JP5953314B2 - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP5953314B2
JP5953314B2 JP2013541666A JP2013541666A JP5953314B2 JP 5953314 B2 JP5953314 B2 JP 5953314B2 JP 2013541666 A JP2013541666 A JP 2013541666A JP 2013541666 A JP2013541666 A JP 2013541666A JP 5953314 B2 JP5953314 B2 JP 5953314B2
Authority
JP
Japan
Prior art keywords
objective lens
sample
magnetic field
electron microscope
scanning electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013541666A
Other languages
Japanese (ja)
Other versions
JPWO2013065399A1 (en
Inventor
純一 片根
純一 片根
祐博 伊東
祐博 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2013065399A1 publication Critical patent/JPWO2013065399A1/en
Application granted granted Critical
Publication of JP5953314B2 publication Critical patent/JP5953314B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/18Vacuum locks ; Means for obtaining or maintaining the desired pressure within the vessel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、電子線やイオン線等の荷電粒子線を用いる荷電粒子線装置に係り、特に試料に照射するビームを結像し、また試料から発生した二次電子、反射電子を取り込み、画像を形成する技術に属する。   The present invention relates to a charged particle beam apparatus using a charged particle beam such as an electron beam or an ion beam, and in particular, forms an image of a beam irradiated on a sample, captures secondary electrons and reflected electrons generated from the sample, and captures an image. Belongs to forming technology.

従来技術としては、高真空における二次電子の検出方法として、特開平7−192679号公報などで二次電子を対物レンズ内に巻き上げて、ウィーンの原理に基づくエネルギー分離器(E×B)を使った検出方式が記載されている。これは、シュノーケル型対物レンズのような磁場を試料側に漏れ出すようなタイプの対物レンズに威力を発揮している。シュノーケル型対物レンズの特徴は、焦点距離を短くして観察できることから球面収差係数、色収差係数が非常に小さく高分解能観察が可能であり、漏れ出した磁場によって二次電子は巻き上げられ、上記の検出方式によって二次電子が高効率に検出できる。   As a conventional technique, as a method for detecting secondary electrons in a high vacuum, Japanese Patent Application Laid-Open No. 7-192679 discloses that secondary electrons are wound up in an objective lens and an energy separator (E × B) based on the Wien principle is used. The detection method used is described. This is effective for an objective lens of a type that leaks a magnetic field to the sample side like a snorkel objective lens. The feature of the snorkel type objective lens is that observation with a short focal length enables high resolution observation with very small spherical aberration coefficient and chromatic aberration coefficient. Secondary electrons are rolled up by the leaked magnetic field, and the above detection Secondary electrons can be detected with high efficiency by this method.

このシュノーケル型対物レンズと高効率な二次電子検出との組合せによって得られる画像は、非常に高分解能で更に情報量に優れた画質が得られるが、評価結果によると、対物レンズからの漏れ磁場の強度が強いほど二次電子の収率は増加するが、一方で強い磁場の影響で検出する電子軌道が大きく変化し、その後像質の変化を招くという現象が確認された。   The image obtained by combining this snorkel type objective lens and highly efficient secondary electron detection provides an image with very high resolution and excellent information content, but according to the evaluation results, the leakage magnetic field from the objective lens The yield of secondary electrons increases as the intensity of the light increases. On the other hand, it is confirmed that the electron trajectory to be detected changes greatly due to the influence of a strong magnetic field, and then changes the image quality.

一方、アウトレンズ型対物レンズは、極力試料上への漏れ磁場を抑えて設計し、試料近傍に設置した二次電子検出器または半導体反射電子検出器で像観察をする。対物レンズの漏れ磁場は検出する電子の軌道に対して影響を与えないため、上記のような条件変更による像質の変化は発生しない。   On the other hand, the out-lens objective lens is designed to suppress the leakage magnetic field on the sample as much as possible, and the image is observed with a secondary electron detector or a semiconductor backscattered electron detector installed in the vicinity of the sample. Since the leakage magnetic field of the objective lens does not affect the trajectory of electrons to be detected, the change in image quality due to the above condition change does not occur.

これら対物レンズ形状によって分類される2種類の特徴は、ユーザの観察目的、得られる像の種類、分解能、装置の購入コストなどと合わせて、装置選定のポイントとなっている。   These two types of characteristics classified according to the objective lens shape are points for selecting a device together with the user's observation purpose, the type of image to be obtained, the resolution, the purchase cost of the device, and the like.

特開平7−192679号公報JP-A-7-192679

はじめに、シュノーケル型対物レンズとアウトレンズ型対物レンズの利点と欠点について以下にまとめる。   First, the advantages and disadvantages of the snorkel type objective lens and the out lens type objective lens are summarized below.

シュノーケル型対物レンズの利点は、極短焦点となり各収差係数が小さくなるので分解能が向上する点、磁場による二次電子巻き上げられ効果によりほぼ100%の検出効率がある点、リターディングによる効果が期待できる点が挙げられる。一方、欠点としては、励磁電流が増大するとコイル温度上昇し冷却が必須となる点、磁極内磁束が増大するので材質としてはパーメンジュールがよく用いられるがパーメンジュールは加工および組立が困難であり材料自体も高価である点、磁場により反射電子が影響を受けるので像質が変化し、結晶方位分析に大きな誤差要因となる点が挙げられる。   The advantages of the snorkel type objective lens are that the resolution is improved because each aberration coefficient is reduced due to the extremely short focal point, the detection efficiency is almost 100% due to the secondary electron winding effect by the magnetic field, and the effect of retarding is expected What can be done. On the other hand, the disadvantage is that when the excitation current increases, the coil temperature rises and cooling is essential, and because the magnetic flux in the magnetic pole increases, permendur is often used as the material, but permendur is difficult to process and assemble. The material itself is expensive, and the reflected electrons are affected by the magnetic field, so that the image quality changes, which causes a large error factor in crystal orientation analysis.

高分解能/高効率信号検出に関して、シュノーケル型対物レンズは絶大な威力を発揮する。一方で、アプリケーションによってはシュノーケル型対物レンズでは、反射電子像及び分析性能において欠点があり、その構成により価格メリットもなくなってきている。   The snorkel type objective lens is extremely powerful for high resolution / high efficiency signal detection. On the other hand, depending on the application, the snorkel type objective lens has drawbacks in the reflected electron image and analysis performance, and the cost merit has been lost due to its configuration.

これに対して、アウトレンズ型対物レンズの利点は、二次電子は試料室固定の二次電子検出器で効率良く検出され反射電子はこの磁場の影響は受けないので、試料上における磁場による影響は最小となる点、コイル電流が小さく温度上昇も少ないため材料として純鉄または快削純鉄が選択され低価格な設計が可能である点、大きなサンプルの場合にも傾斜させて観察することができ傾斜性能が良い点が挙げられる。一方、欠点としては、シュノーケル型対物レンズに比べて収差が大きいこと、対物レンズ外周で試料室固定の二次電子検出器を使用することになり周囲の接地部品の影響を受けるために二次電子検出の損失が大きい点が挙げられる。   On the other hand, the advantage of the out-lens objective lens is that secondary electrons are efficiently detected by the secondary electron detector fixed to the sample chamber, and reflected electrons are not affected by this magnetic field. The point is the smallest, the coil current is small and the temperature rise is small, so pure iron or free-cutting pure iron can be selected as the material, and it can be designed at a low cost. And the tilt performance is good. On the other hand, the disadvantage is that the aberration is larger than that of the snorkel type objective lens, and the secondary electron detector fixed to the sample chamber is used on the outer periphery of the objective lens. One point is that the loss of detection is large.

以上のように、アウトレンズ型対物レンズは汎用性の高いレンズとして一般的なレンズであるが、この収差や二次電子検出効率が原因で、シュノーケル型対物レンズを用いた場合に比べて対物レンズ性能の向上によって期待できる画質、分解能の向上は限られている。   As described above, the out-lens objective lens is a general lens as a highly versatile lens. However, due to this aberration and secondary electron detection efficiency, the objective lens is compared with the case where the snorkel objective lens is used. The improvement in image quality and resolution that can be expected by the improvement in performance is limited.

したがって、対物レンズとして総合的に最適な形態は、シュノーケル型対物レンズとアウトレンズ型対物レンズの利点を両立させ、かつ、双方の欠点を最小にする構成である。   Therefore, the overall optimum form of the objective lens is a configuration in which the advantages of the snorkel type objective lens and the out-lens type objective lens are compatible and the disadvantages of both are minimized.

試料から発生する二次電子を対物レンズで発生する磁場によって対物レンズ内に巻き上げ、二次電子検出器にてその電子を検出し画像を取得する走査電子顕微鏡であって、反射電子が試料からの出射方向を保ったまま反射電子検出器に到達できる強度の磁場が試料と対物レンズとの間の空間に発生するような対物レンズ形状とする。   A scanning electron microscope in which secondary electrons generated from a sample are wound up in an objective lens by a magnetic field generated by the objective lens, the electrons are detected by a secondary electron detector, and reflected electrons are emitted from the sample. The objective lens shape is such that a magnetic field having a strength that can reach the backscattered electron detector while the emission direction is maintained is generated in the space between the sample and the objective lens.

さらに、前記対物レンズの主面近傍に差動排気用のオリフィスを配置させて、電子線通路は高真空に、試料が配置される試料室は低真空に区分けできる低真空(環境)型走査電子顕微鏡とする。   Further, a low vacuum (environmental) type scanning electron that can be divided into a high vacuum in the electron beam passage and a low vacuum in the sample chamber in which the sample is arranged by arranging an orifice for differential exhaust in the vicinity of the main surface of the objective lens. Use a microscope.

シュノーケル型対物レンズとアウトレンズ型対物レンズの像質的、構造的な利点を有し、結果として両者の性能を両立することで、高分解能で高収率の二次電子像観察だけでなく、条件に依存しない反射電子像観察、低真空の観察が可能となる。   With the image quality and structural advantages of the snorkel objective lens and out-lens objective lens, as a result of achieving both performances, not only high-resolution and high-yield secondary electron image observation, Reflected electron image observation and low-vacuum observation independent of conditions are possible.

本発明の一実施例における装置の全体構成例である。1 is an overall configuration example of an apparatus according to an embodiment of the present invention. 対物レンズの種類の違いによる軸上磁場強度の例である。It is an example of an axial magnetic field intensity by the difference in the kind of objective lens. 本発明の一実施例として対物レンズ形状と半導体反射電子検出器の配置例である。As an embodiment of the present invention, there is an arrangement example of an objective lens shape and a semiconductor backscattered electron detector. 軸上漏れ磁場と反射電子の軌道をシミュレーションした例である。This is an example of simulating on-axis leakage magnetic field and reflected electron trajectory. WDを変更したときの反射電子軌道と半導体反射電子検出器検出素子との位置関係、および得られる像質の関係を示した図である。It is the figure which showed the positional relationship of the backscattered electron track | orbit and semiconductor backscattered electron detector detection element when WD was changed, and the relationship of the image quality obtained. 反射電子の出射角に依存した像質の違いを示す概念図である。It is a conceptual diagram which shows the difference in the image quality depending on the outgoing angle of reflected electrons.

以下では、本発明の代表的な実施例について図を用いて説明する。なお、以下では汎用の走査電子顕微鏡について説明するが、本発明はこれに限られず、荷電粒子線の照射によって生成される信号を検出して画像を生成する、その他の荷電粒子線装置にも適用可能である。   Below, the typical Example of this invention is described using figures. Although a general-purpose scanning electron microscope will be described below, the present invention is not limited to this, and is applicable to other charged particle beam apparatuses that generate signals by detecting signals generated by irradiation of charged particle beams. Is possible.

電子光学系全体概略図を図1に、対物レンズ軸上磁場曲線図を図2に示す。   FIG. 1 shows a schematic diagram of the entire electron optical system, and FIG. 2 shows a magnetic field curve on the objective lens axis.

図1は、本実施例の対物レンズ7を含む電子光学系を基本とした全体構成を示している。観察画面またはモニタ上(ディスプレイ部:15)には、形成した画像を表示するための表示手段や、当該表示手段に表示されるGUIに対して装置の操作に必要な情報を入力する情報入力手段等を備えている。なお、電子光学系の各構成要素、例えば一次電子ビーム18の加速電圧、各電極に印加する電流・電圧などは、自動もしくは、ユーザが観察画面またはモニタ上で所望の値を入力し、観察条件制御部により調整される。   FIG. 1 shows an overall configuration based on an electron optical system including the objective lens 7 of the present embodiment. On the observation screen or monitor (display unit: 15), display means for displaying the formed image, and information input means for inputting information necessary for operating the apparatus to the GUI displayed on the display means Etc. It should be noted that each component of the electron optical system, for example, the acceleration voltage of the primary electron beam 18 and the current / voltage applied to each electrode are automatically or the user inputs desired values on the observation screen or monitor, and the observation conditions It is adjusted by the control unit.

走査電子顕微鏡に備える電子源1は、一般的には0.3kV〜30kVの一次電子ビーム18を照射する。複数段のレンズ(第一コンデンサレンズ:2、第二コンデンサレンズ3)は、観察に適した条件に制御されているものとし、一次電子ビーム18を収束する作用を持つ。本実施例の対物レンズ7も同様に一次電子ビーム18を収束する作用を持ち、観察対象である試料8上に結像され、観察に適した焦点を結ぶ。偏向器4は、試料8上の一次電子ビーム18の照射位置を所望の観察視野範囲に従って走査させる。また偏向器4を制御する偏向信号制御部26によって、走査速度を可変することが可能であるものとする。一次電子ビーム18の照射に伴って試料からは二次電子10や反射電子26が放出される。   The electron source 1 provided in the scanning electron microscope generally irradiates a primary electron beam 18 of 0.3 kV to 30 kV. The multiple-stage lenses (first condenser lens: 2, second condenser lens 3) are controlled under conditions suitable for observation, and have the effect of converging the primary electron beam 18. Similarly, the objective lens 7 of the present embodiment also has an effect of converging the primary electron beam 18 and forms an image on the sample 8 to be observed and forms a focal point suitable for observation. The deflector 4 scans the irradiation position of the primary electron beam 18 on the sample 8 according to a desired observation visual field range. Further, it is assumed that the scanning speed can be varied by the deflection signal control unit 26 that controls the deflector 4. As the primary electron beam 18 is irradiated, the secondary electrons 10 and the reflected electrons 26 are emitted from the sample.

高真空の場合、一般的には焦点を結んだ一次電子ビーム18を試料8上で走査し、試料8から発生した二次電子10は、試料方向に染み出したシュノーケル型対物レンズから発生しているレンズ磁場11によって巻き上げられ、レンズ内に設けられた電極によって数100Vに加速される。その後二次電子はエネルギー分離器(E×B)5で一次電子ビーム18と、試料8からレンズ磁場11によって巻き上げられてきた二次電子10に分離される。二次電子検出器(レンズ固定)6には約10kVに印可された電極20があり、二次電子はこの電極による電界で検出器に取り込まれ、二次電子検出器アンプ14を経てディスプレイ部15で画像形成される。このとき、試料8から発生した二次電子10は、対物レンズ内の高真空用の二次電子検出器で検出される。二次電子検出器(レンズ固定)6は、Everhart Thornley型検出器と呼ばれシンチレータと光電子増倍管からなる検出器で二次電子10を検出し、シンチレータ近傍は、+10kV20が印加されている。この検出器の他に、試料室に取り付けられる二次電子検出器(試料室固定)27も設けられ、二次電子検出器(レンズ固定)6と同様、Everhart Thornley型検出器となる。このとき二次電子10の捕集効率を高めるため、典型的には+300Vを印加した二次電子コレクタ電極28によって試料室23内に電位勾配を供給している。   In the case of a high vacuum, generally, the focused primary electron beam 18 is scanned over the sample 8, and the secondary electrons 10 generated from the sample 8 are generated from a snorkel type objective lens that oozes out in the sample direction. The lens is wound up by a lens magnetic field 11 and accelerated to several hundred volts by an electrode provided in the lens. Thereafter, the secondary electrons are separated by the energy separator (E × B) 5 into the primary electron beam 18 and the secondary electrons 10 wound up from the sample 8 by the lens magnetic field 11. The secondary electron detector (fixed lens) 6 has an electrode 20 applied at about 10 kV. Secondary electrons are taken into the detector by an electric field generated by the electrode, and the display unit 15 passes through the secondary electron detector amplifier 14. With this, an image is formed. At this time, the secondary electrons 10 generated from the sample 8 are detected by a secondary electron detector for high vacuum in the objective lens. The secondary electron detector (fixed lens) 6 is called an Everhart Thornley type detector and detects a secondary electron 10 with a detector composed of a scintillator and a photomultiplier tube, and +10 kV20 is applied in the vicinity of the scintillator. In addition to this detector, a secondary electron detector (sample chamber fixed) 27 attached to the sample chamber is also provided, which is an Everhart Thornley type detector like the secondary electron detector (lens fixed) 6. At this time, in order to increase the collection efficiency of the secondary electrons 10, typically, a potential gradient is supplied into the sample chamber 23 by the secondary electron collector electrode 28 to which +300 V is applied.

電子光学系は以上に説明したものに限られず、例えば、エネルギー分離器(E×B)5には光軸35に近い反射電子を取り込むことを目的として、エネルギー分離器近傍または内部に、反射電子検出器19や反射電子反射板など組み込んだものであってもよい。   The electron optical system is not limited to that described above. For example, in order to capture the reflected electrons close to the optical axis 35 in the energy separator (E × B) 5, the reflected electrons near or inside the energy separator. A detector 19 or a reflection electron reflecting plate may be incorporated.

低真空の場合、試料室23の内部の真空度は、該試料室23への大気導入口のニードルバルブ16の閉開によって制御する。本低真空SEMは低真空での観察モードの他に、高真空での観察モードを備えており、高真空での観察時には、ニードルバルブ27を閉じ、試料室23の内部を10-3Pa以下の高真空状態に保つ。   In the case of a low vacuum, the degree of vacuum inside the sample chamber 23 is controlled by closing and opening the needle valve 16 at the air inlet to the sample chamber 23. This low-vacuum SEM has a high-vacuum observation mode in addition to the low-vacuum observation mode. When observing at a high vacuum, the needle valve 27 is closed and the inside of the sample chamber 23 is 10 −3 Pa or less. Keep in high vacuum.

反射電子26は、対物レンズ7直下に設置する反射電子検出器19によって検出する。反射電子検出器19には、半導体検出器、マイクロチャンネルプレート、YAGなどの検出器を用いる。半導体検出器を用いた場合は、後述する低真空での観察モードでも反射電子検出を行える。以降では、反射電子検出器19が半導体検出器であるとする。   The backscattered electrons 26 are detected by a backscattered electron detector 19 installed immediately below the objective lens 7. As the backscattered electron detector 19, a detector such as a semiconductor detector, a microchannel plate, or YAG is used. When a semiconductor detector is used, backscattered electron detection can be performed even in an observation mode at a low vacuum described later. Hereinafter, it is assumed that the backscattered electron detector 19 is a semiconductor detector.

検出された二次電子、反射電子起因の信号は電気的に増幅された後、制御部でA/D変換され、一次電子ビーム18の走査と同期させて、ディスプレイ部15に表示する。これにより、観察視野範囲のSEM画像が得られる。   The detected secondary electron and reflected electron-induced signals are electrically amplified and then A / D converted by the control unit and displayed on the display unit 15 in synchronization with the scanning of the primary electron beam 18. Thereby, the SEM image of the observation visual field range is obtained.

低真空での観察時には、ニードルバルブ16の閉開によって、試料室23内を一定のガス圧力に保つ。また、二次電子コレクタ電極28の電位が接地電位に切り替えられる。典型的な試料室内部のガス圧力は、1〜300Paであるが、特別な場合、3000Paまで制御可能である。ただし、低真空観察を実現するには、試料室を低真空(1Pa〜約3000Pa)にしながら、電子銃室を10-2〜10-4に保つ必要があり、真空差動排気用絞りを用いて鏡筒内と試料室を差圧しなければいけない。試料側に磁場を漏れ出させ、対物レンズ内に二次電子を巻き上げるシュノーケル型対物レンズを採用する場合、絞り(差動排気用絞り)位置によっては二次電子の巻き上げを遮ってしまい、二次電子の検出効率を低下させてしまう恐れがある。   During observation in a low vacuum, the inside of the sample chamber 23 is kept at a constant gas pressure by closing and opening the needle valve 16. Further, the potential of the secondary electron collector electrode 28 is switched to the ground potential. The gas pressure inside a typical sample chamber is 1 to 300 Pa, but can be controlled up to 3000 Pa in special cases. However, in order to realize low-vacuum observation, it is necessary to keep the electron gun chamber at 10-2 to 10-4 while keeping the sample chamber at a low vacuum (1 Pa to about 3000 Pa). Therefore, the pressure inside the tube must be different from the pressure in the sample chamber. When a snorkel-type objective lens that leaks a magnetic field to the sample side and winds up secondary electrons in the objective lens is used, depending on the position of the diaphragm (a diaphragm for differential exhaust), the secondary electrons may not be wound up, and the secondary electron There is a risk of reducing the detection efficiency of electrons.

したがって、真空差動排気用絞りの最適位置は対物レンズの主面位置となる。観察対象である試料に近いほど低真空領域を走行する一次電子ビームの散乱は低減され、より高解像度の画像をえることができる。   Therefore, the optimum position of the vacuum differential exhaust diaphragm is the main surface position of the objective lens. Scattering of the primary electron beam traveling in the low vacuum region is reduced as the sample is closer to the observation target, and a higher resolution image can be obtained.

ここで、本実施例の対物レンズの形状について代表的な特徴を説明する。本実施例は主に、対物レンズが発生する軸上磁場に着目し、それが二次電子または反射電子に対する影響を考察することで、シュノーケル型対物レンズとアウトレンズ型対物レンズの性能両立化を図っている。図2に示した軸上磁場曲線は、代表的なものでシュノーケル型対物レンズ軸上磁場曲線29、アウトレンズ型対物レンズ軸上磁場曲線30、本実施例の対物レンズ軸上磁場曲線31のそれぞれを示している。   Here, typical characteristics of the shape of the objective lens of the present embodiment will be described. This embodiment mainly focuses on the on-axis magnetic field generated by the objective lens, and considers the influence on the secondary electrons or reflected electrons, thereby making the performance of the snorkel objective lens and the out lens objective lens compatible. I am trying. The on-axis magnetic field curve shown in FIG. 2 is representative, and each of the snorkel objective lens axial magnetic field curve 29, the out-lens objective lens axial magnetic field curve 30, and the objective lens axial magnetic field curve 31 of the present embodiment. Is shown.

ここで、図3を用いて、シュノーケル型、アウトレンズ型、本実施例のレンズそれぞれの形状と発生する軸上磁場の関係を説明する。これらは図3で示すレンズ形状のうち、図示した内磁路と外磁路の位置関係によって区別される。一般的には、内磁路が試料側に突き出している場合、対物レンズ主面25すなわち最も軸上磁場強度が強い位置は、図2のシュノーケル型対物レンズ軸上磁場曲線29のように、Z軸座標0mmよりもプラス側(試料側)に位置する。一方で、内磁路よりも外磁路が試料側に近くなるアウトレンズ型対物レンズでは、対物レンズ主面25(最も軸上磁場が強い位置)がZ軸座標0mmよりもマイナス側(対物レンズ内部側)に位置する。   Here, the relationship between the shape of each of the snorkel type, the out lens type, and the lens of this embodiment and the generated on-axis magnetic field will be described with reference to FIG. These are distinguished by the positional relationship between the inner magnetic path and the outer magnetic path shown in the lens shape shown in FIG. In general, when the inner magnetic path protrudes toward the sample side, the objective lens principal surface 25, that is, the position where the on-axis magnetic field strength is strongest is Z as shown in the snorkel type objective lens on-axis magnetic field curve 29 in FIG. Located on the plus side (sample side) of the axis coordinate 0mm. On the other hand, in an out-lens objective lens in which the outer magnetic path is closer to the sample side than the inner magnetic path, the objective lens main surface 25 (the position where the on-axis magnetic field is strongest) is on the negative side of the Z-axis coordinate 0 mm (objective lens). Located on the inner side.

シュノーケル型対物レンズの対物レンズ主面25の位置が試料に近づくということは、対物レンズ主面25からの焦点距離が短くなること(短焦点化)で、各収差の低減が図れることから高分解レンズとなる。一方で、アウトレンズ型対物レンズの場合、外磁路の位置よりも上方に試料を置くことができないため、対物レンズ主面25から試料までの距離が制限され短焦点化に限りがあることから、高分解化も限りがある。   The fact that the position of the objective lens main surface 25 of the snorkel type objective lens approaches the sample means that the focal length from the objective lens main surface 25 is shortened (short focal length), and each aberration can be reduced. Become a lens. On the other hand, in the case of an out-lens objective lens, since the sample cannot be placed above the position of the outer magnetic path, the distance from the objective lens main surface 25 to the sample is limited, and the short focus is limited. High resolution is also limited.

本実施例の対物レンズ形状の特長の一つとして、シュノーケル型対物レンズのレンズ主面位置と、アウトレンズ型対物レンズのレンズ主面位置の間に位置するように、内磁路と外磁路を配置し、形状最適化されていることが挙げられる。ここで重要なポイントは、Z軸座標0mm付近が最大軸上磁場となるように内磁路、外磁路を配置することである。   As one of the features of the objective lens shape of the present embodiment, the inner magnetic path and the outer magnetic path are positioned between the lens main surface position of the snorkel type objective lens and the lens main surface position of the out lens type objective lens. And the shape is optimized. The important point here is to arrange the inner magnetic path and the outer magnetic path so that the Z axis coordinate near 0 mm is the maximum axial magnetic field.

その理由は、上記したようにZ軸座標0mmがプラス側(試料側)になるよう内磁路と外磁路を配置すると、高分解レンズであるシュノーケル型対物レンズとなり、分解能観察においては有利であるが、図2のシュノーケル型軸上磁場曲線29のように、強度の強い磁場が試料上に近づき、この強度の強い磁場の影響で、試料から発生する反射電子軌道を変えてしまい、条件(試料からの反射電子出射角)によっては検出不可能な反射電子軌道となってしまう。なお、この場合の反射電子検出器19は、図3に示す位置に配置する。   The reason is that if the inner magnetic path and the outer magnetic path are arranged so that the Z-axis coordinate 0 mm is on the plus side (sample side) as described above, it becomes a snorkel type objective lens that is a high resolution lens, which is advantageous for resolution observation. However, as shown in the snorkel type on-axis magnetic field curve 29 of FIG. 2, a strong magnetic field approaches the sample, and the reflected electron trajectory generated from the sample is changed under the influence of the strong magnetic field, and the condition ( Depending on the reflected electron emission angle from the sample, the reflected electron trajectory becomes undetectable. In this case, the backscattered electron detector 19 is disposed at the position shown in FIG.

したがって、試料上の磁場強度の影響で検出できない反射電子が存在する状況は、本実施例の意図と異なる。   Therefore, the situation where there are reflected electrons that cannot be detected due to the influence of the magnetic field intensity on the sample is different from the intention of this embodiment.

一方で、Z軸座標0mmがマイナス側(対物レンズ内部側)になるよう内磁路と外磁路を配置すると、上記したアウトレンズ型対物レンズとなる。アウトレンズ型対物レンズは、試料上の磁場強度は小さく、反射電子軌道に影響を与えないため、本実施例の意図に沿っているが、レンズ主面位置から試料までの焦点距離に制限があり高分解能化に限りがある点で、本発明を達成することができない。   On the other hand, when the inner magnetic path and the outer magnetic path are arranged so that the Z-axis coordinate 0 mm is on the minus side (inside the objective lens), the above-described out-lens objective lens is obtained. The out-lens objective lens has a small magnetic field intensity on the sample and does not affect the reflected electron trajectory, so it is in line with the intention of this example, but there is a limit to the focal length from the lens main surface position to the sample. The present invention cannot be achieved in that the resolution is limited.

以上の理由により、図2で示す本実施例の対物レンズ軸上磁場曲線31となるように、Z軸座標0mm付近が最大軸上磁場となるように内磁路、外磁路を配置することが重要となる。   For the above reasons, the inner magnetic path and the outer magnetic path are arranged so that the Z axis coordinate near 0 mm is the maximum on-axis magnetic field so that the objective-axis on-axis magnetic field curve 31 of this embodiment shown in FIG. 2 is obtained. Is important.

詳細は、実施例2、3、4に記載する。   Details are described in Examples 2, 3, and 4.

理想的な軸上磁場としては、図2に示す本実施例の対物レンズ磁場曲線31となるが、走査電子顕微鏡で使用するに当たっては、観察試料上での磁場強度、二次電子または反射電子の軌道(対物レンズの漏れ磁場強度および引き上げ電極などによる電界強度)、代表的には球面収差、色収差の低減化、低真空観察時の作動絞り配置の4項目が発明の重要ポイントとなっている。原理的にはシュノーケル型対物レンズ軸上磁場曲線29のようにピークのZ軸座標は大きいほうが分解能の点で有利であるが、上述したようにシュノーケル型対物レンズには欠点もあるため、本実施例の対物レンズはシュノーケル型の対物レンズとアウトレンズ型の対物レンズの中間的な磁場特性となるように、対物レンズの形状を設計する。設計には磁場のシミュレーションが用いられる。   The ideal on-axis magnetic field is the objective lens magnetic field curve 31 of the present embodiment shown in FIG. 2, but when used in a scanning electron microscope, the magnetic field strength on the observation sample, secondary electrons or reflected electrons The four items of the orbit (the leakage magnetic field strength of the objective lens and the electric field strength due to the lifting electrode), typically the reduction of spherical aberration and chromatic aberration, and the arrangement of the working diaphragm during low-vacuum observation are important points of the invention. In principle, it is advantageous in terms of resolution that the Z-axis coordinate of the peak is large as in the case of the snorkel-type objective lens axial magnetic field curve 29. However, as described above, the snorkel-type objective lens also has drawbacks. The shape of the objective lens is designed so that the objective lens of the example has an intermediate magnetic field characteristic between the snorkel type objective lens and the out lens type objective lens. A magnetic field simulation is used for the design.

本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズ7下面に半導体反射電子検出器19を配置することに関する。   The present embodiment relates to disposing the semiconductor backscattered electron detector 19 on the lower surface of the objective lens 7 in the scanning electron microscope having the configuration of the first embodiment.

対物レンズ形状と半導体反射電子検出器の形状および配置について図3に示す。また、半導体反射電子検出器から観察対象となる試料までの軸上磁場と、反射電子軌道に関するシミュレーション結果について図4に示す。なお、図4の上のグラフは、横軸にZ軸座標(Z軸座標0はWD=0mm、Z軸座標5.0mmはWD=5mmを示している)、縦軸に軸上磁場(Gauss)を示している。また図4下図は、光軸を中心に軸対称片側のみを表示させた、反射電子軌道を示しており、Z軸座標5.0mm(WD=5mm)の試料位置において軸上磁場を可変させたときのシミュレーション結果である。   FIG. 3 shows the shape of the objective lens and the shape and arrangement of the semiconductor backscattered electron detector. FIG. 4 shows a simulation result regarding the on-axis magnetic field from the semiconductor backscattered electron detector to the sample to be observed and the backscattered electron trajectory. In the upper graph of FIG. 4, the horizontal axis indicates the Z-axis coordinate (Z-axis coordinate 0 indicates WD = 0 mm, Z-axis coordinate 5.0 mm indicates WD = 5 mm), and the vertical axis indicates the on-axis magnetic field (Gauss ). The lower diagram of FIG. 4 shows a reflected electron trajectory in which only one side of the axisymmetric axis is displayed with the optical axis as the center, and the on-axis magnetic field is varied at the sample position with the Z-axis coordinate of 5.0 mm (WD = 5 mm). It is a simulation result.

本実施例で一番重要なポイントは、“試料から発生した反射電子の軌道に影響を与えない、対物レンズ最大軸上磁場強度を見出すこと”と、“その軸上磁場強度を発生可能な対物レンズ形状で球面収差係数および色収差係数を最小にすること”の2点である。   The most important points in this embodiment are “finding the maximum on-axis magnetic field strength of the objective lens that does not affect the trajectory of the reflected electrons generated from the sample” and “the objective capable of generating the on-axis magnetic field strength”. “Minimize spherical aberration coefficient and chromatic aberration coefficient with lens shape”.

ここで図4に示したシミュレーション結果について説明する。条件として、デフォルトの対物レンズ形状とし、励磁コイルに流す電流量を増やしながら軸上磁場強度をプロットする。その後、半導体反射電子検出器(BSED)と試料間の軸上磁場強度を基に、反射電子軌道をそれぞれの磁場強度に対して計算をするという方法を取った。加速電圧はいずれも30kVを想定した。したがって一次電子ビームのエネルギーと試料から発生する反射電子のエネルギーも30kVとなる。この結果から、試料上約700Gauss、さらに半導体反射電子検出器位置で約1,500Gaussの磁場強度の空間内では、反射電子は直進し、磁場の影響を受けずに、反射電子検出素子まで到達することがわかった。   Here, the simulation result shown in FIG. 4 will be described. As a condition, a default objective lens shape is used, and the axial magnetic field strength is plotted while increasing the amount of current flowing through the exciting coil. Thereafter, based on the axial magnetic field strength between the semiconductor backscattered electron detector (BSED) and the sample, the reflected electron trajectory was calculated for each magnetic field strength. As for acceleration voltage, all assumed 30 kV. Therefore, the energy of the primary electron beam and the energy of the reflected electrons generated from the sample are also 30 kV. From this result, the reflected electrons travel straight in the space of about 700 Gauss on the sample and further about 1,500 Gauss at the position of the semiconductor backscattered electron detector, and reach the backscattered electron detecting element without being affected by the magnetic field. I understood it.

したがって、対物レンズの仕様は以下となる。
1.形状:試料上700Gauss以下、半導体反射電子検出器位置で1,500Gauss以下となる軸上磁場を発生し、フォーカス可能な対物レンズ形状(加速電圧30kV)。
2.E×B(ウィーンフィルタ)を対物レンズ内に搭載し、高真空で高分解能観察時に主検出器として使用が可能な構成。
3.半導体反射電子検出器を対物レンズ下面に配置可能な構成。
Therefore, the specification of the objective lens is as follows.
1. Shape: An objective lens shape (acceleration voltage 30 kV) that generates an on-axis magnetic field that is 700 Gauss or less on the sample and 1,500 Gauss or less at the position of the semiconductor backscattered electron detector.
2. ExB (Wien filter) is mounted in the objective lens and can be used as the main detector during high-resolution observation under high vacuum.
3. A configuration in which the semiconductor backscattered electron detector can be placed on the lower surface of the objective lens.

この実施例では以下の効果が期待される。
1.対物レンズの漏れ磁場による反射電子の軌道への影響はなく、条件変更(例えばWD作動距離を変更など)による像質変化はない。
2.従来のシュノーケル型対物レンズと同様、E×B(ウィーンフィルタ)を使用した高収率で高解像度の画像を得ることができる。
3.レンズ主面位置がアウトレンズ型対物レンズよりも試料側に移動するため、低収差化と、低真空時の差動絞り(オリフィス)を試料に近づけて配置できる。これによって高真空、低真空問わず高解像度の画質改善が見込める。
In this embodiment, the following effects are expected.
1. There is no influence on the trajectory of reflected electrons due to the leakage magnetic field of the objective lens, and there is no change in image quality due to a change in conditions (for example, a change in the WD working distance).
2. Similar to a conventional snorkel type objective lens, a high-resolution and high-resolution image using E × B (Wien filter) can be obtained.
3. Since the lens main surface position moves to the sample side with respect to the out-lens objective lens, the aberration can be reduced and the differential diaphragm (orifice) at the time of low vacuum can be arranged close to the sample. As a result, high-resolution image quality can be improved regardless of whether the vacuum is high or low.

上述の反射電子軌道のシミュレーションを踏まえて、反射電子が磁場の影響を受けずに反射電子検出器にたどり着く磁場の最大値(限界軸上磁場)を発生させるような対物レンズ形状になるまで、対物レンズの形状を変化させて、当該対物レンズによる発生磁場および反射電子軌道のシミュレーションが繰り返される。これによって、対物レンズは、最終的に、例えば図3に示す形状のように、試料から発生した反射電子がそのままの方向を保って反射電子検出器まで到達するような磁場を発生させる形状となる。すなわち、このようにして得られた対物レンズを用いることで、対物レンズ下に設けられた反射電子検出器と試料との間の空間に、反射電子が試料からの発生直後の軌道を保てる程度の強度で、対物レンズからの漏れ磁場を形成させることができる。   Based on the simulation of the reflected electron trajectory described above, the objective is used until the objective lens shape is such that the reflected electron reaches the reflected electron detector without being affected by the magnetic field and generates the maximum value of the magnetic field (limit axial magnetic field). The simulation of the magnetic field generated by the objective lens and the reflected electron trajectory is repeated while changing the shape of the lens. As a result, the objective lens finally has a shape that generates a magnetic field such that the reflected electrons generated from the sample reach the reflected electron detector while maintaining the same direction, for example, as shown in FIG. . In other words, by using the objective lens obtained in this way, the backscattered electron detector can be maintained in the space immediately after generation from the sample in the space between the backscattered electron detector and the sample provided under the objective lens. With strength, a leakage magnetic field from the objective lens can be formed.

ここで、条件変更(例えばWD作動距離を変更)したときの画像の違いを確認した画像と考えられる原因について図5および図6で示す。   Here, FIG. 5 and FIG. 6 show the causes that are considered to be images in which the difference in images when the conditions are changed (for example, the WD working distance is changed).

図5の画像はシュノーケル型対物レンズで撮影した画像であり、そのときの反射電子軌道を模式的に表現した図と、それに対応した実画像を示している。これらの特徴は対物レンズの作動距離(WD)を長くしていくと組成像に近づいていくことである。WDが短いとき二次電子像に近く資料の形状情報が顕著となるが、徐々にWDを長くしていくと立体感が少なくなっていき、組成情報が顕著となる。   The image in FIG. 5 is an image taken with a snorkel type objective lens, and shows a diagram schematically representing the reflected electron trajectory at that time and a corresponding real image. These features are that the composition image approaches the longer the working distance (WD) of the objective lens. When the WD is short, the shape information of the material becomes prominent close to the secondary electron image, but as the WD is gradually lengthened, the stereoscopic effect decreases and the composition information becomes prominent.

実画像からは、対物レンズの磁場の影響が最も強いWDが短い条件と、磁場の影響が小さいWDが長い条件とで、反射電子の軌道が異なることによる像質の違いがよく示されている。   The actual image clearly shows the difference in image quality due to the difference in the trajectory of the reflected electrons between the condition where the WD having the strongest magnetic field effect of the objective lens is short and the condition where the WD having a small magnetic field effect is long. .

このようにWDの変化によって像質が変わることが課題である。ここで、上述したように反射電子の軌道に基づいて定められた形状の対物レンズを用いれば、反射電子の軌道が曲がらないので、WDを変化させても一定の像質の画像を得ることができる。   Thus, it is a problem that the image quality is changed by the change of WD. Here, if the objective lens having a shape determined based on the trajectory of the reflected electrons as described above is used, the trajectory of the reflected electrons does not bend, so that an image with a constant image quality can be obtained even if the WD is changed. it can.

また図6では検出器の検出素子と反射電子の出射角についても考察した。WDが短いとき、検出素子に到達する反射電子は浅い角度のものが多いことが考えられる。通常、反射電子は弾性散乱するが、サンプル形状により浅い角度の反射電子が取り込まれると立体的な画像になる。特に、光軸付近の反射電子(サンプルの表面に対し垂直に発生した反射電子)は検出素子の穴部を通過するため、立体情報を持った反射電子が画像を形成し、組成情報が少なくなったのではと考える。   In FIG. 6, the detection element of the detector and the emission angle of the reflected electrons were also considered. When the WD is short, it is considered that many reflected electrons that reach the detection element are shallow angles. Normally, the reflected electrons are elastically scattered, but when reflected electrons with a shallow angle are taken in by the sample shape, a three-dimensional image is obtained. In particular, reflected electrons in the vicinity of the optical axis (reflected electrons generated perpendicularly to the surface of the sample) pass through the hole of the detection element, so that the reflected electrons with three-dimensional information form an image and the composition information is reduced. I think.

これに対し、長WDの場合は対物レンズの励磁が弱いこともあり、WDが長くなるほど光軸付近の反射電子も検出素子に到達し、組成情報が多くなったことが考えられる。   On the other hand, in the case of the long WD, the excitation of the objective lens may be weak, and as the WD becomes longer, the reflected electrons near the optical axis reach the detection element and the composition information increases.

以上に示したとおり、本発明によれば、対物レンズの漏れ磁場による反射電子の軌道への影響を低減させるとともに、対物レンズの作動距離の変更による像質変化が少なくなる。また、シュノーケル型対物レンズと同様、E×B(ウィーンフィルタ)を使用した高収率で高解像度の画像を得ることができる。また、レンズ主面位置がアウトレンズ型対物レンズよりも試料側に移動するため、対物レンズの収差を抑えることができる。さらに、低真空時の差動絞り(オリフィス)を試料に近づけて配置でき、一次電子ビームの散乱の影響を受けない環境も作り出せることで高真空、低真空問わず高分解能の観察が可能となる。   As described above, according to the present invention, the influence of the leakage magnetic field of the objective lens on the trajectory of the reflected electrons is reduced, and the image quality change due to the change of the working distance of the objective lens is reduced. Further, similarly to the snorkel type objective lens, it is possible to obtain a high-resolution image with high yield using E × B (Wien filter). Further, since the lens main surface position moves to the sample side with respect to the out-lens objective lens, the aberration of the objective lens can be suppressed. In addition, a low-vacuum differential aperture (orifice) can be placed close to the sample, creating an environment that is not affected by the scattering of the primary electron beam, enabling high-resolution observation regardless of high or low vacuum. .

本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズ主面25よりも上方つまり対物レンズ内部にて、反射電子検出器19または、反射電子情報を得るために設けた反射板などを配置し、画像を取得する方法に関する。   In the present embodiment, in the scanning electron microscope having the configuration of the first embodiment, the backscattered electron detector 19 or the reflecting plate provided to obtain backscattered electron information above the objective lens main surface 25, that is, inside the objective lens. It is related with the method of arrange | positioning etc. and acquiring an image.

図4(図4:WD5mm漏れ磁場比較図象)に示した反射電子軌道シミュレーション図象は、反射電子検出器19を対物レンズ7下面に配置した場合に、試料から発生した様々な出射角の反射電子が、反射電子検出器19に到達することを示した図象である。ここで、光軸35付近の反射電子軌道に着目すると、光軸近傍で発生した反射電子は、対物レンズ7の内部方向(上方)へ行くことがわかる。これらの反射電子も取り込むために、図1に示すエネルギー分離器(ExB)付近に反射電子検出器19または、反射電子情報を得るために設けた反射板などを配置しても良い。この光軸35近傍の電子を多く取り込むために、内磁路の開口部を広くすることも効果的である。   The reflected electron trajectory simulation diagram shown in FIG. 4 (FIG. 4: WD 5 mm leakage magnetic field comparison diagram) is a reflection of various emission angles generated from the sample when the reflected electron detector 19 is arranged on the lower surface of the objective lens 7. It is a diagram showing that electrons reach the backscattered electron detector 19. Here, paying attention to the reflected electron trajectory near the optical axis 35, it can be seen that the reflected electrons generated near the optical axis go in the internal direction (upward) of the objective lens 7. In order to capture these backscattered electrons, a backscattered electron detector 19 or a reflector provided to obtain backscattered electron information may be arranged near the energy separator (ExB) shown in FIG. In order to capture many electrons in the vicinity of the optical axis 35, it is also effective to widen the opening of the inner magnetic path.

本実施例は、実施例1の構成を有する走査電子顕微鏡において、対物レンズの駆動電源および動作条件において、シュノーケル型対物レンズよりも優れていることに関する。   The present example relates to the scanning electron microscope having the configuration of the first example, which is superior to the snorkel type objective lens in the driving power supply and operating conditions of the objective lens.

実施例1で記載したように、シュノーケル型対物レンズは、図2のシュノーケル型対物レンズ軸上磁場曲線29のような軸上磁場を発生し、また磁場強度も、実施例1から3に説明した対物レンズやアウトレンズ型対物レンズのそれよりも強い。このタイプのレンズでは、大きな駆動電圧および励磁電流を必要とし、コイルの発熱も上昇することからコイル冷却などの工夫が必須となる。一方で、アウトレンズ型対物レンズでは、少ない駆動電圧、励磁電流で動作が可能で、コイル冷却などの工夫は必要としない。   As described in Example 1, the snorkel type objective lens generates an on-axis magnetic field such as the snorkel type objective lens on-axis magnetic field curve 29 in FIG. 2, and the magnetic field strength is also described in Examples 1 to 3. Stronger than that of objective lenses and out-lens objective lenses. In this type of lens, a large driving voltage and exciting current are required, and the heat generation of the coil also increases, so a device such as coil cooling is indispensable. On the other hand, an out-lens objective lens can be operated with a small drive voltage and excitation current, and does not require a device such as coil cooling.

実施例1から3に説明した対物レンズの場合、発生する軸上磁場がシュノーケル型対物レンズとアウトレンズ型対物レンズの中間であるため、駆動電圧、励磁電流、コイル発熱に対して検討が必要であるが、本発明の目的を十分達成可能なレンズ形状においては、アウトレンズ型対物レンズと同様に考えてよく、比較的少ない駆動電圧、励磁電流で動作が可能で、コイル冷却も必要ないことは、シミュレーションによってわかっている。   In the case of the objective lens described in Examples 1 to 3, since the generated on-axis magnetic field is intermediate between the snorkel objective lens and the out-lens objective lens, it is necessary to examine the drive voltage, excitation current, and coil heat generation. However, in a lens shape that can sufficiently achieve the object of the present invention, it can be considered in the same way as an out-lens objective lens, it can be operated with a relatively small driving voltage and excitation current, and coil cooling is not necessary. , Know by simulation.

したがって、高分解能化(短焦点化)と効率的な反射電子検出に加え、省電源・電流動作の実現が可能である。
Therefore, in addition to high resolution (short focus) and efficient backscattered electron detection, it is possible to realize power saving and current operation.

1 電子源
2 第一コンデンサレンズ
3 第二コンデンサレンズ
4 偏向コイル
5 エネルギー分離器(E×B)
6、27 二次電子検出器
7 対物レンズ
8 試料台
9 第一差動絞り
10 二次電子および二次電子軌道
11 対物レンズ磁場範囲
12 排気系
13 電子銃排気配管
14 二次電子検出器アンプ
15 ディスプレイ部
16 ニードルバルブ
17 電子銃
18 一次電子ビーム
19 反射電子検出器
20 二次電子検出器電極(+10kV)
21 第一ロータリーポンプ(低真空用)
22 第二ロータリーポンプ(排気系背圧排気用)
23 試料室
24 二次電子検出器のアース電極
25 対物レンズ主面
26 反射電子および反射電子軌道
28 二次電子コレクタ電極
29 シュノーケル型対物レンズ軸上磁場曲線
30 アウトレンズ型対物レンズ軸上磁場曲線
31 本発明の対物レンズ軸上磁場曲線
32 WD作動距離
33 WDが短いときの反射電子画像
34 WDが長いときの反射電子画像
35 光軸
1 Electron Source 2 First Condenser Lens 3 Second Condenser Lens 4 Deflection Coil 5 Energy Separator (E × B)
6, 27 Secondary electron detector 7 Objective lens 8 Sample stage 9 First differential aperture 10 Secondary electron and secondary electron trajectory 11 Objective lens magnetic field range 12 Exhaust system 13 Electron gun exhaust pipe 14 Secondary electron detector amplifier 15 Display unit 16 Needle valve 17 Electron gun 18 Primary electron beam 19 Reflected electron detector 20 Secondary electron detector electrode (+10 kV)
21 First rotary pump (for low vacuum)
22 Second rotary pump (for exhaust system back pressure exhaust)
23 Sample chamber 24 Ground electrode 25 of secondary electron detector Objective lens main surface 26 Reflected electron and reflected electron trajectory 28 Secondary electron collector electrode 29 Snorkel type objective lens on-axis magnetic field curve 30 Out lens type objective lens on-axis magnetic field curve 31 On-axis magnetic field curve 32 of the present invention 32 WD working distance 33 Reflected electron image 34 when WD is short Reflected electron image 35 when WD is long Optical axis

Claims (4)

荷電粒子源と、
対物レンズを含み前記荷電粒子源から放出される一次荷電粒子線を集束して試料上で走査する荷電粒子光学系と、
前記対物レンズで発生する磁場によって対物レンズ内に巻き上げられた、前記試料から発生する二次電子を検出する二次電子検出器と、
前記対物レンズの下方に設置され、前記一次荷電粒子線の照射によって前記試料から発生する反射電子を検出する反射電子検出器と、
前記複数のレンズを制御する制御部とを備え、
前記二次電子検出器および前記反射電子検出器の信号を用いて前記試料の画像を取得する走査電子顕微鏡であって、
前記対物レンズは、ワーキングディスタンスが0mmに相当する位置付近が最大軸上磁場となるように内磁路および外磁路が配置され、前記反射電子が試料からの出射方向を保ったまま前記反射電子検出器に到達できる強度の磁場を、試料と対物レンズとの間の空間に発生させることにより、前記試料から発生する二次電子を対物レンズ内に巻き上げ、かつ、前記試料から発生する反射電子を試料からの出射方向を保ったまま前記対物レンズの下方に設置された前記反射電子検出器に到達させることを特徴とする走査電子顕微鏡。
A charged particle source;
A charged particle optical system that includes an objective lens and focuses a primary charged particle beam emitted from the charged particle source and scans it on the sample;
A secondary electron detector for detecting secondary electrons generated from the sample wound in the objective lens by a magnetic field generated by the objective lens;
A backscattered electron detector that is installed below the objective lens and detects backscattered electrons generated from the sample by irradiation of the primary charged particle beam;
A control unit for controlling the plurality of lenses,
A scanning electron microscope that acquires an image of the sample using signals of the secondary electron detector and the backscattered electron detector,
In the objective lens, an inner magnetic path and an outer magnetic path are arranged so that the vicinity of a position corresponding to a working distance of 0 mm is a maximum on-axis magnetic field, and the reflected electrons remain in the emission direction from the sample. By generating a magnetic field that can reach the detector in the space between the sample and the objective lens, secondary electrons generated from the sample are wound up in the objective lens, and reflected electrons generated from the sample are generated. A scanning electron microscope characterized in that the scanning electron microscope is made to reach the backscattered electron detector installed below the objective lens while maintaining the emission direction from the sample.
請求項1に記載の走査電子顕微鏡において、
前記対物レンズの主面近傍に差動排気用のオリフィスが配置され、
前記電子線の通路は高真空に、試料が配置される試料室は低真空に、区分けされることを特徴とする走査電子顕微鏡。
The scanning electron microscope according to claim 1,
An orifice for differential exhaust is disposed in the vicinity of the main surface of the objective lens,
A scanning electron microscope characterized in that a passage of the electron beam is divided into a high vacuum and a sample chamber in which a sample is arranged is divided into a low vacuum.
請求項1に記載の走査電子顕微鏡において、
前記対物レンズ内に設置されたE×B偏向器を有することを特徴とする走査電子顕微鏡。
The scanning electron microscope according to claim 1,
A scanning electron microscope comprising an E × B deflector installed in the objective lens.
請求項1乃至3何れか一に記載の走査電子顕微鏡において、
前記試料から前記対物レンズ下面までの空間における前記対物レンズからの漏れ磁場は、反射電子のエネルギーに応じて可変であって、かつ、前記対物レンズからの漏れ磁場に対し前記試料から発生した反射電子の軌道に影響が無い条件で最適化された対物レンズ形状を有することを特徴とする走査電子顕微鏡。
The scanning electron microscope according to any one of claims 1 to 3 ,
The leakage magnetic field from the objective lens in the space from the sample to the lower surface of the objective lens is variable according to the energy of the reflected electrons, and the reflected electrons generated from the sample with respect to the leakage magnetic field from the objective lens A scanning electron microscope characterized by having an objective lens shape optimized under conditions that do not affect the trajectory.
JP2013541666A 2011-10-31 2012-09-07 Scanning electron microscope Active JP5953314B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011238167 2011-10-31
JP2011238167 2011-10-31
PCT/JP2012/072839 WO2013065399A1 (en) 2011-10-31 2012-09-07 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JPWO2013065399A1 JPWO2013065399A1 (en) 2015-04-02
JP5953314B2 true JP5953314B2 (en) 2016-07-20

Family

ID=48191758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013541666A Active JP5953314B2 (en) 2011-10-31 2012-09-07 Scanning electron microscope

Country Status (2)

Country Link
JP (1) JP5953314B2 (en)
WO (1) WO2013065399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309814A3 (en) * 2016-09-21 2018-08-01 Jeol Ltd. Objective lens and transmission electron microscope

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9881769B2 (en) 2013-10-08 2018-01-30 Hitachi High-Technologies Corporation Charged particle beam device and charged particle beam device control method
JP6204388B2 (en) * 2015-01-30 2017-09-27 松定プレシジョン株式会社 Charged particle beam apparatus and scanning electron microscope
TWI744671B (en) * 2018-08-03 2021-11-01 日商紐富來科技股份有限公司 Electron optical system and multi-beam image acquiring apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6364255A (en) * 1986-09-04 1988-03-22 Tadao Suganuma Particle beam radiating device
JPH09320504A (en) * 1996-05-30 1997-12-12 Jeol Ltd Low vacuum scanning electron microscope
JPH11297264A (en) * 1998-04-08 1999-10-29 Toshiba Corp Shape observation device
JP4597207B2 (en) * 2008-03-31 2010-12-15 株式会社日立ハイテクノロジーズ Scanning electron microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3309814A3 (en) * 2016-09-21 2018-08-01 Jeol Ltd. Objective lens and transmission electron microscope
US10224173B2 (en) 2016-09-21 2019-03-05 Jeol Ltd. Objective lens and transmission electron microscope

Also Published As

Publication number Publication date
WO2013065399A1 (en) 2013-05-10
JPWO2013065399A1 (en) 2015-04-02

Similar Documents

Publication Publication Date Title
JP6386679B2 (en) Charged particle beam apparatus and scanning electron microscope
JP2021528833A (en) Low energy scanning electron microscope system, scanning electron microscope system and sample detection method
JP7302916B2 (en) Charged particle beam device
JP6177817B2 (en) Charged particle beam apparatus and scanning electron microscope
JP4977509B2 (en) Scanning electron microscope
US6555816B1 (en) Scanning electron microscope and sample observation method using the same
JP2006216396A (en) Charged particle beam device
US9431209B2 (en) Apparatus of plural charged particle beams with multi-axis magnetic lenses
JP5953314B2 (en) Scanning electron microscope
JP2010055756A (en) Method of irradiating charged corpuscular particle beam, and charged corpuscular particle beam apparatus
US8921784B2 (en) Scanning electron microscope
JPH0917369A (en) Scanning electron microscope
WO2012075182A2 (en) Electron beam column and methods of using same
CN115714080A (en) Scanning electron beam imaging device and imaging method
JP5478683B2 (en) Charged particle beam irradiation method and charged particle beam apparatus
JP6204388B2 (en) Charged particle beam apparatus and scanning electron microscope
JP2002324510A (en) Scanning electron microscope
WO2022064628A1 (en) Electron microscope
WO2016121224A1 (en) Charged particle beam device and scanning electron microscope
JP5210088B2 (en) Electron beam equipment
WO2024100828A1 (en) Charged particle beam apparatus and control method for charged particle beam apparatus
JPH09190793A (en) Scanning electron microscope
JP2011138648A (en) Charged particle beam device
KR20220158828A (en) charged particle beam device
JP2004111404A (en) Charged particle beam irradiation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160613

R150 Certificate of patent or registration of utility model

Ref document number: 5953314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350