JP5958140B2 - Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery - Google Patents

Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery Download PDF

Info

Publication number
JP5958140B2
JP5958140B2 JP2012161731A JP2012161731A JP5958140B2 JP 5958140 B2 JP5958140 B2 JP 5958140B2 JP 2012161731 A JP2012161731 A JP 2012161731A JP 2012161731 A JP2012161731 A JP 2012161731A JP 5958140 B2 JP5958140 B2 JP 5958140B2
Authority
JP
Japan
Prior art keywords
alloy
clad
current collector
negative electrode
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012161731A
Other languages
Japanese (ja)
Other versions
JP2014022271A (en
Inventor
上仲 秀哉
秀哉 上仲
吉田 健太郎
健太郎 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012161731A priority Critical patent/JP5958140B2/en
Publication of JP2014022271A publication Critical patent/JP2014022271A/en
Application granted granted Critical
Publication of JP5958140B2 publication Critical patent/JP5958140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池をはじめとする二次電池の電池用活物質集電体に好適なクラッド箔およびこれを用いる電池用活物質集電体、ならびにリチウムイオン二次電池の負極集電体の製造方法に関する。   The present invention relates to a clad foil suitable for a battery active material current collector of a secondary battery such as a lithium ion secondary battery, a battery active material current collector using the same, and a negative electrode current collector of a lithium ion secondary battery. The present invention relates to a method of manufacturing an electric body.

ハイブリッドEV自動車,プラグインハイブリッドEV自動車,ピュアEV自動車などの移動体用の中大型電池、分散電源用の定置型中大型電池、さらには携帯情報端末,携帯電話,ノート型パソコン等の普及に伴い、高容量の二次電池の需要が伸びている。二次電池の中でも、電解質中のリチウムイオンが電気伝導を担うリチウムイオン二次電池は、軽量でエネルギー密度が高いことから多くの分野で使用され、今後も市場規模がさらに伸長することが予測されている。   With the spread of medium- and large-sized batteries for mobile objects such as hybrid EV cars, plug-in hybrid EV cars, and pure EV cars, stationary medium and large-sized batteries for distributed power supplies, and portable information terminals, mobile phones, and notebook computers Demand for high-capacity secondary batteries is growing. Among secondary batteries, lithium ion secondary batteries, whose lithium ions in the electrolyte are responsible for electrical conduction, are used in many fields because of their light weight and high energy density, and the market scale is expected to grow further in the future. ing.

リチウムイオン二次電池は、箔帯に活物質を塗布したものを極板として用いる。一般的に正極には、アルミニウム箔にLiCoO,LiNiO,LiMn,LiFePO等の化合物をコーティングしたものを用い、負極には、黒鉛質炭素,ハードカーボン,Si系合金,Sn系合金,LiTi12とこれらの混合物を活物質として銅箔あるいは銅合金箔に塗布したものを用いることが多い。 A lithium ion secondary battery uses a foil strip coated with an active material as an electrode plate. Generally, the positive electrode is made of aluminum foil coated with a compound such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFePO 4 , and the negative electrode is made of graphitic carbon, hard carbon, Si-based alloy, Sn-based. In many cases, an alloy, Li 4 Ti 5 O 12 and a mixture thereof are applied as active materials to copper foil or copper alloy foil.

負極に用いる銅箔あるいは銅合金箔は、導電率および耐食性(電解液等による腐食耐性)の観点で非常に優れる材料である。銅箔あるいは銅合金箔の常温近傍における導電率は銀に次いで高く低抵抗であるため、通電時の発熱ロスが小さい。このため、銅箔あるいは銅合金箔からなる負極は、大電流を扱う用途では、低損失・低発熱の大きなメリットがある。   The copper foil or copper alloy foil used for the negative electrode is a material that is extremely excellent in terms of electrical conductivity and corrosion resistance (corrosion resistance by an electrolytic solution or the like). Since the electrical conductivity of copper foil or copper alloy foil in the vicinity of room temperature is the second highest after that of silver and has low resistance, heat loss during energization is small. For this reason, the negative electrode which consists of copper foil or copper alloy foil has the big merit of low loss and low heat_generation | fever for the use which handles a large current.

銅箔には、電解により製造される電解銅箔と、鋳造で得られるインゴットを圧延により箔帯に仕上げる圧延銅箔とが存在する。圧延銅箔の製造プロセスでは、インゴットを熱間圧延した後、冷間圧延および焼鈍を繰り返し、7〜35μm程度の所定の厚みに仕上げる。圧延銅箔は、冷間圧延で歪みを残したまま仕上げる調質圧延を施すことにより、400MPaを超える高い強度を付与できる点で電解銅箔よりも優れる。   Copper foil includes electrolytic copper foil produced by electrolysis and rolled copper foil that finishes an ingot obtained by casting into a foil strip by rolling. In the manufacturing process of the rolled copper foil, after the ingot is hot-rolled, cold rolling and annealing are repeated to finish to a predetermined thickness of about 7 to 35 μm. The rolled copper foil is superior to the electrolytic copper foil in that a high strength exceeding 400 MPa can be imparted by performing temper rolling that finishes while leaving distortion in cold rolling.

一般的にリチウムイオン二次電池の負極は、以下に(1)〜(4)として示すプロセスを経て製造される。   Generally, the negative electrode of a lithium ion secondary battery is manufactured through processes shown as (1) to (4) below.

(1)活物質(黒鉛質炭素,Si系合金,Sn系合金等)に必要に応じて導電助剤を添加し結着剤と混合した上、溶剤に混練分散したペーストを、集電体となる銅箔の表面に塗布して負極板材の母材とする。   (1) A conductive additive is added to an active material (graphitic carbon, Si-based alloy, Sn-based alloy, etc.) as necessary, mixed with a binder, and a paste kneaded and dispersed in a solvent is mixed with a current collector. This is applied to the surface of the copper foil to be a base material for the negative electrode plate material.

(2)活物質を銅箔に結着させるために、120〜350℃の温度で数時間から数十時間加熱する。なお、加熱雰囲気は、銅箔の酸化および合金系負極の酸化を防止するために不活性ガス雰囲気にする場合がある。合金系負極の場合は、高結着力のイミド系、ポリアミドイミド系のバイダーが使われることがあり、この場合は加熱温度が純Cuの再結晶温度の250℃より高くなる傾向にある。   (2) In order to bind the active material to the copper foil, heating is performed at a temperature of 120 to 350 ° C. for several hours to several tens of hours. The heating atmosphere may be an inert gas atmosphere in order to prevent copper foil oxidation and alloy negative electrode oxidation. In the case of an alloy-based negative electrode, an imide-based or polyamide-imide-based binder having a high binding force may be used. In this case, the heating temperature tends to be higher than the recrystallization temperature of pure Cu, 250 ° C.

(3)必要に応じロールプレス等で加圧し、結着性を高めるとともに所定の極板厚みに仕上げる。   (3) When necessary, pressurization is performed with a roll press or the like to enhance the binding property and finish to a predetermined electrode plate thickness.

(4)シャーリングによる切断加工、スリッターによる条切り加工によって所定の負極形状に仕上げる。   (4) A predetermined negative electrode shape is finished by cutting with shearing and slitting with a slitter.

従来の圧延銅箔は、上記(2)の加熱の過程で、銅箔が再結晶を起こし銅箔強度の低下が生じる。銅箔の強度が低下すると、以下の問題の発生が懸念される。   In the conventional rolled copper foil, the copper foil recrystallizes during the heating process (2), and the strength of the copper foil is reduced. If the strength of the copper foil is reduced, the following problems may occur.

(a)ロールプレス等による加圧時に、負極活物質(特に合金系)が銅箔を突き破る。電池構成後に、突出した活物質がセパレータを貫通して正極との短絡を引き起こす可能性がある。   (A) A negative electrode active material (especially alloy type) breaks through the copper foil during pressurization by a roll press or the like. After the battery configuration, the protruding active material may penetrate the separator and cause a short circuit with the positive electrode.

(b)電池製造工程の負極巻き取り、巻回工程ではテンション(張力)がかけられるが、この張力によって、再結晶により強度低下が生じた銅箔が箔切れを起こす可能性がある。   (B) Although tension (tension) is applied in the negative electrode winding and winding process in the battery manufacturing process, the copper foil whose strength has been reduced by recrystallization may cause foil breakage.

(c)リチウムイオン二次電池の負極活物質は、充電に伴い体積が膨張し、放電によって体積が減少する。銅箔は充電および放電の繰り返しによって、機械的な繰り返しストレスを受けることになる。再結晶で軟化した銅箔は変形し易く、そのため結着剤を混合し塗布した活物質が銅箔から脱落し易くなる。   (C) The negative electrode active material of the lithium ion secondary battery expands in volume with charge and decreases in volume due to discharge. The copper foil is subjected to mechanical repeated stress due to repeated charging and discharging. The copper foil softened by recrystallization is easily deformed, so that the active material mixed with the binder and applied easily falls off the copper foil.

さらに、銅箔を加熱する場合には、雰囲気に残存する酸素の影響で、銅箔表面が酸化して結着させた負極活物質が、脱落し易くなる問題も発生していた。   Further, when the copper foil is heated, there is a problem that the negative electrode active material formed by oxidizing and binding the copper foil surface easily falls off due to the influence of oxygen remaining in the atmosphere.

このため、最終の調質圧延後に高い引張強さを有するとともに乾燥・加熱工程で、再結晶・軟化を生じない銅箔、また酸化し難い銅箔が求められている。これらの問題を解決するために、純銅を素材とする圧延銅箔の替わりに銅合金を素材とする圧延銅箔が提案されている。   For this reason, there is a need for a copper foil that has high tensile strength after the final temper rolling and that does not recrystallize or soften in the drying / heating step and that is difficult to oxidize. In order to solve these problems, a rolled copper foil made of a copper alloy instead of a rolled copper foil made of pure copper has been proposed.

特許文献1には、0.01〜0.20質量%のZrを含有し、残部がCuおよび不可避不純物からなる銅材を圧延加工し、その圧延加工により得られた銅箔を、例えば450℃で4時間加熱する熱処理を行うことにより、電極製造時の熱処理前でも適度の伸びを有し、熱処理を受けた後にも300MPa以上の引張強度を維持することができ、かつ純銅の80%以上の電気伝導性を有する二次電池負極集電体用の圧延銅箔が開示されている。   In Patent Document 1, a copper material containing 0.01 to 0.20% by mass of Zr with the balance being Cu and inevitable impurities is rolled, and the copper foil obtained by the rolling is, for example, 450 ° C. By carrying out the heat treatment for 4 hours, it has an appropriate elongation even before the heat treatment during electrode production, can maintain a tensile strength of 300 MPa or more after being subjected to the heat treatment, and is 80% or more of pure copper. A rolled copper foil for a secondary battery negative electrode current collector having electrical conductivity is disclosed.

非特許文献1には、特許文献1により開示された圧延銅箔とともに、Cr:0.20〜0.30質量%、Sn:0.23〜0.27質量%、Zn:0.18〜0.26質量%を含有し、圧延後に400℃に加熱されても500MPaの強度を有するリチウムイオン二次電池用圧延銅箔(商品番号:HCL−64T)が開示されている。   Non-Patent Document 1 includes Cr: 0.20 to 0.30 mass%, Sn: 0.23 to 0.27 mass%, and Zn: 0.18 to 0 together with the rolled copper foil disclosed in Patent Document 1. A rolled copper foil (product number: HCL-64T) for a lithium ion secondary battery that contains .26 mass% and has a strength of 500 MPa even when heated to 400 ° C. after rolling is disclosed.

特許文献2には、銅箔の表面にシランカップリング処理による防錆処理が施されたリチウムイオン二次電池用の集電体用銅箔が開示されている。しかしながら、特許文献2には、150℃以上に加熱すると銅箔が変色することが記載されており、特許文献2により開示された集電体用銅箔の加熱温度の上限は150℃程度と考えられる。   Patent Document 2 discloses a copper foil for a current collector for a lithium ion secondary battery in which the surface of the copper foil is subjected to rust prevention treatment by silane coupling treatment. However, Patent Document 2 describes that the copper foil discolors when heated to 150 ° C. or higher, and the upper limit of the heating temperature of the current collector copper foil disclosed in Patent Document 2 is considered to be about 150 ° C. It is done.

銅合金系の圧延箔を用いることで前述した、加熱乾燥工程において再結晶が発生し、材料が軟化することに起因して発生する諸問題は解決しつつあるものの、高温加熱乾燥工程時の箔表面の酸化に起因して発生する問題に対する本質的な解決策が確立されていないのが現状である。   Although using copper alloy-based rolled foil as described above, recrystallization occurs in the heating and drying process, and various problems caused by softening of the material are being solved, the foil during the high temperature heating and drying process The present situation is that the essential solution with respect to the problem which arises from the oxidation of the surface is not established.

特開2003−217595号公報JP 2003-217595 A 特開2011−23303号公報JP 2011-23303 A

日立電線 カタログ『CAT.NO.C300B 日立圧延銅箔』Hitachi Cable Catalog “CAT. NO. C300B Hitachi Rolled Copper Foil "

本発明は、以下に列記の2つの特性I,IIを兼ね備える集電体用箔材料を提供することを目的とする。   An object of the present invention is to provide a current collector foil material having two characteristics I and II listed below.

(I)電極製造時の加熱工程において強度低下が小さいこと
集電体用箔の強度低下に起因して発生する、電池製造工程の負極巻き取り・巻回工程でテンション(張力)がかかった場合の強度低下による銅箔の箔切れや、ロールプレス等による加圧時に軟化のために負極活物質(特に合金系)が銅箔を突き破ることといった問題を解決するためである。
(I) The strength reduction is small in the heating process at the time of electrode manufacture When tension is applied in the negative electrode winding / winding process of the battery manufacturing process, which occurs due to the strength reduction of the current collector foil This is to solve the problems that the copper foil is cut off due to a decrease in strength and that the negative electrode active material (particularly the alloy system) breaks through the copper foil due to softening when pressed by a roll press or the like.

(II)電極製造時の加熱工程において電極表面の酸化膜の生成が少ないこと
電極表面における酸化膜の生成により活物質の密着性が低下し、活物質が剥離し易くなる現象を解決するためである。
(II) In order to solve the phenomenon that the formation of an oxide film on the electrode surface reduces the adhesion of the active material and the active material is easily peeled off during the heating process during electrode production. is there.

これまでにも、集電体用箔材料に上記の特性を個別に備えるための提案はなされてきたものの、同時に解決する手段は提案されていない。   So far, although proposals have been made to individually provide the current collector foil materials with the above-mentioned properties, no means for simultaneously solving them has been proposed.

本発明は、以下に列記の通りである。
(1)CuまたはCu合金からなる基層と、該基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層とからなる3層構造を有し、常温での引張強さが485MPa以上586MPa以下であり、450℃で4時間保持後の引張強さが300MPa以上474MPa以下であり、総厚さが35μm以下であることを特徴とする電池用負極用のクラッド箔帯。
The present invention is listed below.
(1) It has a three-layer structure consisting of a base layer made of Cu or Cu alloy and a surface layer made of Ni or Ni alloy formed by clad on both surfaces of the base layer, and has a tensile strength at room temperature of 485 MPa or more and 586 MPa A clad foil strip for a negative electrode for a battery, characterized in that the tensile strength after holding at 450 ° C. for 4 hours is 300 MPa or more and 474 MPa or less and the total thickness is 35 μm or less.

(2)CuまたはCu合金からなる基層と、該基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層とからなる3層構造を有し、常温での引張強さが485MPa以上586MPa以下の強度を有し、450℃で4時間保持後の引張強さが400MPa以上474MPa以下の強度であり、総厚さが35μm以下であることを特徴とする電池用負極用のクラッド箔帯。 (2) It has a three-layer structure consisting of a base layer made of Cu or Cu alloy and a surface layer made of Ni or Ni alloy formed by clad on both sides of the base layer, and has a tensile strength at room temperature of 485 MPa or more and 586 MPa A clad foil strip for a negative electrode for a battery, having the following strength, a tensile strength after holding at 450 ° C. for 4 hours: 400 MPa to 474 MPa, and a total thickness of 35 μm or less .

(3)前記総厚さに占める前記CuまたはCu合金からなる基層の厚さの割合が68%以上90%以下であり、導電率がIACSの80%以上83%以下を有する(1)項または(2)項に記載されたクラッド箔帯。 (3) The ratio of the thickness of the base layer made of Cu or Cu alloy to the total thickness is 68% or more and 90% or less, and the conductivity is 80% or more and 83% or less of IACS or (1) The clad foil strip described in the item (2).

(4)熱間圧延と、歪み取り焼鈍と、この歪み取り焼鈍後の圧下率90%以上の冷間圧延とを施されて製造される(1)項から(3)項までのいずれか1項に記載されたクラッド箔帯の製造方法(4) Any one of items (1) to (3) manufactured by hot rolling, strain relief annealing, and cold rolling with a reduction rate of 90% or more after this strain relief annealing. The manufacturing method of the clad foil strip described in the item.

(5)前記冷間圧延後に400℃〜500℃の焼鈍を施されて製造される(4)項に記載されたクラッド箔帯の製造方法(5) The method for producing a clad foil strip according to (4), which is produced by annealing at 400 ° C. to 500 ° C. after the cold rolling.

(6)(1)項から()項までのいずれか1項に記載されたクラッド箔帯と、該クラッド箔帯の表面に形成された、活物質を含む塗膜とを有することを特徴とする電池用活物質集電体の製造方法(6) The clad foil strip described in any one of the items (1) to ( 3 ), and a coating film containing an active material formed on the surface of the clad foil strip A method for producing a battery active material current collector.

(7)(1)項から()項までのいずれか1項に記載されたクラッド箔帯の表面に、活物質を含む塗膜を形成してから、120〜350℃の温度に加熱保持し、加圧して所定の厚みとした後に所定の形状に加工することを特徴とするリチウムイオン二次電池の負極集電体の製造方法。 (7) A coating film containing an active material is formed on the surface of the clad foil strip described in any one of items (1) to ( 3 ), and then heated to a temperature of 120 to 350 ° C. And processing to a predetermined shape after pressurizing to a predetermined thickness, and a method for producing a negative electrode current collector of a lithium ion secondary battery.

本発明における「クラッド」は、CuまたはCu合金からなる基層と、NiまたはNi合金からなる表層とを張り合わせ、これらの基層および表層の境界面が拡散結合されている(合金層を有する)ことを意味する。   “Clad” in the present invention means that a base layer made of Cu or Cu alloy and a surface layer made of Ni or Ni alloy are bonded together, and the boundary surface between these base layers and the surface layer is diffusion-bonded (has an alloy layer). means.

本発明に係る電池用活物質集電用のクラッド箔帯は、純銅あるいは銅合金の表面をNi金属で被覆すること、具体的には、鍍金や表面処理によって得られる状態ではなく、熱間加工を経ることで被覆層であるNiとCuとが相互拡散し、表面のNi被覆層が材料の高強度化に寄与する厚みを有するクラッド箔体であることとしたので、従来の技術では同時に解決することのできなかった上述の2つの課題、すなわち、電極製造時の加熱工程における強度低下が小さく、かつ電極製造時の加熱工程において電極表面の酸化による活物質の密着性の低下を防止できるようになる。   The clad foil strip for collecting the active material for a battery according to the present invention covers the surface of pure copper or copper alloy with Ni metal, specifically, it is not a state obtained by plating or surface treatment, but hot working As a result, the Ni and Cu coating layers diffused together, and the Ni coating layer on the surface is a clad foil body with a thickness that contributes to increasing the strength of the material. The above-mentioned two problems that could not be achieved, that is, the decrease in strength in the heating process during electrode manufacturing is small, and the decrease in the adhesion of the active material due to oxidation of the electrode surface in the heating process during electrode manufacturing can be prevented become.

最も適切な条件では、常温での引張強さが485MPa以上、450℃×4時間の熱処理後であっても400MPaの強度を有し、なおかつ導電率がIACSの80%以上を有するクラッド箔帯を提供できる。   Under the most appropriate conditions, a clad foil strip having a tensile strength at room temperature of 485 MPa or more, a strength of 400 MPa even after heat treatment at 450 ° C. for 4 hours, and a conductivity of 80% or more of IACS is obtained. Can be provided.

本発明に係るクラッド箔帯をリチウムイオン二次電池の負極集電体に適用することで、高温にすることで高結着性を得るポリアミドイミド系等のバインダーを使い製作された高容量タイプ電極をロールプレス等で加圧する際に負極活物質が負極集電体を突き破るといった問題の発生を防止できる。また、電池製造の負極巻き取り、巻回工程でのテンションにより銅箔が箔破れするといった問題の発生を防止することができる。   High-capacity type electrode manufactured using a polyamide-imide-based binder that obtains high binding properties at high temperatures by applying the clad foil strip according to the present invention to a negative electrode current collector of a lithium ion secondary battery Occurrence of a problem that the negative electrode active material breaks through the negative electrode current collector when pressurizing with a roll press or the like can be prevented. In addition, it is possible to prevent the problem that the copper foil is torn due to the tension in the negative electrode winding and winding process of battery manufacture.

本発明に係るクラッド箔帯を使用することで、カーボンを使った高容量タイプ、合金系負極を使った高容量リチウムイオン二次電池を製造することが可能になり、これにより、民生モバイル機器の電池駆動時間の長時間化、電気自動車の1回の充電あたりの走行距離延長に寄与できる。   By using the clad foil strip according to the present invention, it becomes possible to manufacture a high-capacity type using carbon and a high-capacity lithium ion secondary battery using an alloy-based negative electrode. This can contribute to longer battery driving time and longer mileage per charge of an electric vehicle.

本発明に係るクラッド箔帯の製造工程の一例を模型式に示す説明図である。It is explanatory drawing which shows an example of the manufacturing process of the clad foil strip which concerns on this invention in a model type. Cu層あるいはCu合金層がクラッド層厚に占める割合を調査するために観察,撮影した実施例番号8の断面観察写真である。It is the cross-sectional observation photograph of Example number 8 observed and image | photographed in order to investigate the ratio for which a Cu layer or Cu alloy layer occupied to a cladding layer thickness.

1.本発明の基になる知見
本発明の基になる下記の新規な知見A〜Dを説明する。
1. Knowledge Based on the Present Invention The following new knowledge AD based on the present invention will be described.

(A)表面の酸化防止
銅あるいは銅合金の圧延箔の表面は、乾燥工程の加熱によって少なからず酸化が生じることは避けられない。したがって、銅あるいは銅合金の両面を、耐酸化性に優れ、かつLiと合金化反応が生じない他の金属で被覆することが有効である。
(A) Antioxidation of the surface It is inevitable that the surface of the rolled foil of copper or copper alloy is oxidized by heating in the drying process. Therefore, it is effective to coat both surfaces of copper or copper alloy with another metal that has excellent oxidation resistance and does not cause an alloying reaction with Li.

被覆に適した金属は、Liと合金化しない金属であることから、Ti,Ni,Co,Fe,Crがあるが、負極集電箔に要求される高導電率の確保の観点から、高い導電率を有するCo,Ni等が好適である。   Metals suitable for coating are Ti, Ni, Co, Fe, and Cr because they are metals that do not alloy with Li, but high conductivity is required from the viewpoint of securing the high conductivity required for the negative electrode current collector foil. Co, Ni, etc. having a rate are suitable.

(B)強度低下の抑制
銅あるいは銅合金の圧延箔の表面を被覆する金属を、再結晶温度が350℃より高い金属とすれば、この金属を被覆された銅あるいは銅合金の圧延箔の強度は、銅あるいは銅合金の圧延箔と被覆した金属との複合則で定まり、この金属を被覆することによって、400℃程度に加熱された場合であっても強度低下を抑制することが可能になる。
(B) Suppression of strength reduction If the metal covering the surface of the rolled foil of copper or copper alloy is a metal having a recrystallization temperature higher than 350 ° C., the strength of the rolled foil of copper or copper alloy coated with this metal Is determined by a composite rule of copper or copper alloy rolled foil and the metal covered, and by coating this metal, it is possible to suppress a decrease in strength even when heated to about 400 ° C. .

すなわち、被覆に適した金属は、調質圧延後の約400℃の加熱において、再結晶化することなく高い強度を維持できる金属とする。   That is, a metal suitable for coating is a metal that can maintain high strength without recrystallization when heated at about 400 ° C. after temper rolling.

(C)Cuとの接合性
金属の被覆は、冷間圧延前に行い、その後に被覆する金属が冷間圧延加工される工程で加工硬化されることによって強度を高める。強度を高めるためには、高い圧下率の冷間圧延を施すことが望ましい。冷間圧延時における金属の剥離を未然に防止するため、冷間圧延前に被覆する金属と銅あるいは銅合金の圧延箔との界面が強固に固着されることが有効である。このため、冷間圧延を施す前工程で界面接合の強化を促すため、拡散による接合を促すための熱間加工を施すことが望ましい。
(C) Bondability with Cu Metal coating is performed before cold rolling, and then the metal to be coated is work hardened in a process of cold rolling to increase the strength. In order to increase the strength, it is desirable to perform cold rolling with a high reduction ratio. In order to prevent the metal from peeling during cold rolling, it is effective that the interface between the metal to be coated and the rolled foil of copper or copper alloy is firmly fixed before cold rolling. For this reason, in order to promote strengthening of interfacial bonding in the pre-process for performing cold rolling, it is desirable to perform hot working for promoting bonding by diffusion.

(D)さらに、材料のコスト、400℃以上の再結晶温度そして銅または銅合金からなる圧延箔との接合性を勘案すると、銅または銅合金からなる圧延箔の表面の被覆に最適な金属は、NiおよびNi合金である。さらに、Niは、Cuと全率固溶体の合金を作り、界面に脆い化合物が生成するおそれもない。すなわち、CuまたはCu合金からなる基層と、その両面にクラッドにより形成されるNiまたはNi合金からなる表層とが剥離する危険性が少ない。   (D) Furthermore, considering the material cost, the recrystallization temperature of 400 ° C. or higher, and the bondability with the rolled foil made of copper or copper alloy, the optimum metal for coating the surface of the rolled foil made of copper or copper alloy is Ni and Ni alloy. Furthermore, Ni forms an alloy of a solid solution with Cu and there is no possibility that a brittle compound is generated at the interface. That is, there is little risk of peeling between the base layer made of Cu or Cu alloy and the surface layer made of Ni or Ni alloy formed by clad on both surfaces.

2.本発明に係るクラッド箔帯
本発明に係るクラッド箔体は、これらの新規な知見A〜Dに基づいており、CuまたはCu合金からなる基層と、この基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層とからなる3層を有するので、これらについて説明する。
2. Clad foil strip according to the present invention The clad foil body according to the present invention is based on these novel findings A to D, and a base layer made of Cu or Cu alloy and Ni or clad formed on both surfaces of the base layer by clad. Since there are three layers consisting of a surface layer made of Ni alloy, these will be described.

(I)被覆金属種
前述したLiと合金化しない金属の導電率は、Co>Ni>Fe>Cr>Tiである。本発明は集電体であることから、高い導電率の材料を使うことが望ましく、銅より著しく劣るFe,Cr,Tiは集電効率の観点で望ましくない。また、材料のコストの観点で整理する。市況価格はFe<Cr<Ni<Co<Tiであり、CoおよびTiはコストアップの要因となる。
(I) Coated metal species The conductivity of the metal not alloyed with Li described above is Co>Ni>Fe>Cr> Ti. Since the present invention is a current collector, it is desirable to use a material having a high conductivity, and Fe, Cr, Ti which is significantly inferior to copper is not desirable from the viewpoint of current collection efficiency. Organize from the perspective of material costs. The market price is Fe <Cr <Ni <Co <Ti, and Co and Ti cause a cost increase.

したがって、CuまたはCu合金からなる基層の両面を被覆する金属材料として、NiおよびNi合金を用いる。   Therefore, Ni and Ni alloy are used as the metal material for covering both surfaces of the base layer made of Cu or Cu alloy.

(II)再結晶温度
純銅の再結晶温度は200〜250℃(若い技術者のための機械・金属材料 63頁 丸善株式会社 1979)である。リチウムイオン二次電池の負極の一般的製造プロセスにおいて、活物質を圧延銅箔に結着させるために、120℃〜400℃の温度で数時間から数十時間加熱される際に再結晶が生じ、銅または銅合金からなる箔の箔伸びや箔切れ、さらには箔破れなどの問題が発生することがある。
(II) Recrystallization temperature The recrystallization temperature of pure copper is 200 to 250 ° C. (machine / metal material for young engineers, page 63, Maruzen 1979). In a general manufacturing process of a negative electrode of a lithium ion secondary battery, recrystallization occurs when heated at a temperature of 120 ° C. to 400 ° C. for several hours to several tens of hours in order to bind the active material to the rolled copper foil. In some cases, the foil made of copper or a copper alloy may have problems such as elongation, breakage, and tearing of the foil.

一方、再結晶温度は、Fe;350〜500℃,Ni;530〜660℃等であり、Niは450℃を超える再結晶温度を有する。したがって、この観点からも、CuまたはCu合金からなる基層の両面を被覆する金属材料として、NiおよびNi合金を用いる。   On the other hand, the recrystallization temperature is Fe; 350 to 500 ° C., Ni; 530 to 660 ° C., etc., and Ni has a recrystallization temperature exceeding 450 ° C. Therefore, from this point of view, Ni and Ni alloy are used as the metal material for covering both surfaces of the base layer made of Cu or Cu alloy.

(III)総厚さに占めるCuまたはCu合金の基層の厚さの割合
本発明に係るクラッド箔帯は、IACS(international annealed copper standard 電気抵抗(または電気伝導度)の基準として、国際的に採択された焼鈍標準軟銅(参考 その体積抵抗率は、1.7241×10−2μΩm、導電率58.0×10S/m)を100%と規定されている)の80%以上の導電率を有する。
(III) The ratio of the thickness of the base layer of Cu or Cu alloy to the total thickness The clad foil strip according to the present invention has been adopted internationally as a standard for IACS (internationally annealed copper standard) electrical resistance (or electrical conductivity) 80% or higher conductivity of annealed standard annealed copper (reference volume resistivity is defined as 100% of 1.7241 × 10 −2 μΩm, conductivity 58.0 × 10 6 S / m) Have

この導電率を達成するためには、CuまたはCu合金からなる基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層によって低下する導電率を、基層の純CuあるいはCu合金によって補う必要がある。80%以上のIACSを達成するために必要な純CuあるいはCu合金の割合は、総厚さに占めるCuまたはCu合金の基層の厚さの割合で68%以上であり、好ましくは70%以上である。   In order to achieve this conductivity, it is necessary to compensate the conductivity, which is decreased by the surface layer made of Ni or Ni alloy formed by the clad on both surfaces of the base layer made of Cu or Cu alloy, with pure Cu or Cu alloy of the base layer. is there. The proportion of pure Cu or Cu alloy necessary to achieve an IACS of 80% or more is 68% or more, preferably 70% or more, as a proportion of the thickness of the base layer of Cu or Cu alloy in the total thickness. is there.

一方、CuまたはCu合金の基層の厚さが90%を超えると、圧延加工後の表層の肉厚変動で薄い部分が発生し、製造途中工程の表面疵手入れ等で表層が表面に露出する可能性があり、NiまたはNi合金からなる表層を設ける意義が喪失されるので、総厚さに占めるCuまたはCu合金の基層の厚さの割合で90%以下であることが好ましい。   On the other hand, if the thickness of the base layer of Cu or Cu alloy exceeds 90%, a thin portion is generated due to the thickness variation of the surface layer after rolling, and the surface layer may be exposed to the surface by surface care during the manufacturing process. Since the significance of providing a surface layer made of Ni or Ni alloy is lost, the ratio of the thickness of the base layer of Cu or Cu alloy to the total thickness is preferably 90% or less.

(IV)常温での引張強さ
本発明に係るクラッド箔帯は、好適には90%以下のCuまたはCu合金からなる基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層を有するため、常温での引張強さが485MPa以上の強度を有する。また、基層の下限は68%以上であることが望ましく、81%以下であればさらに望ましい。
(IV) Tensile strength at normal temperature The clad foil strip according to the present invention preferably has a surface layer made of Ni or Ni alloy formed by clad on both surfaces of a base layer made of Cu or Cu alloy of 90% or less. The tensile strength at room temperature has a strength of 485 MPa or more. Further, the lower limit of the base layer is desirably 68% or more, and more desirably 81% or less.

(V)450℃で4時間保持後の引張強さ
本発明に係るクラッド箔帯は、CuまたはCu合金からなる基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層を有するため、450℃で4時間保持後の引張強さが300MPa以上、基層がCu合金からなりかつ基層の割合が68%以上の場合には400MPa以上である。
(V) Tensile strength after holding at 450 ° C. for 4 hours Since the clad foil strip according to the present invention has a surface layer made of Ni or Ni alloy formed by clad on both surfaces of a base layer made of Cu or Cu alloy, 450 When the tensile strength after holding at 4 ° C. for 4 hours is 300 MPa or more, the base layer is made of a Cu alloy, and the proportion of the base layer is 68% or more, it is 400 MPa or more.

(VI)活物質の密着性
本発明に係るクラッド箔帯は、CuまたはCu合金からなる基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層を有し、加熱の際に、表面に脱落し易いCu酸化層を生成するCuまたはCu合金と異なり、耐酸化性に優れかつ酸化した場合においても、生成した酸化物が表面から脱落し難い性質を有するために、優れた活物質の密着性を有する。
(VI) Adhesiveness of active material The clad foil strip according to the present invention has a surface layer made of Ni or Ni alloy formed by clad on both surfaces of a base layer made of Cu or Cu alloy, and is heated on the surface during heating. Unlike Cu or Cu alloys that produce a Cu oxide layer that is easy to drop off, even when oxidized, it has a property that the generated oxide is difficult to drop off from the surface. Have sex.

なお、「活物質の密着性が優れる」とは、具体的には、活物質を塗布したクラッド箔帯を使った電極を用いて、電池を組み立てる工程において活物質が脱落しないことを意味する。本発明においては、後述する実施例の欄に記載するテープ剥離試験においてテープ粘着力によって剥離し難い場合を、優れた密着性と評価する。   Note that “excellent adhesion of the active material” specifically means that the active material does not fall off in the process of assembling the battery using an electrode using a clad foil strip coated with the active material. In this invention, the case where it is hard to peel by a tape adhesive force in the tape peeling test described in the column of the Example mentioned later is evaluated as the outstanding adhesiveness.

(VII)総厚さ
総厚さは、高容量電池を構成するために上限を定める。電極箔帯そのものは蓄電作用を有せず、放電の際には活物質が蓄えた電気エネルギーを集電し、充電の際には、電池外部から与えられた電気エネルギーを活物質に配賦する役割を担うため、できるだけ薄いことが望まれる。以上の理由により、総厚さは35μm以下である。
(VII) Total thickness The total thickness defines an upper limit for constituting a high capacity battery. The electrode foil strip itself does not have a power storage function, and collects the electric energy stored in the active material during discharge, and distributes the electric energy applied from the outside of the battery to the active material during charging. In order to play a role, it is desirable to be as thin as possible. For the above reasons, the total thickness is 35 μm or less.

3.本発明に係るクラッド箔帯の製造方法
(I)熱間加工
図1は、本発明に係るクラッド箔帯の製造工程の一例を模型式に示す説明図である。
3. Manufacturing method of clad foil strip according to the present invention (I) Hot working FIG. 1 is an explanatory view showing an example of a manufacturing process of a clad foil strip according to the present invention in a model form.

図1に示すように、本発明に係るクラッド箔帯を製造する際には、CuまたはCu合金の箔帯1の両面にNiまたはNi合金の箔帯2,3を積層して積層体4とし、この積層体4を適宜手段により仮止めする。仮止めとしては、端面四周をNiプロテクトしてビーム溶接することが例示される。   As shown in FIG. 1, when manufacturing a clad foil strip according to the present invention, a laminate 4 is formed by laminating Ni or Ni alloy foil strips 2 and 3 on both sides of a Cu or Cu alloy foil strip 1. The laminated body 4 is temporarily fixed by appropriate means. As temporary fixing, it is exemplified that beam welding is performed with Ni protection around the end face.

ここで、本発明に係るクラッド箔体は、CuまたはCu合金が再結晶する温度域である200〜250℃以上の温度環境におかれても、基層であるCuまたはCu合金の両面にクラッドにより形成されるNiまたはNi合金からなる表層により強度が確保される。このためには、CuまたはCu合金の箔帯1とNiまたはNi合金の箔帯2,3との界面が十分な接合強度を有することが有効である。   Here, the clad foil body according to the present invention is formed by clad on both sides of the base layer of Cu or Cu alloy even in a temperature environment of 200 to 250 ° C. or higher, which is a temperature range where Cu or Cu alloy is recrystallized. Strength is ensured by the surface layer made of Ni or Ni alloy formed. For this purpose, it is effective that the interface between the foil strip 1 of Cu or Cu alloy and the foil strips 2 and 3 of Ni or Ni alloy has a sufficient bonding strength.

十分な接合強度を得るためには、この界面において化合物が生成しないこと、および、CuまたはCu合金の元素とNiまたはNi合金の元素とが相互拡散し、集電箔として取り扱う際に界面剥離しない相互拡散距離を設ける必要がある。しかし、冷間圧接法では、十分な拡散距離が得られないため、箔コイルの数km以上の全長において、安定的に界面剥離しない状態を得ることが困難である。   In order to obtain sufficient bonding strength, no compound is formed at this interface, and Cu or Cu alloy elements and Ni or Ni alloy elements are interdiffused, and interface separation does not occur when handling as a current collector foil. It is necessary to provide an interdiffusion distance. However, since a sufficient diffusion distance cannot be obtained by the cold welding method, it is difficult to stably obtain a state in which the interfacial separation does not occur over the entire length of several kilometers or more of the foil coil.

このため、本発明に係るクラッド箔帯を製造する際には、仮止めされた積層体4に熱間加工を行うことが望ましい。このような熱間加工としては、例えば積層体を850℃に1時間加熱保持した後に熱間圧延を行うことが例示される。   For this reason, when manufacturing the clad foil strip which concerns on this invention, it is desirable to hot-process the laminated body 4 temporarily fixed. Examples of such hot working include hot rolling after holding the laminated body at 850 ° C. for 1 hour.

熱間圧延の圧下率は40〜60%程度であることが、CuまたはCu合金の箔帯1とNiまたはNi合金の箔帯2,3との界面が十分な接合強度を有するためには望ましい。   The rolling reduction of hot rolling is preferably about 40 to 60% so that the interface between the Cu or Cu alloy foil strip 1 and the Ni or Ni alloy foil strips 2 and 3 has a sufficient bonding strength. .

この熱間圧延により積層体4を冷延素材5とする。冷延素材5の板厚は20mm程度が例示される。   The laminate 4 is made into a cold-rolled material 5 by this hot rolling. The thickness of the cold-rolled material 5 is exemplified by about 20 mm.

(II)冷間加工
熱間加工後に、高い強度を得るために冷間加工を施す。冷間加工として冷間圧延が例示される。冷間圧延により冷延素材5に歪みが蓄積して高い強度を得られる。
(II) Cold working After hot working, cold working is performed to obtain high strength. An example of cold working is cold rolling. By cold rolling, strain is accumulated in the cold-rolled material 5 and high strength can be obtained.

図1に示すように、冷延素材5に、冷間圧延および焼鈍(例えば750℃×30分間)を繰り返し、厚さが100〜200μm程度の最終冷延素材とし、この最終冷延素材に仕上げ冷間圧延を行って所望の厚さ(例えば15μm)の本発明に係るクラッド箔帯とする。   As shown in FIG. 1, cold rolling and annealing (for example, 750 ° C. × 30 minutes) are repeated on the cold rolled material 5 to obtain a final cold rolled material having a thickness of about 100 to 200 μm, and the final cold rolled material is finished. Cold rolling is performed to obtain a clad foil strip according to the present invention having a desired thickness (for example, 15 μm).

本発明に係るクラッド箔帯が所望の強度を得るためには、90%以上の冷間加工率で冷間圧延が施されることが望ましい。ここに明示した加工率は、歪み取り焼鈍を施した後の最終累積冷間加工率であり、冷間加工の加工パススケジュールに制約はない。   In order for the clad foil strip according to the present invention to obtain a desired strength, it is desirable that cold rolling is performed at a cold working rate of 90% or more. The processing rate specified here is the final cumulative cold working rate after applying strain relief annealing, and there is no restriction on the working pass schedule of cold working.

4.リチウムイオン二次電池の負極集電体の製造方法
本発明に係るクラッド箔帯の表面に、活物質(黒鉛質炭素,Si系合金,Sn系合金等)に必要に応じて導電助剤を添加し結着剤と混合した上、溶剤に混練分散したペーストを、集電体となる銅箔の表面に塗布して負極板材の母材とする。このようにして、本発明に係るクラッド箔帯の表面に活物質を含む塗膜を形成する。
4). Method for producing negative electrode current collector of lithium ion secondary battery Addition of conductive additive to active material (graphitic carbon, Si alloy, Sn alloy, etc.) as necessary on the surface of the clad foil strip according to the present invention A paste mixed with a binder and kneaded and dispersed in a solvent is applied to the surface of a copper foil serving as a current collector to form a base material for a negative electrode plate. In this way, a coating film containing an active material is formed on the surface of the clad foil strip according to the present invention.

その後、活物質を結着させるために、120℃〜350℃の温度で数時間から数十時間加熱する。   Thereafter, in order to bind the active material, heating is performed at a temperature of 120 ° C. to 350 ° C. for several hours to several tens of hours.

加熱雰囲気は、CuまたはCu合金箔の酸化および合金系負極の酸化を防止するために不活性ガス雰囲気にする場合がある。合金系負極の場合は、高結着力のイミド系、ポリアミドイミド系のバインダーが使われることがあり、この場合は加熱温度が高くなる傾向にある。   The heating atmosphere may be an inert gas atmosphere in order to prevent oxidation of the Cu or Cu alloy foil and oxidation of the alloy-based negative electrode. In the case of an alloy-based negative electrode, an imide-based or polyamide-imide-based binder having a high binding force may be used, and in this case, the heating temperature tends to increase.

この熱処理の工程で軟化が生じると、箔の形状変化による不良(平坦度が不芳、厚み精度の低下等)や箔切れが発生する可能性がある。このため、形状変化を防止する必要がある場合は予め熱処理を施すことが望ましい。   When softening occurs in this heat treatment process, defects (flatness, poor thickness accuracy, etc.) and foil breakage due to a change in the shape of the foil may occur. For this reason, when it is necessary to prevent a shape change, it is desirable to heat-process beforehand.

熱処理の好ましい温度は500℃以下でありかつ加熱処理温度と同じあるいは少し高い温度であることが有効である。熱処理の温度が500℃を超えると、CuまたはCu合金からなる基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層のNiの再結晶が始まる温度である530℃〜660℃に至る可能性があるためである。   It is effective that the preferred temperature for the heat treatment is 500 ° C. or less and is the same as or slightly higher than the heat treatment temperature. When the temperature of the heat treatment exceeds 500 ° C., it is possible to reach 530 ° C. to 660 ° C., which is a temperature at which Ni recrystallization of the surface layer made of Ni or Ni alloy formed by clad on both surfaces of the base layer made of Cu or Cu alloy starts. It is because there is sex.

活物質の結着を促す加熱温度の上限は350℃であり、ポリアミドイミド系のバインダーを使う場合は、350℃程度で実施することもあるため、本発明では400℃以上の温度を確保する必要がある。   The upper limit of the heating temperature for promoting the binding of the active material is 350 ° C. When a polyamide-imide binder is used, it may be carried out at about 350 ° C. Therefore, in the present invention, it is necessary to ensure a temperature of 400 ° C. or higher. There is.

その後、必要に応じロールプレス等で加圧し、結着性を高めるとともに所定の板厚みに仕上げる。   Then, it pressurizes with a roll press etc. as needed, and finishes to predetermined plate | board thickness while improving binding property.

最後に、シャーリングによる切断加工,スリッターによる条切り加工によって所定の負極形状に仕上げることにより、リチウムイオン二次電池の負極集電体が製造される。   Finally, the negative electrode current collector of the lithium ion secondary battery is manufactured by finishing it into a predetermined negative electrode shape by cutting with shearing and slitting with slitter.

本発明の効果を実証するため、以下の試験を実施してその効果を評価した。
[試験条件]
(a)実施例に用いた従来材
リチウム電池用の高強度負極集電体として市中で入手可能な材料3種の圧延銅箔、銅合金箔を入手し、従来材A〜Cとした。板厚は15μmの材料を用いた。表1に従来材を示す。
In order to demonstrate the effects of the present invention, the following tests were conducted to evaluate the effects.
[Test conditions]
(A) Conventional material used in Examples Three types of rolled copper foil and copper alloy foil available in the market as high-strength negative electrode current collectors for lithium batteries were obtained and used as conventional materials A to C. A plate thickness of 15 μm was used. Table 1 shows conventional materials.

(b)本発明の材料
図1に示すように、無酸素純Cu(C1020)からなる板1(120mm長×100mm幅×40mm厚)、銅合金C15150からなる板1(120mm長×100mm幅×40mm厚)および純Ni(JISNW2201)からなる板1(120mm長×100mm幅×tmm厚)を準備し、それぞれの接合面をステンレスワイヤーで研磨し、脱脂処理を行った後、純Ni板2、純Cu/銅合金板1および純Ni板2の順で120mm長×100mm幅の面を重ね合わせて積層し、被接合部が水平方向にずれることがないようにクランプで固定した状態で、真空中で電子ビーム溶接によって接合して、積層体4を作製した。
(B) Material of the present invention As shown in FIG. 1, a plate 1 (120 mm length × 100 mm width × 40 mm thickness) made of oxygen-free pure Cu (C1020), a plate 1 made of copper alloy C15150 (120 mm length × 100 mm width × 40 mm thick) and pure Ni (JIS NW2201) 1 (120 mm length × 100 mm width × tmm thickness) was prepared, and each bonded surface was polished with a stainless steel wire and degreased. A pure Cu / copper alloy plate 1 and a pure Ni plate 2 are laminated in the order of 120 mm long × 100 mm wide, and are clamped so that the bonded parts are not displaced in the horizontal direction. The laminated body 4 was produced by joining by electron beam welding.

なお、この実施例では真空中での電子ビーム溶接を用いたが、この溶接法に限定されるものではない。ただし、Niと純Cu,Cu合金の界面に残存する酸素を減らす配慮を施した溶接が必要である。   In this embodiment, electron beam welding in a vacuum is used. However, the present invention is not limited to this welding method. However, welding with consideration to reduce oxygen remaining at the interface between Ni and pure Cu or Cu alloy is necessary.

以下、本発明に用いた板厚構成を示す。表2に本発明材D〜Iを得るための圧延母材を示す。   Hereinafter, the plate | board thickness structure used for this invention is shown. Table 2 shows rolling base materials for obtaining the inventive materials D to I.

本発明材D〜Iについて、850℃×1時間の加熱後熱間圧延により全て20mm厚とした。その後、冷間圧延と750℃×30分間の中間焼鈍を繰り返し、全ての材料について0.2mm厚および0.1mm厚とし、その後750℃×30分間の焼鈍を行った。この素材を15μmまで冷間圧延を行って母材とした。   The inventive materials D to I were all 20 mm thick by hot rolling after heating at 850 ° C. for 1 hour. Thereafter, cold rolling and intermediate annealing at 750 ° C. × 30 minutes were repeated to obtain 0.2 mm thickness and 0.1 mm thickness for all materials, and thereafter annealing was performed at 750 ° C. × 30 minutes. This material was cold-rolled to 15 μm to obtain a base material.

厚さ0.2mm(200μm)および0.1mm(100μm)の材料を冷間圧延により厚さ15μmのクラッド箔帯とし、実施例に使用した。   A 0.2 mm (200 μm) and 0.1 mm (100 μm) thick material was cold rolled into a 15 μm thick clad foil strip and used in the examples.

(c)強度の評価方法
圧延方向に対して平行に13B型試験片を採取して、JIS Z2241に準拠して引張強度と伸びを測定した。引張速度は25mm/分とした。
(C) Strength Evaluation Method A 13B type test piece was taken in parallel with the rolling direction, and the tensile strength and elongation were measured according to JIS Z2241. The tensile speed was 25 mm / min.

(d)導電率の測定
温度22℃±1℃の環境下で、JIS H 0505(非鉄金属材料の体積抵抗率および導電率測定方法)に準拠して四端子法で測定を行った。
(D) Measurement of conductivity The measurement was performed by a four-terminal method in accordance with JIS H 0505 (volume resistivity and conductivity measurement method of non-ferrous metal material) in an environment at a temperature of 22 ° C. ± 1 ° C.

なお、導電率はIACS表記とするため、体積抵効率が1.7241×10−2μΩm、導電率58×10S/cmを100%として、この導電率に対する割合(%)で表記した。 Since the conductivity is expressed in IACS, the volume resistivity is 1.7241 × 10 −2 μΩm and the conductivity 58 × 10 6 S / cm is 100%, which is expressed as a ratio (%) to this conductivity.

(e)活物質密着性の評価
平均10μmの天然黒鉛系負極活物質に、ニッポン高度紙工業株式会社製のポリアミドイミド系のバインダー(商品名SOXR)を負極活物質重量に対しバインダーの固形分量が5%になるように混合し、さらにNMP(N−メチルピロリドン)を20重量%加えてスラリー状とした。
(E) Evaluation of active material adhesion The average amount of the natural graphite negative electrode active material of 10 μm and the polyamideimide binder (trade name SOXR) manufactured by Nippon Kogyo Paper Industries Co., Ltd. The mixture was mixed to 5%, and 20% by weight of NMP (N-methylpyrrolidone) was further added to form a slurry.

このスラリーを、実施例の厚さ15μmの集電箔に塗布し、80℃にて1時間乾燥した後、ローラープレスにより電極を加圧成形し、この電極を350℃×4時間乾燥させて評価用電極とした。   This slurry was applied to the current collecting foil having a thickness of 15 μm of Example, dried at 80 ° C. for 1 hour, then pressure-formed with a roller press, and this electrode was dried at 350 ° C. × 4 hours for evaluation. Electrode.

この電極を20mm角に切り出し、カッターにて碁盤目状に切り傷を形成し、市販の粘着テープ(登録商標セロテープ)を貼り、重さ2kgのローラーを置いて1往復させて粘着テープを圧着した。次に粘着テープを剥がし、負極集電体の表面を画像としてパーソナルコンピュータに取り込み、二値化によって金属光沢部分と活物質が残存する黒色部分を判別し、活物質残存量を算出した。   This electrode was cut into a 20 mm square, cuts were formed in a grid pattern with a cutter, a commercially available adhesive tape (registered trademark cello tape) was applied, and a 2 kg weight roller was placed to reciprocate once to pressure-bond the adhesive tape. Next, the adhesive tape was peeled off, the surface of the negative electrode current collector was taken as an image into a personal computer, and the metallic luster portion and the black portion where the active material remained were discriminated by binarization, and the active material remaining amount was calculated.

残存率80%以上を○と判定し、80%未満を×と判定した。
(f)総厚さに占めるCuまたはCu合金の基層の厚さの割合
材料を埋め込み樹脂で固め、L断面を研磨し顕微鏡観察し撮影した写真5枚から、平均Cu層厚、被覆している平均Ni厚を求めた。最終の仕上げ厚である15μmの段階では、観察が困難であることから、最終冷延前の200μmあるいは100μmの段階で観察した結果を基に、Cu,Cu合金割合を算出した。図2は、Cu層あるいはCu合金層がクラッド層厚に占める割合を調査するために観察,撮影した実施例番号8の断面観察写真である。
A residual rate of 80% or more was judged as ◯, and less than 80% was judged as ×.
(F) Ratio of the thickness of the base layer of Cu or Cu alloy in the total thickness The material is hardened with an embedding resin, the L cross section is polished, observed with a microscope, and an average Cu layer thickness is covered from five photographs taken The average Ni thickness was determined. Since it is difficult to observe at the final finishing thickness of 15 μm, the Cu, Cu alloy ratio was calculated based on the observation results at the stage of 200 μm or 100 μm before the final cold rolling. FIG. 2 is a cross-sectional observation photograph of Example No. 8 observed and photographed to investigate the ratio of the Cu layer or Cu alloy layer to the cladding layer thickness.

(g)実施例
表1に示した従来材は、A材が無酸素銅の圧延銅箔であり、B材は特許文献1により開示された材料であり、C材は非特許文献1に記載された材料である。これらを従来材として本発明との比較を行った。実施した結果を表3に示す。
(G) Examples The conventional material shown in Table 1 is a rolled copper foil in which the A material is oxygen-free copper, the B material is a material disclosed by Patent Document 1, and the C material is described in Non-Patent Document 1. Material. These were used as conventional materials and compared with the present invention. The results are shown in Table 3.

(h)従来材
共通する課題は、負極活物質の密着性が優れない点にある。活物質を塗布した後の乾燥工程において集電箔体の表面酸化(銅の酸化)が生じるため、強固なバインダーを用いても密着性に劣る。加えて個々の従来材A〜Cの課題は、以下である。
(H) Conventional material A common problem is that the adhesion of the negative electrode active material is not excellent. Since the surface oxidation (copper oxidation) of the current collector foil occurs in the drying step after applying the active material, even if a strong binder is used, the adhesion is inferior. In addition, the problems of the individual conventional materials A to C are as follows.

実施例番号1は、再結晶温度が200〜250℃であるため、450℃に加熱すると引張強さが145MPaまで低下する。活物質を塗布した集電体を乾燥させるために350℃に加熱すると、その後の取り扱いで寸法変化や箔破れなどが生じる懸念がある。   Since Example No. 1 has a recrystallization temperature of 200 to 250 ° C., the tensile strength decreases to 145 MPa when heated to 450 ° C. When the current collector coated with the active material is heated to 350 ° C. in order to dry it, there is a concern that dimensional change or foil breakage may occur in subsequent handling.

実施例番号2は、優れた導電率を有するものの、450℃に加熱すると300MPa以下に強度が低下する。   Example No. 2 has excellent electrical conductivity, but when heated to 450 ° C., the strength decreases to 300 MPa or less.

実施例番号3は、450℃に加熱しても強度低下が小さい材料であるものの、導電率が72%IACSで、本発明と比較し優位ではない。   Example No. 3 is a material with a small decrease in strength even when heated to 450 ° C., but its conductivity is 72% IACS, which is not superior to the present invention.

実施例番号5は、基層に再結晶温度が450℃より低い純Cuを使用しており、仕上げ冷間加工率%が実施例番号4,6と比較して小さいために加工硬化の程度が小さく、熱処理後強度が300MPaを下回った。   In Example No. 5, pure Cu having a recrystallization temperature lower than 450 ° C. is used for the base layer, and the degree of work hardening is small because the finish cold working rate% is smaller than those in Example Nos. 4 and 6. The strength after heat treatment was below 300 MPa.

実施例番号16−18は、基層に再結晶温度が450℃より低い純Cuを81%使用しており、熱処理時にCuが再結晶して軟化してしまったため、300MPaを下回った。   In Example No. 16-18, 81% of pure Cu having a recrystallization temperature lower than 450 ° C. was used for the base layer, and Cu was recrystallized and softened during the heat treatment.

実施例番号20は、仕上げ冷間加工率が実施例番号19,21と比較して小さいために加工硬化の程度が小さく、熱処理後強度が300MPaを下回った。   In Example No. 20, since the finish cold working rate was smaller than that in Example Nos. 19 and 21, the degree of work hardening was small, and the strength after heat treatment was less than 300 MPa.

(i)本発明材
本発明に係る材料は、高い導電性と450℃×4時間(負極活物質を塗布した後の乾燥工程を想定)後に高い強度を有する。
(I) Invention Material The material according to the present invention has high conductivity and high strength after 450 ° C. × 4 hours (assuming a drying step after applying the negative electrode active material).

実施例番号2と5を比較すると、いずれも本発明の300MPaを満たしていないが、導電率の観点では従来材である実施例番号2が優れる。   When Example Nos. 2 and 5 are compared, none of them satisfies the 300 MPa of the present invention, but Example No. 2 which is a conventional material is superior in terms of conductivity.

一方、実施例番号4においては実施例番号5と同じ材料であるにもかかわらず、450℃×4時間加熱後においても300MPa以上の強度を有し、実施例番号2より優れる。番号4と5の差は仕上げ冷間加工の加工率の違いによる。Niの再結晶温度は530℃以上であるため、Niの強度低下が少なく高い強度が維持できる。   On the other hand, although Example No. 4 is the same material as Example No. 5, it has a strength of 300 MPa or more even after heating at 450 ° C. for 4 hours and is superior to Example No. 2. The difference between Nos. 4 and 5 is due to the difference in the finishing cold working rate. Since the recrystallization temperature of Ni is 530 ° C. or higher, high strength can be maintained with little decrease in Ni strength.

実施例番号4と実施例番号5の比較から、本発明では、歪み取り焼鈍後に90%以上の冷間加工率を経ることが望ましいことがわかる。   From the comparison of Example No. 4 and Example No. 5, it can be seen that it is desirable that a cold working rate of 90% or more is desired after the strain relief annealing in the present invention.

450℃×4時間の加熱後に、400MPa以上の強度を有しているのは、本発明実施例番号の10−15,19,21である。これらの材料の導電率は74%以上であり、実施例番号3(従来材)が強度370MPaかつ導電率72%と比較して優位な強度−導電率バランスを有していることがわかる。   After heating at 450 ° C. × 4 hours, it is Nos. 10-15, 19, and 21 of the present invention example numbers that have a strength of 400 MPa or more. The conductivity of these materials is 74% or more, and it can be seen that Example No. 3 (conventional material) has a strength-conductivity balance superior to that of strength 370 MPa and conductivity 72%.

また、本発明の材料の中で、80%以上の導電率を有しているのは、実施例番号4,6,11−13,16−19,21である。これらの材料は、クラッドの中間層の純銅あるいは銅合金の割合が68%以上の材料である。本発明においては、Cu層厚またはCu合金層厚の割合は、クラッド層厚に対し68%以上であることが好ましい範囲である。   Examples Nos. 4, 6, 11-13, 16-19, and 21 have a conductivity of 80% or more among the materials of the present invention. These materials are materials in which the ratio of pure copper or copper alloy in the cladding intermediate layer is 68% or more. In the present invention, the ratio of the Cu layer thickness or the Cu alloy layer thickness is preferably 68% or more with respect to the cladding layer thickness.

また、80%以上の導電率を有しかつ400MPa以上の強度を有しているのは、90%以上の仕上げ冷間加工率の履歴の材料である。   Further, a material having a conductivity of 80% or more and a strength of 400 MPa or more is a material having a history of a finish cold working rate of 90% or more.

以上のことから、本発明に係るクラッド箔帯は、表面が耐食性に優れるNiまたはNi合金により被覆されていることから、乾燥工程の表面酸化が少なく活物質密着性に優れる。また、本発明に係るクラッド箔帯は、中でも総厚さに占めるCuまたはCu合金の基層の厚さの割合が70%以上であるので、歪み取り焼鈍後に90%以上の冷間加工を受けても、450℃×4時間の加熱後にも高い強度を有する。   From the above, the clad foil strip according to the present invention is coated with Ni or Ni alloy having excellent corrosion resistance, and therefore has little surface oxidation in the drying step and excellent active material adhesion. Moreover, since the ratio of the thickness of the base layer of Cu or Cu alloy in the total thickness of the clad foil strip according to the present invention is 70% or more, it is subjected to 90% or more cold work after strain relief annealing. Furthermore, it has high strength even after heating at 450 ° C. for 4 hours.

1 CuまたはCu合金の箔帯
2,3 NiまたはNi合金の箔帯
4 積層体
5 冷延素材
1 Cu or Cu alloy foil strip 2, 3 Ni or Ni alloy foil strip 4 Laminate 5 Cold rolled material

Claims (7)

CuまたはCu合金からなる基層と、該基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層とからなる3層構造を有し、常温での引張強さが485MPa以上586MPa以下であり、450℃で4時間保持後の引張強さが300MPa以上474MPa以下であり、総厚さが35μm以下であることを特徴とする電池用負極用のクラッド箔帯。 It has a three-layer structure consisting of a base layer made of Cu or Cu alloy and a surface layer made of Ni or Ni alloy formed by clad on both sides of the base layer, and the tensile strength at normal temperature is 485 MPa or more and 586 MPa or less A clad foil strip for a negative electrode for a battery, wherein the tensile strength after holding at 450 ° C. for 4 hours is from 300 MPa to 474 MPa and the total thickness is 35 μm or less. CuまたはCu合金からなる基層と、該基層の両面にクラッドにより形成されるNiまたはNi合金からなる表層とからなる3層構造を有し、常温での引張強さが485MPa以上586MPa以下の強度を有し、450℃で4時間保持後の引張強さが400MPa以上474MPa以下の強度であり、総厚さが35μm以下であることを特徴とする電池用負極用のクラッド箔帯。 It has a three-layer structure consisting of a base layer made of Cu or Cu alloy and a surface layer made of Ni or Ni alloy formed by clad on both sides of the base layer, and has a tensile strength at normal temperature of 485 MPa or more and 586 MPa or less A clad foil strip for a negative electrode for a battery having a tensile strength after holding at 450 ° C. for 4 hours and a strength of 400 MPa to 474 MPa and a total thickness of 35 μm or less. 前記総厚さに占める前記CuまたはCu合金からなる基層の厚さの割合が70%以上90%以下であり、導電率がIACSの80%以上83%以下を有する請求項1または請求項2に記載されたクラッド箔帯。 The ratio of the thickness of the base layer made of Cu or Cu alloy to the total thickness is 70% or more and 90% or less, and the conductivity is 80% or more and 83% or less of IACS. The clad foil strip described. 熱間圧延と、歪み取り焼鈍と、該歪み取り焼鈍後の圧下率90%以上の冷間圧延とを施されて製造される請求項1から請求項3までのいずれか1項に記載されたクラッド箔帯の製造方法。   It was manufactured by hot rolling, strain relief annealing, and cold rolling with a reduction rate of 90% or more after the strain relief annealing. A method for producing a clad foil strip. 前記冷間圧延後に400℃〜500℃の焼鈍を施されて製造される請求項4に記載されたクラッド箔帯の製造方法。   The method for producing a clad foil strip according to claim 4, wherein the clad foil strip is produced by annealing at 400 ° C to 500 ° C after the cold rolling. 請求項1から請求項3までのいずれか1項に記載されたクラッド箔帯と、該クラッド箔帯の表面に形成された、活物質を含む塗膜とを有することを特徴とする電池用活物質集電体の製造方法。   An active for a battery comprising: the clad foil strip according to any one of claims 1 to 3; and a coating film containing an active material formed on a surface of the clad foil strip. A method for producing a current collector. 請求項1から請求項3までのいずれか1項に記載されたクラッド箔帯の表面に、活物質を含む塗膜を形成してから、120〜350℃の温度に加熱保持し、加圧して所定の厚みとした後に所定の形状に加工することを特徴とするリチウムイオン二次電池の負極集電体の製造方法。   A coating film containing an active material is formed on the surface of the clad foil strip according to any one of claims 1 to 3, and then heated to 120 to 350 ° C and pressurized. A method for producing a negative electrode current collector for a lithium ion secondary battery, wherein the negative electrode current collector is processed into a predetermined shape after having a predetermined thickness.
JP2012161731A 2012-07-20 2012-07-20 Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery Active JP5958140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012161731A JP5958140B2 (en) 2012-07-20 2012-07-20 Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012161731A JP5958140B2 (en) 2012-07-20 2012-07-20 Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2014022271A JP2014022271A (en) 2014-02-03
JP5958140B2 true JP5958140B2 (en) 2016-07-27

Family

ID=50196908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012161731A Active JP5958140B2 (en) 2012-07-20 2012-07-20 Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5958140B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6592946B2 (en) * 2015-04-15 2019-10-23 日立金属株式会社 Clad material for battery negative electrode lead material and method for producing clad material for battery negative electrode lead material
JP6354866B1 (en) 2017-01-06 2018-07-11 日立金属株式会社 Clad material for negative electrode current collector of secondary battery and method for producing the same
CN113097426B (en) * 2021-03-29 2022-05-10 宁德新能源科技有限公司 Electrochemical device and electronic device
EP4366001A1 (en) * 2021-06-30 2024-05-08 Panasonic Intellectual Property Management Co., Ltd. Lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0525176Y2 (en) * 1987-03-11 1993-06-25
JP3798737B2 (en) * 2001-06-29 2006-07-19 株式会社東芝 Nonaqueous electrolyte secondary battery
JP5004488B2 (en) * 2006-03-31 2012-08-22 三洋電機株式会社 battery
SG182300A1 (en) * 2010-01-25 2012-08-30 Jx Nippon Mining & Metals Corp Copper foil for negative electrode current collector of secondary battery
JP2011233349A (en) * 2010-04-27 2011-11-17 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
US9979004B2 (en) * 2010-06-02 2018-05-22 Nippon Steel & Sumitomo Metal Corporation Clad material

Also Published As

Publication number Publication date
JP2014022271A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
US9979004B2 (en) Clad material
JP5427752B2 (en) Copper foil for lithium-ion battery current collector
JP5329290B2 (en) Clad material for negative electrode current collector of lithium ion battery and method for producing the same
JP5334485B2 (en) Current collector and negative electrode material for lithium ion secondary battery
JP6182088B2 (en) Method for manufacturing a terminal material for a lithium ion secondary battery having a three-layer cladding structure
JP6648088B2 (en) Rolled copper foil for negative electrode current collector of secondary battery, secondary battery negative electrode and secondary battery using the same, and method of producing rolled copper foil for negative electrode current collector of secondary battery
JP5958140B2 (en) Clad foil, battery active material current collector using the same, and method for producing negative electrode current collector of lithium ion secondary battery
US20160268611A1 (en) Titanium separator material for fuel cells, and method for producing titanium separator material for fuel cells
JP7085394B2 (en) Laminated electrolytic foil
JP2015225847A (en) Clad material for battery collectors, and electrode
JPWO2013146369A1 (en) Aluminum alloy foil for electrode current collector and method for producing the same
JP2021103697A (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
JP2013211229A (en) Copper foil, negative electrode collector and negative electrode material for lithium ion secondary battery using copper foil, and lithium ion secondary battery
JP2013062047A (en) Negative-electrode copper foil collector for lithium ion secondary battery, negative-electrode for lithium ion secondary battery, lithium ion secondary battery and method for manufacturing negative-electrode copper foil collector for lithium ion secondary battery
JP2012052204A (en) Aluminum alloy foil for lithium-ion battery electrode material, and electrode material using the same
KR102299094B1 (en) Rolled copper foil for lithium ion battery current collector and lithium ion battery
TWI751024B (en) Surface-treated copper foil for lithium-ion secondary batteries
CN109565054B (en) Coating material for negative electrode collector of secondary battery and method for producing same
JP5555126B2 (en) Copper alloy foil, electrode for lithium ion secondary battery using the same, and method for producing copper alloy foil
WO2019107223A1 (en) Clad material for battery current collector and manufacturing method of clad material for battery current collector
WO2023188713A1 (en) Steel foil for current collector, and all-solid-state secondary cell
JP2020161352A (en) Composite material for terminal and method for manufacturing the same
JP2014060024A (en) Copper alloy foil, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper alloy foil

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151016

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20151016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R151 Written notification of patent or utility model registration

Ref document number: 5958140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350