic cobalt chloride paper is pasted on a plant leaf and the moisture stress in the plant is displayed based on the change in color of the paper. Therefore, it is impossible to accurately measure the amount of plant water transpiration.

特開2007−232572号公報JP 2007-232572 A 特開2009−115671号公報JP 2009-115671 A 特開1993−099846号公報Japanese Patent Laid-Open No. 1993-099846 特開1994−058891号公報JP-A-1994-058891 特開2003−194756号公報JP 2003-194756 A 特開2006−126097号公報JP 2006-126097 A 特開2007−192715号公報JP 2007-192715 A 特開2009−150808号公報JP 2009-150808 A 特開2010−107338号公報JP 2010-107338 A

植物緑葉の裏面に多く存在する気孔からの蒸散量あるいは蒸散速度を計測する場合、蒸散量が極端に少ない時、その蒸散量を高感度に測定する必要がある。また同時に、蒸散量が極端に多い時でも、蒸散する水分によってセンサ・デバイスの性能を劣化させることなく、使用できる必要がある。
本発明が解決しようとする課題は、植物緑葉からの蒸散量あるいは蒸散速度を計測する方法において、蒸散量が少ない時でも高感度に測定でき、かつ、蒸散量が多い時でも、その水分によって劣化しにくいセンサ・デバイスを実現することにある。加えて、そのセンサ・デバイスを用いて、植物の水分蒸散量の計測方法及び装置を提供することにある。
When measuring the transpiration rate or the transpiration rate from the pores existing on the back of plant green leaves, when the transpiration rate is extremely small, it is necessary to measure the transpiration rate with high sensitivity. At the same time, even when the amount of transpiration is extremely large, the sensor device must be used without degrading the performance of the transpiration.
The problem to be solved by the present invention is a method for measuring the transpiration amount or transpiration rate from plant green leaves, which can be measured with high sensitivity even when the transpiration amount is small, and deteriorates due to moisture even when the transpiration amount is large. It is to realize a sensor device that is difficult to perform. In addition, an object of the present invention is to provide a method and apparatus for measuring the amount of moisture transpiration of a plant using the sensor device.

かかる課題を解決した本発明の構成は、
1) 植物の葉からの水分の蒸散量を計測する装置であって、
被測定気体で満たされる一部の開口部を除いて密閉された空間に配置されるガラス板と、同ガラス板を冷却する冷却手段と、ガラス板に光を入射する発光部と、同発光部から入射された光が前記ガラス板を通過して出てきた透過光を受光する第1の受光部と、前記発光部から入射された光が前記ガラス板の被測定気体に曝されている面にできた露によって散乱透過して出てきた散乱透過光を受光する第2の受光部と、前記の第1及び第2の受光部の受光量の結露量に応じた変化及び結露量と葉からの水分の蒸散量の関係を予め記憶して、第1と第2の受光部の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置と、からなる葉からの水分蒸散量の計測装置を用い、
空間の開口部に木の葉を押し当てて閉鎖し、冷却手段を用いてガラス板を冷却してガラス表面を結露させ、その状態で発光部から光を入射させ、第1と第2の受光部の光量を結露量測定装置に入力して、光量差から結露量と水分の蒸散量を算出する植物の葉からの水分の蒸散量の計測方法
2) 植物の葉からの水分の蒸散量を計測する装置であって、
被測定気体で満たされる一部の開口部を除いて密閉された空間に配置されるガラス板と、同ガラス板を冷却する冷却手段と、ガラス板に光を入射する発光部と、同発光部から入射された光が前記ガラス板を通過して出てきた透過光を受光する第1の受光部と、前記発光部から入射された光が前記ガラス板の被測定気体に曝されている面にできた露によって散乱透過して出てきた散乱透過光を受光する第2の受光部と、前記の第1及び第2の受光部の受光量の結露量に応じた変化及び結露量と葉からの水分の蒸散量の関係を予め記憶して、第1と第2の受光部の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置と、からなる葉からの水分蒸散量の計測装置を近接して二装置設け、一方の計測装置の空間の開口部を閉鎖し、又二つの計測装置の空間を開閉可能として連通させる換気口を設ける装置とし、
換気口を開いて空間を開放した後、全ての換気口を閉じ、一方の空間の開口部に木の葉の面を押し当てて閉鎖し、更に二つの空間の冷却手段でガラス板を冷却してガラス板表面に結露を発生させ、その後、各空間の発光部LDを作動させてガラス板に光を入射させ、各空間の第1,第2の受光部の受光量を結露量測定装置に入力し、開口部を閉鎖した受光部の受光量から計算した蒸散量を、開口部に葉を押し当てた空間の受光部の受光量から計算した蒸散量から差し引いて、大気の湿度の影響を少なくした植物の葉からの水分の蒸散量の計測方法
3) 一体のガラス板上面に2つの被測定気体で満される空間を空間の仕切りで分割して設けるとともに、一つの空間には木の葉を押し当てて閉鎖される開口部を設け、前記ガラス板Gを冷却するペルチェ素子Peを設け、前記ガラス板Gに光を入射する発光部LDを一つ設け、又ガラス板の上面の露によって散乱透過してくる各2つの空間からの散乱透過光を受光する受光部PD 21 とPD 22 とを設け、同受光部PD 21 ,PD 22 の受光量の結露量に応じた変化と結露量と葉からの水分の蒸散量の関係を予め記憶して、2つの前記受光部PD 21 ,PD 22 の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置とからなる、葉からの水分蒸散量の計測装置
にある。
The configuration of the present invention that solves this problem is
1) A device for measuring the amount of water transpiration from the leaves of a plant,
A glass plate disposed in a hermetically sealed space except for some openings filled with the gas to be measured, a cooling means for cooling the glass plate, a light emitting unit for entering light into the glass plate, and the light emitting unit A first light receiving unit that receives transmitted light that has passed through the glass plate, and a surface on which the light incident from the light emitting unit is exposed to the gas to be measured. A second light-receiving unit that receives scattered and transmitted light that has been scattered and transmitted by the dew formed on the surface, a change in the amount of light received by the first and second light-receiving units according to the amount of dew condensation, and the amount of dew condensation and the leaf A condensation amount measuring device for preliminarily storing the relationship between the amount of transpiration of moisture from the water, calculating the amount of condensation from the light amounts measured by the first and second light receiving units, and determining the corresponding amount of transpiration of moisture from the leaves; Using a device for measuring the amount of water transpiration from the leaves
A leaf is pressed against the opening of the space to close it, the glass plate is cooled using a cooling means to condense the glass surface, light is incident from the light emitting part in this state, and the first and second light receiving parts enter the amount of light condensation measuring apparatus, measurement method 2 of transpiration of moisture from the leaves of a plant for calculating the transpiration amount of condensation amount and moisture from the light amount difference) measures the transpiration of moisture from the leaves of the plant A device,
A glass plate disposed in a hermetically sealed space except for some openings filled with the gas to be measured, a cooling means for cooling the glass plate, a light emitting unit for entering light into the glass plate, and the light emitting unit A first light receiving unit that receives transmitted light that has passed through the glass plate, and a surface on which the light incident from the light emitting unit is exposed to the gas to be measured. A second light-receiving unit that receives scattered and transmitted light that has been scattered and transmitted by the dew formed on the surface, a change in the amount of light received by the first and second light-receiving units according to the amount of dew condensation, and the amount of dew condensation and the leaf A condensation amount measuring device for preliminarily storing the relationship between the amount of transpiration of moisture from the water, calculating the amount of condensation from the light amounts measured by the first and second light receiving units, and determining the corresponding amount of transpiration of moisture from the leaves; Two measuring devices for measuring the amount of moisture transpiration from the leaves are provided in close proximity, and the opening of one measuring device space The closed, and the two measuring devices providing communicated to vent as that open space of the apparatus,
After opening the vents and opening the spaces, all vents are closed, the surface of the leaves is pressed against the opening of one space and closed, and the glass plate is cooled by the cooling means of the two spaces. Condensation is generated on the surface of the plate, and then the light emitting unit LD in each space is operated to cause light to enter the glass plate, and the received light amounts of the first and second light receiving units in each space are input to the condensation amount measuring device. The amount of transpiration calculated from the amount of light received by the light receiving unit with the opening closed is subtracted from the amount of transpiration calculated from the amount of light received from the light receiving unit in the space where the leaf is pressed against the opening to reduce the influence of atmospheric humidity. Method for measuring moisture transpiration from plant leaves 3) A space filled with two gases to be measured is provided on the upper surface of an integrated glass plate by dividing the space, and leaves are pressed against one space. And an opening that is closed to close the glass plate G. A light receiving unit for receiving scattered and transmitted light from each of the two spaces scattered and transmitted by dew on the upper surface of the glass plate. PD 21 and PD 22 are provided, and a change in accordance with the dew amount of the light receiving amount of the light receiving parts PD 21 and PD 22 and a relationship between the dew amount and the transpiration amount of moisture from the leaf are stored in advance, and the two light receiving units A device for measuring the amount of moisture transpiration from the leaf, comprising a condensation amount measuring device for calculating the amount of condensation from the measured light quantity of the parts PD 21 and PD 22 and obtaining the corresponding amount of transpiration from the leaf.

本発明によれば、例えば水蒸気センサなどの様に、直接に水分に曝される電子部品が無い。このため、蒸散する水分によってセンサ・デバイスの性能が劣化するような問題が生じない。また、本発明によれば、結露量によって、植物緑葉からの蒸散量あるいは蒸散速度を計測する。このため、蒸散量が少ない時でも高感度に測定できる。
本発明は、このように、蒸散量が多い時でも、その水分によって劣化しにくいセンサ・デバイスの提供を可能にする。加えて、そのセンサ・デバイスを用いて、植物の水分蒸散量の高感度に計測する装置の提供を可能にする。
According to the present invention, there is no electronic component that is directly exposed to moisture, such as a water vapor sensor. For this reason, the problem that the performance of a sensor device deteriorates by the water | moisture content to evaporate does not arise. Moreover, according to this invention, the transpiration | evaporation amount or transpiration | evaporation rate from a plant green leaf is measured with the amount of dew condensation. For this reason, even when the amount of transpiration is small, it can be measured with high sensitivity.
Thus, the present invention makes it possible to provide a sensor device that is not easily deteriorated by moisture even when the amount of transpiration is large. In addition, it is possible to provide an apparatus for measuring the moisture transpiration of plants with high sensitivity using the sensor device.

図1は、本発明の植物の水分蒸散量の計測方法と装置の実施例1を示す説明図である。FIG. 1 is an explanatory view showing Example 1 of a method and apparatus for measuring the amount of moisture transpiration of a plant according to the present invention. 図2は、実施例1の二つの受光部の透過光量の時間的変化を示す動作説明図である。FIG. 2 is an operation explanatory diagram illustrating temporal changes in the amount of light transmitted through the two light receiving units according to the first embodiment. 図3は、実施例2の装置と方法を示す説明図である。FIG. 3 is an explanatory diagram illustrating an apparatus and a method according to the second embodiment. 図4は、実施例3の装置と方法を示す説明図である。FIG. 4 is an explanatory diagram illustrating an apparatus and a method according to the third embodiment.

図を用いて、実施例を説明する。   Embodiments will be described with reference to the drawings.

(実施例1)
図1は、本発明の実施例1の方法と装置を示している。
まず、図中で破線の四角で囲った部分である被測定気体で満たされる一部の開口部Kを除いて密閉された空間Sの中に、ペルチェ素子Peを用いた冷却手段を取り付けたガラス板Gを配置する。ガラス板Gの表面温度を測定する温度センサー(図示せず)を設けている。この温度センサーは、想定外の異常温度を検出するためのものである。
そして、ガラス板Gの長手方向にレーザ・ダイオードや発光ダイオードなどの光源の発光部LDから、光を入射する。また同時に、このガラス板Gの中を長手方向に透過して出てきた光を捉える第1の受光部PDと、このガラス板Gの前面に飛び出してくる光を捉える第2のPDを準備する。
Example 1
FIG. 1 shows the method and apparatus of Example 1 of the present invention.
First, glass in which cooling means using a Peltier element Pe is attached in a sealed space S except for a part of an opening K filled with a gas to be measured, which is a portion surrounded by a broken-line square in the figure. A plate G is arranged. A temperature sensor (not shown) for measuring the surface temperature of the glass plate G is provided. This temperature sensor is for detecting an unexpected abnormal temperature.
Then, light enters from the light emitting part LD of the light source such as a laser diode or a light emitting diode in the longitudinal direction of the glass plate G. At the same time, a first light-receiving unit PD 1 that captures light that has been transmitted through the glass plate G in the longitudinal direction and a second PD 2 that captures light that jumps out from the front surface of the glass plate G are provided. prepare.

図1に示した被測定気体で満たされる空間Sに設けた開口部Kを水分蒸散の被測定物Leの葉で塞いだ状態で、ガラス板Gをペルチェ素子Peで冷却すれば、ガラス板Gに水分が結露して、次第にその結露量が増加する。この時のガラス板G表面に付く露と、2つの受光部PD,PDでの受光量の時間変化を模式的に表したのが図2である。
ガラス板G表面に露が無い状態では、発光部LDから入射した光は、ガラス板Gの中を全反射するなどして伝搬し、第1の受光部PDに到達する。また、このとき、ガラス板Gから表面に飛び出した光の一部は、受光部PDに到達する。
ガラス板Gが冷却され、その表面に露が形成すると、ガラス板Gの中を全反射するなどして伝搬していた光の一部は、露によって表面に散乱される。このため、露の成長にともない、受光部PDでの受光量は減少し、受光部PDでの受光量は増加する。
そして、露の量がある程度以上になると、受光部PDと受光部PDでの受光量の変化は殆ど無くなる。
これら2つの受光部PD,PDでの受光量の変化具合から、結露量を推定する。あらかじめ、空間S中の水の蒸散量とPD,PDの受光量差の関係を記憶させ、結露量測定装置KSでもって受光部PD,PDから蒸散量が特定できるようにする。
If the glass plate G is cooled by the Peltier element Pe in a state where the opening K provided in the space S filled with the gas to be measured shown in FIG. Moisture is condensed on the surface, and the amount of condensation gradually increases. FIG. 2 schematically shows the dew on the surface of the glass plate G at this time and the temporal change in the amount of light received by the two light receiving portions PD 1 and PD 2 .
In a state where there is no dew on the surface of the glass plate G, the light incident from the light emitting portion LD propagates through the glass plate G, for example, by total reflection, and reaches the first light receiving portion PD1. At this time, part of the light jumped on the surface of the glass sheet G reaches the light receiving unit PD 2.
When the glass plate G is cooled and dew is formed on the surface thereof, a part of the light propagating by totally reflecting the inside of the glass plate G is scattered on the surface by the dew. Thus, with the growth of dew, the amount of light received by the light receiving unit PD 1 decreases, the amount of light received by the light receiving portion PD 2 is increased.
When the amount of dew becomes a certain degree or more, the amount of light received variation of the light-receiving portion PD 1 and the light-receiving portion PD 2 are almost eliminated.
The amount of dew condensation is estimated from the degree of change in the amount of light received by these two light receiving parts PD 1 and PD 2 . The relationship between the transpiration amount of water in the space S and the difference between the received light amounts of PD 1 and PD 2 is stored in advance, and the transpiration amount can be specified from the light receiving parts PD 1 and PD 2 by the dew condensation amount measuring device KS.

受光部PD,PDでの受光量d,dと発光部LDの発光信号lは、結露量測定装置KSに入力される。結露量測定装置KSは、コンピュータとメモリとプログラムソフトを用いて蒸散量を計算するソフトが記憶されている。予め、受光量d,dのデータから木の葉の蒸散量Tの式として受光量d,dとの下記の関係式を想定し、その係数a,a,a,aを実験的に求めておく。そして、実際の計測における受光部PD,PDの受光量d,dを下式に代入して蒸散量Tを求める。蒸散速度は、蒸散量の時間的変化として算出される。 Emission signal l 1 of the light-receiving amount d 1, d 2 and the light emitting portion LD of the light-receiving portion PD 1, PD 2 is input to the condensation amount measuring device KS. The dew condensation measuring device KS stores software for calculating the amount of transpiration using a computer, memory and program software. The following relational expressions with the received light quantities d 1 and d 2 are assumed as the expression of the transpiration amount T of the leaves from the data of the received light quantities d 1 and d 2 in advance, and the coefficients a 3 , a 2 , a 1 and a 0 Is obtained experimentally. Then, the transpiration amount T is obtained by substituting the received light amounts d 1 and d 2 of the light receiving parts PD 1 and PD 2 in the actual measurement into the following equation. The transpiration rate is calculated as a temporal change in the transpiration rate.

受光部PDの受光量データをd、受光部PDの受光量データをdとするとき、蒸散量Tは、次式で算出される。
T=a(d−d+a(d−d+a(d−d)+a
尚、ここで、この多項式の係数(a,a,a,a)は実験的に求められる値である。
When the received light amount data of the light receiving unit PD 1 is d 1 and the received light amount data of the light receiving unit PD 2 is d 2 , the transpiration amount T is calculated by the following equation.
T = a 3 (d 2 -d 1 ) 3 + a 2 (d 2 -d 1 ) 2 + a 1 (d 2 -d 1 ) + a 0
Here, the coefficients (a 3 , a 2 , a 1 , a 0 ) of this polynomial are values obtained experimentally.

