JP5963158B2 - Self-propelled capsule endoscope - Google Patents

Self-propelled capsule endoscope Download PDF

Info

Publication number
JP5963158B2
JP5963158B2 JP2011260020A JP2011260020A JP5963158B2 JP 5963158 B2 JP5963158 B2 JP 5963158B2 JP 2011260020 A JP2011260020 A JP 2011260020A JP 2011260020 A JP2011260020 A JP 2011260020A JP 5963158 B2 JP5963158 B2 JP 5963158B2
Authority
JP
Japan
Prior art keywords
capsule endoscope
self
propelled
capsule
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011260020A
Other languages
Japanese (ja)
Other versions
JP2013111255A (en
Inventor
光国 水野
光国 水野
秀実 後藤
秀実 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Nagoya Denki Educational Foundation
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Nagoya Denki Educational Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC, Nagoya Denki Educational Foundation filed Critical Nagoya University NUC
Priority to JP2011260020A priority Critical patent/JP5963158B2/en
Publication of JP2013111255A publication Critical patent/JP2013111255A/en
Application granted granted Critical
Publication of JP5963158B2 publication Critical patent/JP5963158B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00156Holding or positioning arrangements using self propulsion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Endoscopes (AREA)

Description

本発明は、自走式カプセル内視鏡に関するものであって、特に、カプセル内視鏡の推進駆動機構に関するものである。   The present invention relates to a self-propelled capsule endoscope, and more particularly to a propulsion drive mechanism for a capsule endoscope.

内視鏡は、医療等の分野において、管腔内等の直接目視することができない部位を観察するために広く用いられている。こうした内視鏡は、一般に細長の挿入部を備えて構成されており、使用者の手技により被検体内へ挿入されていた。   Endoscopes are widely used in the field of medicine and the like for observing a site that cannot be directly observed, such as in a lumen. Such an endoscope is generally configured with an elongated insertion portion, and is inserted into a subject by a user's procedure.

一般的に汎用されているチューブ式内視鏡では、その撮像範囲が食道や胃、十二指腸、大腸などに限定されるため、さらに内部に位置する小腸における疾患の診断や治療には困難を伴っているのが現状である。そのため、現在実施されている小腸の検査法としては、撮像法および特定の内視鏡法が主流となっている。   In general-purpose tube endoscopes, the imaging range is limited to the esophagus, stomach, duodenum, large intestine, etc., and it is difficult to diagnose and treat diseases in the small intestine located inside. The current situation is. For this reason, imaging methods and specific endoscopic methods are mainly used as small intestine inspection methods currently being implemented.

撮像法のうち、バリウムによる造影検査を基本とする小腸透視法では、小腸全体にバリウムが行き渡るのにかなりの個人差があり、検査時間もかかるという欠点があった。またCTやMRIによる断層撮像法では大きな病変、例えば腫瘤の存在や腸閉塞の程度などは十分に確認できるが、小腸粘膜の病変(潰瘍や腸内壁が損傷を受けるようなただれ、出血を伴う血管病変など)は検出することが困難といわれる。   Among the imaging methods, the small intestine fluoroscopy method based on contrast examination using barium has a drawback in that there is a considerable individual difference in the distribution of barium throughout the small intestine, and it takes a long examination time. CT and MRI tomography can sufficiently confirm large lesions such as the presence of tumors and the extent of intestinal obstruction, but small intestinal mucosal lesions (such as ulcers or injuries that damage the intestinal lining, or vascular lesions with bleeding) Etc.) are said to be difficult to detect.

一方の内視鏡法については、現在のところではダブルバルーン法(非特許文献1参照)とカプセル法(非特許文献2参照)が汎用されるに至っている。ダブルバルーン法では、小腸全体の検査を実施する場合には経口および経肛門検査の2回に分けて行うのが一般的で、発見された病変に対し必要に応じて生検、内視鏡的ポリープ切除術、あるいは腸狭窄に対するバルーン拡張術などの内視鏡的処置が可能である点が特徴的である。   As for the endoscopic method, the double balloon method (see Non-Patent Document 1) and the capsule method (see Non-Patent Document 2) have been widely used at present. In the double balloon method, when the entire small intestine is examined, it is generally performed in two steps, oral and transanal, and the detected lesion is biopsied and endoscopically as necessary. It is characteristic that endoscopic procedures such as polypectomy or balloon dilation for intestinal stenosis are possible.

他方のカプセル法は、カプセル内視鏡はサイズが小さいことから、被験者にとってより負担が少なく、苦痛を伴わない非侵襲的検査法として注目されている。最近では、小型カメラを搭載した錠剤状カプセルを飲み込み、小腸内部全体にわたる撮像を体外に無線通信で伝送するシステムの開発が進められており、我が国でも2008年に薬事法の適用を受けて、カプセル内視鏡の本格導入が始められている。   The other capsule method is attracting attention as a non-invasive examination method that is less burdensome and less painful for the subject because the capsule endoscope is small in size. Recently, the development of a system that swallows a tablet-like capsule equipped with a small camera and transmits imaging throughout the small intestine by wireless communication outside the body has been promoted. Full-scale introduction of endoscopes has begun.

しかしながら、現在使用されている多くのカプセル内視鏡は自走することができず、消化管内においては食物と同じ器官の腸壁の絨網運動や腸の蠕動運動によってカプセル本体が移動する。そのため、任意の位置や方向からの観察や制御が困難であり、その結果として像が不鮮明なための病変の見落とし、あるいは病変を観察できないための見落とし等、診断の信頼性にも問題を生ずることがある。   However, many capsule endoscopes currently used cannot be self-propelled, and in the digestive tract, the capsule body moves by retinal movement of the intestinal wall of the same organ as food and peristaltic movement of the intestine. Therefore, observation and control from an arbitrary position and direction are difficult, and as a result, there are problems in the reliability of diagnosis, such as oversight of lesions due to unclear images or oversight due to inability to observe lesions. There is.

さらに消化管の運動機能そのものが低下している場合には、進行する移動速度が低下しバッテリー性能の時間的制約から小腸全体の検査や撮像ができない、あるいは消化管内壁の憩室とか、病変による消化管の折れ曲がりや狭窄部位などにカプセルが滞留したりする事例もあり、疾患の診断や治療に対する信頼性は十分とはいえない。   Furthermore, when the motility function of the digestive tract itself has deteriorated, the moving speed that progresses decreases, and the entire small intestine cannot be examined or imaged due to time constraints on the battery performance, or the digestive tract due to lesions such as the diverticulum on the inner wall of the digestive tract In some cases, capsules stay in bent or narrowed areas of the tube, and the reliability of diagnosis and treatment of diseases is not sufficient.

一方、自走するカプセル内視鏡に関しては、我国で2009年7月に発表されたが、胃内に予め飲み込んだ水中を、従来型カプセルに導電性ソフトアクチュエータのヒレを付けて泳がせるタイプ(全長は48mm)で、腸内環境への適用には解決すべき問題点も多い(非特許文献3参照)。   On the other hand, the self-propelled capsule endoscope was announced in Japan in July 2009, but it can swim underwater previously swallowed in the stomach with a conductive soft actuator fin attached to the conventional capsule (full length). 48 mm), and there are many problems to be solved for application to the intestinal environment (see Non-Patent Document 3).

そのためカプセル法はスクリーニング用、ダブルチューブ法は精密検査用と使い分けることが多い。しかしながら、カプセル法において、カメラによる撮像データの信頼性、移動走行の安全性や制御性、さらには滞留を回避する機能性などの付与が可能となれば、カプセル内視鏡検査への信頼性が増しカプセル内視鏡の需要は増加するものと考えられる。   Therefore, the capsule method is often used separately for screening, and the double tube method is often used for close inspection. However, in the capsule method, if it is possible to provide the reliability of the image data taken by the camera, the safety and controllability of traveling, and the functionality to avoid stagnation, the reliability of the capsule endoscopy can be improved. Increasing demand for capsule endoscopes is expected to increase.

これらの問題点を解決するため、本発明者らは、日本機械学会福祉工学シンポジウム2008において、「DDS機能を有する自走式カプセル内視鏡の開発」の発表を行った。図4は、当該シンポジウムで発表した自走式カプセル内視鏡で、その特徴は、(1)電力供給は体外から行うため本体バッテリーが不要となり、そのフリースペースを治療薬剤の運搬、サンプル採取器具の格納、センサー装着、などのDDS機能として利用できる、(2)自走の駆動方式は回転・振動およびリニア推進が利用可能、(3)憩室や狭窄部位での落込みや滞留から脱出する機能が付与され、安全性・信頼性が向上する、などが挙げられる。   In order to solve these problems, the present inventors presented “Development of a self-propelled capsule endoscope having a DDS function” at the Japan Society of Mechanical Engineers Welfare Engineering Symposium 2008. Fig. 4 shows the self-propelled capsule endoscope presented at the symposium. Its features are as follows: (1) Since the power supply is performed from outside the body, the main unit battery is unnecessary, and the free space is used for transporting therapeutic drugs and sampling equipment. (2) Self-propelled drive system can use rotation / vibration and linear propulsion, (3) Function to escape from falling or staying in diverticulum or stenosis To improve safety and reliability.

しかしながら、上記シンポジウムで発表した自走式カプセル内視鏡は、図4に示すように、筒状カプセルの内側に沿って配置した単一の電磁コイル内に磁石を挿入し、電磁コイルに通電しコイル内の磁石を駆動して推進力を得る構造となっているが、推進方向は電磁コイル内の磁石の移動方向と同じ、つまり、自走式カプセル内視鏡の長軸方向に前後運動ができるのみであり、上下左右等への方向転換はできず、憩室や狭窄部位での落込みや滞留から脱出する機能としては不十分であった。   However, in the self-propelled capsule endoscope presented at the symposium, as shown in FIG. 4, a magnet is inserted into a single electromagnetic coil arranged along the inside of the cylindrical capsule, and the electromagnetic coil is energized. Although it has a structure that drives the magnet in the coil to obtain propulsive force, the propulsion direction is the same as the movement direction of the magnet in the electromagnetic coil, that is, the longitudinal movement of the self-propelled capsule endoscope moves back and forth. It was only possible, and it was not possible to change the direction up and down, left and right, etc., and it was insufficient as a function to escape from dropping or staying in a diverticulum or stenosis.

また、上記発表した自走式カプセル内視鏡は、体外に設けた磁界発生装置が発生する磁力により方向が変えられる方式で、体内の自走式カプセル内視鏡の方向を転換させるためには大きな磁界を発生させる必要があり、強磁場が人体へ与える影響を無視できないという問題があった。   In addition, the self-propelled capsule endoscope announced above is a method in which the direction can be changed by the magnetic force generated by the magnetic field generator provided outside the body, in order to change the direction of the self-propelled capsule endoscope in the body. There is a problem that it is necessary to generate a large magnetic field, and the influence of a strong magnetic field on the human body cannot be ignored.

更に、カプセル内視鏡に搭載した薬剤を疾患部に塗布する機能や、疾患部を様々な角度から撮像する機能を実現するためには、患部の前後の撮影場所への移動や、カプセルが停止して小刻みに角度を変える必要がある。そのため、カプセル内視鏡には、回転により撮影部位まで移動する為の方向転換機能が必要であるが、発表した自走式カプセル内視鏡は、当該機能を有していなかった。   Furthermore, in order to realize the function to apply the medicine mounted on the capsule endoscope to the diseased part and the function to image the diseased part from various angles, the movement to the imaging location before and after the affected part or the capsule stops It is necessary to change the angle in small increments. Therefore, the capsule endoscope needs a direction changing function for moving to the imaging region by rotation, but the announced self-propelled capsule endoscope does not have the function.

Tajiri, H. What do we see in the endoscopy world in 10 years’ time?. Digestive Endoscopy. 2007, Vol.19(suppl.1), p.174−179.Tajiri, H.M. What do we see in the endorsement world in 10 years' time? . Digestive Endoscopy. 2007, Vol. 19 (suppl.1), p. 174-179. de Franchis, R.; Rondonotti, E.; Villa, F. Capsule endoscopy−state of the art. Dig Dis. 2007, Vol.25, No.3, p. 249−251.de Francis, R.D. Rondonotti, E .; Villa, F .; Capsule endoscopy-state of the art. Dig Dis. 2007, Vol. 25, no. 3, p. 249-251. 森田英次郎、大塚尚武、遠藤康則ほか、「磁場により駆動制御を行う自走式カプセル内視鏡作製の試み」、消化器内科、2009, Vol.48, No2, p.177−183Eijiro Morita, Naotake Otsuka, Yasunori Endo et al., “A trial of making a self-propelled capsule endoscope controlled by a magnetic field”, Gastroenterology, 2009, Vol. 48, No2, p. 177-183

本発明者らは、鋭意研究を行ったところ、従来の筒状カプセルの内側に沿って設けた単一の電磁コイルの内に磁石を配置したリニア推進構造に変え、筒状カプセルの内側に、棒状コイルを設け、該棒状コイルの外側に駆動部を配置したリニア推進構造とすることで、カプセル内視鏡に方向転換機能を与えること、更に、棒状コイルを複数設け、該複数の棒状コイルの間に駆動部を配置し、複数の棒状コイルの通電を制御することで、カプセル内視鏡に前後方向への推進機能を与えるとともに、多様な方向への方向転換機能を与えることができることを新たに見出した。本発明は該新知見に基づいて成されたものである。   As a result of diligent research, the inventors changed to a linear propulsion structure in which a magnet is arranged in a single electromagnetic coil provided along the inside of a conventional cylindrical capsule, and inside the cylindrical capsule, By providing a linear propulsion structure in which a rod-shaped coil is provided and a drive unit is disposed outside the rod-shaped coil, the capsule endoscope is provided with a direction changing function, and further, a plurality of rod-shaped coils are provided. A drive unit is placed in between, and the energization of multiple rod-shaped coils is controlled to give the capsule endoscope a forward and backward propulsion function and a direction change function in various directions. I found it. The present invention has been made based on the new knowledge.

すなわち、本発明の目的は、リニア推進機構を備えた自走式カプセル内視鏡において、多様な方向に回転できるようにすることで、小腸の憩室や狭窄部位での落込みや滞留から十分脱出できる機能を備えた自走式カプセル内視鏡を提供することである。また、本発明の他の目的は、患部周辺において疾患部に薬剤を塗布したり、患部を様々な角度から撮影するための方向転換機能を備えた自走式カプセル内視鏡を提供することである。   That is, an object of the present invention is to sufficiently escape from a drop or stay in a small intestinal diverticulum or stenosis by enabling rotation in various directions in a self-propelled capsule endoscope having a linear propulsion mechanism. It is to provide a self-propelled capsule endoscope having a function capable of being performed. Another object of the present invention is to provide a self-propelled capsule endoscope having a direction changing function for applying a drug to a diseased part around the affected part and photographing the affected part from various angles. is there.

本発明は、以下に示す、自走式カプセル内視鏡に関する。   The present invention relates to a self-propelled capsule endoscope described below.

(1)棒状コイル部及び駆動部を含むリニア推進機構を内部に有する自走式カプセル内視鏡において、
前記棒状コイル部はカプセルの内側に複数本設けられ、
前記駆動部は前記棒状コイル部の外側のカプセル内に設けられ、且つ、
前記駆動部が前記複数本の棒状コイル部よりカプセルの中心側を、前記複数本の棒状コイル部に沿って移動できるように設けられ、
前記複数本の棒状コイル部の通電を制御することで、カプセル内視鏡に前後方向への推進機能及び多様な方向への方向転換機能を与えることを特徴とする自走式カプセル内視鏡。
(1) In a self-propelled capsule endoscope having a linear propulsion mechanism including a rod-shaped coil portion and a drive portion inside,
A plurality of the rod-shaped coil portions are provided inside the capsule,
The drive unit is provided in a capsule outside the rod-shaped coil unit, and
The drive unit is provided so that the center side of the capsule can be moved along the plurality of bar-shaped coil units from the plurality of bar-shaped coil units,
A self-propelled capsule endoscope characterized by providing a capsule endoscope with a propulsion function in the front-rear direction and a direction changing function in various directions by controlling energization of the plurality of rod-shaped coil portions .

(2)前記棒状コイル部が3以上の奇数本で且つ等間隔に設置されていることを特徴とする前記(1)に記載の自走式カプセル内視鏡。
(2) The self-propelled capsule endoscope according to (1), wherein the rod-like coil portions are provided in an odd number of 3 or more and at equal intervals.

(3)前記棒状コイル部が3本であることを特徴とする前記(1)又は(2)に記載の自走式カプセル内視鏡。 (3) The self-propelled capsule endoscope according to (1) or (2), wherein the number of the rod-shaped coil portions is three.

本発明においては、棒状コイル及び該棒状コイルの外側に駆動部を配置したリニア推進機構とすることで、(1)カプセル内視鏡を小刻みに回転、(2)薬剤を疾患部に塗布、(3)疾患部を様々な角度から撮像・検査、することができる。また、棒状コイルを複数本設け、複数の棒状コイルの間に駆動部を配置し、複数の棒状コイル全てに通電又は一部のみに通電することで、カプセル内視鏡の前後方向及び上下左右方向への駆動をより確実に制御することができ、小腸の憩室や狭窄部位での落込みや滞留からも確実に脱出することができる。   In the present invention, a linear propulsion mechanism having a rod-shaped coil and a drive unit disposed outside the rod-shaped coil enables (1) rotating the capsule endoscope in small increments, (2) applying a drug to the diseased part, 3) The diseased part can be imaged and examined from various angles. Also, by providing a plurality of bar-shaped coils, disposing a drive unit between the plurality of bar-shaped coils and energizing all of the plurality of bar-shaped coils or energizing only a part thereof, the capsule endoscope can be operated in the front-rear direction and the vertical and horizontal directions Can be controlled more reliably, and can be reliably escaped from dropping or staying in the diverticulum or stenosis of the small intestine.

更に、カプセル内視鏡の前後方向の推進力及び方向転換機能は、棒状コイルへの通電制御のみで得られることから、外部磁場は必要なく、人体への影響を低減することができる。そして、棒状コイル部はカプセルの内側に間隔をあけて設けられるので、DDS機能の設計がしやすくなる。   Further, since the forward and backward propulsive force and the direction changing function of the capsule endoscope can be obtained only by controlling the energization of the rod-shaped coil, no external magnetic field is required, and the influence on the human body can be reduced. And since a rod-shaped coil part is provided in the inside of a capsule at intervals, it becomes easy to design a DDS function.

図1は、本発明のリニア推進機構を有する自走式カプセル内視鏡の一例を示す概略図である。FIG. 1 is a schematic view showing an example of a self-propelled capsule endoscope having the linear propulsion mechanism of the present invention. 図2は、本発明の自走式カプセル内視鏡の推進駆動原理を示す。FIG. 2 shows the propulsion drive principle of the self-propelled capsule endoscope of the present invention. 図3は、本発明の自走式カプセル内視鏡の方向転換の原理を示す。FIG. 3 shows the principle of direction change of the self-propelled capsule endoscope of the present invention. 図4は、従来の自走式カプセル内視鏡の概略を示す。FIG. 4 shows an outline of a conventional self-propelled capsule endoscope.

以下、本発明のリニア推進機構を有する自走式カプセル内視鏡の一例を、図面を参照して説明する。図1は、自走式カプセル内視鏡10の全体の概略構成を示すもので、本発明の自走式カプセル内視鏡の内部には、消化管内を撮像するための構成、カプセル内視鏡を推進及び方向転換するための構成、及び撮像データを伝送するための構成が含まれている。   Hereinafter, an example of a self-propelled capsule endoscope having the linear propulsion mechanism of the present invention will be described with reference to the drawings. FIG. 1 shows an overall schematic configuration of a self-propelled capsule endoscope 10. The self-propelled capsule endoscope of the present invention has a configuration for imaging the inside of the digestive tract, a capsule endoscope. Includes a configuration for propelling and changing the direction, and a configuration for transmitting imaging data.

消化管内を撮像するための構成は、自走式カプセル内視鏡の一端に設けられたオプティカルドーム11、オプティカルドーム11内に設けられたカメラ部12、電力受磁コイル部13、蓄電コンデンサ部14、及び図示されていないLED等の照明部を含んでいる。カメラ部12は、CCD撮像素子等、デジタル画像が撮像できるものであれば特に限定はされず、磁力による反作用を利用したピント調整機能と、図示されていない左右に配するLEDの明るさとの組合せにより、単眼でも立体的な映像を作り出すことが可能である。また自走式機能を搭載するため、光学式と同じ方式のイメージセンサーアシスト式手ぶれ補正機能を適用することもできる。カメラによる撮像時間が制限されると、体内画像の撮像に影響を与えることから、電力源は体外から確保することが望ましく、例えば、無線による電力伝送を採用するための電力受磁コイル部13が配置されている。この受磁された電力は蓄電コンデンサ部14に蓄積され、消化管内の撮像に加え、自走式カプセル内視鏡の推進力発生や方向転換用としても供給される。現在汎用されている多くのカプセル内視鏡では、カプセル内に撮像のためのバッテリーが搭載されているが、かなり小型化されているとはいえ、カプセル本体に占める容量は依然として大きい。外部からの電力伝送方式を採用すれば、カプセル内部に大きなフリースペースを確保することができ、精密検査や治療用薬剤・センサーなどを格納するコンパートメント15として使用でき、カプセル内視鏡の更なる用途拡大も期待できる。勿論、電池が、本発明の自走式カプセル内視鏡の機能を十分達成できる程度に小型化されれば、電池を自走式カプセル内視鏡の駆動源として用いることもできる。   A configuration for imaging the inside of the digestive tract includes an optical dome 11 provided at one end of a self-propelled capsule endoscope, a camera unit 12 provided in the optical dome 11, a power receiving coil unit 13, and a storage capacitor unit 14. And an illumination unit such as an LED (not shown). The camera unit 12 is not particularly limited as long as it can capture a digital image, such as a CCD image sensor, and is a combination of a focus adjustment function using a reaction caused by a magnetic force and brightness of LEDs arranged on the left and right (not shown). This makes it possible to create a stereoscopic image even with a single eye. In addition, since it is equipped with a self-propelled function, an image sensor-assisted image stabilization function of the same method as the optical method can be applied. If the imaging time by the camera is limited, the imaging of the in-vivo image is affected. Therefore, it is desirable to secure the power source from outside the body. For example, the power receiving coil unit 13 for adopting wireless power transmission is provided. Has been placed. The magnetized power is stored in the storage capacitor unit 14 and supplied for generating propulsive force and changing the direction of the self-propelled capsule endoscope in addition to imaging in the digestive tract. In many capsule endoscopes that are currently widely used, a battery for imaging is mounted in the capsule, but the capacity of the capsule main body is still large although it is considerably downsized. If an external power transmission system is adopted, a large free space can be secured inside the capsule, and it can be used as a compartment 15 for storing precision examinations, therapeutic drugs, sensors, etc., and further use of the capsule endoscope Expansion can also be expected. Of course, if the battery is miniaturized to such an extent that the function of the self-propelled capsule endoscope of the present invention can be sufficiently achieved, the battery can be used as a drive source for the self-propelled capsule endoscope.

本発明のカプセル内視鏡は、コイル部16及び該コイル部16の外側に配置された駆動部17を有するリニア推進機構により、推進及び方向転換することができる。コイル部16は、エナメル、銅等の導電性が優れた細線を中空状に巻いた細い棒状コイル、又は鉄や磁石等の芯棒の周りにエナメル、銅等の導電性が優れた細線を巻きつけた細い棒状のコイルで作製され、内部電池、或いは外部磁場からの遠隔供給により供給された電気が通電されるよう作製されている。   The capsule endoscope of the present invention can be propelled and changed in direction by a linear propulsion mechanism having a coil portion 16 and a driving portion 17 disposed outside the coil portion 16. The coil section 16 is a thin rod coil in which a thin wire with excellent conductivity such as enamel or copper is wound in a hollow shape, or a thin wire with excellent conductivity such as enamel or copper is wound around a core rod such as iron or magnet. It is made of a thin rod-like coil that is attached, and is made so that electricity supplied by remote supply from an internal battery or an external magnetic field is energized.

駆動部17は、コイル部16に通電し発生する磁界により駆動される部材で、鉄芯又は磁束密度の高い磁石であれば特に限定されず、例えば、ネオジウム等の磁石から成る。   The drive unit 17 is a member driven by a magnetic field generated by energizing the coil unit 16 and is not particularly limited as long as it is an iron core or a magnet having a high magnetic flux density. For example, the drive unit 17 is made of a magnet such as neodymium.

撮像データを伝送するための構成は、マイクロ波ビデオトランスミッタ部18を含み、自走式カプセル内視鏡のカメラ部12で撮像された画像データを、図示しないホストコンピュータに送信し、データの解析、診断を可能にする。   The configuration for transmitting the imaging data includes a microwave video transmitter unit 18, transmits image data captured by the camera unit 12 of the self-propelled capsule endoscope to a host computer (not shown), and analyzes the data. Enable diagnosis.

リニア推進機構は、図示しないマイコンにより制御され、駆動信号は、無線によりカプセル内視鏡に送信することができる。   The linear propulsion mechanism is controlled by a microcomputer (not shown), and the drive signal can be transmitted to the capsule endoscope wirelessly.

次に、本発明のリニア推進駆動原理を説明する。図2は、図1の自走式カプセル内視鏡の断面図で、コイル部16を90度の等間隔で4本設けた場合の前後方向の推進原理を説明する図である。コイル部16のすべてに通電すると、図2(1)に示すように駆動部17は内視鏡のカプセルの中心に浮上した状態になる。次いで、駆動部17は、(2)に示すように、自走式カプセル内視鏡の中心部へ向かう加速度を与えられる。このとき自走式カプセル内視鏡には、反作用力によって右方向へスライドする推進力が与えられる。駆動部17が移動空間の中央部を通過すると、コイル部16に逆方向への電流を流す(3)。このとき可動磁石の反作用力で自走式カプセル内視鏡を動かそうとする力より、自走式カプセル内視鏡と外部環境との摩擦力が勝るようにするため、駆動部17の速度を(1)〜(2)の場合に比して遅くなるよう制御する。具体的にはマイコンによるPWM(Pulse Width Modulation)制御において、デューティー比(on−off時間の比率)を低く抑えることで実行される。上記操作を1サイクルとして繰り返せば、自走式カプセル内視鏡を図面の右方向に駆動させることが可能となる(以下、本方法を「スライド走行」と記載することがある。)。   Next, the principle of linear propulsion drive according to the present invention will be described. FIG. 2 is a cross-sectional view of the self-propelled capsule endoscope of FIG. 1, and is a view for explaining the propulsion principle in the front-rear direction when four coil portions 16 are provided at equal intervals of 90 degrees. When all the coil portions 16 are energized, the drive portion 17 is in a state of floating at the center of the capsule of the endoscope as shown in FIG. Next, as shown in (2), the drive unit 17 is given an acceleration toward the center of the self-propelled capsule endoscope. At this time, the self-propelled capsule endoscope is given a propulsive force that slides to the right by the reaction force. When the drive unit 17 passes through the central portion of the moving space, a current in the reverse direction is passed through the coil unit 16 (3). At this time, the speed of the drive unit 17 is set so that the friction force between the self-propelled capsule endoscope and the external environment is greater than the force to move the self-propelled capsule endoscope by the reaction force of the movable magnet. Control is performed so as to be slower than in the cases (1) to (2). Specifically, in PWM (Pulse Width Modulation) control by the microcomputer, the duty ratio (on-off time ratio) is controlled to be low. If the above operation is repeated as one cycle, the self-propelled capsule endoscope can be driven in the right direction of the drawing (hereinafter, this method may be referred to as “slide running”).

一方、図2(4)に示すように、自走式カプセル内視鏡の右端に駆動部17を衝突させ、その衝突力で自走式カプセル内視鏡を移動させる様式も可能である。この場合には、まず(1)の状態からコイル部16にデューティー比を抑えた電流を通じ、駆動部17を(3)の位置まで緩やかに移動させる。次いでコイル部16に逆向きの電流を、デューティー比を抑えることなく通ずると、駆動部17は右端に衝突するまで加速し続け、その衝撃力によって自走式カプセル内視鏡は右方向に移動する。このとき(4)の加速過程では、自走式カプセル内視鏡は反作用力によって左方向に移動することになるが、衝撃力による移動のほうが勝るため、上記の操作の繰り返しにより、機体は右方向へ正味の移動量を得ることが可能となる(以下、本方法を「ノック走行」と記載することがある。)。   On the other hand, as shown in FIG. 2 (4), it is possible to make the drive unit 17 collide with the right end of the self-propelled capsule endoscope and move the self-propelled capsule endoscope with the collision force. In this case, first, the drive unit 17 is gently moved from the state (1) to the position (3) by passing a current with a reduced duty ratio through the coil unit 16. Next, when a reverse current is passed through the coil unit 16 without suppressing the duty ratio, the driving unit 17 continues to accelerate until it collides with the right end, and the self-propelled capsule endoscope moves to the right by the impact force. . At this time, in the acceleration process of (4), the self-propelled capsule endoscope moves to the left by the reaction force, but the movement by the impact force wins, so by repeating the above operation, the aircraft moves to the right A net amount of movement in the direction can be obtained (hereinafter, this method may be referred to as “knock traveling”).

以上の説明は、自走式カプセル内視鏡を右方向に推進させる場合の駆動方法であるが、図2の(1)〜(4)の駆動部17の移動方向及び通電方向を逆にすることで、上記と同様の原理により、自走式カプセル内視鏡を左方向に推進させることも可能である。   The above description is a driving method in the case of propelling the self-propelled capsule endoscope in the right direction, but the moving direction and the energizing direction of the driving unit 17 in (1) to (4) in FIG. 2 are reversed. Thus, it is possible to push the self-propelled capsule endoscope in the left direction based on the same principle as described above.

次に、本発明のリニア推進機構を用いた方向転換について説明する。図3の(1)及び(2)は、自走式カプセル内視鏡の駆動部17の移動方向の垂直断面図で、(1)はコイル部16a〜16d全てに通電した場合の駆動部17の位置を示している。駆動部17の中心は、自走式カプセル内視鏡のカプセルの中心と一致するため、図2に示すように、自走式カプセル内視鏡に左右への推進力を付与する。   Next, direction change using the linear propulsion mechanism of the present invention will be described. 3A and 3B are vertical sectional views in the moving direction of the drive unit 17 of the self-propelled capsule endoscope, and FIG. 3A is a drive unit 17 when all the coil units 16a to 16d are energized. Indicates the position. Since the center of the drive unit 17 coincides with the center of the capsule of the self-propelled capsule endoscope, as shown in FIG. 2, a propelling force to the left and right is applied to the self-propelled capsule endoscope.

これに対して、例えば、図3(2)に示すように、コイル部の一部(図3(2)では、16a及び16d)のみに通電すると、駆動部17はコイル部16a及び16d方向に移動する。そして、(3)に示すように、駆動部17が自走式カプセル内視鏡のカプセルの中心から偏心した状態で右端に衝突すると、自走式カプセル内視鏡は矢印の方向に回転する力が与えられる。勿論、ノック走行方式に加え、偏心した状態であれば、スライド走行方式でも回転する力を与えることができる。そして、通電する方向転換ローターコイル部16を適宜変更し、また、通電方向を制御することで、自走式カプセル内視鏡に様々な方向へ回転する力を与えることが可能である。   On the other hand, for example, as shown in FIG. 3 (2), when only a part of the coil part (16a and 16d in FIG. 3 (2)) is energized, the drive part 17 moves in the coil parts 16a and 16d direction. Moving. As shown in (3), when the drive unit 17 collides with the right end in a state of being decentered from the center of the capsule of the self-propelled capsule endoscope, the self-propelled capsule endoscope rotates in the direction of the arrow. Is given. Of course, in addition to the knocking traveling method, a rotating force can be applied even in the sliding traveling method as long as it is in an eccentric state. And it is possible to give the force which rotates to a self-propelled capsule endoscope to various directions by changing suitably the direction change rotor coil part 16 which supplies electricity, and controlling an electricity supply direction.

上記のとおり、コイル部16を複数本設けた場合、駆動部17は比較的容易に制御されるが、コイル部16が少なくとも1本あれば、駆動部17を駆動させることも可能である。カプセル内視鏡は、腸内で蠕動運動等により進行・通過する際に、腸壁の摩擦により回転が与えられるため、カプセル内視鏡のカプセルの内側面の近くに設けられたコイル部16は、腸内でカプセル内視鏡の上下左右等、様々な位置を取りうる。更に、駆動部17は重量の影響も受ける為、コイル部16の位置や加速速度により、駆動部17は多様な位置関係で駆動されることになり、結果として、カプセル内視鏡は、前後方向、上方左右への回転等、様々な動きをすることができる。   As described above, when a plurality of coil units 16 are provided, the drive unit 17 is controlled relatively easily. However, if at least one coil unit 16 is provided, the drive unit 17 can be driven. Since the capsule endoscope is rotated by the friction of the intestinal wall when it travels and passes by the peristaltic motion etc. in the intestine, the coil portion 16 provided near the inner side surface of the capsule of the capsule endoscope is In the intestine, the capsule endoscope can take various positions such as up, down, left and right. Further, since the drive unit 17 is also affected by the weight, the drive unit 17 is driven in various positional relationships depending on the position of the coil unit 16 and the acceleration speed. As a result, the capsule endoscope is moved in the front-rear direction. Various movements such as rotation to the left and right are possible.

しかしながら、上記のとおり、コイル部16が1本以上あれば本発明を実施することは可能であるが、図3(1)及び(2)に示すような制御もできる方が望ましいので、コイル部16は3本以上とし、コイル部16への通電を、1本、2本、全て等、適宜調整するようにした方が好ましい。   However, as described above, the present invention can be implemented with one or more coil portions 16, but it is desirable that the control as shown in FIGS. 3 (1) and (2) is possible. It is preferable that the number 16 is three or more, and the current supplied to the coil portion 16 is appropriately adjusted to one, two, or all.

更に、コイル部16は、非対称に配置されることが好ましい。例えば、コイル部16を3本の等間隔に配置した場合、カプセル内視鏡に上記のような回転が与えられると、コイル部16は、2本が底辺に位置する正三角形の状態になったり、1本のみが底部に位置する逆三角形の状態になる。そうすると、重量の作用により、駆動部17が、コイル部16と離れやすくなったり、接触状態になったりするなど動きやすくなり、自走式カプセル内視鏡の運動性能が向上する。   Furthermore, it is preferable that the coil part 16 is arrange | positioned asymmetrically. For example, in the case where three coil parts 16 are arranged at equal intervals, when the capsule endoscope is rotated as described above, the coil part 16 may be in an equilateral triangle state in which two are located at the bottom. Only one will be in the shape of an inverted triangle located at the bottom. If it does so, it will become easy to move the drive part 17 from the coil part 16 by the effect | action of a weight, or it will be in a contact state, and the exercise | movement performance of a self-propelled capsule endoscope will improve.

一方、前後方向に推進制御する場合は全てのコイル部16に通電することが好ましいが、コイル部16の本数が多すぎると消費電力が多くなり、また、治療用薬剤等を搭載するコンパートメント15のスペースが少なくなり好ましくない。   On the other hand, in the case of propulsion control in the front-rear direction, it is preferable to energize all the coil parts 16. However, if the number of the coil parts 16 is too large, the power consumption increases, and the compartment 15 in which a therapeutic drug or the like is mounted. Less space is not desirable.

したがって、カプセル内視鏡への推進力、方向転換及びコンパートメント15のスペースを考えた場合、コイル部16は、3本であって、等間隔に配置することが最も好ましい。   Therefore, considering the driving force to the capsule endoscope, the direction change, and the space of the compartment 15, it is most preferable that the number of the coil portions 16 is three and they are arranged at equal intervals.

また、駆動部17は、移動空間を円滑に移動できるものであれば、球、円柱、立方体、直方体等、任意の形状を選ぶことができるが、円滑な駆動及びノック走行の際に衝撃力を壁面に効果的に与える観点から、円柱形状が好ましい。また、移動空間に占める駆動部17の大きさは、小さすぎると十分な推進力が得られず、また、大きすぎると偏心程度が小さくなり、カプセル内視鏡の方向転換が不十分になる。   The drive unit 17 may be of any shape, such as a sphere, a cylinder, a cube, a rectangular parallelepiped, etc., as long as it can move smoothly in the moving space. From the viewpoint of effectively giving to the wall surface, a cylindrical shape is preferable. If the drive unit 17 occupies the moving space is too small, sufficient driving force cannot be obtained, and if it is too large, the degree of eccentricity becomes small, and the direction change of the capsule endoscope becomes insufficient.

本発明の自走式カプセル内視鏡の試験用装置を次のように作製した。φ32×120の透明PVC(塩化ビニル)製薄肉円筒の内側に、エナメル線を線密度2.5本/mmで巻き付けた外径φ8の中空の棒状コイル3本を等間隔に設けた。また、3本の棒状コイルの間には、可動磁石(磁束密度400mTのネオジウム製、φ15×10)を設けた。走行試験は、電圧6V−電流2.1Aを供給し、磁束密度5.5mTを発生させた。 An apparatus for testing a self-propelled capsule endoscope of the present invention was produced as follows. Three hollow rod-like coils having an outer diameter of φ8, in which enamel wires were wound at a linear density of 2.5 wires / mm, were provided at equal intervals inside a thin cylindrical cylinder made of transparent PVC (vinyl chloride) of φ32 × 120 L. A movable magnet (made of neodymium having a magnetic flux density of 400 mT, φ15 × 10 L ) was provided between the three rod-shaped coils. In the running test, a voltage of 6 V and a current of 2.1 A were supplied, and a magnetic flux density of 5.5 mT was generated.

上記の自走式カプセル内視鏡を、腸管内模型上に設置し実験を行った。本実施例で用いた腸管内模型の概略は、内径φ50、外径φ60、長さ500mmのアクリル製円筒を縦に1/2分割したものを使用し、その内面には約10mm間隔で高さ20mmのシリコン製ヒダを接着し、さらに全内表面にヒトの皮膚に摩擦係数が類似する超軟質ウレタン樹脂を被覆した。ウレタン樹脂は、主剤(ポリオールブレンド)と硬化剤(イソシアネート)をvol.比3:1で混合・硬化させ、シリコン製ヒダ表面に4〜8mmの厚みで被覆した。自走式カプセル内視鏡とテストコース表面との摩擦特性は実測し、静摩擦係数は0.25、動摩擦係数は0.018であった。   The self-propelled capsule endoscope was installed on an intestinal model and an experiment was conducted. The outline of the intestinal tract model used in this example is a vertically divided acrylic cylinder having an inner diameter of 50 mm, an outer diameter of 60 mm, and a length of 500 mm, and the inner surface has a height of about 10 mm. A 20 mm silicon crease was adhered, and the entire inner surface was coated with an ultra-soft urethane resin having a friction coefficient similar to that of human skin. The urethane resin contains a main agent (polyol blend) and a curing agent (isocyanate) vol. The mixture was mixed and cured at a ratio of 3: 1, and the surface of the silicon fold was coated with a thickness of 4 to 8 mm. The friction characteristics between the self-propelled capsule endoscope and the test course surface were measured, and the static friction coefficient was 0.25 and the dynamic friction coefficient was 0.018.

コイル部16全てに通電した場合は、スライド走行及びノック走行方式の何れにおいても、カプセル内視鏡が前後に駆動することが確認された。また、コイル部16の一部のみに通電して駆動部17を駆動したところ、スライド走行及びノック走行方式の何れにおいても、自走式カプセル内視鏡が様々な方向に回転し、特に、腸管内模型のシリコン製ヒダに当接した状態でコイル部16の一部のみに通電した場合には、自走式カプセル内視鏡が飛び跳ねて逆方向にひっくり返る等の動作が確認された。   When all the coil parts 16 were energized, it was confirmed that the capsule endoscope was driven back and forth in both the sliding traveling and knock traveling systems. Further, when the drive unit 17 is driven by energizing only a part of the coil unit 16, the self-propelled capsule endoscope rotates in various directions in both the slide traveling and knock traveling methods, and in particular, the intestinal tract. When energizing only a part of the coil portion 16 in contact with the silicon fold of the inner model, it was confirmed that the self-propelled capsule endoscope jumped and turned over in the reverse direction.

Claims (3)

棒状コイル部及び駆動部を含むリニア推進機構を内部に有する自走式カプセル内視鏡において、
前記棒状コイル部はカプセルの内側に複数本設けられ、
前記駆動部は前記棒状コイル部の外側のカプセル内に設けられ、且つ、
前記駆動部が前記複数本の棒状コイル部よりカプセルの中心側を、前記複数本の棒状コイル部に沿って移動できるように設けられ、
前記複数本の棒状コイル部の通電を制御することで、カプセル内視鏡に前後方向への推進機能及び多様な方向への方向転換機能を与えることを特徴とする自走式カプセル内視鏡。
In a self-propelled capsule endoscope having a linear propulsion mechanism including a rod-shaped coil unit and a drive unit inside,
A plurality of the rod-shaped coil portions are provided inside the capsule,
The drive unit is provided in a capsule outside the rod-shaped coil unit, and
The drive unit is provided so that the center side of the capsule can be moved along the plurality of bar-shaped coil units from the plurality of bar-shaped coil units,
A self-propelled capsule endoscope characterized by providing a capsule endoscope with a propulsion function in the front-rear direction and a direction changing function in various directions by controlling energization of the plurality of rod-shaped coil portions .
前記棒状コイル部が3以上の奇数本で且つ等間隔に設置されていることを特徴とする請求項1に記載の自走式カプセル内視鏡。 2. The self-propelled capsule endoscope according to claim 1, wherein the rod-like coil portions are provided in an odd number of 3 or more and at equal intervals. 前記棒状コイル部が3本であることを特徴とする請求項1又は2に記載の自走式カプセル内視鏡。
The self-propelled capsule endoscope according to claim 1 or 2, wherein the number of the bar-shaped coil portions is three.
JP2011260020A 2011-11-29 2011-11-29 Self-propelled capsule endoscope Expired - Fee Related JP5963158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011260020A JP5963158B2 (en) 2011-11-29 2011-11-29 Self-propelled capsule endoscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011260020A JP5963158B2 (en) 2011-11-29 2011-11-29 Self-propelled capsule endoscope

Publications (2)

Publication Number Publication Date
JP2013111255A JP2013111255A (en) 2013-06-10
JP5963158B2 true JP5963158B2 (en) 2016-08-03

Family

ID=48707433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011260020A Expired - Fee Related JP5963158B2 (en) 2011-11-29 2011-11-29 Self-propelled capsule endoscope

Country Status (1)

Country Link
JP (1) JP5963158B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10715021B2 (en) 2012-07-20 2020-07-14 Kyushu Institute Of Technology Mobile capsule device and control method thereof
US20170187239A1 (en) * 2014-06-30 2017-06-29 Shinano Kenshi Co., Ltd. Wireless power feeding device and wireless power feeding system
US20170360283A1 (en) * 2014-12-18 2017-12-21 Piolax, Inc. Capsule endoscope, capsule endoscopic inspection method, and capsule endoscopic inspection device
CN106606346B (en) * 2015-10-21 2020-04-10 新加坡国立大学 Self-supporting initiative axial drive arrangement is used to medical science
CN106974613B (en) * 2017-04-26 2018-04-10 常州信息职业技术学院 A kind of miniature gastrointestinal robot
CN118319570A (en) * 2024-06-14 2024-07-12 浙江强脑科技有限公司 Gastric vagus nerve stimulation method and device based on vibration capsule

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003265403A (en) * 2002-03-15 2003-09-24 Pentax Corp Endoscope insert assisting device and endoscope instrument
JP2003265404A (en) * 2002-03-15 2003-09-24 Pentax Corp Endoscope insert assisting device and endoscope
JP2006043432A (en) * 2004-06-29 2006-02-16 Nippon Cable Syst Inc Moving device in pipe line
JP2006280638A (en) * 2005-03-31 2006-10-19 Toin Gakuen Travelling capsule
JP5000099B2 (en) * 2005-04-28 2012-08-15 学校法人東京電機大学 Small robot with no moving parts on the outside

Also Published As

Publication number Publication date
JP2013111255A (en) 2013-06-10

Similar Documents

Publication Publication Date Title
Shamsudhin et al. Magnetically guided capsule endoscopy
JP5963158B2 (en) Self-propelled capsule endoscope
Ciuti et al. Frontiers of robotic endoscopic capsules: a review
Wang et al. Perspective of active capsule endoscope: actuation and localisation
JP4503930B2 (en) Medical equipment
Valdastri et al. A magnetic internal mechanism for precise orientation of the camera in wireless endoluminal applications
Tortora et al. Propeller-based wireless device for active capsular endoscopy in the gastric district
Quirini et al. Feasibility proof of a legged locomotion capsule for the GI tract
US8257257B2 (en) Capsule type medical device
Lien et al. Magnetic control system targeted for capsule endoscopic operations in the stomach—design, fabrication, and in vitro and ex vivo evaluations
Sliker et al. Flexible and capsule endoscopy for screening, diagnosis and treatment
Menciassi et al. Microrobotics for future gastrointestinal endoscopy
Kwack et al. Current status and research into overcoming limitations of capsule endoscopy
KR101510196B1 (en) Motion control system for module type capsule robot in body
WO2007128084A2 (en) The controllable microcapsule type robot-endoscope
Sun et al. Preliminary study of a legged capsule robot actuated wirelessly by magnetic torque
Menciassi et al. Single and multiple robotic capsules for endoluminal diagnosis and surgery
CN104997479A (en) Capsule endoscope device used for examining alimentary canal
Rahman et al. The role of magnetic assisted capsule endoscopy (MACE) to aid visualisation in the upper GI tract
Quirini et al. An approach to capsular endoscopy with active motion
Wang et al. Physiological factors of the small intestine in design of active capsule endoscopy
Makishi et al. Active bending electric endoscope using shape memory alloy coil actuators
Swain Colonoscopy: new designs for the future
Menciassi et al. Future developments of video capsule endoscopy: Hardware
JP2005253798A (en) Internally introduced device in subject

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160621

R150 Certificate of patent or registration of utility model

Ref document number: 5963158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees