JP5952685B2 - Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system - Google Patents

Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system Download PDF

Info

Publication number
JP5952685B2
JP5952685B2 JP2012193016A JP2012193016A JP5952685B2 JP 5952685 B2 JP5952685 B2 JP 5952685B2 JP 2012193016 A JP2012193016 A JP 2012193016A JP 2012193016 A JP2012193016 A JP 2012193016A JP 5952685 B2 JP5952685 B2 JP 5952685B2
Authority
JP
Japan
Prior art keywords
frequency
semiconductor lasers
stabilizing
optical interferometer
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012193016A
Other languages
Japanese (ja)
Other versions
JP2014049672A (en
Inventor
五十嵐 浩司
浩司 五十嵐
釣谷 剛宏
剛宏 釣谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
KDDI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KDDI Corp filed Critical KDDI Corp
Priority to JP2012193016A priority Critical patent/JP5952685B2/en
Publication of JP2014049672A publication Critical patent/JP2014049672A/en
Application granted granted Critical
Publication of JP5952685B2 publication Critical patent/JP5952685B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光ファイバ伝送システム、特に、周波数利用効率を極限まで有効活用した超高密度周波数多重伝送システムにおいて、複数半導体レーザの周波数安定化装置および方法に関する。   The present invention relates to an apparatus and method for stabilizing a frequency of a plurality of semiconductor lasers in an optical fiber transmission system, and more particularly, in an ultra-high density frequency multiplex transmission system that effectively utilizes frequency utilization efficiency to the limit.

周波数軸に複数光信号を配置する周波数多重分離光ファイバ伝送システムでは、使用可能な光帯域が制限されているために、周波数利用効率の向上が重要である。極限まで周波数利用効率を向上する超高密度周波数多重伝送システムでは、図1(a)に示すように、信号間の周波数ギャップを極力小さくして、信号を配置することが求められる。これに対する主要な制限が、光送信器に使用する連続光発生装置の中心周波数の時間揺らぎである。一般的に、光送信器の連続光発生装置では半導体レーザが使用される。その連続光の中心周波数が時間的にドリフトすると、図1(b)に示すように、周波数多重された信号間でスペクトルのオーバーラップが生じ、信号間にクロストークが発生する。このクロストークを抑圧するには、連続光発生装置で、複数台の半導体レーザの周波数間隔を安定化することが必須となる。   In a frequency demultiplexing optical fiber transmission system in which a plurality of optical signals are arranged on the frequency axis, the usable optical band is limited, and therefore it is important to improve frequency utilization efficiency. In an ultra-high density frequency multiplex transmission system that improves frequency utilization efficiency to the limit, as shown in FIG. 1 (a), it is required to arrange signals with the frequency gap between signals as small as possible. The main limitation to this is the time fluctuation of the center frequency of the continuous light generator used in the optical transmitter. Generally, a semiconductor laser is used in a continuous light generator of an optical transmitter. When the center frequency of the continuous light drifts with time, spectrum overlap occurs between the frequency-multiplexed signals as shown in FIG. 1B, and crosstalk occurs between the signals. In order to suppress this crosstalk, it is essential to stabilize the frequency intervals of a plurality of semiconductor lasers in a continuous light generator.

半導体レーザの周波数安定化の一般的な方法は、非特許文献1に記載される光干渉計を用いるものである。その構成を図2(a)に示す。半導体レーザからの連続光を光干渉計に通過させ、その出力パワーを測定する。図2(b)に示すように、連続光の周波数が光干渉計の透過周波数に近い場合、連続光のパワーの一部が光干渉計を通過する。その光干渉計出力パワーは、連続光の周波数に依存するために、連続光の周波数揺らぎは光干渉計出力パワー揺らぎに変換される。このパワーをエラー信号として半導体レーザの周波数を制御することで、周波数安定化が実現される。   A general method for stabilizing the frequency of a semiconductor laser is to use an optical interferometer described in Non-Patent Document 1. The configuration is shown in FIG. The continuous light from the semiconductor laser is passed through the optical interferometer and its output power is measured. As shown in FIG. 2 (b), when the frequency of continuous light is close to the transmission frequency of the optical interferometer, a part of the power of continuous light passes through the optical interferometer. Since the optical interferometer output power depends on the frequency of the continuous light, the frequency fluctuation of the continuous light is converted into the optical interferometer output power fluctuation. Frequency stabilization is realized by controlling the frequency of the semiconductor laser using this power as an error signal.

別のアプローチは、単一の光干渉計を用いる手法である。特許文献1は、各レーザ出力光をファブリ・ペロー光干渉計に通過し、その出力光をモニタし、各レーザパワー変化の分離には、ロックイン検出の周波数多重分離を用いる。特許文献2は、上記技術を、光周波数分割多重伝送方式に用いる。特許文献3は、ファブリ・ペロー光干渉計を用いて複数レーザの周波数揺らぎをモニタし、各レーザのパワーの分離には時間多重分離を用いる。   Another approach is to use a single optical interferometer. In Patent Document 1, each laser output light passes through a Fabry-Perot optical interferometer, the output light is monitored, and frequency multiplex separation of lock-in detection is used for separation of each laser power change. Patent Document 2 uses the above technique for an optical frequency division multiplex transmission system. Patent Document 3 uses a Fabry-Perot optical interferometer to monitor frequency fluctuations of a plurality of lasers, and uses time multiplexing to separate the power of each laser.

特開昭64−15992号公報Japanese Patent Laid-Open No. 64-15992 特開平1−164135号公報JP-A-1-164135 特開平9−298511号公報Japanese Patent Laid-Open No. 9-298511

T. Okoshi and K. Kikuchi, “FrequencyStabilisation of Semiconductor Lasers for Heterodyne-Type Optical CommunicationSysytems,” Electron. Lett., vol.16, No.5, 179 (1980).T. Okoshi and K. Kikuchi, “FrequencyStabilisation of Semiconductor Lasers for Heterodyne-Type Optical CommunicationSysytems,” Electron. Lett., Vol.16, No.5, 179 (1980).

しかしながら、非特許文献1の方法は光干渉計の温度安定性で制限される。一般的な温度調整回路で実現可能な±0.1Kの温度安定性では、1GHz程度の周波数揺らぎが生じる。したがって、複数台の半導体レーザの周波数間隔の揺らぎを1GHz以下に安定化することは極めて困難である。   However, the method of Non-Patent Document 1 is limited by the temperature stability of the optical interferometer. In the temperature stability of ± 0.1 K that can be realized by a general temperature adjustment circuit, a frequency fluctuation of about 1 GHz occurs. Therefore, it is extremely difficult to stabilize the fluctuation of the frequency interval of the plurality of semiconductor lasers to 1 GHz or less.

また、一般に、レーザ周波数を制御する信号に、高周波成分が多くなると、レーザ周波数純度が劣化する傾向がある。高周波成分でレーザを制御する必要があるロックイン検出や時間多重分離を用いる特許文献1から3の技術では、レーザのFM雑音が劣化する可能性が大きい。   In general, when a high frequency component increases in a signal for controlling the laser frequency, the laser frequency purity tends to deteriorate. In the techniques of Patent Documents 1 to 3 that use lock-in detection and time demultiplexing that require the laser to be controlled by a high-frequency component, there is a high possibility that the FM noise of the laser will deteriorate.

したがって、本発明は、光干渉計の温度安定性に制限されることなく、さらにロックイン検出や時間多重分離を利用することなく、周波数ギャップなく超高密度に周波数多重されるシステムに適用可能な複数半導体レーザの周波数間隔安定化装置および方法を提供することを目的とする。   Therefore, the present invention is not limited to the temperature stability of the optical interferometer, and can be applied to a system that is frequency-multiplexed at a very high density without a frequency gap without using lock-in detection or time demultiplexing. An object of the present invention is to provide an apparatus and method for stabilizing a frequency interval of a plurality of semiconductor lasers.

上記課題を解決するため本発明の複数半導体レーザの周波数安定化装置は、周波数軸上で透過率が周期的に変化する透過特性を有し、その透過特性における複数の透過周波数で光波空間的に分離る光干渉計と、それぞれの発振周波数が前記光干渉計の透過特性の複数のスロープそれぞれの透過周波数の一つに設定された複数の半導体レーザと、前記光干渉計からの通過光をそれぞれ電気信号に変換する複数の光ダイオードと、前記電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化る手段とを備える。 In order to solve the above problems, a frequency stabilization device for a plurality of semiconductor lasers according to the present invention has a transmission characteristic in which the transmittance periodically changes on the frequency axis, and spatially transmits light waves at a plurality of transmission frequencies in the transmission characteristic. an optical interferometer that be separated into a plurality of semiconductor lasers which are set to one of a plurality of slopes each transmission frequency of each of the oscillation frequency transmission characteristic of the optical interferometer, passing light from the optical interferometer a and a plurality of photodiodes for converting the electrical signals, respectively, by respective fluctuations of the electrical signal, and means you are stabilizing an oscillation frequency of the plurality of semiconductor lasers.

また、前記安定化る手段は、前記電気信号のそれぞれを、前記複数の半導体レーザそれぞれからの連続光を直接受光し変換された電気信号と比較した後の電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化ること好ましい。 Further, the stabilizing to that means, each of said electrical signals, the respective fluctuations of the electric signal after comparing the direct light to converted electrical signals continuous light from each of the plurality of semiconductor lasers, the preferred you to each stabilizing the oscillation frequency of a plurality of semiconductor lasers.

また、前記安定化る手段は、前記電気信号のそれぞれの揺らぎの低い周波数成分を使用して、前記複数の半導体レーザの発振周波数をそれぞれ安定化ることも好ましい。 Further, means you the stabilization using the respective low frequency components of the fluctuation of the electrical signal, Rukoto be respectively stabilize the oscillation frequency of said plurality of semiconductor lasers are also preferred.

上記課題を解決するため本発明の複数半導体レーザの周波数安定化方法は、複数の半導体レーザと、周波数軸上で透過率が周期的に変化する透過特性を有し、その透過特性における複数の透過周波数で光波空間的に分離る光干渉計と、前記光干渉計からの通過光をそれぞれ電気信号に変換する複数の光ダイオードとを備える送信器における複数半導体レーザの周波数安定化方法であって、前記複数の半導体レーザのそれぞれの発振周波数を前記光干渉計の透過特性の複数のスロープそれぞれの透過周波数の一つに設定るステップと、前記電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化るステップとを有する。 In order to solve the above problems, a method for stabilizing a frequency of a plurality of semiconductor lasers according to the present invention has a plurality of semiconductor lasers and a transmission characteristic in which the transmittance periodically changes on the frequency axis. there a plurality semiconductor laser frequency stabilizing method in the transmitter comprising an optical interferometer you spatially separated light waves at frequencies, and a plurality of photodiodes to convert the respective electrical signal passing light from the optical interferometer Te, a step to set the respective oscillation frequencies of said plurality of semiconductor lasers to one of a plurality of slopes each transmission frequency of the transmission characteristic of the optical interferometer by the respective fluctuations of the electrical signals, said plurality of and a step respectively stabilize the oscillation frequency of the semiconductor laser.

複数台の半導体レーザの周波数を個別の光干渉計を用いて安定化した場合、その安定度は光干渉計透過周波数の温度安定度で決定される。およそ>1GHz/K程度であり、複数台の半導体レーザの周波数間隔を100MHz以下のオーダで安定化するのは容易ではない。一方、本発明の安定度は、光干渉計のFSRの温度安定性で決定される。この揺らぎは、大きく見積もっても、0.1GHz/K以下であり、10MHz以下の安定性は容易に得られる。   When the frequencies of a plurality of semiconductor lasers are stabilized using individual optical interferometers, the stability is determined by the temperature stability of the optical interferometer transmission frequency. It is about> 1 GHz / K, and it is not easy to stabilize the frequency interval of a plurality of semiconductor lasers on the order of 100 MHz or less. On the other hand, the stability of the present invention is determined by the temperature stability of the FSR of the optical interferometer. This fluctuation is 0.1 GHz / K or less even when estimated to a large extent, and a stability of 10 MHz or less can be easily obtained.

また、本発明では、半導体レーザに高周波成分のエラー信号を帰還しないように、低周波数成分のみのフィードバックになっており、FM雑音の劣化は極めて少ない。   Further, in the present invention, only low frequency components are fed back so that error signals of high frequency components are not fed back to the semiconductor laser, and FM noise degradation is extremely small.

超高密度に周波数多重された光信号のスペクトル波形(a)、周波数ドリフトによるクロストーク発生(b)を示す。A spectral waveform (a) of an optical signal frequency-multiplexed with ultra-high density, and crosstalk generation (b) due to frequency drift are shown. 単一LDの発振周波数安定化法における構成(a)、光干渉計透過率とLDスペクトル波形(b)を示す。The structure (a), the optical interferometer transmittance and the LD spectrum waveform (b) in the oscillation frequency stabilization method of a single LD are shown. 本発明の周波数安定化装置の第1の構成例を示す。The 1st example of a structure of the frequency stabilization apparatus of this invention is shown. 本発明の光干渉計の透過特性(a)、複数半導体レーザの周波数配置(b)を示す。The transmission characteristic (a) of the optical interferometer of the present invention and the frequency arrangement (b) of a plurality of semiconductor lasers are shown. 本発明の周波数安定化装置の第2の構成例を示す。The 2nd structural example of the frequency stabilization apparatus of this invention is shown. 本発明の周波数安定化装置を平面光導波路で実現する構成を示す。The structure which implement | achieves the frequency stabilization apparatus of this invention with a planar optical waveguide is shown. 本発明の周波数安定化装置を空間光学系で実現する構成を示す。The structure which implement | achieves the frequency stabilization apparatus of this invention with a spatial optical system is shown.

本発明を実施するための最良の実施形態について、以下では図面を用いて詳細に説明する。図3は、本発明の超高密度周波数多重伝送システムにおける周波数安定化装置の第1の構成例を示す。ここでは、光干渉計1台を用いて、4台の半導体レーザの発振周波数の間隔を安定化している。光干渉計では、各レーザからの光波が別々の個所で透過し、出力は空間的に分離される。   The best mode for carrying out the present invention will be described in detail below with reference to the drawings. FIG. 3 shows a first configuration example of the frequency stabilizing device in the ultra-high density frequency multiplex transmission system of the present invention. Here, one optical interferometer is used to stabilize the interval between the oscillation frequencies of the four semiconductor lasers. In an optical interferometer, light waves from each laser are transmitted at different locations and the outputs are spatially separated.

周波数安定化装置は、複数の半導体レーザ1(LD1〜LD4)、光干渉計2、複数の光ダイオード3(PD1〜PD4)、複数の増幅器4、および複数のLPF(ローパスフィルタ)5を備えている。   The frequency stabilization device includes a plurality of semiconductor lasers 1 (LD1 to LD4), an optical interferometer 2, a plurality of photodiodes 3 (PD1 to PD4), a plurality of amplifiers 4, and a plurality of LPFs (low pass filters) 5. Yes.

複数の半導体レーザ1からの連続光を、単一の光干渉計2に通過させ、その出力パワーを光ダイオード3が測定する。半導体レーザ1の周波数揺らぎは、光干渉計2の出力パワーの揺らぎに変換され、光ダイオード3で、電気信号に変換される。この電気信号の揺らぎから、エラー信号を出力し、半導体レーザ1の注入電流、もしくは温度を制御することで、半導体レーザ1の発振周波数を安定化させる。   Continuous light from a plurality of semiconductor lasers 1 is passed through a single optical interferometer 2 and the output power is measured by a photodiode 3. The frequency fluctuation of the semiconductor laser 1 is converted into the fluctuation of the output power of the optical interferometer 2 and converted into an electric signal by the photodiode 3. An error signal is output from the fluctuation of the electric signal, and the oscillation frequency of the semiconductor laser 1 is stabilized by controlling the injection current or temperature of the semiconductor laser 1.

なお、半導体レーザ1の安定化電子回路においてLPF5使用して、半導体レーザ1のFM雑音劣化抑圧し、高周波成分のエラー信号を帰還しないように、低周波数成分のみフィードバックすることも可能である。この場合、半導体レーザ1のゆっくりした周波数の揺らぎに対応することができる。   Note that it is also possible to feed back only the low frequency component so that the LPF 5 is used in the stabilization electronic circuit of the semiconductor laser 1 to suppress the FM noise degradation of the semiconductor laser 1 and the error signal of the high frequency component is not fed back. In this case, it is possible to cope with a slow frequency fluctuation of the semiconductor laser 1.

図4は、光干渉計の透過特性(a)、複数半導体レーザの周波数配置(b)を示す。ここで、FSRは信号符号速度周波数とする。光干渉計2は、図4(a)に示すように、周期的にスペクトル波形が繰り返す透過特性を有し、複数の透過周波数を有する。半導体レーザ1の発振周波数を、光干渉計2の透過周波数の一つの付近に設定し、別の半導体レーザ1に対しては、異なる透過周波数を割り当てることで、図4(b)に示すように、単一の光干渉計2で、複数の半導体レーザ1の周波数を単一光干渉計のスロープで一括して安定化することが可能である。   FIG. 4 shows the transmission characteristics (a) of the optical interferometer and the frequency arrangement (b) of a plurality of semiconductor lasers. Here, FSR is a signal code rate frequency. As shown in FIG. 4A, the optical interferometer 2 has a transmission characteristic in which a spectrum waveform repeats periodically and has a plurality of transmission frequencies. As shown in FIG. 4B, the oscillation frequency of the semiconductor laser 1 is set near one of the transmission frequencies of the optical interferometer 2 and a different transmission frequency is assigned to another semiconductor laser 1. The single optical interferometer 2 can collectively stabilize the frequencies of the plurality of semiconductor lasers 1 with the slope of the single optical interferometer.

図5は、本発明の周波数安定化装置の第2の構成例を示す。本構成例では半導体レーザ1からの連続光は、2分岐され、一方は光ダイオード3が直接受光し、もう一方は、光干渉計2を通過して光ダイオード3が受光する。   FIG. 5 shows a second configuration example of the frequency stabilization apparatus of the present invention. In this configuration example, continuous light from the semiconductor laser 1 is split into two, one is directly received by the photodiode 3 and the other is received by the photodiode 3 after passing through the optical interferometer 2.

図4の第1の構成例の場合、半導体レーザ1の出力光(周波数ν)の光パワーをPLD1、光干渉計2通過後の後の透過光の光パワーをT(ν)PLD1、光ダイオード3で変換された電気信号電圧をVPD1とすると、

Figure 0005952685
となる。半導体レーザ1の光パワーがPLD1+ΔPLD1に変化すると
Figure 0005952685
これより光ダイオード3で変換された電気信号電圧をVPD1の揺らぎΔVPD1
Figure 0005952685
となり、光パワーの揺らぎ(ΔPLD1)が、光干渉計出力パワー揺らぎ(ΔVPD1)に変換され、光パワーが揺らぐと周波数に揺らぎが発生したと誤認識される。このため、第1の構成例の場合、半導体レーザ1の光パワーの揺らぎにより安定度が制限される。 In the case of the first configuration example of FIG. 4, the optical power of the output light (frequency ν 1 ) of the semiconductor laser 1 is P LD1 , and the optical power of the transmitted light after passing through the optical interferometer 2 is T (ν 1 ) P. When the electric signal voltage converted by LD1 and the photodiode 3 is VPD1 ,
Figure 0005952685
It becomes. When the optical power of the semiconductor laser 1 changes to P LD1 + ΔP LD1
Figure 0005952685
From this fluctuation [Delta] V PD1 of the converted electrical signal voltage at the photodiode 3 V PD1 is
Figure 0005952685
Thus, the optical power fluctuation (ΔP LD1 ) is converted into the optical interferometer output power fluctuation (ΔV PD1 ), and when the optical power fluctuates, it is erroneously recognized that the frequency fluctuates. For this reason, in the case of the first configuration example, the stability is limited by fluctuations in the optical power of the semiconductor laser 1.

図5の第2の構成例の場合、半導体レーザ1からの連続光のパワーPLD1を直接受光し変換された電気信号VPD1aと、光干渉計2からの透過光を変換した電気信号VPD1bを比較すると、

Figure 0005952685
である。αは構成によって決定される値であり、αPLD1=T(ν)PLD1と調整することで、半導体レーザ1のパワーの揺らぎによる影響を排除できる。これにより、第2の構成例の場合、半導体レーザ1の光パワーの揺らぎの影響を除去することができる。 For the second configuration example of FIG. 5, and an electric signal V PD1a the power P LD1 continuous light is directly received by converting from the semiconductor laser 1, electric signals obtained by converting the transmitted light from the optical interferometer 2 V PD1b Comparing
Figure 0005952685
It is. α is a value determined by the configuration. By adjusting αP LD1 = T (ν 1 ) P LD1 , the influence of fluctuations in the power of the semiconductor laser 1 can be eliminated. Thereby, in the case of the 2nd example of composition, the influence of fluctuation of the optical power of semiconductor laser 1 can be removed.

以下に本発明の効果を示す。従来の光干渉計の絶対周波数に安定化させる方法では、0Hzから数えてm番目の透過周波数fの揺らぎΔfと、干渉計長lの揺らぎΔlの関係は、

Figure 0005952685
となる。cは光速、nは屈折率である。一方、光干渉計2を用いて、各半導体レーザ1の発振周波数を単一干渉計のスロープで安定させる本発明の場合、FSR周波数の揺らぎΔFSRは、
Figure 0005952685
となる。 The effects of the present invention are shown below. In the method of stabilizing to the absolute frequency of the conventional optical interferometer, the relationship between the fluctuation Δf m of the mth transmission frequency fm counted from 0 Hz and the fluctuation Δl of the interferometer length l is
Figure 0005952685
It becomes. c is the speed of light and n is the refractive index. On the other hand, in the case of the present invention in which the oscillation frequency of each semiconductor laser 1 is stabilized by the slope of a single interferometer using the optical interferometer 2, the FSR frequency fluctuation ΔFSR is:
Figure 0005952685
It becomes.

例えば、f〜200THz,FSR〜10GHz、m=20000の場合、Δf〜1GHzである一方、ΔFSR〜0.05MHzとなり、FSRに安定化させる本発明は、従来の光干渉計の絶対周波数に安定化させるものに比べ、1万倍の安定度が得られる。 For example, in the case of f m to 200 THz, FSR to 10 GHz, and m = 20000, Δf m to 1 GHz, while ΔFSR to 0.05 MHz, the present invention that stabilizes to FSR is an absolute frequency of a conventional optical interferometer. The stability is 10,000 times higher than that to be stabilized.

本発明の周波数安定化装置を実現する方法として、図3および図5に記載されたインライン光部品をつなぎ合わせる構成のほかに平面光導波路(PLC)を用いる方法と、空間光学系で実現する方法がある。   As a method for realizing the frequency stabilization device of the present invention, a method using a planar optical waveguide (PLC) in addition to the configuration in which the in-line optical components described in FIGS. 3 and 5 are connected, and a method realized by a spatial optical system. There is.

図6は、本発明の周波数安定化装置を平面光導波路で実現する構成を示す。光導波路で光干渉計だけでなく、半導体レーザからの出力光の連結も実現する。図7は、本発明の周波数安定化装置を空間光学系で実現する構成を示す。四角内の示している→の矢印は空間伝搬であり、周波数の分離は空間で行われる。なお、図6および図7は、第2の構成例に対応する例であるが、第1の構成例にも適用可能である。   FIG. 6 shows a configuration for realizing the frequency stabilization device of the present invention with a planar optical waveguide. The optical waveguide realizes not only the optical interferometer but also the connection of the output light from the semiconductor laser. FIG. 7 shows a configuration for realizing the frequency stabilization apparatus of the present invention with a spatial optical system. The arrow indicated by → in the square is spatial propagation, and frequency separation is performed in space. 6 and 7 are examples corresponding to the second configuration example, but can also be applied to the first configuration example.

また、以上述べた実施形態は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様および変更態様で実施することができる。従って本発明の範囲は特許請求の範囲およびその均等範囲によってのみ規定されるものである。   Moreover, all the embodiments described above are illustrative of the present invention and are not intended to limit the present invention, and the present invention can be implemented in other various modifications and changes. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

1 半導体レーザ
2 光干渉計
3 光ダイオード
4 増幅器
5 LPF
1 Semiconductor Laser 2 Optical Interferometer 3 Photodiode 4 Amplifier 5 LPF

Claims (4)

周波数軸上で透過率が周期的に変化する透過特性を有し、その透過特性における複数の透過周波数で光波空間的に分離る光干渉計と、
それぞれの発振周波数が前記光干渉計の透過特性の複数のスロープそれぞれの透過周波数の一つに設定された複数の半導体レーザと、
前記光干渉計からの通過光をそれぞれ電気信号に変換する複数の光ダイオードと、
前記電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化る手段と、
を備えることを特徴とする複数半導体レーザの周波数安定化装置。
Has a transmission characteristic in which the transmittance changes cyclically on the frequency axis, and the optical interferometer you spatially separated light waves at a plurality of transmission frequencies in the transmission characteristics,
A plurality of semiconductor lasers each of the oscillation frequency is set to one of a plurality of slopes each transmission frequency of the transmission characteristic of the optical interferometer,
A plurality of photodiodes each converting the passing light from the optical interferometer into an electrical signal;
By the respective fluctuations of the electrical signal, and means you are stabilizing an oscillation frequency of the plurality of semiconductor lasers,
An apparatus for stabilizing the frequency of a plurality of semiconductor lasers.
前記安定化る手段は、前記電気信号のそれぞれを、前記複数の半導体レーザそれぞれからの連続光を直接受光し変換された電気信号と比較した後の電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化ることを特徴とする請求項1に記載の複数半導体レーザの周波数安定化装置。 Wherein the stabilizing to that means, each of said electrical signals, the respective fluctuations of the plurality of semiconductor laser continuous light from each received directly converted electric signals electric signals after comparing with the plurality of frequency stabilization device of the plurality semiconductor laser according to claim 1, characterized that you are stabilizing the oscillation frequency of the semiconductor laser. 前記安定化る手段は、前記電気信号のそれぞれの揺らぎの低い周波数成分を使用して、前記複数の半導体レーザの発振周波数をそれぞれ安定化ることを特徴とする請求項1または2に記載の複数半導体レーザの周波数安定化装置。 Said means you stabilization uses low frequency components of the respective fluctuations of the electrical signals, described the oscillation frequency of said plurality of semiconductor lasers to claim 1 or 2, respectively, characterized that you stabilize Frequency stabilizer for multiple semiconductor lasers. 複数の半導体レーザと、周波数軸上で透過率が周期的に変化する透過特性を有し、その透過特性における複数の透過周波数で光波空間的に分離る光干渉計と、前記光干渉計からの通過光をそれぞれ電気信号に変換する複数の光ダイオードとを備える送信器における複数半導体レーザの周波数安定化方法であって、
前記複数の半導体レーザのそれぞれの発振周波数を前記光干渉計の透過特性の複数のスロープそれぞれの透過周波数の一つに設定るステップと、
前記電気信号のそれぞれの揺らぎにより、前記複数の半導体レーザの発振周波数をそれぞれ安定化るステップと、
を有することを特徴とする複数半導体レーザの周波数安定化方法。
A plurality of semiconductor lasers, has a transmission characteristic in which the transmittance changes cyclically on a frequency axis, and the optical interferometer you spatially separated light waves at a plurality of transmission frequencies in the transmission characteristics, the optical interferometer A method for stabilizing the frequency of a plurality of semiconductor lasers in a transmitter comprising a plurality of photodiodes that respectively convert the light passing from each into an electrical signal ,
A step to set the respective oscillation frequencies of said plurality of semiconductor lasers to one of a plurality of slopes each transmission frequency of the transmission characteristic of the optical interferometer,
By the respective fluctuations of the electrical signal; it is stabilizing an oscillation frequency of the plurality of semiconductor lasers,
A method for stabilizing the frequency of a plurality of semiconductor lasers, comprising:
JP2012193016A 2012-09-03 2012-09-03 Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system Active JP5952685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012193016A JP5952685B2 (en) 2012-09-03 2012-09-03 Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012193016A JP5952685B2 (en) 2012-09-03 2012-09-03 Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system

Publications (2)

Publication Number Publication Date
JP2014049672A JP2014049672A (en) 2014-03-17
JP5952685B2 true JP5952685B2 (en) 2016-07-13

Family

ID=50609019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012193016A Active JP5952685B2 (en) 2012-09-03 2012-09-03 Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system

Country Status (1)

Country Link
JP (1) JP5952685B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0851411A (en) * 1994-08-08 1996-02-20 Nippon Telegr & Teleph Corp <Ntt> Frequency multiplexed light source
JPH09298511A (en) * 1996-04-30 1997-11-18 Ando Electric Co Ltd Frequency stabilized light source
JP2004221267A (en) * 2003-01-14 2004-08-05 Nippon Telegr & Teleph Corp <Ntt> High-speed variable wavelength distributed feedback semiconductor laser array and distributed feedback semiconductor laser
EP2277244A4 (en) * 2008-05-01 2017-08-30 The Australian National University Methods and systems for frequency stabilisation of multiple lasers

Also Published As

Publication number Publication date
JP2014049672A (en) 2014-03-17

Similar Documents

Publication Publication Date Title
AU2013370672B2 (en) Self injection locked phase locked looped optoelectronic oscillator
US8073342B2 (en) Method and apparatus for transmitting optical signals
Devgan A review of optoelectronic oscillators for high speed signal processing applications
US9528875B2 (en) Optical frequency tracking and stabilization based on extra-cavity frequency
CN107727367B (en) Laser frequency noise measurement method and system
JP4845145B2 (en) Broadband multi-wavelength light source
EP2040117A1 (en) Synchronized optical signal generation device and synchronized optical signal generation method
CN106532430B (en) frequency and wavelength dual tunable frequency modulation continuous wave optical carrier signal generation system
CN104466620A (en) Frequency stabilization type photoproduction microwave signal source based on optical microcavity
US9343869B1 (en) Mode-hop tolerant semiconductor laser design
EP3292597B1 (en) Double frequency conversion apparatus for sourcing radiations having an intrinsically stable wavelength-shift that is quickly tuneable within an extended range, in particular for use in brillouin analysers
CN110460382A (en) Broadband is adjustable and low phase noise microwave signal generation device
US9356702B2 (en) Flattened optical frequency-locked multi-carrier generation by one DML and one phase modulator
JP5952685B2 (en) Apparatus and method for stabilizing the frequency of a plurality of semiconductor lasers in an ultra high density frequency multiplex transmission system
Zhou et al. A multi-frequency optoelectronic oscillator based on a single phase-modulator
CN114336227B (en) Microwave signal generating device based on low-distortion dissipative Kerr soliton
Zhang et al. Multi-channel broadband Brillouin slow light with multiple longitudinal mode pump
Charalambous et al. High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multi-loop topology
JP2008228206A (en) Optical angle modulator
CN103560853B (en) The frequency stabilization system and method for multiple light courcess in multi-subcarrier system
JP2004294543A (en) Periodic multiple wavelength light generator
CN107534505B (en) A kind of overloading wave laser and the method for generating multi-carrier light
JP2015216437A (en) WDM coherent transmission system
CN110416861B (en) Microwave source and control method thereof
Panapakkam et al. Asymmetric corner frequency in the 1/f FM-noise PSD of optical frequency combs generated by quantum-dash mode-locked lasers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160610

R150 Certificate of patent or registration of utility model

Ref document number: 5952685

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150