前述の実施例1において、光源の発光部LDの波長を、水による吸収が強いものにすれば、受光部PDで検出される受光量は、露による吸収の影響を受け、少ないものとなる(図2中のPD(ただし、λ’)と記載された破線のグラフ)。この特性を活用して、複数波長の発光部LDを用いれば、より高精度に結露量を推定することが可能となる。 In the above-described first embodiment, the wavelength of the light emitting portion LD of the light source, if the stronger absorption by water, the received light quantity detected by the light receiving unit PD 2 is influenced by absorption by Russia, becomes less (Dotted line graph labeled PD 2 (λ ′) in FIG. 2). By utilizing this characteristic and using a light emitting unit LD having a plurality of wavelengths, it is possible to estimate the amount of condensation with higher accuracy.

(実施例2)
図3は、実施例1の装置を2台近接して設け、一方の空間Sの開口部Kを閉鎖して使用する実施例2を示す。
2つの結露量測定部である空間Sには、外気を取り入れるための開閉可能な換気口B,B,Bを持っている。また、一方の空間Sには実施例1と同じ開口部Kを設けている。
尚、発光部LD,受光部PD,PDは各空間Sに設けているが省略している。
2つの結露量測定部の中の被測定気体で満たされる空間S,Sの中に含まれる気体を外気と充分に交換した後、開閉可能な換気口B,B,Bを閉じると同時に、開口部Kを被測定物Leで塞ぐ。
その後、結露量測定部1の空間Sと結露量測定部2の空間Sに含まれるそれぞれのガラス板G,Gを冷却することで、被測定気体で満たされる空間S,Sの内部にある水蒸気をガラス板G,G表面に結露させる。
その後、発光部LDから光を入射し、各空間Sの第1,第2の受光部PD,PDの各光量のデータを結露量測定装置KSに入力させ、一方の空間は外気の湿度による蒸散量が計測され、それを被測定物Leを押し当てて開口部Kを閉鎖した方の蒸散量から差し引くことで、葉のみの水分の蒸散量を計測するものである。
これらの結露量を測定することで、植物緑葉からの蒸散量を測定する。
(Example 2)
FIG. 3 shows a second embodiment in which two devices of the first embodiment are provided close to each other and the opening K of one space S is closed.
The space S, which is the two dew condensation measurement units, has openable and closable ventilation ports B 1 , B 2 , B 3 for taking in outside air. One space S is provided with the same opening K as in the first embodiment.
The light emitting section LD, the light receiving unit PD 1, PD 2 is are provided on the respective spaces S are omitted.
When the gas contained in the spaces S and S filled with the gas to be measured in the two dew condensation measuring units is sufficiently exchanged with the outside air, and then the openable and closable vents B 1 , B 2 and B 3 are closed At the same time, the opening K is closed with the measurement object Le.
Thereafter, by cooling the glass plates G and G included in the space S of the condensation measurement unit 1 and the space S of the condensation measurement unit 2, the water vapor in the spaces S and S filled with the gas to be measured. Is condensed on the glass plates G and G surfaces.
After that, light is incident from the light emitting unit LD, and data of each light quantity of the first and second light receiving units PD 1 and PD 2 in each space S is input to the dew condensation amount measuring device KS, and one space is humidity of the outside air The amount of transpiration of the leaves is measured by subtracting it from the transpiration amount of the one that presses the measured object Le and closes the opening K to close the transpiration amount.
By measuring these amounts of condensation, the amount of transpiration from plant green leaves is measured.

(実施例3)
図4は、本発明の実施例3を示す説明図である。実施例3は、図3に示した実施例2を簡略化する形で実現した、植物緑葉の蒸散量計の別の実施例として、そのセンサ部分のみを示している。
2つの結露量測定部の受光部PD,PDは、それぞれのガラス板を一体のガラス板Gで構成し、ガラス板Gを冷却するそれぞれの冷却手段を一つのペルチェ素子Peを用いた冷却手段で構成し、そして当該ガラス板Gに光を入射する発光部LDを一つとし、さらに、当該ガラス板を通過して出てきた透過光を受光するそれぞれの受光部PDを省略している。
また、一体のガラス板Gが使用されているので、2つの結露量測定部のそれぞれの被測定気体で満たされる空間Sを構成するため、被測定気体で満たされる空間の仕切りMがある。
この構成で、2つの被測定気体で満たされる空間S,Sの内部にある水蒸気をガラス板G表面に結露させれば、それぞれの水蒸気量の違いによって、それぞれの結露量が異なる。そして結果として、露によって散乱透過して出てきた散乱透過光を受光するそれぞれの受光部PD21,PD22において受光量に差異が生じる。
この差異から水蒸気量の違いを推定して葉の蒸散量を算出する。
(Example 3)
FIG. 4 is an explanatory view showing Embodiment 3 of the present invention. Example 3 shows only the sensor portion as another example of the transpiration meter for plant green leaves, which is realized by simplifying Example 2 shown in FIG.
Receiving portions of the two condensation amount measuring unit PD 1, PD 2 is the respective glass plate is configured with integral glass plate G, using one of the Peltier elements Pe of each of the cooling means for cooling the glass sheet G Cooling constituted by means, and the one light emitting unit LD incident light on the glass sheet G, further omit the respective light receiving portion PD 1 for receiving the transmitted light coming out through the glass plate Yes.
Moreover, since the integral glass plate G is used, in order to constitute the space S filled with the measured gas of each of the two dew amount measurement units, there is a partition M of the space filled with the measured gas.
In this configuration, if the water vapor in the spaces S, S filled with the two gases to be measured is condensed on the surface of the glass plate G, the amount of dew condensation varies depending on the amount of water vapor. As a result, there is a difference in the amount of received light in each of the light receiving portions PD 21 and PD 22 that receive scattered transmitted light that has been scattered and transmitted by dew.
The difference in water vapor amount is estimated from this difference, and the transpiration amount of the leaf is calculated.

本発明は、植物緑葉からの蒸散量あるいは蒸散速度を計測する方法、およびその装置の製造方法として産業に寄与する。また、この測定の対象物は、植物緑葉だけに留まらない。本発明は、あらゆる物質からの蒸散量あるいは蒸散速度を計測する方法、およびその装置の製造方法として産業に寄与する。   The present invention contributes to the industry as a method for measuring the transpiration amount or transpiration rate from plant green leaves and a method for producing the device. Further, the object of measurement is not limited to plant green leaves. The present invention contributes to the industry as a method for measuring the transpiration rate or transpiration rate from any substance and a method for producing the apparatus.

S 空間
K 開口部
G ガラス板
Pe ペルチェ素子
LD 発光部
PD,PD,PD21,PD22 受光部
,B,B 換気口
H 放熱器
Le 被測定物
KS 結露量測定装置
M 仕切り
S space K opening G glass plate Pe Peltier element LD light emitting part PD 1 , PD 2 , PD 21 , PD 22 light receiving part B 1 , B 2 , B 3 ventilation opening H radiator Le measured object KS dew condensation measuring device M partition

Claims (3)

植物の葉からの水分の蒸散量を計測する装置であって、
被測定気体で満たされる一部の開口部を除いて密閉された空間に配置されるガラス板と、同ガラス板を冷却する冷却手段と、ガラス板に光を入射する発光部と、同発光部から入射された光が前記ガラス板を通過して出てきた透過光を受光する第1の受光部と、前記発光部から入射された光が前記ガラス板の被測定気体に曝されている面にできた露によって散乱透過して出てきた散乱透過光を受光する第2の受光部と、前記の第1及び第2の受光部の受光量の結露量に応じた変化及び結露量と葉からの水分の蒸散量の関係を予め記憶して、第1と第2の受光部の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置と、からなる葉からの水分蒸散量の計測装置を用い、
空間の開口部に木の葉を押し当てて閉鎖し、冷却手段を用いてガラス板を冷却してガラス表面を結露させ、その状態で発光部から光を入射させ、第1と第2の受光部の光量を結露量測定装置に入力して、光量差から結露量と水分の蒸散量を算出する植物の葉からの水分の蒸散量の計測方法
A device for measuring the transpiration of moisture from the leaves of a plant,
A glass plate disposed in a hermetically sealed space except for some openings filled with the gas to be measured, a cooling means for cooling the glass plate, a light emitting unit for entering light into the glass plate, and the light emitting unit A first light receiving unit that receives transmitted light that has passed through the glass plate, and a surface on which the light incident from the light emitting unit is exposed to the gas to be measured. A second light-receiving unit that receives scattered and transmitted light that has been scattered and transmitted by the dew formed on the surface, a change in the amount of light received by the first and second light-receiving units according to the amount of dew condensation, and the amount of dew condensation and the leaf A condensation amount measuring device for preliminarily storing the relationship between the amount of transpiration of moisture from the water, calculating the amount of condensation from the light amounts measured by the first and second light receiving units, and determining the corresponding amount of transpiration of moisture from the leaves; Using a device for measuring the amount of water transpiration from the leaves
A leaf is pressed against the opening of the space to close it, the glass plate is cooled using a cooling means to condense the glass surface, light is incident from the light emitting part in this state, and the first and second light receiving parts A method for measuring the amount of moisture transpiration from the leaves of a plant by inputting the amount of light into a condensation amount measuring device and calculating the amount of condensation and moisture transpiration from the difference in the amount of light .
植物の葉からの水分の蒸散量を計測する装置であって、
被測定気体で満たされる一部の開口部を除いて密閉された空間に配置されるガラス板と、同ガラス板を冷却する冷却手段と、ガラス板に光を入射する発光部と、同発光部から入射された光が前記ガラス板を通過して出てきた透過光を受光する第1の受光部と、前記発光部から入射された光が前記ガラス板の被測定気体に曝されている面にできた露によって散乱透過して出てきた散乱透過光を受光する第2の受光部と、前記の第1及び第2の受光部の受光量の結露量に応じた変化及び結露量と葉からの水分の蒸散量の関係を予め記憶して、第1と第2の受光部の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置と、からなる葉からの水分蒸散量の計測装置を近接して二装置設け、一方の計測装置の空間の開口部を閉鎖し、又二つの計測装置の空間を開閉可能として連通させる換気口を設ける装置とし、
換気口を開いて空間を開放した後、全ての換気口を閉じ、一方の空間の開口部に木の葉の面を押し当てて閉鎖し、更に二つの空間の冷却手段でガラス板を冷却してガラス板表面に結露を発生させ、その後、各空間の発光部LDを作動させてガラス板に光を入射させ、各空間の第1,第2の受光部の受光量を結露量測定装置に入力し、開口部を閉鎖した受光部の受光量から計算した蒸散量を、開口部に葉を押し当てた空間の受光部の受光量から計算した蒸散量から差し引いて、大気の湿度の影響を少なくした植物の葉からの水分の蒸散量の計測方法。
A device for measuring the transpiration of moisture from the leaves of a plant,
A glass plate disposed in a hermetically sealed space except for some openings filled with the gas to be measured, a cooling means for cooling the glass plate, a light emitting unit for entering light into the glass plate, and the light emitting unit A first light receiving unit that receives transmitted light that has passed through the glass plate, and a surface on which the light incident from the light emitting unit is exposed to the gas to be measured. A second light-receiving unit that receives scattered and transmitted light that has been scattered and transmitted by the dew formed on the surface, a change in the amount of light received by the first and second light-receiving units according to the amount of dew condensation, and the amount of dew condensation and the leaf A condensation amount measuring device for preliminarily storing the relationship between the amount of transpiration of moisture from the water, calculating the amount of condensation from the light amounts measured by the first and second light receiving units, and determining the corresponding amount of transpiration of moisture from the leaves; Two measuring devices for measuring the amount of moisture transpiration from the leaves are provided in close proximity, and the opening of one measuring device space The closed, and the two measuring devices providing communicated to vent as that open space of the apparatus,
After opening the vents and opening the spaces, all vents are closed, the surface of the leaves is pressed against the opening of one space and closed, and the glass plate is cooled by the cooling means of the two spaces. Condensation is generated on the surface of the plate, and then the light emitting unit LD in each space is operated to cause light to enter the glass plate, and the received light amounts of the first and second light receiving units in each space are input to the condensation amount measuring device. The amount of transpiration calculated from the amount of light received by the light receiving unit with the opening closed is subtracted from the amount of transpiration calculated from the amount of light received from the light receiving unit in the space where the leaf is pressed against the opening to reduce the influence of atmospheric humidity. A method for measuring the amount of water transpiration from the leaves of a plant.
一体のガラス板上面に2つの被測定気体で満される空間を空間の仕切りで分割して設けるとともに、一つの空間には木の葉を押し当てて閉鎖される開口部を設け、前記ガラス板Gを冷却するペルチェ素子Peを設け、前記ガラス板Gに光を入射する発光部LDを一つ設け、又ガラス板の上面の露によって散乱透過してくる各2つの空間からの散乱透過光を受光する受光部PD 21 とPD 22 とを設け、同受光部PD 21 ,PD 22 の受光量の結露量に応じた変化と結露量と葉からの水分の蒸散量の関係を予め記憶して、2つの前記受光部PD 21 ,PD 22 の計測の光量から結露量を算出して葉からの水分の対応蒸散量を求める結露量測定装置とからなる、葉からの水分蒸散量の計測装置。
A space filled with two gases to be measured is provided on the upper surface of the integrated glass plate by dividing the space into partitions, and an opening that is closed by pressing a leaf is provided in one space. A cooling Peltier element Pe is provided, and a single light emitting part LD for allowing light to enter the glass plate G is provided, and scattered transmitted light from each of the two spaces scattered and transmitted by dew on the upper surface of the glass plate is received. The light receiving parts PD 21 and PD 22 are provided, and the relationship between the amount of light received by the light receiving parts PD 21 and PD 22 according to the amount of condensation and the relationship between the amount of condensation and the amount of moisture transpiration from the leaf are stored in advance. A device for measuring the amount of moisture transpiration from a leaf, comprising a condensation amount measuring device for calculating the amount of condensation from the light quantity measured by the light receiving portions PD 21 and PD 22 and determining the corresponding amount of transpiration of moisture from the leaf.
JP2012167552A 2011-07-29 2012-07-27 Method and apparatus for measuring plant moisture transpiration Expired - Fee Related JP5963254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012167552A JP5963254B2 (en) 2011-07-29 2012-07-27 Method and apparatus for measuring plant moisture transpiration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011166827 2011-07-29
JP2011166827 2011-07-29
JP2012167552A JP5963254B2 (en) 2011-07-29 2012-07-27 Method and apparatus for measuring plant moisture transpiration

Publications (2)

Publication Number Publication Date
JP2013050444A JP2013050444A (en) 2013-03-14
JP5963254B2 true JP5963254B2 (en) 2016-08-03

Family

ID=48012574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012167552A Expired - Fee Related JP5963254B2 (en) 2011-07-29 2012-07-27 Method and apparatus for measuring plant moisture transpiration

Country Status (1)

Country Link
JP (1) JP5963254B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155771B (en) * 2021-03-24 2022-10-18 华中农业大学 Split type quick accurate blade water potential survey device
CN115343422B (en) * 2022-08-11 2023-07-04 武汉大学 Rice transpiration calculation method based on improved Feddes model

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186465U (en) * 1982-06-05 1983-12-10 小糸工業株式会社 Plant transpiration measuring device
CA1280910C (en) * 1988-11-02 1991-03-05 Paul Siska Dew point analyzer
JPH1137925A (en) * 1997-07-22 1999-02-12 Nippon Sheet Glass Co Ltd Droplet detector
JP2000296762A (en) * 1999-04-14 2000-10-24 Asahi Glass Co Ltd Vehicle window glass with sensor and fog control system
JP2004108940A (en) * 2002-09-18 2004-04-08 National Institute Of Advanced Industrial & Technology Dew point measuring device utilizing optical waveguide
JP5198844B2 (en) * 2007-12-21 2013-05-15 アズビル株式会社 Cloudiness detector and mirror-cooled dew point meter

Also Published As

Publication number Publication date
JP2013050444A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
US20130301052A1 (en) Temperature calibration methods and apparatus for optical absorption gas sensors, and optical absorption gas sensors thereby calibrated
US20110310925A1 (en) Optical fiber temperature distribution measuring device
US20100002235A1 (en) Laser diode arrangements and method for gas detection
US8148691B1 (en) Calibration methodology for NDIR dew point sensors
JP5596480B2 (en) Gas concentration detection method, gas concentration sensor
JP5963254B2 (en) Method and apparatus for measuring plant moisture transpiration
JP6044136B2 (en) Gas analyzer
JP6622049B2 (en) Gas concentration measuring device
JP6439030B2 (en) Light receiving device and light emitting / receiving device
JP7357938B2 (en) concentration measuring device
US10996201B2 (en) Photoacoustic measurement systems and methods using the photoacoustic effect to measure emission intensities, gas concentrations, and distances
JP2016070686A (en) Device for measuring concentration by tdlas method
JP5571407B2 (en) Measuring system and measuring method
JPWO2019193640A1 (en) Laser equipment
US20130188182A1 (en) Raman Apparatus and Method for Real Time Calibration Thereof
JP2017032317A (en) Gas concentration measurement device
EP2887031B1 (en) Method for calibrating a two-wavelength pyrometer, method for determining the temperature of a semiconducting wafer and a system for determining the temperature of a semiconducting wafer
JP2005338021A (en) Wavelength measuring method and spectroscopic instrument using the same
AU2019429807B2 (en) Spectrometer system and method for testing of same
KR20220132451A (en) Optical measurement system, optical measurement method, and storage medium having measurement program stored thereon
JP2009229084A (en) Spectrometer
KR20220110316A (en) Detector Wavelength Calibration
JP6506124B2 (en) Gas concentration measuring device
WO2017187784A1 (en) Degree-of-dryness measurement device and measurement error evaluation method for degree-of-dryness measurement device
WO2023183064A1 (en) Temperature measurement system and method using multimode of an optical resonator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160623

R150 Certificate of patent or registration of utility model

Ref document number: 5963254

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees