JP5962503B2 - Substrate for photoelectric conversion element and photoelectric conversion element - Google Patents

Substrate for photoelectric conversion element and photoelectric conversion element Download PDF

Info

Publication number
JP5962503B2
JP5962503B2 JP2012287337A JP2012287337A JP5962503B2 JP 5962503 B2 JP5962503 B2 JP 5962503B2 JP 2012287337 A JP2012287337 A JP 2012287337A JP 2012287337 A JP2012287337 A JP 2012287337A JP 5962503 B2 JP5962503 B2 JP 5962503B2
Authority
JP
Japan
Prior art keywords
substrate
dimensional periodic
periodic structure
period
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012287337A
Other languages
Japanese (ja)
Other versions
JP2014130712A (en
Inventor
啓 篠塚
啓 篠塚
正人 川村
正人 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Oji Holdings Corp
Original Assignee
Oji Holdings Corp
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Holdings Corp, Oji Paper Co Ltd filed Critical Oji Holdings Corp
Priority to JP2012287337A priority Critical patent/JP5962503B2/en
Publication of JP2014130712A publication Critical patent/JP2014130712A/en
Application granted granted Critical
Publication of JP5962503B2 publication Critical patent/JP5962503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、光電変換素子用基板および光電変換素子に関する。   The present invention relates to a photoelectric conversion element substrate and a photoelectric conversion element.

光電変換素子は、電気を光に変換する素子、および光を電気に変換する素子を含む。電気を光に変換する素子としては、発光ダイオード、半導体レーザーがあり、光を電気に変換する素子としては、太陽電池、フォトダイオードがある。   The photoelectric conversion element includes an element that converts electricity into light and an element that converts light into electricity. Elements that convert electricity into light include light emitting diodes and semiconductor lasers, and elements that convert light into electricity include solar cells and photodiodes.

光電変換素子は、例えば発光ダイオードの場合、基板上に電極(陰極または陽極)層、発光層、および電極(陽極または陰極)層を積層して構成される。更に各層の間には電子輸送層、電子注入層、ホール輸送層、ホール注入層などの中間層が設けられる場合がある。   In the case of a light emitting diode, for example, the photoelectric conversion element is configured by laminating an electrode (cathode or anode) layer, a light emitting layer, and an electrode (anode or cathode) layer on a substrate. Further, an intermediate layer such as an electron transport layer, an electron injection layer, a hole transport layer, or a hole injection layer may be provided between the layers.

発光ダイオードの発光層で生じた光は、上述した中間層、電極層を通して(基板が透明である場合は基板を通して)発光ダイオードの外部へ取り出される。このとき発光層、中間層、電極層、基板の層界面では、各層を構成する材料の屈折率の差による光の反射が発生し、光の一部が各層内に閉じ込められる現象が起きる。この現象による光の損失を防ぐことは、従来の発光ダイオードの課題の一つとなっていた。   The light generated in the light emitting layer of the light emitting diode is extracted to the outside of the light emitting diode through the above-described intermediate layer and electrode layer (through the substrate when the substrate is transparent). At this time, light reflection occurs due to the difference in refractive index of the material constituting each layer at the layer interface of the light emitting layer, the intermediate layer, the electrode layer, and the substrate, and a phenomenon in which part of the light is confined in each layer occurs. Preventing light loss due to this phenomenon has been one of the problems of conventional light emitting diodes.

太陽電池においては、太陽光が電極層を通して半導体層へ入射するときに、発光ダイオードの場合と同様に層界面で屈折率の差によって光の一部が反射する。層界面の光の透過率を上げ、発電効率を上げることが、従来の太陽電池の課題の一つとなっていた。   In the solar cell, when sunlight enters the semiconductor layer through the electrode layer, part of the light is reflected by the difference in refractive index at the layer interface as in the case of the light emitting diode. Increasing the light transmittance at the layer interface and increasing the power generation efficiency has been one of the problems of conventional solar cells.

光の取り出し効率を上げるため、基板と透明電極との間にとの電極と対向する面側が凹凸である光取り出し層を設けた発光ダイオードが提案されている(特許文献1)。特許文献1の凹凸構造は、発光層で生じ、全反射で発光層や透明電極内部に閉じこめられていた光を取り出すものである。取り出すことのできる光の波長範囲は、凹凸構造の周期によって決定される光の波長範囲に限られるため、凹凸構造の周期は、発光の中心波長の光に合わせて設計されるものである。   In order to increase the light extraction efficiency, a light emitting diode has been proposed in which a light extraction layer is provided between the substrate and the transparent electrode so that the surface facing the electrode is uneven (Patent Document 1). The concavo-convex structure of Patent Document 1 is for extracting light that is generated in the light emitting layer and confined inside the light emitting layer or the transparent electrode by total reflection. Since the wavelength range of light that can be extracted is limited to the wavelength range of light determined by the period of the concavo-convex structure, the period of the concavo-convex structure is designed in accordance with the light having the central wavelength of light emission.

一方、照明用などで近年普及が進んでいる白色光を取り出す発光ダイオードの場合は、発光のピーク波長の異なる単色の発光層を複数積層有し、発光のピーク波長が複数存在するため、特許文献1に記載の凹凸構造では、光の取り出し効率を一定以上上げることはできなかった。   On the other hand, in the case of a light emitting diode that extracts white light, which has been widely used in recent years for illumination, etc., it has a plurality of monochromatic light emitting layers with different emission peak wavelengths, and there are multiple emission peak wavelengths. In the concavo-convex structure described in 1, the light extraction efficiency could not be increased beyond a certain level.

特開2006−269163JP 2006-269163 A

本発明は、光電変換素子用基板に関し、広い発光波長領域を有し且つ発光素子発光効率の高い発光素子または発電効率の高い太陽電池を得るための光電変換素子用基板を提供する。   The present invention relates to a substrate for a photoelectric conversion element, and provides a substrate for a photoelectric conversion element for obtaining a light-emitting element having a wide emission wavelength region and having a high light-emitting element luminous efficiency or a solar cell having a high power generation efficiency.

上記の課題を解決するための手段として、本発明は以下の[1]〜[5]を含む。
[1]光電変換素子用基板であって、基板の少なくとも一方の面の少なくとも一部に凹凸構造を有し、前記凹凸構造は、互いに周期が異なる2種類以上の2次元周期構造部を含み、前記2種類以上の2次元周期構造部のうち、少なくとも1種類の2次元周期構造部は、前記凹凸構造の中で2次元周期単位2つ分以上から成る微小エリアを形成し、周期が異なる他の2次元周期構造部と入り混じって存在することを特徴とする基板。
[2]前記微小エリアの大きさは、直径50μmの円に収まる大きさである(1)に記載の基板。
[3]前記互いに周期が異なる前記2次元周期構造部のうち、周期の最も近い2種類の2次元周期構造部の周期を比較し、周期が小さい2次元周期構造部の周期をP1、周期が大きい2次元周期構造部の周期をP2とし、周期の最も離れた2種類の2次元周期構造部周期を比較し、周期が小さい2次元周期構造部の周期をP3、周期が大きい2次元周期構造部の周期をP4としたとき、P1,P2,P3,P4が数式(1)および数式(2)を充たす[1]または[2]に記載の基板。
数式(1)P1≦0.90P2
数式(2)P3≧0.10P4
[4][1]〜[3]のいずれかに記載の基板上に少なくとも発光層、陰極層、陽極層を積層した発光素子。
[5][1]〜[3]のいずれかに記載の基板上に少なくとも半導体層、陰極層、陽極層を積層した太陽電池。
As means for solving the above problems, the present invention includes the following [1] to [5].
[1] A substrate for a photoelectric conversion element, which has an uneven structure on at least a part of at least one surface of the substrate, and the uneven structure includes two or more types of two-dimensional periodic structures having different periods. Of the two or more types of two-dimensional periodic structure portions, at least one type of two-dimensional periodic structure portion forms a micro area composed of two or more two-dimensional periodic units in the concavo-convex structure, and has a different period. A substrate characterized by existing in a mixed state with the two-dimensional periodic structure portion.
[2] The substrate according to (1), wherein the size of the minute area is a size that fits in a circle having a diameter of 50 μm.
[3] Of the two-dimensional periodic structure parts having different periods, the two types of two-dimensional periodic structure parts having the closest periods are compared, and the period of the two-dimensional periodic structure part having the smallest period is P1, and the period is Let P2 be the period of the large two-dimensional periodic structure part, compare the two types of two-dimensional periodic structure parts that are farthest apart, compare the period of the two-dimensional periodic structure part with the smallest period to P3, and the two-dimensional periodic structure with a large period The board | substrate as described in [1] or [2] in which P1, P2, P3, and P4 satisfy | fill Formula (1) and Formula (2) when the period of a part is set to P4.
Formula (1) P1 ≦ 0.90P2
Formula (2) P3 ≧ 0.10 P4
[4] A light emitting device in which at least a light emitting layer, a cathode layer, and an anode layer are laminated on the substrate according to any one of [1] to [3].
[5] A solar cell in which at least a semiconductor layer, a cathode layer, and an anode layer are stacked on the substrate according to any one of [1] to [3].

本発明により、広い発光波長領域を有し且つ発光素子発光効率の高い発光素子が得られる。或いは、発電効率の高い太陽電池が得られる。 According to the present invention, a light emitting element having a wide emission wavelength region and high light emitting efficiency can be obtained. Alternatively, a solar cell with high power generation efficiency can be obtained.

図1(a)は、本発明の光電変換素子用基板の一面に設けられた凹凸構造における微小エリアの分布の一例を示す模式図である。図1(b)は、図1(a)の凹凸構造を線X1−X2で切った断面図である。Fig.1 (a) is a schematic diagram which shows an example of distribution of the micro area in the uneven structure provided in one surface of the substrate for photoelectric conversion elements of this invention. FIG. 1B is a cross-sectional view of the concavo-convex structure of FIG. 1A taken along line X1-X2. 図2(a)は、本発明の光電変換素子用基板の一面に設けられた凹凸構造における微小エリアの分布の別の一例を示す模式図である。図2(b)は、図2(a)の凹凸構造を線X3−X4で切った断面図である。Fig.2 (a) is a schematic diagram which shows another example of distribution of the micro area in the uneven structure provided in one surface of the substrate for photoelectric conversion elements of this invention. FIG. 2B is a cross-sectional view of the concavo-convex structure of FIG. 2A taken along line X3-X4. 図3は、本発明の実施形態の一例(発光素子)である。FIG. 3 shows an example (light emitting element) of the embodiment of the present invention. 図4は、本発明の実施形態の別の一例(太陽電池)である。FIG. 4 is another example (solar cell) of the embodiment of the present invention.

本発明の光電変換素子用基板は、光電変換素子用基板として用いられる各種公知の材料を用いることができる。材質は、無機、有機、無機有機複合のいずれであってもよく、ガラスや樹脂などの可視光透過性材料を用いることもできる。   Various known materials used as the substrate for photoelectric conversion elements can be used for the substrate for photoelectric conversion elements of the present invention. The material may be any of inorganic, organic, and inorganic-organic composites, and a visible light transmissive material such as glass or resin can also be used.

本発明の光電変換素子用基板の少なくとも一方の面の少なくとも一部には、凹凸構造が設けられる。凹凸構造は、基板平面に対して凸部が並んだ構造であっても良いし、基板平面に対して凹部が並んだ構造であっても良い、或いは基板平面に対して垂直な面で凹凸構造を切った断面が正弦波状、方形波状、正弦波と方形波の複合形状である構造であっても良い。前記、凸部または凹部の形状としては、円柱、円錐状、円錐台状、砲弾形状またはこれらの複合形状などが挙げられる。   An uneven structure is provided on at least a part of at least one surface of the substrate for photoelectric conversion elements of the present invention. The concavo-convex structure may be a structure in which convex portions are arranged with respect to the substrate plane, a structure in which concave portions are arranged with respect to the substrate plane, or a concavo-convex structure in a plane perpendicular to the substrate plane. A structure in which the cross-section taken off is a sine wave shape, a square wave shape, or a composite shape of a sine wave and a square wave. Examples of the shape of the convex portion or the concave portion include a columnar shape, a conical shape, a truncated cone shape, a bullet shape, or a composite shape thereof.

図1に示すように前記凹凸構造は、互いに周期が異なる2種類以上の2次元周期構造部から成る。前記2種類以上の2次元周期構造部のうち、少なくとも1種類の2次元周期構造部は、微小エリアを形成している。前記微小エリアが周期の異なる他の2次元周期構造部と入り混じって存在することにより、前記凹凸構造は、互いに周期が異なる2種類以上の2次元周期構造部の存在割合が均一である。   As shown in FIG. 1, the concavo-convex structure is composed of two or more types of two-dimensional periodic structures having different periods. Of the two or more types of two-dimensional periodic structure portions, at least one type of two-dimensional periodic structure portion forms a micro area. Since the minute area is mixed with other two-dimensional periodic structure parts having different periods, the concavo-convex structure has a uniform ratio of two or more types of two-dimensional periodic structure parts having different periods.

図2は、2次元周期構造部Aの中に2次元周期構造部Aとは異なる周期を持つ2次元周期構造部Bの微小エリアが島状に存在している例である。   FIG. 2 is an example in which a minute area of a two-dimensional periodic structure portion B having a different period from the two-dimensional periodic structure portion A exists in an island shape in the two-dimensional periodic structure portion A.

図3は、互いに周期の異なる2次元周期構造部A、2次元周期構造部B、2次元周期構造部Cが各々微小エリアとなって存在している例である。   FIG. 3 shows an example in which the two-dimensional periodic structure portion A, the two-dimensional periodic structure portion B, and the two-dimensional periodic structure portion C having different periods exist as minute areas.

前記微小エリアは、周期構造単位が2つ以上繰り返された構造であり、好ましくは周期構造単位が4つ以上、更に好ましくは6つ以上である。   The minute area has a structure in which two or more periodic structural units are repeated, preferably four or more, more preferably six or more.

本発明においては、前記2次元周期構造の凸部または凹部の中心同士を結んだ線で形成される図形を正方格子または三角格子のうち、いずれか近似する格子にあてはめ、当てはめた正方形または三角形を周期構造単位とする。   In the present invention, a figure formed by a line connecting the centers of the convex portions or concave portions of the two-dimensional periodic structure is applied to either a square lattice or a triangular lattice, and a fitted square or triangle is applied. A periodic structural unit.

尚、2次元周期構造部の内部、または、互いに周期の異なる2次元周期構造部の間に、凹凸構造を持たない部分が存在していても良いし、周期性のない凹凸構造部分が存在しても良い。前記互いに周期の異なる2次元周期構造部の間は凹凸構造を持たない部分および周期性のない凹凸構造部分の面積は、前記凹凸構造の面積に対し、50%未満であることが好ましい。   Note that there may be a portion having no concavo-convex structure inside the two-dimensional periodic structure portion or between two-dimensional periodic structure portions having different periods, and there is a concavo-convex structure portion having no periodicity. May be. It is preferable that the area of the concavo-convex structure part having no concavo-convex structure and the non-periodic concavo-convex structure part between the two-dimensional periodic structure parts having different periods is less than 50% of the area of the concavo-convex structure.

前記微小エリアの大きさは、直径50μmの円に収まる大きさであることが好ましい。前記微小エリアの大きさが、直径50μmの円を超えると本発明の基板を発光素子に使用した場合には色調ムラが発生する場合があり、本発明の基板を太陽電池に使用した場合には発電効率の上昇が顕著に見られない場合がある。   The size of the minute area is preferably a size that fits in a circle having a diameter of 50 μm. When the size of the minute area exceeds a circle having a diameter of 50 μm, color tone unevenness may occur when the substrate of the present invention is used for a light emitting element, and when the substrate of the present invention is used for a solar cell. In some cases, the increase in power generation efficiency is not noticeable.

ここで、前記微小エリアの形状が歪である場合、歪な微小エリアの面積の75%以上が収まる大きさの円が、直径50μmの円に収まる大きさであれば、前記歪な微小エリアの大きさは、直径50μmの円に収まる大きさであると見なす。   Here, when the shape of the minute area is strain, if a circle having a size that can accommodate 75% or more of the area of the strained minute area is within a circle having a diameter of 50 μm, The size is considered to be a size that fits in a circle with a diameter of 50 μm.

本発明の光電変換素子用基板に使用する凹凸構造の形成方法は、本発明の光電変換素子用基板の凹凸構造の特徴を再現できればいかなる方法であってもよく、各種公知の方法を適用できる。本発明の凹凸構造の形成方法の一例としては、レーザービームにより基板表面を切削加工して凹凸構造を作製するする方法、基板上に感光材料を塗布し遮光マスクパターンを被せて露光現像し、現像パターンによりマスクされた基板をドライエッチングして凹凸構造を作製する方法、基板上に粒子からなる膜を配置し、前記粒子からなる膜によりマスクされた基板をドライエッチングして凹凸構造を作製する方法などが挙げられる。   The method for forming the concavo-convex structure used in the photoelectric conversion element substrate of the present invention may be any method as long as the characteristics of the concavo-convex structure of the photoelectric conversion element substrate of the present invention can be reproduced, and various known methods can be applied. As an example of the method for forming a concavo-convex structure according to the present invention, a method for producing a concavo-convex structure by cutting a substrate surface with a laser beam, a photosensitive material is applied on the substrate, and a light-shielding mask pattern is applied, followed by exposure and development. A method for producing a concavo-convex structure by dry etching a substrate masked by a pattern, and a method for producing a concavo-convex structure by arranging a film made of particles on the substrate and dry-etching the substrate masked by the film made of particles Etc.

前記粒子からなる膜を用いて基板を作製する場合、平均粒子径の異なる2種類以上の粒子から粒子膜を形成する。平均粒子径の異なる2種類以上の粒子の混合分散条件(例えば攪拌の強さや時間など)を調整し、基板上に配置することによって、粒子径の近い粒子同士がクラスターを作って基板上に配置され、これをエッチングすることによって本発明の光電変換素子用基板に使用する凹凸構造が形成される。   When a substrate is prepared using a film made of the particles, a particle film is formed from two or more kinds of particles having different average particle diameters. By adjusting the mixing and dispersing conditions (for example, stirring intensity and time) of two or more types of particles with different average particle sizes and placing them on the substrate, particles with similar particle sizes form clusters and are placed on the substrate. By etching this, the concavo-convex structure used for the photoelectric conversion element substrate of the present invention is formed.

前記粒子からなる膜を用いて基板を作製する場合、ラングミュア−ブロシェット法を採用し、液面に粒子単層膜を形成するときに、別々の滴下口から平均粒子径の異なる2種類以上の粒子を滴下するなどの方法により、粒子径の近い粒子同士がクラスターを作った粒子単層膜を作製することができる。これを基板上に配置しエッチングすることによって本発明の光電変換素子用基板に使用する凹凸構造が形成される。   When a substrate is prepared using a film made of the above particles, the Langmuir-Brochette method is adopted, and when forming a particle monolayer film on the liquid surface, two or more kinds of particles having different average particle diameters from different dropping ports A particle monolayer film in which particles having a similar particle diameter form a cluster can be produced by a method such as dripping. By arranging this on the substrate and etching, the concavo-convex structure used for the photoelectric conversion element substrate of the present invention is formed.

図3は、本発明の基板を使用した発光素子の一例の断面を表した模式図である。
図3の例では、本発明の基板上に陽極層、発光層、陰極層を積層した発光素子である。基板上に形成された各層の界面は、基板上の凹凸構造と同じ凹凸構造を有している。各層の界面が基板上の凹凸構造と同じ凹凸構造を有する発光素子は、本発明の基板上に、真空蒸着法、スパッタリング法などによって上記各層の薄膜を形成することによって製造できる。
FIG. 3 is a schematic view showing a cross section of an example of a light emitting element using the substrate of the present invention.
The example of FIG. 3 is a light emitting device in which an anode layer, a light emitting layer, and a cathode layer are stacked on the substrate of the present invention. The interface of each layer formed on the substrate has the same uneven structure as the uneven structure on the substrate. A light-emitting element in which the interface of each layer has the same concavo-convex structure as that on the substrate can be produced by forming a thin film of each layer on the substrate of the present invention by vacuum deposition, sputtering, or the like.

本発明の基板上に少なくとも発光層、陰極層、陽極層を積層して得られる発光素子は発光層で生じた光が、発光素子の外へ出射するまでに通過する各層の界面に発光効率を高める凹凸構造を有するものである。各層の界面の凹凸構造は、前記基板と同じ2次元周期構造を有し、その周期は発光効率を高めるように設計される。本発明の基板の凹凸構造は互いに周期が異なる2種類以上の2次元周期構造部を含むが、各々の2次元周期構造部の周期は、出射する光において強度を上げたい波長の光に合わせて適宜設計される。前記2次元周期構造部およびその周期は、発光効率を高めるためのものであればどのような原理を用いたものであってもよい。   A light-emitting element obtained by laminating at least a light-emitting layer, a cathode layer, and an anode layer on the substrate of the present invention has a luminous efficiency at the interface of each layer through which light generated in the light-emitting layer passes before exiting the light-emitting element. It has a concavo-convex structure to be enhanced. The concavo-convex structure at the interface of each layer has the same two-dimensional periodic structure as that of the substrate, and the period is designed to increase the light emission efficiency. The concavo-convex structure of the substrate of the present invention includes two or more types of two-dimensional periodic structure portions having different periods, and the period of each two-dimensional periodic structure portion is adjusted to the wavelength of the light whose intensity is desired to be increased in the emitted light. It is designed appropriately. The two-dimensional periodic structure portion and its period may be any principle as long as it is for increasing the luminous efficiency.

図3の例では、基板に光透過材料を用いて基板を通して光を出射する発光素子の例をしめしているが、発光層から基板とは反対側へ光を出射する発光素子としてもよい。
図3の例では、陽極層、発光層、陰極層のみ表示しているが、陽極層と発光層の間にホール輸送層、ホール注入層などを設けても良く、陰極層と発光層の間に電子注入層、電子輸送層などを設けても良い。
また、本発明の基板上に陰極層、電子注入層、電子輸送層、発光層、ホール輸送層、ホール注入層、陽極層の順で積層した発光素子であってもよい。
In the example of FIG. 3, an example of a light-emitting element that emits light through a substrate using a light-transmitting material is used. However, a light-emitting element that emits light from the light-emitting layer to the opposite side of the substrate may be used.
In the example of FIG. 3, only the anode layer, the light emitting layer, and the cathode layer are displayed. However, a hole transport layer, a hole injection layer, and the like may be provided between the anode layer and the light emitting layer, and between the cathode layer and the light emitting layer. May be provided with an electron injection layer, an electron transport layer, or the like.
Moreover, the light emitting element laminated | stacked in order of the cathode layer, the electron injection layer, the electron carrying layer, the light emitting layer, the hole transport layer, the hole injection layer, and the anode layer on the board | substrate of this invention may be sufficient.

尚、界面の凹凸構造は必ずしもすべての層に形成されている必要はなく、例えば基板と発光層の間に存在する各層の界面にのみに凹凸構造がある発光素子であってもよい。   Note that the uneven structure of the interface is not necessarily formed in all layers, and for example, a light emitting element having an uneven structure only at the interface of each layer existing between the substrate and the light emitting layer may be used.

図4は、本発明の基板を使用した太陽電池の一例の断面を表した模式図である。太陽電池の場合も基板上に、真空蒸着法、スパッタリング法などによって電極層や半導体層の薄膜を形成することによって製造できる。   FIG. 4 is a schematic view showing a cross section of an example of a solar cell using the substrate of the present invention. A solar cell can also be manufactured by forming a thin film of an electrode layer or a semiconductor layer on a substrate by a vacuum deposition method, a sputtering method, or the like.

本発明の基板上に少なくとも電極層、半導体層を積層して得られる太陽電池は、太陽電池に入射した太陽光が、半導体層に入射するまでに通過する各層の界面に凹凸構造を有するものである。各層の界面の凹凸構造は、前記基板と同じ2次元周期構造を有し、その周期は発電効率を高めるように設計される。本発明の基板の凹凸構造は互いに周期が異なる2種類以上の2次元周期構造部を含むが、各々の2次元周期構造部の周期は、半導体層において発電効率の高い波長の光を増幅するように適宜設計される。前記2次元周期構造部およびその周期は、発電効率を高めるためのものであればどのような原理を用いたものであってもよい。
The solar cell obtained by laminating at least the electrode layer and the semiconductor layer on the substrate of the present invention has a concavo-convex structure at the interface of each layer through which the sunlight incident on the solar cell passes before entering the semiconductor layer. is there. The concavo-convex structure at the interface of each layer has the same two-dimensional periodic structure as that of the substrate, and the period is designed to increase the power generation efficiency. The concavo-convex structure of the substrate of the present invention includes two or more types of two-dimensional periodic structure parts having different periods. The period of each two-dimensional periodic structure part amplifies light having a wavelength with high power generation efficiency in the semiconductor layer. It is designed appropriately. The two-dimensional periodic structure portion and its period may be any principle as long as it is for increasing power generation efficiency.

本発明の光電変換素子用基板により、発光効率の高い発光素子の提供が可能となる。また、本発明の光電変換素子用基板により、発電効率の高い太陽電池の提供が可能となる。   The photoelectric conversion element substrate of the present invention makes it possible to provide a light emitting element with high luminous efficiency. Moreover, the photoelectric conversion element substrate of the present invention can provide a solar cell with high power generation efficiency.

Claims (6)

光電変換素子用基板であって
基板の少なくとも一方の面の少なくとも一部に凹凸構造を有し、
前記凹凸構造は、互いに周期が異なる2種類以上の2次元周期構造部を含み、
前記2種類以上の2次元周期構造部のうち、少なくとも1種類の2次元周期構造部は、前記凹凸構造の中で前記2次元周期構造の凸部または凹部の中心同士を結んだ線で形成される正方形または三角形を周期構造単位とする2次元周期単位2つ分以上から成る微小エリアを形成し、前記微小エリアが島状に存在していることを特徴とする基板。
A photoelectric conversion element substrate having an uneven structure on at least a part of at least one surface of the substrate;
The concavo-convex structure includes two or more types of two-dimensional periodic structures having different periods.
Of the two or more types of two-dimensional periodic structure portions, at least one type of two-dimensional periodic structure portion is formed by a line connecting the centers of the convex portions or concave portions of the two-dimensional periodic structure in the concave-convex structure. A substrate characterized in that a minute area composed of two or more two-dimensional periodic units having a square or triangle as a periodic structure unit is formed, and the minute area exists in an island shape .
光電変換素子用基板であってA substrate for a photoelectric conversion element;
基板の少なくとも一方の面の少なくとも一部に凹凸構造を有し、Having an uneven structure on at least a part of at least one surface of the substrate;
前記凹凸構造は、互いに周期が異なる2種類以上の2次元周期構造部を含み、The concavo-convex structure includes two or more types of two-dimensional periodic structures having different periods.
前記2種類以上の2次元周期構造部は、前記凹凸構造の中で前記2次元周期構造の凸部または凹部の中心同士を結んだ線で形成される正方形または三角形を周期構造単位とする2次元周期単位2つ分以上から成る微小エリアを形成し、周期が異なる2次元周期構造部が各々微小エリアとなって存在していることを特徴とする基板。The two or more types of two-dimensional periodic structure portions are two-dimensional with a square or a triangle formed by a line connecting the centers of the convex portions or concave portions of the two-dimensional periodic structure in the concavo-convex structure as a periodic structural unit. A substrate characterized in that a minute area composed of two or more periodic units is formed, and two-dimensional periodic structures having different periods are present as minute areas.
前記微小エリアの大きさは、直径50μmの円に収まる大きさである請求項1または2に記載の基板。 The substrate according to claim 1 or 2 , wherein a size of the minute area is a size that fits in a circle having a diameter of 50 µm. 前記互いに周期が異なる前記2次元周期構造部のうち、周期の最も近い2種類の2次元周期構造部の周期を比較し、周期が小さい2次元周期構造部の周期をP1、周期が大きい2次元周期構造部の周期をP2とし、周期の最も離れた2種類の2次元周期構造部周期を比較し、周期が小さい2次元周期構造部の周期をP3、周期が大きい2次元周期構造部の周期をP4としたとき、P1,P2,P3,P4が数式(1)および数式(2)を充たす請求項1〜3のいずれかに記載の基板。
数式(1)P1≦0.90P2
数式(2)P3≧0.10P4
Of the two-dimensional periodic structure parts having different periods, the two types of two-dimensional periodic structure parts having the closest period are compared, and the period of the two-dimensional periodic structure part having the smaller period is P1, and the two-dimensional period is large. Let P2 be the period of the periodic structure part, compare two types of two-dimensional periodic structure part periods that are farthest apart, compare P2 for the two-dimensional periodic structure part with a small period, and the period for the two-dimensional periodic structure part with a large period The board | substrate in any one of Claims 1-3 in which P1, P2, P3, and P4 satisfy | fill Formula (1) and Formula (2), when letting be P4.
Formula (1) P1 ≦ 0.90P2
Formula (2) P3 ≧ 0.10 P4
請求項1〜のいずれかに記載の基板上に少なくとも発光層、陰極層、陽極層を積層した発光素子。 At least a light-emitting layer on a substrate according to any one of claims 1-4, the cathode layer, the light-emitting element formed by laminating an anode layer. 請求項1〜のいずれかに記載の基板上に少なくとも半導体層、陰極層、陽極層を積層した太陽電池。 The solar cell which laminated | stacked the semiconductor layer, the cathode layer, and the anode layer at least on the board | substrate in any one of Claims 1-4 .
JP2012287337A 2012-12-28 2012-12-28 Substrate for photoelectric conversion element and photoelectric conversion element Active JP5962503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012287337A JP5962503B2 (en) 2012-12-28 2012-12-28 Substrate for photoelectric conversion element and photoelectric conversion element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012287337A JP5962503B2 (en) 2012-12-28 2012-12-28 Substrate for photoelectric conversion element and photoelectric conversion element

Publications (2)

Publication Number Publication Date
JP2014130712A JP2014130712A (en) 2014-07-10
JP5962503B2 true JP5962503B2 (en) 2016-08-03

Family

ID=51408947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012287337A Active JP5962503B2 (en) 2012-12-28 2012-12-28 Substrate for photoelectric conversion element and photoelectric conversion element

Country Status (1)

Country Link
JP (1) JP5962503B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10446773B2 (en) 2015-12-10 2019-10-15 Oji Holdings Corporation Substrate, optical element, mold, organic light-emitting element, organic thin-film solar cell, and method for producing substrate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003101053A (en) * 2001-09-27 2003-04-04 Sanyo Electric Co Ltd Solar battery device and manufacturing method therefor
GB0217900D0 (en) * 2002-08-02 2002-09-11 Qinetiq Ltd Optoelectronic devices
JP2005005679A (en) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd Semiconductor light emitting device and its manufacturing method
TWI253771B (en) * 2005-07-25 2006-04-21 Formosa Epitaxy Inc Light emitting diode structure
JP2007088273A (en) * 2005-09-22 2007-04-05 Matsushita Electric Works Ltd Semiconductor light-emitting element and manufacturing method thereof
JP4843284B2 (en) * 2005-09-22 2011-12-21 パナソニック電工株式会社 Semiconductor light emitting device and manufacturing method thereof
JP2009076393A (en) * 2007-09-21 2009-04-09 Sharp Corp Light-emitting device, lighting device, and display device

Also Published As

Publication number Publication date
JP2014130712A (en) 2014-07-10

Similar Documents

Publication Publication Date Title
Peer et al. Light management in perovskite solar cells and organic LEDs with microlens arrays
KR101289844B1 (en) Organic electroluminescent device
KR20130084848A (en) Organic electroluminescent device and method for manufacturing thereof
CN101257077B (en) Semiconductor light emitting diode device with photon crystal high reflection layer
CN113851573B (en) Super surface for improving light-taking efficiency of LED
WO2021000517A1 (en) Color conversion component and display device
JPWO2012004975A1 (en) Light distribution control device, light emitting device using the same, and method for manufacturing light distribution control device
CN110707146B (en) Cover plate, organic light-emitting display panel and display device
Wang et al. Laser patterning of Y 3 Al 5 O 12: Ce 3+ ceramic phosphor platelets for enhanced forward light extraction and angular color uniformity of white LEDs
JP6631639B2 (en) Substrate, optical element, mold, organic light emitting element, organic thin film solar cell, and method of manufacturing substrate
US20230246004A1 (en) Enhanced Colour Conversion and Collimation of Micro-LED Devices
JP5179392B2 (en) Organic EL light emitting device
US9715058B1 (en) Ultraviolet light device
JP2015090810A (en) El display device, and method of manufacturing el display device
KR20170095818A (en) Polarising photovoltaic module built into the screen of an electronic display device
Zhu et al. Design rules for white light emitters with high light extraction efficiency
Kim et al. Conical photonic crystals for enhancing light extraction efficiency from high refractive index materials
JP2007207471A (en) Surface emitter and display device
JP5962503B2 (en) Substrate for photoelectric conversion element and photoelectric conversion element
Kwon et al. A high-sag microlens array film with a full fill factor and its application to organic light emitting diodes
EP3502750A1 (en) Structured plastic scintillator
JP2010045178A (en) Solar cell panel
CN101633220A (en) Micro lens, manufacturing method of mold insert of micro lens and luminescent device
JP5862558B2 (en) Light emitting element
WO2021043272A1 (en) Optoelectronic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5962503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250