JP5955676B2 - Method of feeding oil to storage tank - Google Patents
Method of feeding oil to storage tank Download PDFInfo
- Publication number
- JP5955676B2 JP5955676B2 JP2012162996A JP2012162996A JP5955676B2 JP 5955676 B2 JP5955676 B2 JP 5955676B2 JP 2012162996 A JP2012162996 A JP 2012162996A JP 2012162996 A JP2012162996 A JP 2012162996A JP 5955676 B2 JP5955676 B2 JP 5955676B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- raw material
- storage tank
- sulfur content
- material oil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 36
- 239000003921 oil Substances 0.000 claims description 322
- 239000002994 raw material Substances 0.000 claims description 166
- 239000011593 sulfur Substances 0.000 claims description 77
- 229910052717 sulfur Inorganic materials 0.000 claims description 77
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 76
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 45
- 238000004821 distillation Methods 0.000 claims description 34
- 229910052757 nitrogen Inorganic materials 0.000 claims description 23
- 229930195733 hydrocarbon Natural products 0.000 claims description 15
- 150000002430 hydrocarbons Chemical class 0.000 claims description 15
- 239000004215 Carbon black (E152) Substances 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 description 21
- 230000000704 physical effect Effects 0.000 description 15
- 239000010779 crude oil Substances 0.000 description 13
- 238000002156 mixing Methods 0.000 description 9
- 238000006477 desulfuration reaction Methods 0.000 description 8
- 230000023556 desulfurization Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 8
- 239000003054 catalyst Substances 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000003208 petroleum Substances 0.000 description 5
- 239000003209 petroleum derivative Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000010998 test method Methods 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 239000003498 natural gas condensate Substances 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 125000004432 carbon atom Chemical group C* 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000008186 active pharmaceutical agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 239000003350 kerosene Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003345 natural gas Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000009428 plumbing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
本発明は、原料油の貯蔵用タンクへの送油方法に関し、特に、複数の原料油を同一の受入配管を用いて、原料油に応じた貯蔵用タンクへと順次送油する方法に関するものである。 The present invention relates to a method of feeding raw material oil to a storage tank, and more particularly to a method of sequentially feeding a plurality of raw material oils to a storage tank corresponding to the raw material oil using the same receiving pipe. is there.
製油所では、原料油を製油所内に受入れる際、原料油受入れるための受入配管を通じて原料油に応じた貯蔵用タンクへと送油を行い、貯蔵を行っている。例えば、タンカーにて運搬された原油を、ポンプで吸い上げ、原料油受入配管を通じて送油し、原油貯蔵用タンクに貯蔵している。 In the refinery, when the raw material oil is received in the refinery, the oil is sent to a storage tank corresponding to the raw material oil through a receiving pipe for receiving the raw material oil and stored. For example, crude oil transported by a tanker is sucked up by a pump, sent through a raw material oil receiving pipe, and stored in a crude oil storage tank.
原料油には複数の種類があり、原料油の貯蔵用タンクも原料油の種類に応じて複数備えている。そのため、原料油の種類や、原料油の貯蔵用タンクの種類に応じて、原料油受入配管を複数設けることも考えられるが、コスト及び設置スペースを考慮し、原料油の受入配管については共有し、配管の出口側(タンク側)にタンク切換バルブを設けることで、バルブを操作し、バルブから複数の原料油貯蔵用タンクに接続されたタンク用配管へと流路を切り換えることが一般的である。 There are a plurality of types of raw material oil, and a plurality of storage tanks for the raw material oil are provided according to the type of the raw material oil. Therefore, depending on the type of raw material oil and the type of storage tank for raw material oil, it may be possible to provide multiple raw material oil receiving pipes, but considering the cost and installation space, the raw material oil receiving pipes are shared. By providing a tank switching valve on the outlet side (tank side) of the pipe, it is common to operate the valve and switch the flow path from the valve to a tank pipe connected to a plurality of raw oil storage tanks. is there.
例えば特許文献1には、原油を蒸留して基材留分を得る工程と、前記基材留分を精製して各種基材を得る工程と、前記各基材を切換バルブ等を用いて基材タンクに貯蔵する工程と、前記各基材をブレンドして石油製品を得る工程と、得られた製品をバルブ等を用いて製品タンクに貯蔵する工程とを連続的に行う石油製品の製造方法において、前記各工程を個別に制御するとともに、前記基材あるいはブレンドされた石油製品の性状に基づいて前記各工程を最適化制御することを特徴とする石油製品の製造方法が開示されている。 For example, Patent Document 1 discloses that a process for obtaining a base fraction by distilling crude oil, a process for obtaining various bases by refining the base fraction, and using a switching valve or the like. A method for producing a petroleum product, comprising: a step of storing in a material tank; a step of blending the base materials to obtain a petroleum product; and a step of storing the obtained product in a product tank using a valve or the like. The method for producing a petroleum product is characterized in that each step is individually controlled, and each step is optimized and controlled based on the properties of the base material or the blended petroleum product.
しかしながら、上記タンク切換バルブを操作して流路を切り換えることで、各原料油を対応した貯蔵用タンクに送油する場合、原料油の受入配管を共有しているため、先に受入配管へ投入した後、原料油の流路を次の原料油の貯蔵用タンクへと切り換えた際、該受入配管中に先に投入した原料油が残存し、後に投入する原料油の貯蔵用タンク内に混入するという問題があった。 However, by operating the tank switching valve and switching the flow path, when each raw material oil is sent to the corresponding storage tank, the raw material oil receiving pipe is shared. After that, when the flow path of the raw material oil is switched to the storage tank for the next raw material oil, the raw material oil that has been input first remains in the receiving pipe and is mixed in the storage tank for the raw material oil to be input later. There was a problem to do.
そして、上記のように原料油貯蔵用タンク中に異種の原料油が混入すると、それぞれの原料油の相溶性が悪い場合には貯蔵用タンク内にスラッジ等の不溶解分が発生したり、異種の原料油の混入により貯蔵安定性が悪化するという問題がある。生成油中の硫黄分の規格を満足させるべく、異種の原料油(先に投入した原料油)が混入した原料油(後に投入した原料油)を水素化精製処理するための反応温度を高くする必要が生じ、コストの増加を招く問題がある。 If different types of raw material oils are mixed in the raw material oil storage tank as described above, if the compatibility of the respective raw material oils is poor, insoluble components such as sludge are generated in the storage tanks, There is a problem that storage stability deteriorates due to mixing of raw material oil. In order to satisfy the sulfur content standard in the product oil, the reaction temperature for hydrorefining raw material oil (raw oil introduced later) mixed with different raw oil (raw oil introduced earlier) is increased. There is a problem that the necessity arises and the cost increases.
そのため本発明は、受入配管中に残存する原料油について適正な制御を行うことで、原料油貯蔵用タンク中に異種の原料油が混入することを抑制でき、貯蔵安定性及び経済性に優れた原料油の貯蔵用タンクへの送油方法を提供することを目的とする。 Therefore, the present invention is able to suppress mixing of different types of raw material oil into the raw material oil storage tank by performing appropriate control on the raw material oil remaining in the receiving pipe, and is excellent in storage stability and economy. An object of the present invention is to provide a method for feeding oil to a storage tank for raw material oil.
本発明者らは、2種以上の異なる原料油を、同一の受入配管を用いて各原料油貯蔵用タンクへと順次送油する方法について、上記課題を解決するべく鋭意研究を重ねた。その結果、前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の物性が、基準値以下となった後に、前記各原料油貯蔵用タンクの切換えを行うことで、前記後に投入した原料油の貯蔵用タンク中に異種の原料油(先に投入した原料油)が混入することの抑制を可能とし、優れた貯蔵安定性及び経済性を実現できることを見出した。 The inventors of the present invention have intensively studied to solve the above-described problems with respect to a method of sequentially feeding two or more different raw oils to each raw oil storage tank using the same receiving pipe. As a result, after the physical properties of the mixed oil of the raw material oil previously introduced remaining in the receiving pipe and the raw material oil introduced later into the receiving pipe become below the reference value, By switching the tank, it is possible to suppress the mixing of different types of raw material oils (the raw material oils that have been input earlier) into the storage tanks for the raw material oils that have been input later, and excellent storage stability and economic efficiency. It was found that can be realized.
本発明は、このような知見に基づきなされたもので、その要旨は以下の通りである。
(1)2種以上の異なる原料油を、同一の受入配管を用いて各原料油貯蔵用タンクへと順次送油する方法であって、
前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の硫黄分又は窒素分が、基準値以下となった後に前記各原料油貯蔵用タンクの切換えを行い、該混合油の硫黄分又は窒素分の基準値(D質量ppm)が、以下の式によって得られることを特徴とする原料油の貯蔵用タンクへの送油方法。
D=A×(0.001×C)+B×{1―(0.001×C)}
式中、A:先に投入した原料油中の硫黄分又は窒素分(質量ppm)、B:後に投入した原料油中の硫黄分又は窒素分(質量ppm)、A>B、C=4である。
The present invention has been made based on such findings, and the gist thereof is as follows.
(1) A method of sequentially feeding two or more different raw oils to each raw oil storage tank using the same receiving pipe,
For storing each of the raw oils after the sulfur content or nitrogen content of the mixed oil of the raw material oil previously charged remaining in the receiving pipe and the raw material oil charged later into the receiving pipe falls below a reference value There line switching of the tank, the oil feeding method of sulfur or nitrogen of the reference value of the mixed oil (D mass ppm) is, to the storage tank of the feedstock, characterized in that it is obtained by the following equation.
D = A × (0.001 × C) + B × {1− (0.001 × C)}
In the formula, A: sulfur content or nitrogen content (mass ppm) in the feed oil introduced earlier, B: sulfur content or nitrogen content (mass ppm) in the feed stock introduced later, A> B, C = 4 is there.
(2)前記混合油の硫黄分の測定は、前記受入配管の各原料貯蔵用タンク側出口、前記原料油の流路を切り換えるためのバルブの入口又は前記先に投入した原料油の貯蔵用タンクの入口で行われることを特徴とする上記(1)に記載の原料油の貯蔵用タンクへの送油方法。 ( 2 ) The measurement of the sulfur content of the mixed oil is performed by measuring each raw material storage tank side outlet of the receiving pipe, an inlet of a valve for switching the flow path of the raw oil, or the storage tank of the raw oil previously introduced. The method for feeding the raw material oil to the storage tank according to the above (1) , characterized in that the method is carried out at the inlet of the tank.
(3)前記後に投入する原料油は、10容量%留出温度が35〜80℃、95容量%留出温度が230〜400℃、97容量%留出温度が250〜450℃、の蒸留性状を有し、
前記後に投入する原料油中のナフサ留分の硫黄分を、前記後に投入する原料油の硫黄分で割った値が、0.1以上、1.5未満である炭化水素油であることを特徴とする請求項(1)又は(2)に記載の原料油の貯蔵用タンクへの送油方法。
( 3 ) The feedstock to be introduced later has a distillation property of 10 vol% distillation temperature of 35 to 80 ° C, 95 vol% distillation temperature of 230 to 400 ° C, and 97 vol% distillation temperature of 250 to 450 ° C. Have
The hydrocarbon oil having a value obtained by dividing the sulfur content of the naphtha fraction in the feed oil introduced later by the sulfur content of the feed oil introduced later is 0.1 or more and less than 1.5. (1) The oil feeding method to the storage tank of the raw material oil as described in (2) .
(4)前記先に投入する原料油は、10容量%留出温度が75〜100℃、95容量%留出温度が620〜800℃、97容量%留出温度が650〜820℃、の蒸留性状を有し、
前記先に投入する原料油中のナフサ留分の硫黄分を、前記先に投入する原料油の硫黄分で割った値が、0.001以上、0.1未満である炭化水素油であることを特徴とする前記(1)又は(2)に記載の原料油の貯蔵用タンクへの送油方法。
( 4 ) Distillation of the raw material oil to be introduced first is 10% by volume distillation temperature of 75-100 ° C, 95% by volume distillation temperature of 620-800 ° C, 97% by volume distillation temperature of 650-820 ° C. Has properties,
A value obtained by dividing the sulfur content of the naphtha fraction in the feed oil introduced first by the sulfur content of the feed oil introduced earlier is 0.001 or more and less than 0.1 hydrocarbon oil. The method for feeding oil to the storage tank of the raw material oil according to (1) or (2) .
本発明によれば、原料油貯蔵用タンク中に異種の原料油が混入することを抑制でき、貯蔵安定性及び経済性に優れた原料油の貯蔵用タンクへの送油方法の提供が可能となる。 According to the present invention, it is possible to suppress the mixing of different types of raw material oils in the raw material oil storage tank, and it is possible to provide a method for feeding the raw material oil to the storage tank that is excellent in storage stability and economy. Become.
以下、本発明ついて図面を用いて説明する。
本発明に従う原料油の貯蔵用タンクへの送油方法は、図1に示すように、2種以上の異なる原料油を、同一の受入配管1を用いて各原料油貯蔵用タンク10、11、12へと順次送油する方法である。
The present invention will be described below with reference to the drawings.
As shown in FIG. 1, the method for feeding raw material oil to the storage tank according to the present invention uses two or more different raw material oils to each of the raw oil storage tanks 10, 11, using the same receiving pipe 1. This is a method of sending oil to 12 sequentially.
そして本発明では、前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の物性が基準値以下となった後に、前記各原料油貯蔵用タンクの切換えを行うことを特徴とする。 In the present invention, after the physical properties of the mixed oil of the raw material oil that has been previously introduced into the receiving pipe and the raw material oil that has been introduced into the receiving pipe are equal to or less than a reference value, The tank is switched.
上記構成を具備することで、前記先に投入した原料油と前記後に投入した原料油との間で、性状や硫黄分、窒素分の物性がより近いほうの原料油貯蔵用タンクへ前記混合油を投入することが可能となるため、原料油貯蔵用タンク中に異種の原料油が混入することを有効に抑制できる。その結果、原料油の貯蔵について、安定性及び経済性を向上することができる。 By having the above-described configuration, the mixed oil is supplied to the raw material oil storage tank having a property, sulfur content, and nitrogen content closer between the raw material oil introduced earlier and the raw material oil introduced later. Therefore, it is possible to effectively suppress mixing of different types of raw material oils in the raw material oil storage tank. As a result, it is possible to improve the stability and economy of raw material storage.
従来の送油方法は、前記受入配管へ新たな原料油(後に投入された原料油)の投入が開始されると、後に投入された原料油の貯蔵用タンクへとバルブが切り替わるため、前記受入配管中に残存する先に投入された原料油が後に投入された原料油の貯蔵用タンクへと混入することとなる。その結果、原料油の性状等が大きく変動する場合があり、原料油の貯蔵安定性及び前記後に投入した原料油の水素化精製処理時の装置運転条件の過酷度の悪化、強いては経済性に影響を及ぼすことになる。 In the conventional oil feeding method, when a new raw material oil (raw material oil introduced later) starts to be introduced into the receiving pipe, the valve is switched to a storage tank for the raw material oil introduced later. The raw material oil introduced earlier that remains in the pipe is mixed into the storage tank for the raw oil introduced later. As a result, the properties of the feedstock oil may fluctuate greatly, and the storage stability of the feedstock oil and the severeness of the equipment operating conditions during the hydrorefining treatment of the feedstock input after the above will be worsened. Will have an impact.
(配管)
本発明の送油方法では、図1に示すように、受入配管1を用いて原料油を原料油貯蔵用タンク10、11、12へと送油する。受入配管1の構成については、特に限定はされず、製油所において通常用いられる受入配管を用いればよい。
(Plumbing)
In the oil feeding method of the present invention, as shown in FIG. 1, the feed oil is sent to the feed oil storage tanks 10, 11, 12 using the receiving pipe 1. The configuration of the receiving pipe 1 is not particularly limited, and a receiving pipe normally used in a refinery may be used.
本発明の送油方法では、前記受入配管から投入される原料油の貯蔵用タンクの切換えについて、前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の物性が基準値以下になるか否かに基づいて判断される。基準値以下になるか否かで切換が行われることで、安定した送油が行えるとともに、送油の自動的な制御が可能となる。
例えば、まず、図2に示すようにして、先に投入する原料油を、先に投入する原料油用の貯蔵用タンクに送油する。次に、図3に示すように、先に投入した原料油の送油後に、後に投入する原料油の送油を開始した場合、原料油受入配管内の混合油の物性(例えば、硫黄分)が基準値以下になるまでは、先に投入した原料油用の貯蔵用タンク10a、10b・・・へ、混合油の送油を続ける。そして、図4に示すように前記混合油の硫黄分が基準値以下になった後、原料油貯蔵用タンクを先に投入した原料油用の貯蔵用タンク10a(あるいは10b、10c・・・)から、後に投入した原料油用の貯蔵用タンク11に切り替えて、後に投入した原料油の送油を継続する。
また、図5に示すように、原料油受入配管等の配管内の油が後に投入した原料油に適切に置き換わった状態の配管を用いて送油を行う場合には、さらに別の、後に投入する原料油用の貯蔵用タンク12に切り換えて送油を継続することもできる。
なお、原料油の種類によらず共用する配管である原料油受入配管等以外の配管で、目的とする原料油用の貯蔵用タンクに直結したタンク用配管等は、普段から目的とする原料油しか通過していない。
In the oil feeding method of the present invention, with regard to the switching of the storage tank for the raw material oil that is input from the receiving pipe, the raw material oil that has been input earlier that remains in the receiving pipe and the raw material oil that has been input later to the receiving pipe Is determined based on whether or not the physical properties of the mixed oil are below the reference value. Switching is performed depending on whether or not the value falls below the reference value, thereby enabling stable oil feeding and automatic control of oil feeding.
For example, first, as shown in FIG. 2, the raw material oil introduced first is sent to the storage tank for the raw material oil introduced first. Next, as shown in FIG. 3, when the feed of the feed oil to be introduced later is started after the feed of the feed oil introduced earlier, the physical properties (for example, sulfur content) of the mixed oil in the feed oil receiving pipe Until the oil becomes below the reference value, the mixed oil is continuously fed to the storage tanks 10a, 10b,. Then, as shown in FIG. 4, after the sulfur content of the mixed oil becomes below the reference value, the raw material oil storage tank 10a (or 10b, 10c,. Then, it switches to the storage tank 11 for the raw material oil introduced later and continues to feed the raw material oil introduced later.
In addition, as shown in FIG. 5, when oil is fed using a pipe in which the oil in the pipe such as the feedstock receiving pipe is appropriately replaced with the feedstock input later, another feed is performed later. The oil supply can be continued by switching to the storage tank 12 for the raw material oil.
Note that tank piping that is directly connected to the storage tank for the target raw material oil, such as piping other than the raw material oil receiving pipe, which is a common pipe regardless of the type of raw material oil, is usually used for the target raw material oil. Only passed.
ここで、前記混合油の物性については、先に投入した原料油と後に投入した原料油との区別を行える値であれば特に限定はされず、例えば、硫黄分、窒素分、密度、蒸留性状から算出される重質分の比率等が挙げられる。 Here, the physical properties of the mixed oil are not particularly limited as long as it is a value capable of distinguishing between the feed oil introduced first and the feed oil introduced later, for example, sulfur content, nitrogen content, density, distillation properties The ratio of heavy components calculated from
前記物性については、その中でも、前記物性は硫黄分又は窒素分であることを要し、硫黄分と窒素分を併用することもできる。硫黄分と窒素分は、原料油によって含有量が異なるため、原料油が入れ替わるタイミングを把握し易い。また、例えば硫黄分あるいは窒素分が多い原料油が原料貯蔵用タンクに混入した場合、規格を満たすべく水素化精製処理を必要とし、経済性の悪化を招くため、硫黄分の値を基準に判断することで、優れた経済性を確保できるからである。 About the said physical property, the said physical property requires that it is a sulfur content or a nitrogen content, and it can also use a sulfur content and a nitrogen content together. Since the sulfur content and the nitrogen content differ depending on the raw material oil, it is easy to grasp the timing at which the raw material oil is replaced. In addition, for example, when raw material oil with a high sulfur content or nitrogen content is mixed into the raw material storage tank, hydrorefining treatment is required to meet the standards, which causes economic deterioration. This is because excellent economic efficiency can be secured.
また、前記混合油の硫黄分の基準値は、前記混合油の硫黄分の基準値(D質量ppm)として、以下の式によって得られる。
D=A×(0.001×C)+B×{1―(0.001×C)}
ここで、Aは、先に投入した原料油中の硫黄分(質量ppm)であり、Bは、後に投入した原料油中の硫黄分(質量ppm)であり、A>B、C=4である。
Cの値を4としたのは、Cが4を超える場合、先に投入した原料油と後に投入した原料油との物性及び性状が大きく異なるため、それぞれの原料油が混入した場合の貯蔵安定性や前記混合油を一括水素化精製処理(脱硫)装置に供給した時に、例えば水素化精製処理油中の物性(硫黄分等)を一定に維持するために反応温度を高くする必要性が生じるおそれがあり、反応温度の上昇により触媒の劣化が促進されて触媒の寿命が短くなることや、反応温度を高くすることによって、運転コストの面で経済性の悪化を招くおそれがあるからである。
Moreover, the reference value of sulfur content of the mixed oil is obtained by the following formula as the reference value (D mass ppm) of the sulfur content of the mixed oil .
D = A × (0.001 × C) + B × {1− (0.001 × C)}
Here, A is the sulfur content (mass ppm) in the raw material oil introduced earlier, B is the sulfur content (mass ppm) in the raw material oil introduced later, and A> B, C = 4 is there.
The value of C was set to 4. When C exceeds 4, the physical properties and properties of the feed oil introduced earlier and the feed oil introduced later are greatly different, so the storage stability when each feedstock is mixed When the mixed oil and the mixed oil are supplied to a batch hydrorefining treatment (desulfurization) device, for example, it is necessary to increase the reaction temperature in order to keep the physical properties (sulfur content, etc.) in the hydrorefining treatment oil constant. This is because there is a possibility that deterioration of the catalyst is promoted due to an increase in the reaction temperature and the life of the catalyst is shortened, and there is a possibility that economic efficiency is deteriorated in terms of operating cost by increasing the reaction temperature. .
貯蔵安定性の一つの指標としては、前記先に投入した原料油と、前記後に投入した原料油との相溶性の指標であるアスファルテンの数値が挙げられる。この数値が上昇するということは、二つの原料油を混合することにより、油中から析出物が多く発生するということであり、原料油の処理時に装置の汚れ、詰まりなどを発生させる原因となる。後に投入した原料油に先に投入した原料油が一定以上混入すると、前記アスファルテンの数値が上昇する。
一方、後に投入した原料油と先に投入した原料油との混合油の物性が基準値以下となってからタンク配管と貯蔵用タンクを切り換えて、後に投入した原料油を、該後に投入した原料油用の貯蔵用タンクに送油していくと、共用受入配管内になお残存する先に投入した原料油及びその成分は、後に投入した原料油中に徐々に長い時間をかけて混入し続け、後に投入した原料油用の貯蔵用タンク内に混入していく。通常の製油所で使用する原料油用の貯蔵用タンクの容量を考慮して、上記タンク切り換え後に送油が完了した貯蔵用タンク内の原料油の貯蔵量に対する、上記共用受入配管内の先に投入した原料油及びその成分の混入量の割合が、上記貯蔵安定性が大幅に悪化しない程度以下に、及び、当該原料油を水素化精製(脱硫)処理装置に供給したときに処理条件(反応温度等)に多大な影響が出ない程度以下になるよう、上記の基準値を決める。
ここで、送油中の貯蔵用タンク内の原料油ではなく、上記配管及びタンクの切り換えをする直前の共用受入配管内の混合油が、最も上記混入量の割合が高いので、このときの混合油の物性について基準値を定めることで、上記貯蔵安定性及び処理条件に大きな影響が発生することを未然に防止できる。前記未然に防止するためには、前記基準値Dを算定する際に、上記Cの値は、上記A>B、C=4とすることが好ましい。例えば、C=4のときの基準値Dの物性(例えば硫黄分)を持つ原料油を、当該原料油と同じ油種の原料油を処理中の水素化精製装置に、原料油貯蔵用タンクを切り換えて供給したときに、処理油の物性(例えば硫黄分)を一定にコントロールして処理を継続するための反応温度の上昇度合いが10℃以下であれば処理条件に大きな影響は発生しないとする。前記反応温度の上昇度合いが10℃を超えると、触媒の劣化が促進されて触媒の寿命が短くなる恐れや、触媒交換頻度増大、及び、反応温度を上昇することに伴う運転コスト上昇により、水素化精製処理の経済性が悪化するおそれがあるからである。
また、前記混合油の物性を硫黄分から窒素分に変更した場合にも、前記と同様な式において基準値を定めることが可能である。
As one index of storage stability, there is a numerical value of asphaltenes, which is an index of the compatibility between the raw material oil introduced earlier and the raw material oil introduced later. An increase in this value means that by mixing two raw oils, a large amount of precipitates are generated from the oil, causing the equipment to become dirty and clogged during processing of the raw oil. . When the raw material oil introduced earlier is mixed in a certain amount or more later, the numerical value of the asphaltenes increases.
On the other hand, after the physical properties of the mixed oil of the feed oil introduced later and the feed oil introduced earlier become below the reference value, the tank piping and the storage tank are switched, and the feed oil introduced later When the oil is sent to the storage tank for oil, the raw material oil and its components that are still left in the common receiving pipe continue to be mixed into the raw material oil that was introduced later over a long period of time. Then, it is mixed in the storage tank for raw material oil introduced later. Considering the capacity of the storage tank for raw material oil used in ordinary refineries, the amount of raw material oil stored in the storage tank that has been refueled after the tank changeover is first in the common receiving pipe. The ratio of the amount of raw material oil and the amount of its components mixed is below the extent that the storage stability is not significantly deteriorated, and when the raw material oil is supplied to the hydrorefining (desulfurization) processing device, the processing conditions (reactions) The reference value is determined so that it does not affect the temperature or the like.
Here, since the mixed oil in the common receiving pipe immediately before switching between the pipe and the tank is not the raw material oil in the storage tank during oil feeding, the mixing ratio at this time is the highest. By determining the reference values for the physical properties of the oil, it is possible to prevent the storage stability and processing conditions from being greatly affected. In order to prevent this, it is preferable that when calculating the reference value D, the value of C satisfies A> B and C = 4. For example, a raw material oil having physical properties of the reference value D when C = 4 (for example, sulfur content) is supplied to a hydrorefining apparatus that is processing raw material oil of the same oil type as the raw material oil, and a raw material oil storage tank is provided. If the reaction temperature rises to 10 ° C or less to maintain the physical properties (for example, sulfur content) of the treated oil at a constant level and continue processing, the processing conditions will not be greatly affected. . When the degree of increase in the reaction temperature exceeds 10 ° C., the deterioration of the catalyst is promoted and the life of the catalyst may be shortened, the frequency of catalyst replacement is increased, and the operating cost associated with increasing the reaction temperature is increased. This is because the economic efficiency of the refining treatment may be deteriorated.
Further, even when the physical property of the mixed oil is changed from the sulfur content to the nitrogen content, it is possible to determine the reference value in the same formula as described above.
さらに、前記混合油の硫黄分の測定については、後述する、前記受入配管の各原料貯蔵用タンク側出口、原料油の流路を切り換えるためのバルブの入口、又は、先に投入した原料油の貯蔵用タンクの入口で行われることが好ましい。前記貯蔵用タンクの前で行うことによって、異種の原料油が混入することを事前に抑制できるからである。 Further, for the measurement of the sulfur content of the mixed oil, the raw material storage tank side outlet of the receiving pipe, the inlet of a valve for switching the flow path of the raw oil, or the raw oil previously introduced is described later. Preferably, it is carried out at the inlet of the storage tank. It is because it can suppress in advance that a different kind of raw material oil mixes by performing in front of the said storage tank.
また、図1に示すように、前記受入配管1と各原料油貯蔵用タンク10、11、12とを接続する配管として、タンク用配管2が設けられる。該タンク用配管2を設けることで、複数の原料油の送油を1つの受入配管を用いて行うことができる。 As shown in FIG. 1, a tank pipe 2 is provided as a pipe connecting the receiving pipe 1 and the raw material oil storage tanks 10, 11, 12. By providing the tank pipe 2, it is possible to feed a plurality of raw material oils using one receiving pipe.
さらに、図1に示すように、前記受入配管1と前記各タンク用配管2との間にタンク切換バルブ3を設けることができる。タンク切換バルブを操作し、前記受入配管1中の原料油を目的のタンク用配管2へ通し、貯蔵用タンク10、11、12へと送油することができる。ただし、本発明では、タンク切換バルブと同様に、前記受入配管1中の原料油が各貯蔵用タンク10、11、12へ向かうように流路を切り換えることができる機能を有する手段であれば、タンク切換用バルブ3を用いなくとも良い。 Furthermore, as shown in FIG. 1, a tank switching valve 3 can be provided between the receiving pipe 1 and each tank pipe 2. By operating the tank switching valve, the raw material oil in the receiving pipe 1 can be passed through the target tank pipe 2 and sent to the storage tanks 10, 11, 12. However, in the present invention, similarly to the tank switching valve, any means having a function of switching the flow path so that the raw material oil in the receiving pipe 1 is directed to each of the storage tanks 10, 11, 12 can be used. The tank switching valve 3 may not be used.
(原料油貯蔵用タンク)
原料油貯蔵用タンクについては、原料油を格納することができれば特に限定はされないが、浮き屋根式タンクが、貯蔵油の蒸発損失を少なくし、蒸気相を無くして安全性を保つことから当該原料油の貯蔵用として多く使用される。
(Raw oil storage tank)
The raw oil storage tank is not particularly limited as long as it can store the raw oil, but the floating roof tank reduces the evaporation loss of the stored oil and eliminates the vapor phase to maintain safety. It is often used for oil storage.
また、原料油貯蔵用タンクは、原料油ごとに1つの格納用タンクを備えることもできるし、格納用タンクの中をいくつかに分割して、複数の原料油を格納することも可能である。 In addition, the raw material oil storage tank can include one storage tank for each raw material oil, or the storage tank can be divided into several parts to store a plurality of raw material oils. .
(原料油)
本発明では、2種類以上の原料油を貯蔵用タンクへと送油する。原料油の種類については、特に限定はせず、種々の原料油を用いることが可能である。
本発明では、2種類以上の原料油を貯蔵用タンクへと送油する場合、前記受入配管中に先に投入された原料油を「先に投入された(する)原料油」、先の原料油の受入配管への投入後、次の原料油を受入配管中に投入した場合、その原料油を「後に投入された(する)原料油」と呼んでいる。
(Raw oil)
In the present invention, two or more kinds of raw material oils are sent to a storage tank. The type of the raw material oil is not particularly limited, and various raw material oils can be used.
In the present invention, when two or more kinds of raw material oils are sent to the storage tank, the raw material oil that has been input first into the receiving pipe is referred to as “first input raw material oil”, the previous raw material When the next raw material oil is introduced into the receiving pipe after the oil has been introduced into the receiving pipe, the raw material oil is referred to as “raw oil that was introduced later”.
また、前記後に投入した原料油と先に投入した原料油との混合油が、後に投入する原料油を一括水素化精製処理するための原料油貯蔵用タンクに混入した場合、該原料油貯蔵用タンク内の原料油の貯蔵安定性、及び、一括水素化精製処理(脱硫)装置の運転への影響が大きい。
例えば、前記一括水素化精製処理後の製品の硫黄分を一定にした運転を行う場合に反応温度が急激に上昇したり、前記貯蔵用タンク内や配管内、一括水素化精製処理装置内などで、析出物が発生して閉塞等のトラブルになるおそれがある。そのため、上記の貯蔵安定性や運転への影響が大きくなり易く、本発明の効果が顕著に発揮されるという理由から、本発明の対象とする後に投入する原料油は、10容量%留出温度が35〜80℃であることが好ましく、より好ましくは36〜72℃であり、95容量%留出温度が230〜400℃であることが好ましく、より好ましくは250〜350℃であり、97容量%留出温度が250〜450℃であることが好ましく、より好ましくは250〜400℃の蒸留性状を有する。さらに、前記常圧蒸留して得られるナフサ留分の硫黄分を、原料油の硫黄分で割った数値が0.1以上、1.5未満である炭化水素油を用いることが好ましい。ただし、各留分の使用用途等により上記の数値範囲を逸脱しない範囲で適宜調整することができる。
Further, when the mixed oil of the feed oil introduced later and the feed oil introduced earlier is mixed into the feed oil storage tank for batch hydrorefining of the feed oil introduced later, The impact on the storage stability of the raw material oil in the tank and the operation of the batch hydrorefining (desulfurization) equipment is great.
For example, when operation is performed with the sulfur content of the product after the batch hydrorefining treatment made constant, the reaction temperature rises rapidly, or in the storage tank or pipe, in the batch hydrotreating device, etc. There is a risk that precipitates may be generated and cause troubles such as clogging. Therefore, because the above-mentioned storage stability and the influence on the operation are likely to be large, and the effect of the present invention is remarkably exhibited, the feedstock to be introduced after the subject of the present invention is 10% by volume distillation temperature. Is preferably 35 to 80 ° C, more preferably 36 to 72 ° C, and a 95% by volume distillation temperature is preferably 230 to 400 ° C, more preferably 250 to 350 ° C, and 97 volumes. % Distillation temperature is preferably 250 to 450 ° C., more preferably 250 to 400 ° C. Furthermore, it is preferable to use a hydrocarbon oil in which the value obtained by dividing the sulfur content of the naphtha fraction obtained by atmospheric distillation by the sulfur content of the raw material oil is 0.1 or more and less than 1.5. However, it can be appropriately adjusted within the range not departing from the above numerical range depending on the usage of each fraction.
なお、本発明において、ナフサ留分の硫黄分を原料油の硫黄分で割った値とは、ナフサ留分として蒸留装置(液体混合物を沸点の差を利用して分離する装置であって、常温・常圧で液体又は固体の混合物でも温度と圧力の調節により液体混合物として蒸留により分離できる装置)を用いて、炭素数が5の常温常圧で液体の炭化水素から沸点150℃にて分留を行った後の、当該ナフサ留分の硫黄分と、原料油の硫黄分の比率を意味する。また、一般的に、ナフサ留分は沸点範囲30〜200℃程度のものである。 In the present invention, the value obtained by dividing the sulfur content of the naphtha fraction by the sulfur content of the feedstock oil is a distillation apparatus (an apparatus for separating a liquid mixture using a difference in boiling points as a naphtha fraction,・ Fractionation at a boiling point of 150 ℃ from liquid hydrocarbons at room temperature and normal pressure with 5 carbon atoms using a device that can separate a liquid or solid mixture at normal pressure by distillation as a liquid mixture by adjusting the temperature and pressure Means the ratio of the sulfur content of the naphtha fraction and the sulfur content of the feedstock. In general, the naphtha fraction has a boiling range of about 30 to 200 ° C.
本発明では、前記後に投入する原料油中のナフサ留分の硫黄分を、前記後に投入する原料油の硫黄分で割った値が0.1以上、1.5未満が好ましく、より好ましくは0.5以上、1.2未満である。なお、前記後に投入する原料油中のナフサ留分の硫黄分は200〜8000wtppmの範囲が好ましく、前記後に投入する原料油の硫黄分は10〜3000wtppmの範囲が好ましい。本発明における一括水素化精製処理(脱硫)は、原料の炭化水素油から少なくとも軽質ガス及びLPガスを除いた留分を一括して水素化精製処理することから、各留分に含有される硫黄分の脱硫反応性の違いにより、より軽質留分の脱硫反応性が高くなる。そのため、ナフサ留分の硫黄分が高い(あるいは、灯油留分、軽油留分などの他の留分それぞれの硫黄分よりも、ナフサ留分の硫黄分が高い)原料油を使用することにより、灯油留分や軽油留分の脱硫率に着目して、反応温度を設定することができる。
例えば、サルファーフリー軽油(硫黄分10質量ppm以下)の精製に反応条件を設定した場合には、軽油留分より軽質な留分はより硫黄分が少なくなり、軽質ナフサ、重質ナフサのように、品質上軽油より硫黄分が少ないものについても、所望の品質が確保された製品を得ることができる。
In the present invention, the value obtained by dividing the sulfur content of the naphtha fraction in the feed oil introduced later by the sulfur content of the feed oil introduced later is preferably 0.1 or more and less than 1.5, more preferably 0.5 or more and less than 1.2. It is. In addition, the sulfur content of the naphtha fraction in the feed oil introduced later is preferably in the range of 200 to 8000 wtppm, and the sulfur content of the feed oil introduced later is preferably in the range of 10 to 3000 wtppm. The batch hydrorefining process (desulfurization) in the present invention is a process of hydrotreating a fraction obtained by removing at least light gas and LP gas from a hydrocarbon oil as a raw material, so sulfur contained in each fraction. Due to the difference in the desulfurization reactivity of the minute, the desulfurization reactivity of the lighter fraction becomes higher. Therefore, by using a feedstock that has a high sulfur content in the naphtha fraction (or a sulfur content in the naphtha fraction that is higher than the sulfur content of other fractions such as kerosene fraction and diesel oil fraction) The reaction temperature can be set by paying attention to the desulfurization rate of the kerosene fraction and the light oil fraction.
For example, when the reaction conditions are set for refining sulfur-free light oil (sulfur content of 10 mass ppm or less), the lighter fractions will have less sulfur content than light oil fractions, such as light naphtha and heavy naphtha. In addition, a product having a desired quality can be obtained even for those having a sulfur content lower than that of light oil.
前記原料炭化水素油として、具体的には、天然ガスコンデンセートを挙げることができる。天然ガスコンデンセートとは、天然ガス田より天然ガスの採取、精製を行う過程で得られる常温、常圧で液体の炭化水素のことであり、油田から得られる一般の原油に比べて極めて軽質でナフサに近い性状である。前記天然ガスコンデンセートは、石油類の比重として欧米諸国で広く使われているAPI比重で50以上の軽質油で、かつ硫黄分が少ないことから、API比重20〜50で硫黄分0〜3%程度である原油よりもガソリンなどの軽質の石油製品を多く精製できる原料油である。天然ガスコンデンセートとしては、例えば、中東産のサウスパースコンデンセート、ノースフィールドコンデンセートを例示することができるが、これらに限定されるものではない。また、前記原料炭化水素油としては、異なる性状を有する複数の炭化水素油を混合して、上記の蒸留性状及び硫黄分を有する炭化水素油としたものを用いることも可能である。 Specific examples of the raw material hydrocarbon oil include natural gas condensate. Natural gas condensate is a liquid hydrocarbon at normal temperature and pressure obtained during the process of collecting and refining natural gas from a natural gas field, and is extremely light and naphtha compared to general crude oil obtained from oil fields. It is close to the property. The natural gas condensate is a light oil with an API specific gravity of 50 or more, which is widely used in Western countries as a specific gravity of petroleum, and has a low sulfur content, so an API specific gravity of 20-50 has a sulfur content of about 0-3%. It is a feedstock that can refine more light petroleum products such as gasoline than crude oil. Examples of natural gas condensate include, but are not limited to, South Perth condensate and Northfield condensate produced in the Middle East. Moreover, as said raw material hydrocarbon oil, it is also possible to use what was made into the hydrocarbon oil which has the said distillation property and sulfur content by mixing the some hydrocarbon oil which has a different property.
一方、前記先に投入する原料油については、例えば、前記先に投入した原料油と後に投入した原料油との混合油が、前記先に投入する原料油を水素化精製するための原料油貯蔵用タンクに混入しても、該原料油貯蔵用タンク内の原料油の貯蔵安定性や該原料油貯蔵用タンク内の原料油が運転に与える影響は小さい傾向にある。ただし、その場合でも後に投入する原料油と先に投入する原料油の混合油が引き起こす貯蔵安定性や運転への影響が大きくなり易く、本発明の効果が顕著に発揮されるという理由から、本発明が対象としている先に投入する原料油は、10容量%留出温度が75〜100℃であることが好ましく、より好ましくは75〜90℃であり、95容量%留出温度が620〜800℃であることが好ましく、より好ましくは620〜750℃であり、97容量%留出温度が650〜820℃であることが好ましく、より好ましくは650〜800℃である、蒸留性状を有する。さらに、常圧蒸留して得られるナフサ留分の硫黄分を原料油中の硫黄分で割った値が0.001以上、0.1未満の炭化水素油を用いることが好ましい。ただし、各留分の使用用途等により上記の数値範囲を逸脱しない範囲で適宜調整することができる。 On the other hand, as for the raw material oil to be input first, for example, a mixed oil of the raw material oil that has been input first and the raw material oil that has been input later is a raw oil storage for hydrorefining the raw material oil that is input first. Even if it is mixed in the tank for use, the storage stability of the feedstock in the feedstock storage tank and the influence of the feedstock in the feedstock storage tank on operation tend to be small. However, even in that case, the influence on the storage stability and operation caused by the mixed oil of the feed oil to be fed later and the feed oil to be fed earlier tends to be large, and the effect of the present invention is remarkably exhibited. It is preferable that the feedstock oil to be charged at the beginning of the invention has a 10% by volume distillation temperature of 75 to 100 ° C, more preferably 75 to 90 ° C, and a 95% by volume distillation temperature of 620 to 800 ° C. Preferably, the distillation property is such that the temperature is preferably 620 to 750 ° C, and the 97 vol% distillation temperature is preferably 650 to 820 ° C, more preferably 650 to 800 ° C. Furthermore, it is preferable to use a hydrocarbon oil having a value obtained by dividing the sulfur content of the naphtha fraction obtained by atmospheric distillation by the sulfur content in the raw material oil of 0.001 or more and less than 0.1. However, it can be appropriately adjusted within the range not departing from the above numerical range depending on the usage of each fraction.
なお、上述したところは、この発明の実施形態の一例を示したにすぎず、請求の範囲の記載内容に応じて種々の変更を加えることができる。 In addition, the place mentioned above only showed an example of embodiment of this invention, A various change can be added according to the description content of a claim.
以下に、実施例を挙げて本発明をさらに具体的に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
なお、実施例及び比較例において、蒸留性状、密度、硫黄分は、以下の方法に従って行った。
・蒸留性状:JIS K 2254に規定する「石油製品―蒸留試験方法」
・密度:15℃における密度は、JIS K 2249に規定する「原油及び石油製品−密度試験方法及び密度・質量・容量換算表(抜粋)」の「振動式密度試験方法」に準拠して測定されるものである。
・硫黄分:JIS K 2541―1992に規定する「原油及び石油製品―硫黄分試験方法」の「放射線式励起法」に準拠して測定される。
・窒素分:JIS K 2609―1998に規定する「原油及び石油製品―窒素分試験方法」の「化学発光法」または「微量電量滴定法」に準拠して測定される。
In Examples and Comparative Examples, distillation properties, density, and sulfur content were performed according to the following methods.
・ Distillation properties: “Petroleum products-Distillation test method” specified in JIS K 2254
-Density: The density at 15 ° C is measured in accordance with "Oscillation type density test method" in "Crude oil and petroleum products-Density test method and density / mass / capacity conversion table (excerpt)" specified in JIS K 2249. Is.
・ Sulfur content: Measured according to “Radiation Excitation Method” of “Crude Oil and Petroleum Products—Sulfur Content Test Method” defined in JIS K2541-1992.
Nitrogen content: Measured in accordance with “chemiluminescence method” or “microcoulometric titration method” of “crude oil and petroleum products—nitrogen content test method” defined in JIS K 2609-1998.
(実施例1)
図1に示すように、2種の異なる原料油を、同一の受入配管を用いて各原料油貯蔵用タンクへと順次送油した。受入配管中に先に投入した原料油は、サウジアラビア産のアラビアンヘビー原油であり、その性状を表1に、各留分の収率及び性状を表2に示す。受入配管中に後に投入した原料油は、カタールのノースフィールドガス田から得られたコンデンセート(ラスガスコンデンセート)であり、その性状を表3、各留分の収率及び性状を表4に示す。
なお、各原料油貯蔵用タンクの切換えは、前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の硫黄分(質量ppm)が、前記先に投入した原料油の硫黄分をA(質量ppm)、前記後に投入した原料油の硫黄分をB(質量ppm)、としたとき、D=A×(0.001×C)+B×{1―(0.001×C)}の式で算出され、C=4の時の基準値D以下になった際に実施した。前記混合油の硫黄分及び窒素分は、前記受入配管における前記後に投入した原料油(ラスガスコンデンセート)の貯蔵用タンク側の出口に設けたノズル(図示せず)から必要量採取したサンプルを用いて測定した。
つまり、先に投入した原料油(アラビアンヘビー原油)の硫黄分が28100質量ppmであり、後に投入した原料油(ラスガスコンデンセート)の硫黄分が2280質量ppmであったため、受入配管中の混合油の硫黄分が、これらの値とC=4で算定した前記混合油の硫黄分D(質量ppm)が2383質量ppm以下になったことを確認し、タンク切換バルブを操作して、原料油貯蔵用タンクの切換を行った。
また、この時の先に投入した原料油(アラビアンヘビー原油)の窒素分は1270質量ppm、後に投入した原料油(ラスガスコンデンセート)の窒素分は9.6質量ppmであり、これらの値とC=4で算定した前記混合油の窒素分の基準値D’(質量ppm)は、14.6質量ppmであるが、上記のタンク切換えバルブを操作したときの前記混合油の窒素分は、前記の14.6質量ppm以下になっていた。
その結果、上記のタンク切換えバルブを操作したときの一括水素化精製(脱硫)装置の反応温度の変動は10℃以下であった。また、前記混合油のアスファルテン分の値についても、前記後に投入した原料油の値と遜色無い値であり、タンク内の貯蔵安定性や、析出物の発生による閉塞等のトラブルも生じなかった。
Example 1
As shown in FIG. 1, two different types of raw material oils were sequentially sent to each raw material oil storage tank using the same receiving pipe. The raw material oil previously introduced into the receiving pipe is an Arabian heavy crude oil produced in Saudi Arabia. The properties are shown in Table 1, and the yield and properties of each fraction are shown in Table 2. The feedstock later introduced into the receiving pipe is a condensate (lasgas condensate) obtained from the Northfield gas field in Qatar. Table 3 shows the properties and Table 4 shows the yield and properties of each fraction.
In addition, the switching of each raw material oil storage tank, the sulfur content (mass ppm) of the mixed oil of the raw material oil previously introduced into the receiving pipe and the raw material oil introduced later into the receiving pipe, Assuming that the sulfur content of the feed oil introduced earlier is A (mass ppm) and the sulfur content of the feed oil introduced later is B (mass ppm), D = A × (0.001 × C) + B × { 1− (0.001 × C)} was calculated when the value was equal to or less than the reference value D when C = 4. For the sulfur content and nitrogen content of the mixed oil, a sample obtained from a nozzle (not shown) provided at the outlet on the storage tank side of the raw material oil (lass gas condensate) introduced later in the receiving pipe is used. It was measured.
In other words, the sulfur content of the feed oil (Arabyan heavy crude oil) introduced earlier was 28100 mass ppm, and the sulfur content of the feed oil (rasgas condensate) introduced later was 2280 ppm by mass. Confirm that sulfur content D (mass ppm) of the mixed oil calculated with these values and C = 4 is 2383 mass ppm or less, and operate the tank switching valve to store the raw oil. The tank was switched.
At this time, the nitrogen content of the feed oil (Arabyan heavy crude oil) introduced earlier was 1270 mass ppm, and the nitrogen content of the feed oil (rasgas condensate) introduced later was 9.6 ppm by mass. These values and C = 4 The reference value D ′ (mass ppm) of the nitrogen content of the mixed oil calculated in step 1 is 14.6 mass ppm, but the nitrogen content of the mixed oil when the tank switching valve is operated is 14.6 mass ppm. It was below.
As a result, the fluctuation of the reaction temperature of the batch hydrorefining (desulfurization) apparatus when the tank switching valve was operated was 10 ° C. or less. Further, the value of the asphaltene content of the mixed oil was also inferior to that of the raw material oil introduced later, and there was no trouble such as storage stability in the tank or clogging due to generation of precipitates.
(実施例2)
上記のラスガスコンデンセートとアラビアンヘビー原油を、アラビアンヘビー原油の硫黄分をA(質量ppm)とし、ラスガスコンデンセートの硫黄分をB(質量ppm)としたとき、両者を混合した原料油中の硫黄分Dが、C=0〜4の数値範囲で、D=A×(0.001×C)+B×{1―(0.001×C)}の関係式を満たすよう混合した原料油から、常圧蒸留により軽質ガス及びLPガスを除いた軽質ナフサからの連続留分を(炭素数が5以上の常温常圧で、液体の炭化水素の全留分を)原料油とした。
その後、原料油を内径10mm×長さ500mmの反応器に入れ、市販のCo−Mo系触媒を15cc添加した下向並流式反応器を用い、水素純度:100%、圧力:5MPa、H2/油比:160Nm3/kL、LHSV:2.0h-1の反応条件で、軽質ナフサから軽油までの連続留分を一括して水素化精製処理した。
反応温度については、水素化処理後の精製油を分留器に移して常圧蒸留し、軽油留分(250℃〜350℃の留分)を分離し、この留分の残留硫黄濃度が10質量ppmになるように調整を行った。
その結果、前記定数Cの値が0の場合に軽油中の残留硫黄が10質量ppmとなるときの反応温度は300℃であった。また、前記定数Cの値が4の場合の反応温度は310℃であった。その結果、前記定数Cが0〜4の範囲では、反応温度の上昇を10℃以下に抑えられ、装置に与える影響も小さく、経済的にも良好な結果を示すことがわかった。
(Example 2)
When the above-mentioned Lasgas condensate and Arabian heavy crude oil are A (mass ppm) and the sulfur content of the Lasgas condensate is B (mass ppm), the sulfur content D in the raw oil mixed with both Is light by atmospheric distillation from a raw material mixed so as to satisfy the relational expression of D = A × (0.001 × C) + B × {1- (0.001 × C)} in a numerical range of C = 0 to 4 A continuous fraction from light naphtha excluding gas and LP gas (all fractions of liquid hydrocarbons at room temperature and normal pressure having 5 or more carbon atoms) was used as a feedstock.
Thereafter, the raw material oil was put into a reactor having an inner diameter of 10 mm and a length of 500 mm, and a downward co-current reactor to which 15 cc of a commercially available Co-Mo catalyst was added, hydrogen purity: 100%, pressure: 5 MPa, H 2 / Oil ratio: 160 Nm 3 / kL, LHSV: 2.0 h −1 The continuous fractions from light naphtha to light oil were collectively hydrorefined.
Regarding the reaction temperature, the hydrotreated refined oil was transferred to a fractionator and distilled at atmospheric pressure to separate a light oil fraction (250 ° C to 350 ° C fraction). The residual sulfur concentration in this fraction was 10%. Adjustments were made to achieve ppm by mass.
As a result, when the value of the constant C was 0, the reaction temperature when the residual sulfur in the light oil was 10 ppm by mass was 300 ° C. The reaction temperature when the value of the constant C was 4 was 310 ° C. As a result, it was found that when the constant C is in the range of 0 to 4, the increase in the reaction temperature can be suppressed to 10 ° C. or less, the influence on the apparatus is small, and an economical result is obtained.
(比較例1)
実施例2において、アラビアンヘビー原油の硫黄分をA(質量ppm)とし、ラスガスコンデンセートの硫黄分をB(質量ppm)としたとき、Cの値が4を超えて関係式を満たすように、D(質量ppm)の範囲で混合した原料油から、常圧蒸留により軽質ガス及びLPガスを除いた軽質ナフサからの連続留分(炭素数が5以上の常温常圧で、液体の炭化水素の全留分)を原料油とした。
その後、原料油を内径10mm×長さ500mmの反応器に入れ、市販のCo−Mo系触媒を15cc添加した下向並流式反応器を用い、水素純度:100%、圧力:5MPa、H2/油比:160Nm3/kL、LHSV:2.0h-1の反応条件で、軽質ナフサから軽油までの連続留分を一括して水素化精製処理した。
反応温度については、水素化処理後の精製油を分留器に移して常圧蒸留し、軽油留分(250℃〜350℃の留分)を分離し、この留分の残留硫黄濃度が10質量ppmになるように調整を行った。
その結果、前記定数Cの値が7の場合に軽油中の残留硫黄が10質量ppmになるときの反応温度は320℃であった。また、定数Cの値が15の場合の反応温度は370℃であった。その結果、Cの値が4を超える値の場合は、反応温度は10℃を超え、装置に与える影響が大きいことがわかった。
(Comparative Example 1)
In Example 2, when the sulfur content of Arabian heavy crude oil is A (mass ppm) and the sulfur content of Lasgas condensate is B (mass ppm), the value of C exceeds 4 and satisfies the relational expression. Continuous fraction from light naphtha from which light gas and LP gas are removed by atmospheric distillation from raw material oil mixed in the range of (ppm by mass) (all hydrocarbons at room temperature and normal pressure with 5 or more carbon atoms) Distillate) was used as the feedstock.
Thereafter, the raw material oil was put into a reactor having an inner diameter of 10 mm and a length of 500 mm, and a downward co-current reactor to which 15 cc of a commercially available Co-Mo catalyst was added, hydrogen purity: 100%, pressure: 5 MPa, H 2 / Oil ratio: 160 Nm 3 / kL, LHSV: 2.0 h −1 The continuous fractions from light naphtha to light oil were collectively hydrorefined.
Regarding the reaction temperature, the hydrotreated refined oil was transferred to a fractionator and distilled at atmospheric pressure to separate a light oil fraction (250 ° C to 350 ° C fraction). The residual sulfur concentration in this fraction was 10%. Adjustments were made to achieve ppm by mass.
As a result, when the value of the constant C was 7, the reaction temperature when the residual sulfur in the light oil was 10 ppm by mass was 320 ° C. The reaction temperature when the value of the constant C was 15 was 370 ° C. As a result, it was found that when the value of C exceeds 4, the reaction temperature exceeds 10 ° C. and the influence on the apparatus is large.
本発明によれば、原料油貯蔵用タンク中に異種の原料油が混入することを抑制でき、貯蔵安定性及び経済性に優れた原料油の貯蔵用タンクへの送油が可能となる。その結果、高純度の原料油を安定して回収することができる点で、産業上有用である。 ADVANTAGE OF THE INVENTION According to this invention, it can suppress that a different kind of raw material oil mixes in a raw material oil storage tank, and the oil supply to the storage tank of the raw material oil excellent in storage stability and economical efficiency is attained. As a result, it is industrially useful in that high purity raw material oil can be stably recovered.
1 受入配管
10 先に投入した原料油用の原料油貯蔵用タンク
11 後に投入した原料油用の原料油貯蔵用タンク
12 後に投入した原料油用の原料油貯蔵用タンク
DESCRIPTION OF SYMBOLS 1 Receiving pipe 10 Raw material oil storage tank 11 for raw material oil introduced earlier Raw material oil storage tank 12 for raw material oil introduced later 12 Raw material oil storage tank for raw material oil introduced later
Claims (4)
前記受入配管中に残存する先に投入した原料油と、前記受入配管中へ後に投入した原料油との混合油の硫黄分又は窒素分が、基準値以下となった後に前記各原料油貯蔵用タンクの切換えを行い、該混合油の硫黄分又は窒素分の基準値(D質量ppm)が、以下の式によって得られることを特徴とする原料油の貯蔵用タンクへの送油方法。
D=A×(0.001×C)+B×{1―(0.001×C)}
式中、A:先に投入した原料油中の硫黄分又は窒素分(質量ppm)、B:後に投入した原料油中の硫黄分又は窒素分(質量ppm)、A>B、C=4である。 A method of sequentially feeding two or more different feedstocks to each feedstock storage tank using the same receiving pipe,
For storing each of the raw oils after the sulfur content or nitrogen content of the mixed oil of the raw material oil previously charged remaining in the receiving pipe and the raw material oil charged later into the receiving pipe falls below a reference value There line switching of the tank, the oil feeding method of sulfur or nitrogen of the reference value of the mixed oil (D mass ppm) is, to the storage tank of the feedstock, characterized in that it is obtained by the following equation.
D = A × (0.001 × C) + B × {1− (0.001 × C)}
In the formula, A: sulfur content or nitrogen content (mass ppm) in the feed oil introduced earlier, B: sulfur content or nitrogen content (mass ppm) in the feed stock introduced later, A> B, C = 4 is there.
前記後に投入する原料油中のナフサ留分の硫黄分を、前記後に投入する原料油の硫黄分で割った値が、0.1以上、1.5未満である炭化水素油であることを特徴とする請求項1又は2に記載の原料油の貯蔵用タンクへの送油方法。 The feedstock to be introduced later has a distillation property such that a 10% by volume distillation temperature is 35 to 80 ° C, a 95% by volume distillation temperature is 230 to 400 ° C, and a 97% by volume distillation temperature is 250 to 450 ° C. ,
The hydrocarbon oil having a value obtained by dividing the sulfur content of the naphtha fraction in the feed oil introduced later by the sulfur content of the feed oil introduced later is 0.1 or more and less than 1.5. A method for feeding the raw material oil according to 1 or 2 to a storage tank.
前記先に投入する原料油中のナフサ留分の硫黄分を、前記先に投入する原料油の硫黄分で割った値が、0.001以上、0.1未満である炭化水素油であることを特徴とする請求項1又は2に記載の原料油の貯蔵用タンクへの送油方法。 The above-mentioned raw material oil has a distillation property with a 10% by volume distillation temperature of 75 to 100 ° C, a 95% by volume distillation temperature of 620 to 800 ° C, and a 97% by volume distillation temperature of 650 to 820 ° C. And
A value obtained by dividing the sulfur content of the naphtha fraction in the feed oil introduced first by the sulfur content of the feed oil introduced earlier is 0.001 or more and less than 0.1 hydrocarbon oil. A method for feeding the raw material oil according to claim 1 or 2 to a storage tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162996A JP5955676B2 (en) | 2012-07-23 | 2012-07-23 | Method of feeding oil to storage tank |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012162996A JP5955676B2 (en) | 2012-07-23 | 2012-07-23 | Method of feeding oil to storage tank |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014019855A JP2014019855A (en) | 2014-02-03 |
JP5955676B2 true JP5955676B2 (en) | 2016-07-20 |
Family
ID=50195123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012162996A Active JP5955676B2 (en) | 2012-07-23 | 2012-07-23 | Method of feeding oil to storage tank |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5955676B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5621960B2 (en) * | 1972-04-11 | 1981-05-22 | ||
JPH05118500A (en) * | 1991-10-24 | 1993-05-14 | Toshiba Corp | Transfer device for different types of fluid |
FR2797491B1 (en) * | 1999-08-09 | 2001-09-14 | Atofina | PROCESS FOR TRANSPORTING NAPHTA IN A CRUDE OIL PIPELINE |
JP3684360B2 (en) * | 2001-10-05 | 2005-08-17 | 出光興産株式会社 | Method for transporting crude oil and naphtha by transporter and method for transporting crude oil and naphtha from the transporter |
-
2012
- 2012-07-23 JP JP2012162996A patent/JP5955676B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014019855A (en) | 2014-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102447300B1 (en) | A conversion process comprising fixed bed hydrotreating for the manufacture of marine fuels, separation of the hydrotreated resid fraction and catalytic cracking steps | |
US10988698B2 (en) | Pyrolysis tar pretreatment | |
US11060039B2 (en) | Pyrolysis tar pretreatment | |
US12098335B2 (en) | Configuration for olefins production | |
US10597592B2 (en) | Upgrading hydrocarbon pyrolysis tar | |
US8932451B2 (en) | Integrated crude refining with reduced coke formation | |
US20190078027A1 (en) | Hydroprocessing of high density cracked fractions | |
US11674097B2 (en) | Upgrading of pyrolysis tar and flash bottoms | |
TW201538707A (en) | Process for refining a heavy hydrocarbon-containing feedstock implementing a selective cascade deasphalting | |
US20140054199A1 (en) | Hydrovisbreaking Process for Feedstock Containing Dissolved Hydrogen | |
WO2016073605A2 (en) | Processes for recovering hydrocarbons from a drag stream from a slurry hydrocracker | |
JP5955676B2 (en) | Method of feeding oil to storage tank | |
US8608947B2 (en) | Two-stage hydrotreating process | |
JP5404505B2 (en) | Method for producing isopentane fraction for gasoline base | |
JP2015209431A (en) | Method of producing fuel oil base material | |
JP6258756B2 (en) | Method for producing fuel oil base material | |
CN110753744A (en) | Conversion of carbon-rich hydrocarbons to carbon-lean hydrocarbons | |
RU2815696C2 (en) | Configuration for olefins production | |
CN115667466B (en) | Fluid for tar hydrotreatment | |
RU2799453C2 (en) | Olefin and aromatic production configuration | |
WO2020249498A1 (en) | Process for the production of olefins, comprising hydrotreatment, deasphalting, hydrocracking and steam cracking | |
JP2014152235A (en) | Processing equipment of crude oil and operation control method of the same | |
CN118525073A (en) | Steam cracking feed containing arsenic hydrocarbon | |
Jie et al. | Removal of basic nitrogen compounds from fuel oil with [Amim] Cl/ZnCl 2 ionic liquid | |
AU2018341697A1 (en) | Optimized global positioning system correction message for interoperable train control messaging transport |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150511 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160329 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160519 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160615 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5955676 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |