JP5950761B2 - Positioning device - Google Patents

Positioning device Download PDF

Info

Publication number
JP5950761B2
JP5950761B2 JP2012187654A JP2012187654A JP5950761B2 JP 5950761 B2 JP5950761 B2 JP 5950761B2 JP 2012187654 A JP2012187654 A JP 2012187654A JP 2012187654 A JP2012187654 A JP 2012187654A JP 5950761 B2 JP5950761 B2 JP 5950761B2
Authority
JP
Japan
Prior art keywords
tdoa
reception
sensor
fdoa
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012187654A
Other languages
Japanese (ja)
Other versions
JP2014044160A (en
Inventor
網嶋 武
武 網嶋
平田 和史
和史 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012187654A priority Critical patent/JP5950761B2/en
Publication of JP2014044160A publication Critical patent/JP2014044160A/en
Application granted granted Critical
Publication of JP5950761B2 publication Critical patent/JP5950761B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電波の到来時間差(Time Difference of Arrival)やドップラー周波数差(FDOA:Frequency Difference Of Arrival)に基づいて電波源の測位を行う測位装置に関する。   The present invention relates to a positioning device that performs positioning of a radio wave source based on time difference of arrival of radio waves and frequency difference of arrival (FDOA).

未知の電波源の測位方式として,複数の受信センサにより受信された電波の到来時間差(TDOA)を複数計測することにより,TDOA曲線の交点から電波源の位置を推定する方式が知られている(例えば、非特許文献1参照)。   As a positioning method for an unknown radio source, there is known a method for estimating the location of a radio source from the intersection of TDOA curves by measuring a plurality of arrival time differences (TDOA) of radio waves received by a plurality of receiving sensors ( For example, refer nonpatent literature 1).

以下、図1を参照して、TDOA測位の概要を説明する。ここでは、説明を簡単にするため、2次元測位を仮定する。この場合、最低3つの受信センサが必要である。電波源が電波を送信する場合、電波源から受信センサまでの距離がそれぞれ異なるため、それぞれの受信センサに異なる時刻に到達する。TDOA測位では、これらの時刻のセンサ間での差、すなわち到来時間差(TDOA)を情報として用いて電波源の測位を行う。TDOA測位では、TDOA相関演算により、これらの時刻差(TDOA)を計測する。TDOA相関演算は次式で表すことができる。

Figure 0005950761
Hereinafter, an overview of TDOA positioning will be described with reference to FIG. Here, in order to simplify the explanation, two-dimensional positioning is assumed. In this case, at least three receiving sensors are required. When the radio wave source transmits radio waves, the distances from the radio wave source to the receiving sensor are different, so that the receiving sensors arrive at different times. In TDOA positioning, a radio wave source is measured using information on the difference between sensors at these times, that is, time difference of arrival (TDOA). In TDOA positioning, these time differences (TDOA) are measured by TDOA correlation calculation. The TDOA correlation calculation can be expressed by the following equation.

Figure 0005950761

Figure 0005950761
Figure 0005950761

次に、得られたTDOA13及びTDOA23を用い、以下の連立方程式を解く。xTGT=[xTGTTGTを未知の電波源の二次元位置ベクトルとする。また、各受信センサの位置ベクトルをx,x,xと呼ぶ。x,x,xは既知である。測位で求めたいxTGTは2次元ベクトルであるので、連立方程式の未知数は2つである。一方、連立方程式はそれぞれのTDOAについて1本ずつ立てることができる。このため、以下の2本の連立方程式をxTGTについて解くことにより、電波源の位置を評定することができる。 Next, using the obtained TDOA 13 and TDOA 23 , the following simultaneous equations are solved. x TGT = [x TGT y TGT ] Let T be a two-dimensional position vector of an unknown radio source. Moreover, the position vector of each receiving sensor is referred to as x 1 , x 2 , x 3 . x 1 , x 2 and x 3 are known. Since x TGT to be obtained by positioning is a two-dimensional vector, there are two unknowns of simultaneous equations. On the other hand, one simultaneous equation can be established for each TDOA. Therefore, the position of the radio wave source can be evaluated by solving the following two simultaneous equations for x TGT .

Figure 0005950761

Figure 0005950761
Figure 0005950761

Figure 0005950761

Delosme,J.,Morf,M.,and Friedlander,B.“Source location from time differences of arrival:Identifiability and estimation”Acoustics,Speech,and Signal Processing,IEEE International Conference on ICASSP,Volume:5,Page(s): 818 - 824,1980.Delosme, J., Morf, M., and Friedlander, B. “Source location from time differences of arrival: Identifiability and estimation”, Acoustics, Speech, and Signal Processing, IEEE International Conference on ICASSP, Volume: 5, Page (s) : 818-824, 1980.

電波到来時間差(TDOA)による測位方式では、複数の受信センサを用い、各受信センサペアの信号間で相関演算を行い、相関ピークを検出することによりTDOAを計測する。しかしながら、図2に示すように、複数信号が混信して入射する場合で、ある受信センサで特定の信号からの受信感度が低い場合や、受信機雑音の影響で、相関ピークが誤検出される場合、複数の、かつ、受信センサペアによって数の異なる相関ピーク(TDOA)が得られてしまう。なお、図2では、3センサによる2次元TDOA測位を仮定し、2センサペアで相関演算を実施する場合を示している。   In a positioning method using radio wave arrival time difference (TDOA), a plurality of reception sensors are used, correlation calculation is performed between signals of each reception sensor pair, and TDOA is measured by detecting a correlation peak. However, as shown in FIG. 2, when a plurality of signals are mixed and incident, a correlation peak is erroneously detected due to low reception sensitivity from a specific signal at a certain reception sensor or the influence of receiver noise. In this case, a plurality of correlation peaks (TDOA) having different numbers depending on the reception sensor pair are obtained. FIG. 2 shows a case where two-pair TDOA positioning with three sensors is assumed and correlation calculation is performed with two sensor pairs.

この場合、
(1)両受信センサペアで共通して受信されている信号数が不明である。
(2)両受信センサペアで共通して受信されている信号のTDOAが不明であり、また、受信センサペア間でのTDOAのペアリングも不明である。
in this case,
(1) The number of signals received in common by both receiving sensor pairs is unknown.
(2) The TDOA of the signal received in common by both receiving sensor pairs is unknown, and the TDOA pairing between the receiving sensor pairs is also unknown.

上記の(1)は、両受信センサペアで共通して受信されていない、例えば一方のセンサペアでしか受信されていないと、TDOAの連立方程式の数が足りなくなるため、測位が不可能となることを意味する。また、(2)のペアリングが不明のまま測位演算を実施すると、総当りのペアで測位を行うこととなってしまい、図3のように、正しいペアリングにより得られた測位位置のほかに、誤ったペアリングで測位した位置が偽像となって現れる問題が生じる。図3中のAは偽像を示している。   The above (1) indicates that positioning is not possible because the number of TDOA simultaneous equations is insufficient if the signals are not received in common by both receiving sensor pairs, for example, if only one sensor pair is used. means. In addition, if the positioning calculation is performed while the pairing in (2) is unknown, positioning will be performed with a brute force pair, as shown in FIG. 3, in addition to the positioning position obtained by correct pairing. There arises a problem that a position measured by incorrect pairing appears as a false image. A in FIG. 3 indicates a false image.

この発明は上記のような課題を解決するためになされたもので、総当たりでペアリングを行うことによる偽像を排除することのできる測位装置を得ることを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a positioning device that can eliminate false images due to brute force pairing.

この発明に係る測位装置は、3つ以上の受信センサによって受信された電波の到来時間差(TDOA)を用いて電波源を測位する測位装置において、受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でTDOA相関演算を行った場合に、複数の相関ピークを有するTDOAが得られ、かつ、その相関ピーク数が受信センサペア毎に異なる場合、二つの受信センサペアにおける異なる受信センサの受信信号をTDOA分シフトして内積した値を要素とするTDOA内積行列を計算し、TDOA内積行列を対称化した行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を二つの受信センサペアで共通して受信している信号数の推定値とする信号数推定手段と、内積行列を用いて、同一のTDOAが異なる複数のTDOAに重複してペアリングされることなく、かつ、内積行列の要素の大きさの和が大きくなるように各相関演算で得られた相関ピークのペアを求め、これを、同一の電波源から得られたTDOAのペアとするペアリング手段とを備えたものである。 The positioning device according to the present invention is a positioning device for positioning a radio wave source using a time difference of arrival (TDOA) of radio waves received by three or more receiving sensors, in order to measure the time difference of arrival of radio waves between the receiving sensors. When the TDOA correlation calculation is performed between the reception signals of each reception sensor pair, a TDOA having a plurality of correlation peaks is obtained, and when the number of correlation peaks differs for each reception sensor pair, different receptions in the two reception sensor pairs Calculates the TDOA inner product matrix whose elements are the product of the inner signals of the sensor's received signal shifted by TDOA, calculates the eigenvalues of the symmetrized TDOA inner product matrix, and calculates the number of eigenvalues greater than a predetermined threshold. Using the inner product matrix and the signal number estimation means that uses the number as an estimate of the number of signals received in common by the two receiving sensor pairs, A pair of correlation peaks obtained by each correlation calculation is obtained so that one TDOA is not paired with a plurality of different TDOAs and the sum of the sizes of the inner product matrix elements is increased. Is paired with TDOA pairs obtained from the same radio wave source.

この発明の測位装置は、複数の相関ピークを有するTDOAが得られ、かつ、その相関ピーク数が受信センサペア毎に異なる場合、二つの受信センサペアにおける異なる受信センサの受信信号をTDOA分シフトして内積した値を要素とするTDOA内積行列を計算し、TDOA内積行列を対称化した行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を二つの受信センサペアで共通して受信している信号数の推定値とする信号数推定手段と、内積行列を用いて、同一のTDOAが異なる複数のTDOAに重複してペアリングされることなく、かつ、内積行列の要素の大きさの和が大きくなるように各相関演算で得られた相関ピークのペアを求め、これを、同一の電波源から得られたTDOAのペアとするようにしたので、総当たりでペアリングを行うことによる偽像を排除することができる。 In the positioning apparatus of the present invention, when a TDOA having a plurality of correlation peaks is obtained and the number of correlation peaks is different for each reception sensor pair, the received signals of the different reception sensors in the two reception sensor pairs are shifted by TDOA and the inner product is obtained. The TDOA inner product matrix with the values as elements is calculated, the eigenvalues of the symmetrized TDOA inner product matrix are calculated, the number of eigenvalues larger than a predetermined threshold is calculated, and the number is common to the two receiving sensor pairs. By using the signal number estimation means for estimating the number of received signals and the inner product matrix, the same TDOA is not redundantly paired with a plurality of different TDOAs, and the elements of the inner product matrix A pair of correlation peaks obtained by each correlation calculation is calculated so that the sum of the magnitudes becomes large, and this is set as a pair of TDOAs obtained from the same radio wave source. Therefore, it is possible to eliminate false images caused by pairing with brute force.

TDOA測位の概要を示す説明図である。It is explanatory drawing which shows the outline | summary of TDOA positioning. 従来のTDOA測位における受信センサペアによって数の異なる相関ピークが得られる場合の説明図である。It is explanatory drawing when the correlation peak from which a number differs is obtained by the receiving sensor pair in the conventional TDOA positioning. 従来のTDOA測位における偽像を示す説明図である。It is explanatory drawing which shows the false image in the conventional TDOA positioning. この発明の実施の形態1による測位装置を示す構成図である。It is a block diagram which shows the positioning apparatus by Embodiment 1 of this invention. この発明の実施の形態1による測位装置における電波源と受信センサの配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of the radio wave source and reception sensor in the positioning apparatus by Embodiment 1 of this invention. 図5の配置例における相関演算結果の説明図である。It is explanatory drawing of the correlation calculation result in the example of arrangement | positioning of FIG. この発明の実施の形態1による測位装置におけるS の固有値を示す説明図である。Is an explanatory view showing the eigenvalues of S T H S T in the positioning apparatus according to Embodiment 1 of the present invention. この発明の実施の形態2による測位装置の概念を示す説明図である。It is explanatory drawing which shows the concept of the positioning apparatus by Embodiment 2 of this invention. この発明の実施の形態3による測位装置の概念を示す説明図である。It is explanatory drawing which shows the concept of the positioning apparatus by Embodiment 3 of this invention. この発明の実施の形態3による測位装置を示す構成図である。It is a block diagram which shows the positioning apparatus by Embodiment 3 of this invention. この発明の実施の形態4による測位装置の概念を示す説明図である。It is explanatory drawing which shows the concept of the positioning apparatus by Embodiment 4 of this invention. この発明の実施の形態4による測位装置を示す構成図である。It is a block diagram which shows the positioning apparatus by Embodiment 4 of this invention. この発明の実施の形態5による測位装置を示す構成図である。It is a block diagram which shows the positioning apparatus by Embodiment 5 of this invention. この発明の実施の形態6による測位装置を示す構成図である。It is a block diagram which shows the positioning apparatus by Embodiment 6 of this invention.

実施の形態1.
図4は、この発明の実施の形態1による測位装置を示す構成図である。
図4に示す測位装置は、受信センサRx1〜Rx3、受信部1a〜1c、TDOA相関演算部2a,2b、ピーク検出部3a,3b、TDOA内積行列計算部4、信号数推定部5、TDOAペアリング部6、TDOA測位演算部7a,7bを備えている。受信センサRx1〜Rx3は、3箇所に配置され、電波源からの電波を受信するためのセンサである。受信部1a〜1cは、それぞれ受信センサRx1〜Rx3からの受信信号を入力し、図示しないA/D変換部によりアナログ/デジタル変換を行う演算部である。ピーク検出部3a,3bは、TDOA相関演算部2a,2bから出力された相関ピークを検出する処理部である。TDOA内積行列計算部4は、ピーク検出部3a,3bで検出された相関ピーク値に基づいてTDOA内積行列を求めるための計算部である。信号数推定部5は、TDOA内積行列計算部4の内積行列の結果に基づいて、信号数を推定する処理部である。また、これらTDOA内積行列計算部4と信号数推定部5とで信号数推定手段が構成されている。
Embodiment 1 FIG.
FIG. 4 is a block diagram showing a positioning apparatus according to Embodiment 1 of the present invention.
4 includes reception sensors Rx1 to Rx3, reception units 1a to 1c, TDOA correlation calculation units 2a and 2b, peak detection units 3a and 3b, a TDOA inner product matrix calculation unit 4, a signal number estimation unit 5, and a TDOA pair. A ring unit 6 and TDOA positioning calculation units 7a and 7b are provided. The reception sensors Rx1 to Rx3 are sensors that are disposed at three locations and receive radio waves from a radio wave source. The receiving units 1a to 1c are arithmetic units that receive reception signals from the receiving sensors Rx1 to Rx3 and perform analog / digital conversion by an A / D conversion unit (not shown). The peak detection units 3a and 3b are processing units that detect correlation peaks output from the TDOA correlation calculation units 2a and 2b. The TDOA inner product matrix calculation unit 4 is a calculation unit for obtaining a TDOA inner product matrix based on the correlation peak values detected by the peak detection units 3a and 3b. The signal number estimation unit 5 is a processing unit that estimates the number of signals based on the result of the inner product matrix of the TDOA inner product matrix calculation unit 4. The TDOA inner product matrix calculation unit 4 and the signal number estimation unit 5 constitute a signal number estimation unit.

TDOAペアリング部6は、各受信センサペアで得られたTDOAを、同一電波源からのもの同士でペアリングを行うペアリング手段である。TDOA測位演算部7a,7bは、TDOAペアリング部6でペアリングが決定されたTDOAを用いてTDOA測位演算を行う演算部である。   The TDOA pairing unit 6 is a pairing unit that pairs the TDOAs obtained from the respective reception sensor pairs with each other from the same radio wave source. The TDOA positioning calculation units 7a and 7b are calculation units that perform TDOA positioning calculation using the TDOA whose pairing is determined by the TDOA pairing unit 6.

次に、このように構成された測位装置の動作について説明する。
まず、3箇所に配置した受信センサRx1,Rx2,Rx3により得られた受信信号x,x,xは、受信部1a〜1cにおいて、A/Dコンバータにより離散化された離散信号、すなわち、x=x(t) k=0,…,K−1,i=1,2,3に変換する。ここで、tは第kサンプル時刻、Kはサンプル総数である。次にTDOA相関演算部2a,2bにおいて、受信信号x及びxのペア、及び、受信信号xとxのペアで、式(1)及び式(2)で示したTDOA相関演算により、以下のTDOAが得られたとする。

Figure 0005950761

ここでは、受信信号x及びxのペアでは2つのTDOA,受信信号xとxのペアでは3つのTDOAが得られた例を示している。また、図4においても、ピーク検出部3aからは2つ、ピーク検出部3bからは3つのピークが検出された場合を矢印の本数で示している。 Next, the operation of the positioning device configured as described above will be described.
First, the reception signals x 1 , x 2 , x 3 obtained by the reception sensors Rx 1 , Rx 2 , Rx 3 arranged in three places are discrete signals discretized by the A / D converter in the reception units 1 a to 1 c, that is, , X i = x i (t k ) k = 0,..., K−1, i = 1, 2, 3 Here, t k is the k-th sample time, K is the total number of samples. Then TDOA correlation calculation unit 2a, in 2b, a pair of the received signals x 1 and x 2, and a pair of a received signal x 2 and x 3, the TDOA correlation calculation shown in equation (1) and (2) Suppose that the following TDOA is obtained.

Figure 0005950761

Here, an example is shown in which two TDOAs are obtained for the pair of received signals x 1 and x 3 and three TDOAs are obtained for the pair of received signals x 2 and x 3 . Also in FIG. 4, the number of arrows indicates the case where two peaks are detected from the peak detector 3a and three peaks are detected from the peak detector 3b.

上記TDOA相関演算は、xを基準としてTDOAが得られている。すなわち、xの受信時刻を基準としたx及びxの時間遅延量が得られていると考えることができる。このため、x及びxをそれぞれのTDOA分だけ時間シフトさせ、内積を計算すると、正しいTDOAペアの場合、両者の時刻が合致した信号となる。よって、大きな内積値を得る。逆に、正しいTDOAペアでない場合、時刻が不一致の信号となるため、内積値は非常に小さい値となる。この性質に注目し、TDOA内積行列計算部4で、以下のTDOA内積行列Sを計算する。

Figure 0005950761
The TDOA correlation calculation, TDOA is obtained based on the x 3. That is, it can be considered that the time delay of x 1 and x 2 relative to the reception time of x 3 is obtained. For this reason, when x 1 and x 2 are shifted in time by the respective TDOA and the inner product is calculated, in the case of a correct TDOA pair, a signal in which both times coincide is obtained. Therefore, a large inner product value is obtained. On the other hand, when the pair is not a correct TDOA pair, the signals are inconsistent in time, so the inner product value is a very small value. Attention to this property, with TDOA inner product matrix calculator 4 calculates the following TDOA inner product matrix S T.

Figure 0005950761

また、時間軸上で信号x(t)を任意の時間τだけ時間シフトさせた信号x(t−τ)は、次式で計算することができる。

Figure 0005950761
ここで、DFTは離散フーリエ変換、IDFTは逆離散フーリエ変換である。また、fは、周波数領域での第m周波数ビンの周波数である。 A signal x (t k −τ) obtained by shifting the signal x (t k ) on the time axis by an arbitrary time τ can be calculated by the following equation.

Figure 0005950761
Here, DFT is discrete Fourier transform, and IDFT is inverse discrete Fourier transform. Further, f m is the frequency of the m frequency bins in the frequency domain.

次に、信号数推定部5では、S 固有値の値を計算する。そして、大きい固有値の数が信号数となる。例えば大きさによる判定には、閾値判定を用いることができる。または、単純に、TDOA内積行列Sの要素が閾値より大きい数を信号数としてもよい。
例えば、CCFx1,x3(τ)で2本の相関ピーク、CCFx2,x3(τ)で3本の相関ピーク得られた場合、TDOA内積行列Sは以下の2行3列の行列となる。ここで、a,bは、ある大きい値を示しており、大きい内積値が得られたことを意味している。その他の0は、小さい内積値が得られたことを意味している。実際には0ではなく、何らかの小さな値であるが、ここでは、表記を簡単にするため、0としている。式(11)は、明らかに、大きい固有値の数が2であり、これを信号数推定とする。このように、S の固有値を計算し、それがある閾値以上となる数をカウントすることで、信号数が推定できる。

Figure 0005950761
Next, the signal number estimation unit 5 calculates the value of the S T H S T eigenvalue. The number of large eigenvalues is the number of signals. For example, threshold determination can be used for determination by size. Or may simply a number larger elements threshold TDOA inner product matrix S T as the number of signals.
For example, when two correlation peaks are obtained with CCF x1, x3 (τ) and three correlation peaks are obtained with CCF x2, x3 (τ), the TDOA inner product matrix S is a matrix with the following 2 rows and 3 columns. Here, a and b indicate a certain large value, which means that a large inner product value is obtained. The other 0 means that a small inner product value is obtained. Actually, it is not 0 but some small value, but here it is set to 0 in order to simplify the notation. In equation (11), the number of large eigenvalues is clearly 2, and this is the signal number estimation. Thus, the number of signals can be estimated by calculating the eigenvalue of S T H S T and counting the number that exceeds a certain threshold.

Figure 0005950761

同様に、例えば、CCFx1,x3(τ)で3本の相関ピーク、CCFx2,x3(τ)で2本の相関ピーク得られた場合、Sは以下の3行2列の行列となるため、この場合も、大きい固有値の総数は2であるため、信号数は2と推定される。

Figure 0005950761
The same way, for example, CCF x1, x3 (τ) with three correlation peaks, if two obtained correlation peak at CCF x2, x3 (τ), S T is less 3 2 matrix Therefore, in this case, since the total number of large eigenvalues is 2, the number of signals is estimated to be 2.

Figure 0005950761

次に、実施の形態1の測位装置の動作を数値例を用いてさらに説明する。
図5に電波源と受信センサ配置例、図6に相関演算結果例、図7にS の固有値を小さい順に並べた図を示す。
図5に示すように、本例では、Rx1,Rx2及びRx3の3つの受信センサと、2波の電波源Tx1及びTx2が存在しているとする。よって、理想的には、CCFx1,x3(τ),CCFx2,x3(τ)の両受信センサペアの相関演算で、2本ずつ相関ピークが立つはずである。しかしながら、図6に示すように、CCFx1,x3(τ)では相関ピークが3本得られており、CCFx2,x3(τ)では相関ピークが4本得られている。
このような状況で、本実施の形態の測位装置は、先ず、両受信センサペアで共有に得られている信号数を推定する。図7では、信号数を推定するために、S の固有値を計算し、昇順に並べた状態を示している。図7に示すように、大きな固有値が2個得られているため、2波と判定できる。
Next, the operation of the positioning apparatus of the first embodiment will be further described using numerical examples.
FIG. 5 shows an example of arrangement of radio wave sources and reception sensors, FIG. 6 shows an example of correlation calculation results, and FIG. 7 shows a diagram in which eigenvalues of S T H S T are arranged in ascending order.
As shown in FIG. 5, in this example, it is assumed that there are three reception sensors Rx1, Rx2, and Rx3 and two radio wave sources Tx1 and Tx2. Therefore, ideally, two correlation peaks should occur in the correlation calculation of both the receiving sensor pairs of CCF x1, x3 (τ) and CCF x2, x3 (τ). However, as shown in FIG. 6, three correlation peaks are obtained for CCF x1, x3 (τ), and four correlation peaks are obtained for CCF x2, x3 (τ).
In such a situation, the positioning device of the present embodiment first estimates the number of signals obtained in common by both receiving sensor pairs. FIG. 7 shows a state in which eigenvalues of S T H S T are calculated and arranged in ascending order in order to estimate the number of signals. Since two large eigenvalues are obtained as shown in FIG. 7, it can be determined that there are two waves.

次に、信号数が推定できたので、TDOAペアリング部6にて、両受信センサペアで共通して受信されている信号のTDOAを特定し、受信センサペア間でTDOAのペアリングを行う。ここで、推定信号数をJnと呼ぶ。TDOA内積行列Sの各要素に注目すると、両受信センサペアで共通して受信された信号のTDOAペアでは、大きい値を持つ。この性質を用い、TDOAペアリング部6では、内積値が大きい要素のτのペアに注目する。TDOA内積行列計算部4で計算したTDOA内積行列Sの要素から、矛盾のないように、すなわち、同じτが異なる2つ以上のτに重複してペアリングされるような矛盾のないように、Jn個の要素の絶対値の和が最大となる(τ,τ)ペア(i=1,2 j=a,b,c)を選択する。次式の最適化問題となる。

Figure 0005950761

上記の解が、両受信センサペア間でのTDOAペアリング結果となる。 Next, since the number of signals has been estimated, the TDOA pairing unit 6 identifies the TDOA of the signal received in common by both receiving sensor pairs, and performs TDOA pairing between the receiving sensor pairs. Here, the estimated number of signals is called Jn. Focusing on each element of the TDOA inner product matrix S T, in the TDOA pair commonly received signal in both receiving sensor pairs, with large values. Using this property, the TDOA pairing unit 6 pays attention to a pair of τ that has a large inner product value. From the elements of TDOA inner product matrix calculating unit TDOA inner product matrix calculated in 4 S T, to be consistent, i.e., consistent as the same tau i is paired redundantly in two or more different tau j Thus, the (τ i , τ j ) pair (i = 1, 2 j = a, b, c) that maximizes the sum of the absolute values of the Jn elements is selected. It becomes an optimization problem of the following equation.

Figure 0005950761

The above solution is a TDOA pairing result between the two receiving sensor pairs.

上述した信号数推定処理では、2波と判定されたため、行列abs(S)の要素から、矛盾のないように和が最大となる2個の組み合わせを選択する。ここで、abs(S)とは、TDOA内積行列Sの各要素の絶対値(大きさ)を要素としてもつ行列である。行列abs(S)は次式となる。なお、ここでは、最大要素が1となるよう規格化している。

Figure 0005950761

この場合、下線を引いた2つの要素の組み合わせで、式(13)が最大であるので、TDOA13(1)とTDOA23(4)がペアであり(検出ピークが、25.144040[μsec],65.037503[μsec]),また、TDOA13(2)とTDOA23(1)がペアであり(検出ピークが、−64.096761[μsec],−45.387498[μsec])、という結果が得られた。これは、図6に示す正解と同じ値であり、正しくペアリングができていることがわかる。 In the signal number estimation process described above, since it is determined that there are two waves, two combinations that maximize the sum are selected from the elements of the matrix abs (S T ) so as not to contradict each other. Here, abs (S T ) is a matrix having as elements the absolute value (size) of each element of the TDOA inner product matrix S T. The matrix abs (S T ) is Here, normalization is performed so that the maximum element is 1.

Figure 0005950761

In this case, since the expression (13) is the maximum in the combination of two underlined elements, TDOA 13 (1) and TDOA 23 (4) are a pair (the detection peak is 25.144040 [μsec]). 65.037503 [μsec]), and TDOA 13 (2) and TDOA 23 (1) are in pairs (detection peaks are −64.040961 [μsec] and −45.387498 [μsec]). was gotten. This is the same value as the correct answer shown in FIG. 6, and it can be seen that pairing is correctly performed.

最後に、TDOA測位演算部7a,7bでは、ペアリングの決定したTDOAを用いて、式(3)及び式(4)で示した連立方程式を解く。   Finally, the TDOA positioning calculation units 7a and 7b solve the simultaneous equations shown in the equations (3) and (4) by using the TDOA for which the pairing is determined.

以上説明したように、実施の形態1の測位装置によれば、3つ以上の受信センサによって受信された電波の到来時間差(TDOA)を用いて電波源を測位する測位装置において、受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でTDOA相関演算を行った場合に、複数のTDOAが得られ、かつ、その数が、受信センサペア毎に異なる場合、各受信センサペアで受信されている信号数を推定する信号数推定手段と、信号数推定手段で推定された信号数に基づいて、各受信センサペアで得られたTDOAを、同一電波源からのもの同士でペアリングを行うペアリング手段とを備えたので、従来方式のような総当りでペアリングを考えることによる偽像を排除することができる。   As described above, according to the positioning device of the first embodiment, in the positioning device that measures the radio wave source using the arrival time difference (TDOA) of radio waves received by three or more receiving sensors, When TDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the difference in arrival time of radio waves, a plurality of TDOAs are obtained, and the number of reception sensor pairs is different when the number is different for each reception sensor pair. Based on the number of signals estimated by the number-of-signals estimation means and the number-of-signals estimated by the number-of-signals estimation means, the TDOA obtained by each receiving sensor pair is paired with those from the same radio wave source. Therefore, it is possible to eliminate a false image caused by considering pairing with brute force as in the conventional method.

また、実施の形態1の測位装置によれば、信号数推定手段は、TDOA内積行列を計算し、その行列、または、対称化された行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を信号数の推定値とするようにしたので、信号数の確実な推定を行うことができる。   Further, according to the positioning apparatus of the first embodiment, the signal number estimation means calculates the TDOA inner product matrix, calculates the eigenvalue of the matrix or the symmetrized matrix, and calculates the eigenvalue larger than a predetermined threshold. Since the number is calculated and the number is used as the estimated value of the number of signals, the number of signals can be reliably estimated.

また、実施の形態1の測位装置によれば、ペアリング手段は、TDOA内積行列を用いて、同一のTDOAが異なる複数のTDOAに重複してペアリングされることなく、かつ、TDOA内積行列の要素の大きさの和が大きくなるように各相関演算で得られたTDOAのペアを求め、これを、同一の電波源から得られたTDOAのペアとするようにしたので、正確なペアリング結果を得ることができる。   Further, according to the positioning apparatus of Embodiment 1, the pairing means uses the TDOA inner product matrix so that the same TDOA is not paired with a plurality of different TDOAs, and the TDOA inner product matrix Since the TDOA pair obtained by each correlation calculation is obtained so that the sum of the element sizes becomes large, and this is made the TDOA pair obtained from the same radio wave source, an accurate pairing result Can be obtained.

実施の形態2.
実施の形態1では、TDOA内積行列計算部4において、TDOA内積行列Sは、信号x及びxをそれぞれτ,τ及びτ,τ,τだけ時間シフトさせて後、内積を計算することにより求めていた。これに対して、実施の形態2では、TDOA内積行列Sを求める方法として、xとxの相関演算CCFx1,x2(τ)を実施し、τ−τ,τ−τ,τ−τ,τ−τ,τ−τ,τ−τにおけるCCFx1,x2(τ)の値を用いる、すなわち、各TDOAの組み合わせの差の値におけるTDOA相関値をCCFx1,x2(τ)の計算結果から読むことにより、TDOA内積行列Sの各要素を求めることができる。
図8は、実施の形態2の概念図である。例えば、式(7)は次式(15)により得られる。

Figure 0005950761

式(15)を用いることにより、実施の形態1と同様に、信号数推定及びペアリングを行うことができる。 Embodiment 2. FIG.
In the first embodiment, the TDOA inner product matrix calculator 4, TDOA inner product matrix S T is, 1 tau signals x 1 and x 2, respectively, tau 2 and tau a, tau b, after by only time shift tau c, It was obtained by calculating the inner product. In contrast, in the second embodiment, as a method for determining the TDOA inner product matrix S T, implemented x 1 and the correlation calculation CCF x1 of x 2, x2 (τ), τ 1 -τ a, τ 1 -τ b , τ 1 −τ c , τ 2 −τ a , τ 2 −τ b , and τ 2 −τ c use the value of CCF x1, x2 (τ), that is, TDOA at the value of the difference of the combination of each TDOA by reading the correlation values from the calculation results of the CCF x1, x2 (τ), can be obtained the elements of TDOA inner product matrix S T.
FIG. 8 is a conceptual diagram of the second embodiment. For example, Expression (7) is obtained by the following Expression (15).

Figure 0005950761

By using Expression (15), signal number estimation and pairing can be performed as in the first embodiment.

以上説明したように、実施の形態2の測位装置によれば、信号数推定手段は、受信センサが3機である場合、TDOA内積行列を計算するために、第3の受信センサペア(例えば、Rx1とRx3及びRx2とRx3の受信センサペアで相関演算を行った場合、第3の受信センサペアはRx1とRx2)間のTDOA相関演算を行っておき、受信センサペアRx1とRx3及びRx2とRx3で得られた複数のTDOA間の差の値におけるRx1とRx2のTDOA相関値を読み取り、その値をTDOA内積行列の各要素として用いるようにしたので、実施の形態1と同様に確実な信号数推定及びペアリングを行うことができる。   As described above, according to the positioning apparatus of the second embodiment, when there are three reception sensors, the signal number estimation unit calculates the third reception sensor pair (for example, Rx1) in order to calculate the TDOA inner product matrix. , Rx3, and Rx2 and Rx3 receive sensor pairs, the third receive sensor pair performs TDOA correlation calculation between Rx1 and Rx2), and is obtained with the receive sensor pairs Rx1, Rx3, Rx2, and Rx3 Since the TDOA correlation values of Rx1 and Rx2 in the difference values between a plurality of TDOAs are read and used as the elements of the TDOA inner product matrix, reliable signal number estimation and pairing are performed as in the first embodiment. It can be performed.

実施の形態3.
実施の形態1,2では受信センサ数が3つの場合を説明したが、受信センサ数が4つ以上存在する場合でも適用可能である。図9に本実施の形態の概念図、図10に本実施の形態の測位装置の構成図を示す。
Embodiment 3 FIG.
In the first and second embodiments, the case where the number of reception sensors is three has been described. However, the present invention is applicable even when there are four or more reception sensors. FIG. 9 is a conceptual diagram of the present embodiment, and FIG. 10 is a configuration diagram of the positioning device of the present embodiment.

例えば、4受信センサを用いる場合、数珠つなぎの考え方を用いて、受信センサRx1とRx2,Rx2とRx3で適用し、CCFx1,x2(τ)で得られたTDOAと、CCFx2,x3(τ)で得られたTDOAの信号数推定及びペアリングが可能である。引き続き、Rx2とRx3、Rx3とRx4で適用し、CCFx2,x3(τ)で得られたTDOAと、CCFx3,x4(τ)で得られたTDOAの信号数推定及びペアリングが可能である。よって、CCFx1,x2(τ)、CCFx2,x3(τ)及びCCFx3,x4(τ)の信号数推定及びTDOAのペアリングがされたことになる。このようにすれば、4受信センサ以上でも、TDOAの信号数推定及びペアリングが可能となる。 For example, when four reception sensors are used, the TDOA obtained by CCF x1, x2 (τ) and CCF x2, x3 (τ) are applied by the reception sensors Rx1 and Rx2, Rx2 and Rx3 using the concept of daisy-chaining. It is possible to estimate the number of TDOA signals obtained in step 2) and to perform pairing. Subsequently, it is possible to estimate and pair the number of signals of TDOA obtained by CCF x2, x3 (τ) and TDOA obtained by CCF x3, x4 (τ) by applying Rx2 and Rx3 and Rx3 and Rx4. . Therefore, signal number estimation and TDOA pairing of CCF x1, x2 (τ), CCF x2, x3 (τ) and CCF x3, x4 (τ) have been performed. In this way, TDOA signal number estimation and pairing are possible even with four or more receiving sensors.

図10に示す測位装置において、Rx1〜Rx4は4つの受信センサ、受信部1a〜1dは、受信センサRx1〜Rx4の信号を入力する受信部であり、これらは図4に示した実施の形態1の構成と同様である。また、信号数推定及びペアリング部10a,10bは、図4に示すTDOA相関演算部2a,2b〜TDOAペアリング部6に対応する処理部であり、その機能としてはTDOA相関演算部2a,2b〜TDOAペアリング部6と同様である。統合処理部11は、信号数推定及びペアリング部10a,10bの処理結果に基づいて最終的なペアリング結果を求める処理部である。TDOA測位演算部7a,7bは図4の構成と同様である。   In the positioning device shown in FIG. 10, Rx1 to Rx4 are four receiving sensors, and the receiving units 1a to 1d are receiving units for inputting signals from the receiving sensors Rx1 to Rx4, and these are the first embodiment shown in FIG. It is the same as that of the structure. Further, the signal number estimation and pairing units 10a and 10b are processing units corresponding to the TDOA correlation calculation units 2a and 2b to TDOA pairing unit 6 shown in FIG. 4, and their functions are TDOA correlation calculation units 2a and 2b. -Same as the TDOA pairing unit 6. The integration processing unit 11 is a processing unit that obtains a final pairing result based on the signal number estimation and processing results of the pairing units 10a and 10b. The TDOA positioning calculation units 7a and 7b have the same configuration as that shown in FIG.

このように構成された測位装置では、信号数推定及びペアリング部10a,10bにおいて、図4に示したTDOA相関演算部2a,2bとピーク検出部3a,3bで、CCFx1,x2(τ)でτ,τ、及び、CCFx2,x3(τ)でτ,τが得られた場合に、TDOAペアリング部6までの処理で、(τ,τ),(τ,τ)のペアが成立し、同様に、CCFx2,x3(τ)でτ,τ、及び、CCFx3,x4(τ)でτ,τが得られた場合に、(τ,τ),(τ,τ)のペアが成立したとする。この場合、統合処理部11では、共通して得られているTDOA、この場合は、τ,τに着目することにより、最終的に、(τ,τ,τ)、(τ,τ,τ)のペアリングを得る。 In the positioning device configured as described above, in the signal number estimation and pairing units 10a and 10b, CCF x1, x2 (τ) in the TDOA correlation calculation units 2a and 2b and the peak detection units 3a and 3b shown in FIG. Τ 1 , τ 2 , and CCF x2, x3 (τ), and τ a , τ b are obtained in the processing up to the TDOA pairing unit 6, (τ 1 , τ a ), (τ 2 , established pairs tau b) is likewise, CCF x2, x3 (tau) in tau a, tau b, and, Oh tau in CCF x3, x4 (tau), if the had tau has been obtained, ( τ a, Oh τ), and it was established pairs (τ b, τ stomach). In this case, the integration processing unit 11, are obtained by commonly TDOA, in this case, by focusing on the tau a, tau b, finally, (τ 1, τ a, τ Oh), (tau 1, get τ b, the pairing of τ stomach).

なお、例えば、Rx1とRx2,Rx2とRx3の場合、これまでの実施の形態を踏襲すると、両センサペアで共通して存在するセンサが基準となるため、この場合は、Rx2が基準となる。よって、本来は、CCFx1,x2(τ)とCCFx2,x3(τ)ではなく、CCFx1,x2(τ)とCCFx3,x2(τ)と表記すべきであるが、CCFx1,x2(τ)とCCFx3,x2(−τ)は同一であるため、得られたTDOAの符号が変わるだけなので、この点に注意して処理を行えば、どちらの表記でも問題ない。 For example, in the case of Rx1, Rx2, Rx2, and Rx3, following the previous embodiment, the sensor that exists in common in both sensor pairs is the reference, and in this case, Rx2 is the reference. Therefore, originally, CCF x1, x2 (τ) and CCF x3, x2 (τ) should be written instead of CCF x1, x2 (τ) and CCF x2, x3 (τ), but CCF x1, x2 Since (τ) and CCF x3, x2 (−τ) are the same, only the sign of the obtained TDOA is changed. Therefore, if the processing is performed while paying attention to this point, there is no problem in either notation.

以上説明したように、実施の形態3の測位装置によれば、信号数推定手段及びペアリング手段は、受信センサが4機以上の場合、第1の受信センサと第2の受信センサ、第2の受信センサと第3の受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと第3の受信センサ、第3の受信センサと第4の受信センサで同様に信号数推定及びペアリングを行い、これを最後の受信センサまで順次行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られる複数のTDOAを、同一の電波源のTDOAとしてペアリングを行うようにしたので、受信センサが4機以上であっても実施の形態1と同様の効果を得ることができる。   As described above, according to the positioning apparatus of the third embodiment, the signal number estimating means and the pairing means, when there are four or more receiving sensors, the first receiving sensor, the second receiving sensor, and the second receiving sensor, The number of signals is estimated and paired by the second receiving sensor and the third receiving sensor, and then the number of signals is similarly determined by the second receiving sensor and the third receiving sensor, and the third receiving sensor and the fourth receiving sensor. By performing estimation and pairing, and sequentially performing this up to the last reception sensor, the number of signals received in common by all reception sensors and a plurality of TDOAs obtained for each reception sensor pair can be obtained from the same radio wave source. Since the pairing is performed as the TDOA, the same effects as those of the first embodiment can be obtained even when there are four or more receiving sensors.

実施の形態4.
実施の形態4は、受信センサ数が4つ以上存在する場合でも適用可能な例を示している。図11に本実施の形態の概念図、図12に本実施の形態の測位装置の構成図を示す。
Embodiment 4 FIG.
Embodiment 4 shows an example applicable even when there are four or more reception sensors. FIG. 11 is a conceptual diagram of the present embodiment, and FIG. 12 is a configuration diagram of the positioning device of the present embodiment.

図11に示すように、4受信センサを用いる場合、ある受信センサ、例えばRx4を基準として、Rx1とRx4,Rx2とRx4で適用し、CCFx1,x4(τ)で得られたTDOAと、CCFx2,x4(τ)で得られたTDOAの信号数推定及びペアリングが可能である。引き続き、Rx2とRx4、Rx3とRx4で適用し、CCFx2,x4(τ)で得られたTDOAと、CCFx3,x4(τ)で得られたTDOAの信号数推定及びペアリングが可能である。よって、CCFx1,x4(τ)、CCFx2,x4(τ)、及びCCFx3,x4(τ)の信号数推定及びTDOAのペアリングがされたことになる。このようにすれば、4受信センサ以上でも、TDOAの信号数推定及びペアリングが可能となる。 As shown in FIG. 11, when four receiving sensors are used, a certain receiving sensor, for example, Rx4, Rx1, Rx4, Rx2, and Rx4 are applied, and TDOA obtained by CCF x1, x4 (τ), CCF The number of signals of TDOA obtained by x2, x4 (τ) and pairing can be performed. Subsequently, it is possible to estimate and pair the number of signals of TDOA obtained by CCF x2, x4 (τ) and TDOA obtained by CCF x3, x4 (τ) by applying Rx2 and Rx4 and Rx3 and Rx4. . Therefore, signal number estimation and TDOA pairing of CCF x1, x4 (τ), CCF x2, x4 (τ), and CCF x3, x4 (τ) are performed. In this way, TDOA signal number estimation and pairing are possible even with four or more receiving sensors.

図12に示す測位装置では、4つの受信センサRx1〜Rx4、受信部1a〜1d、信号数推定及びペアリング部10a,10b、統合処理部11、TDOA測位演算部7a,7bを備えており、基本的な構成は図10に示した実施の形態3の構成と同様である。   The positioning device shown in FIG. 12 includes four receiving sensors Rx1 to Rx4, receiving units 1a to 1d, signal number estimation and pairing units 10a and 10b, an integration processing unit 11, and TDOA positioning calculation units 7a and 7b. The basic configuration is the same as the configuration of the third embodiment shown in FIG.

このように構成された測位装置では、信号数推定及びペアリング部10a,10bにおいて、図4に示したTDOA相関演算部2a,2bとピーク検出部3a,3bで、CCFx1,x4(τ)でτ,τ及びCCFx2,x4(τ)でτ,τが得られた場合に、TDOAペアリング部6までの処理で、(τ,τ),(τ,τ)のペアが成立し、同様に、CCFx2,x4(τ)でτ,τ、及び、CCFx3,x4(τ)でτ,τが得られた場合に、(τ,τ),(τ,τ)のペアが成立したとする。この場合、統合処理部11では、共通して得られているTDOA、この場合は、τ,τに着目することにより、最終的に、(τ,τ,τ)、(τ,τ,τ)のペアリングを得る。 In the positioning apparatus configured in this way, the signal number estimation and pairing units 10a and 10b have CCF x1, x4 (τ) in the TDOA correlation calculation units 2a and 2b and the peak detection units 3a and 3b shown in FIG. in tau 1, tau 2 and CCF x2, x4 (τ) in tau a, if tau b is obtained, the processing up to TDOA pairing unit 6, (τ 1, τ a ), (τ 2, τ b) a pair is established, similarly, CCF x2, x4 (τ) in tau a, tau b, and, Oh tau in CCF x3, x4 (τ), when had tau has been obtained, (tau a , τ Oh), and was established pairs (τ b, τ stomach). In this case, the integration processing unit 11, are obtained by commonly TDOA, in this case, by focusing on the tau a, tau b, finally, (τ 1, τ a, τ Oh), (tau 1, get τ b, the pairing of τ stomach).

以上説明したように、実施の形態4の測位装置によれば、信号数推定手段及びペアリング手段は、受信センサが4機以上の場合、特定の受信センサを基準受信センサとして、第1の受信センサと基準受信センサ、第2の受信センサと基準受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと基準受信センサ、第3の受信センサと基準センサで信号数推定及びペアリングを行い、これを基準センサ以外のすべての受信センサまで行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られる複数のTDOAを、同一の電波源のTDOAとしてペアリングを行うようにしたので、受信センサが4機以上であっても実施の形態1と同様の効果を得ることができる。   As described above, according to the positioning apparatus of the fourth embodiment, the signal number estimating means and the pairing means, when there are four or more reception sensors, use the specific reception sensor as the reference reception sensor and perform the first reception. The number of signals is estimated and paired by the sensor and the reference receiving sensor, the second receiving sensor and the reference receiving sensor, and then the number of signals is estimated by the second receiving sensor and the reference receiving sensor, and the third receiving sensor and the reference sensor. And performing pairing, and performing all of the receiving sensors other than the reference sensor, it is possible to estimate the number of signals received in common by all the receiving sensors and the plurality of TDOAs obtained for each receiving sensor pair. Since pairing is performed as the TDOA of the radio wave source, the same effect as in the first embodiment can be obtained even if there are four or more reception sensors.

実施の形態5.
上記実施の形態1〜4ではTDOA測位について説明したが、本発明はドップラー周波数差(FDOA:Frequency Difference Of Arrival)測位にも適用可能であり、これを実施の形態5として説明する。
Embodiment 5 FIG.
Although the TDOA positioning has been described in the above first to fourth embodiments, the present invention can also be applied to Doppler frequency difference (FDOA) frequency positioning, which will be described as a fifth embodiment.

実施の形態5では、TDOAではなく、FDOA相関を用いる。これは次式で定義される。

Figure 0005950761

ここで、fは周波数である。この場合、TDOA内積行列Sの代わりに、FDOA内積行列Sを計算する必要がある。TDOAでは時間シフトさせた信号を用いていたのに対し、FDOAでは、周波数シフトさせた信号を用いる。信号x(t)を、周信号数軸上で任意の周信号数fだけシフトさせた信号は、次式で計算できる。

Figure 0005950761

例えば、CCFx1,x3(f)でf,f、CCFx2,x3(f)でf,f,fが得られたとすると、式(7)のTDOA内積行列Sは、FDOA内積行列となり、次式となる。

Figure 0005950761

上記式(19)を用いれば、TDOAの場合と同様に、信号数推定、及び、FDOAのペアリングが可能である。 In the fifth embodiment, FDOA correlation is used instead of TDOA. This is defined by:

Figure 0005950761

Here, f is a frequency. In this case, instead of TDOA inner product matrix S T, it is necessary to calculate the FDOA inner product matrix S F. In TDOA, a time-shifted signal is used, while in FDOA, a frequency-shifted signal is used. A signal obtained by shifting the signal x (t k ) by an arbitrary number of peripheral signals f on the peripheral signal number axis can be calculated by the following equation.

Figure 0005950761

For example, CCF x1, x3 (f) at f 1, f 2, CCF x2 , x3 (f) at f a, f b, When f c is obtained, TDOA inner product matrix S of the formula (7), FDOA The inner product matrix is given by

Figure 0005950761

If the above equation (19) is used, signal number estimation and FDOA pairing are possible as in the case of TDOA.

図13は、実施の形態5の測位装置を示す構成図である。実施の形態5の測位装置は、受信センサRx1〜Rx3、受信部1a〜1c、FDOA相関演算部20a,20b、ピーク検出部3a,3b、FDOA内積行列計算部40、信号数推定部5、FDOAペアリング部60、FDOA測位演算部70a,70bを備えている。ここで、受信センサRx1〜Rx3、受信部1a〜1c、ピーク検出部3a,3b、信号数推定部5は、図4に示した実施の形態1の構成と同一である。FDOA相関演算部20a,20bは、図4におけるTDOA相関演算部2a,2bを置き換えたもので、ピーク検出部3a,3bはFDOA相関演算部20a,20bでのFDOA相関に対するピーク検出を行う。また、FDOA内積行列計算部40は図4のTDOA内積行列計算部4に対応する計算部であり、上記の式(19)の計算を行う。FDOAペアリング部60は、式(19)の結果に基づきTDOAの場合の処理を踏襲して行う。FDOA測位演算部70a,70bは、以下の式(20)及び式(21)を用い、最小二乗法により測位演算を行う。   FIG. 13 is a configuration diagram illustrating the positioning apparatus according to the fifth embodiment. The positioning device according to the fifth embodiment includes reception sensors Rx1 to Rx3, reception units 1a to 1c, FDOA correlation calculation units 20a and 20b, peak detection units 3a and 3b, an FDOA inner product matrix calculation unit 40, a signal number estimation unit 5, and an FDOA. A pairing unit 60 and FDOA positioning calculation units 70a and 70b are provided. Here, the receiving sensors Rx1 to Rx3, the receiving units 1a to 1c, the peak detecting units 3a and 3b, and the signal number estimating unit 5 are the same as the configuration of the first embodiment shown in FIG. The FDOA correlation calculation units 20a and 20b replace the TDOA correlation calculation units 2a and 2b in FIG. 4, and the peak detection units 3a and 3b perform peak detection on the FDOA correlation in the FDOA correlation calculation units 20a and 20b. The FDOA inner product matrix calculation unit 40 is a calculation unit corresponding to the TDOA inner product matrix calculation unit 4 in FIG. 4 and performs the calculation of the above equation (19). The FDOA pairing unit 60 follows the processing in the case of TDOA based on the result of Expression (19). The FDOA positioning calculation units 70a and 70b perform positioning calculation by the least square method using the following equations (20) and (21).


Figure 0005950761

ここで、λは電波源の信号の波長、vTGTは電波源の移動速度ベクトルであり、既知とする。この場合も、連立方程式の数は2、未知変数xTGTの数も2である。よって、未知変数xTGTについて解くことができる。上記方程式は、勾配法など、公知の手法で解くことができるので、詳細は割愛する。
なお、実施の形態1〜4で説明した考え方は、TDOAをFDOAに入れ替えれば、そのままFDOAにも踏襲できる。考え方は明らかであるので、その詳細は省略する。
Figure 0005950761

Here, λ is the wavelength of the signal of the radio wave source, and v TGT is the moving speed vector of the radio wave source, which is known. In this case, the number of simultaneous equations is 2, and the number of unknown variables x TGT is 2. Therefore, the unknown variable x TGT can be solved. Since the above equation can be solved by a known method such as a gradient method, the details are omitted.
In addition, if the idea demonstrated in Embodiment 1-4 is replaced with TDOA to FDOA, it can follow FDOA as it is. Since the concept is clear, the details are omitted.

以上説明したように、実施の形態5の測位装置によれば、3つ以上の受信センサによって受信された電波のドップラー周波数差(FDOA)を用いて電波源を測位する測位装置において、受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でFDOA相関演算を行った場合に、複数のFDOAが得られ、かつ、その数が、受信センサペア毎に異なる場合、各受信センサペアで受信されている信号数を推定する信号数推定手段と、信号数推定手段で推定された信号数に基づいて、各受信センサペアで得られたFDOAを、同一電波源からのもの同士でペアリングを行うペアリング手段とを備えたので、従来方式のような総当りでペアリングを考えることによる偽像を排除することができる。   As described above, according to the positioning device of the fifth embodiment, in the positioning device that measures the radio wave source using the Doppler frequency difference (FDOA) of radio waves received by three or more receiving sensors, When the FDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the arrival time difference between the reception sensor pairs, a plurality of FDOAs are obtained and the number of receptions is different for each reception sensor pair. Based on the number of signals estimated by the signal number estimation means and the signal number estimation means for estimating the number of signals received by the sensor pair, the FDOA obtained by each reception sensor pair is paired with those from the same radio wave source. Since the pairing means for performing the ring is provided, it is possible to eliminate a false image caused by considering pairing as a brute force as in the conventional method.

実施の形態6.
本発明は、実施の形態1〜4で説明したTDOA測位のみ、あるいは、実施の形態5で説明したFDOA測位のみだけでなく、TDOA及びFDOAの両方を用いた測位にも適用可能であり、これを実施の形態5として次に説明する。
Embodiment 6 FIG.
The present invention can be applied not only to the TDOA positioning described in Embodiments 1 to 4 or the FDOA positioning described in Embodiment 5 but also to positioning using both TDOA and FDOA. Will be described below as a fifth embodiment.

TDOA及びFDOAを用いた測位の場合、相関演算は、時間方向と周波数方向の2次元相関となる。まず、TDOA及びFDOAの相関演算式は次式で与えられる。

Figure 0005950761

この場合、TDOAとFDOAの2次元相関により、TDOA及びFDOAを計算し、受信信号を時間方向及び周波数方向の両方にシフトさせてT/FDOA内積行列STFを計算すればよい。例えば、CCFx1,x3(τ,f)で(τ,f),(τ,f)が得られ、CCFx2,x3(τ,f)で(τ,f),(τ,f),(τ,f)が得られた場合、以下の2×3行列をT/FDOA内積行列は次式となる。

Figure 0005950761
In the case of positioning using TDOA and FDOA, the correlation calculation is a two-dimensional correlation in the time direction and the frequency direction. First, the correlation calculation formula of TDOA and FDOA is given by the following formula.

Figure 0005950761

In this case, TDOA and FDOA are calculated based on the two-dimensional correlation between TDOA and FDOA, and the received signal is shifted in both the time direction and the frequency direction to calculate the T / FDOA inner product matrix S TF . For example, CCF x1, x3 (τ, f) at (τ 1, f 1), (τ 2, f 2) are obtained, CCF x2, x3 (τ, f) at (τ a, f a), ( When τ b , f b ) and (τ c , f c ) are obtained, the T / FDOA inner product matrix of the following 2 × 3 matrix is as follows.

Figure 0005950761

図14は、実施の形態6の測位装置を示す構成図である。実施の形態6の測位装置は、受信センサRx1〜Rx3、受信部1a〜1c、T/FDOA相関演算部21a,21b、ピーク検出部3a,3b、T/FDOA内積行列計算部41、信号数推定部5、T/FDOAペアリング部61、T/FDOA測位演算部71a,71bを備えている。ここで、T/FDOA相関演算部21a,21b、T/FDOA内積行列計算部41、T/FDOAペアリング部61、T/FDOA測位演算部71a,71bは、それぞれ、図4におけるTDOA相関演算部2a,2b、TDOA内積行列計算部4、TDOAペアリング部6、TDOA測位演算部7a,7bに対応する構成であり、他の構成は図4と同様である。   FIG. 14 is a configuration diagram illustrating the positioning apparatus according to the sixth embodiment. The positioning device of the sixth embodiment includes reception sensors Rx1 to Rx3, reception units 1a to 1c, T / FDOA correlation calculation units 21a and 21b, peak detection units 3a and 3b, T / FDOA inner product matrix calculation unit 41, and signal number estimation. Unit 5, a T / FDOA pairing unit 61, and T / FDOA positioning calculation units 71a and 71b. Here, the T / FDOA correlation calculation units 21a and 21b, the T / FDOA dot product matrix calculation unit 41, the T / FDOA pairing unit 61, and the T / FDOA positioning calculation units 71a and 71b are respectively the TDOA correlation calculation units in FIG. 2a, 2b, the TDOA inner product matrix calculation unit 4, the TDOA pairing unit 6, and the TDOA positioning calculation units 7a, 7b. The other configurations are the same as those in FIG.

実施の形態6では、図4におけるTDOA相関演算部2a,2bが、T/FDOA相関演算部21a,21bに置き換わり、TDOA及びFDOAの2次元相関演算を行う。また、ピーク検出部3a,3bは、上記2次元相関に対するピーク検出を行う。T/FDOA内積行列計算部41は、上記式(24)を計算する。T/FDOAペアリング部61は、式(24)に基づき、TDOAペアリング部6の考え方を踏襲して処理を行う。最後に、T/FDOA測位演算部71a,71bは、TDOAの式(3)及び式(4),及び、FDOAの式(20)及び式(21)を用い、最小二乗法により測位演算を行う。この場合、連立方程式の数が4本となるため、vTGTを未知変数と扱えば、電波源位置xTGTと速度vTGTの両方を未知変数(合計4つの未知変数)と扱い、推定することができる。解法は、勾配法などの公知技術で解くことができるため、説明を省略する。
なお、実施の形態1〜4で説明した考え方は、TDOAをT/FDOAに入れ替えれば、そのままT/FDOAにも踏襲できる。考え方は明らかであるので、その詳細は省略する。
In the sixth embodiment, the TDOA correlation calculation units 2a and 2b in FIG. 4 are replaced with T / FDOA correlation calculation units 21a and 21b to perform two-dimensional correlation calculation of TDOA and FDOA. The peak detectors 3a and 3b perform peak detection for the two-dimensional correlation. The T / FDOA inner product matrix calculation unit 41 calculates the above equation (24). The T / FDOA pairing unit 61 performs processing based on the concept of the TDOA pairing unit 6 based on the equation (24). Finally, the T / FDOA positioning calculation units 71a and 71b perform positioning calculation by the least square method using the TDOA formulas (3) and (4) and the FDOA formulas (20) and (21). . In this case, since the number of simultaneous equations is four, if v TGT is treated as an unknown variable, both the radio source position x TGT and the velocity v TGT are treated as unknown variables (total of four unknown variables) and estimated. Can do. Since the solution can be solved by a known technique such as a gradient method, the description is omitted.
In addition, if the idea demonstrated in Embodiment 1-4 is replaced with T / FDOA, T / FDOA can be followed as it is. Since the concept is clear, the details are omitted.

以上説明したように、実施の形態6の測位装置によれば、3つ以上の受信センサによって受信された電波の到来時間差(TDOA)と、ドップラー周波数差(FDOA)とを用いて電波源を測位する測位装置において、受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でTDOA及びFDOA相関演算を行った場合に、複数のTDOA及びFDOAが得られ、かつ、その数が、受信センサペア毎に異なる場合、各受信センサペアで受信されている信号数を推定する信号数推定手段と、信号数推定手段で推定された信号数に基づいて、各受信センサペアで得られたTDOA及びFDOAを、同一電波源からのもの同士でペアリングを行うペアリング手段とを備えたので、従来方式のような総当りでペアリングを考えることによる偽像を排除することができる。   As described above, according to the positioning apparatus of the sixth embodiment, the radio wave source is positioned using the arrival time difference (TDOA) of radio waves received by three or more reception sensors and the Doppler frequency difference (FDOA). When the TDOA and FDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the arrival time difference of the radio wave between the reception sensors, a plurality of TDOA and FDOA are obtained and When the number is different for each reception sensor pair, the signal number estimation means for estimating the number of signals received by each reception sensor pair, and the number of signals estimated by the signal number estimation means were obtained for each reception sensor pair. Pairing TDOA and FDOA from the same radio wave source with pairing means for pairing with each other. It is possible to eliminate the false image due to be considered.

なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。   In the present invention, within the scope of the invention, any combination of the embodiments, or any modification of any component in each embodiment, or omission of any component in each embodiment is possible. .

Rx1〜Rx3 受信センサ、1a〜1d 受信部、2a,2b TDOA相関演算部、3a,3b ピーク検出部、4 TDOA内積行列計算部、5 信号数推定部、6 TDOAペアリング部、7a,7b TDOA測位演算部、10a,10b 信号数推定及びペアリング部、11 統合処理部、20a,20b FDOA相関演算部、21a,21b T/FDOA相関演算部、40 FDOA内積行列計算部、41 T/FDOA内積行列計算部、60 FDOAペアリング部、61 T/FDOAペアリング部、70a,70b FDOA測位演算部、71a,71b T/FDOA測位演算部。   Rx1-Rx3 reception sensor, 1a-1d reception unit, 2a, 2b TDOA correlation calculation unit, 3a, 3b peak detection unit, 4 TDOA inner product matrix calculation unit, 5 signal number estimation unit, 6 TDOA pairing unit, 7a, 7b TDOA Positioning calculation unit, 10a, 10b Signal number estimation and pairing unit, 11 Integration processing unit, 20a, 20b FDOA correlation calculation unit, 21a, 21b T / FDOA correlation calculation unit, 40 FDOA inner product matrix calculation unit, 41 T / FDOA inner product Matrix calculation unit, 60 FDOA pairing unit, 61 T / FDOA pairing unit, 70a, 70b FDOA positioning calculation unit, 71a, 71b T / FDOA positioning calculation unit.

Claims (12)

3つ以上の受信センサによって受信された電波の到来時間差(TDOA:Time Difference of Arrival)を用いて電波源を測位する測位装置において、
前記受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でTDOA相関演算を行った場合に、複数の相関ピークを有するTDOAが得られ、かつ、その相関ピーク数が受信センサペア毎に異なる場合、二つの受信センサペアにおける異なる受信センサの受信信号をTDOA分シフトして内積した値を要素とするTDOA内積行列を計算し、前記TDOA内積行列を対称化した行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を前記二つの受信センサペアで共通して受信している信号数の推定値とする信号数推定手段と、
前記内積行列を用いて、同一のTDOAが異なる複数のTDOAに重複してペアリングされることなく、かつ、前記内積行列の要素の大きさの和が大きくなるように各相関演算で得られた相関ピークのペアを求め、これを、同一の電波源から得られたTDOAのペアとするペアリング手段とを備えたことを特徴とする測位装置。
In a positioning device for positioning a radio wave source using a time difference of arrival (TDOA) of radio waves received by three or more receiving sensors,
When TDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the arrival time difference of the radio wave between the reception sensors, a TDOA having a plurality of correlation peaks is obtained, and the number of correlation peaks is When different for each receiving sensor pair, a TDOA inner product matrix is calculated with the inner product obtained by shifting the received signals of different receiving sensors in the two receiving sensor pairs by TDOA, and the eigenvalue of the matrix obtained by symmetrizing the TDOA inner product matrix is calculated. Calculating the number of eigenvalues greater than a predetermined threshold, and setting the number as an estimated value of the number of signals received in common by the two receiving sensor pairs;
Using the inner product matrix, the same TDOA was obtained in each correlation operation so that the same TDOA was not paired with a plurality of different TDOAs and the sum of the element sizes of the inner product matrix was increased. A positioning device comprising a pairing means for obtaining a pair of correlation peaks and using this as a pair of TDOAs obtained from the same radio wave source.
前記信号数推定手段は、受信センサが3機である場合、TDOA内積行列を計算するために、二つの受信センサペアとは異なる第3の受信センサペア間のTDOA相関演算を行っておき、前記二つの受信センサペアで得られた複数のTDOA間の差の値における前記第3の受信センサペアのTDOA相関値を読み取り、その値をTDOA内積行列の各要素として用いることを特徴とする請求項1記載の測位装置。   The signal number estimating means performs TDOA correlation calculation between a third receiving sensor pair different from two receiving sensor pairs in order to calculate a TDOA inner product matrix when there are three receiving sensors, The positioning according to claim 1, wherein a TDOA correlation value of the third receiving sensor pair in a difference value between a plurality of TDOAs obtained by the receiving sensor pair is read, and the value is used as each element of a TDOA inner product matrix. apparatus. 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、第1の受信センサと第2の受信センサ、第2の受信センサと第3の受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと第3の受信センサ、第3の受信センサと第4の受信センサで同様に信号数推定及びペアリングを行い、これを最後の受信センサまで順次行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるTDOAのペアを統合して同一の電波源のTDOAのペアリングを行うことを特徴とする請求項1または請求項2記載の測位装置。   When the number of reception sensors is four or more, the signal number estimation means and the pairing means estimate the number of signals and pair with the first reception sensor and the second reception sensor, and the second reception sensor and the third reception sensor. Then, the second reception sensor and the third reception sensor, and the third reception sensor and the fourth reception sensor similarly perform signal number estimation and pairing, and sequentially perform this until the last reception sensor. And performing the pairing of the TDOAs of the same radio wave source by integrating the estimation of the number of signals received in common by all reception sensors and the TDOA pairs obtained for each reception sensor pair. The positioning device according to claim 1 or claim 2. 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、特定の受信センサを基準受信センサとして、第1の受信センサと前記基準受信センサ、第2の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと前記基準受信センサ、第3の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、これを前記基準受信センサ以外のすべての受信センサまで行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるTDOAのペアを統合して同一の電波源のTDOAのペアリングを行うことを特徴とする請求項1または請求項2記載の測位装置。   When there are four or more reception sensors, the signal number estimation means and the pairing means use a specific reception sensor as a reference reception sensor, the first reception sensor, the reference reception sensor, the second reception sensor, and the reference The number of signals is estimated and paired by the receiving sensor, and then the number of signals is estimated and paired by the second receiving sensor and the reference receiving sensor, and the third receiving sensor and the reference receiving sensor. By performing all the receiving sensors other than the receiving sensor, the number of signals received in common by all the receiving sensors and the TDOA pair obtained for each receiving sensor pair are integrated to form a TDOA pair of the same radio wave source. The positioning device according to claim 1 or 2, wherein a ring is used. 3つ以上の受信センサによって受信された電波のドップラー周波数差(FDOA:Frequency Difference Of Arrival)を用いて電波源を測位する測位装置において、
前記受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でFDOA相関演算を行った場合に、複数の相関ピークを有するFDOAが得られ、かつ、その相関ピーク数が受信センサペア毎に異なる場合、二つの受信センサペアにおける異なる受信センサの受信信号をFDOA分シフトして内積した値を要素とするFDOA内積行列を計算し、前記FDOA内積行列を対称化した行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を前記二つの受信センサペアで共通して受信している信号数の推定値とする信号数推定手段と、
前記内積行列を用いて、同一のFDOAが異なる複数のFDOAに重複してペアリングされることなく、かつ、内積行列の要素の大きさの和が大きくなるように各相関演算で得られたFDOAのペアを求め、これを、同一の電波源から得られたFDOAのペアとするペアリング手段とを備えたことを特徴とする測位装置。
In a positioning device for positioning a radio wave source using Doppler frequency difference (FDOA) of radio waves received by three or more receiving sensors,
When the FDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the arrival time difference of the radio wave between the reception sensors, an FDOA having a plurality of correlation peaks is obtained, and the number of correlation peaks is When different for each receiving sensor pair, an FDOA inner product matrix is calculated, which is obtained by shifting the received signals of the different receiving sensors in the two receiving sensor pairs by FDOA and using the inner product as an element, and the eigenvalue of the matrix obtained by symmetrizing the FDOA inner product matrix is calculated. Calculating the number of eigenvalues greater than a predetermined threshold, and setting the number as an estimated value of the number of signals received in common by the two receiving sensor pairs;
By using the inner product matrix, the same FDOA is not paired with a plurality of different FDOAs, and the FDOA obtained by each correlation operation so that the sum of the sizes of the inner product matrix elements is increased. A positioning apparatus comprising: a pairing means for obtaining a pair of FDOAs obtained from the same radio wave source.
前記信号数推定手段は、受信センサが3機である場合、FDOA内積行列を計算するために、二つの受信センサペアとは異なる第3の受信センサペア間のFDOA相関演算を行っておき、前記二つの受信センサペアで得られた複数のFDOA間の差の値における前記第3の受信センサペアのFDOA相関値を読み取り、その値をFDOA内積行列の各要素として用いることを特徴とする請求項5記載の測位装置。   When the number of reception sensors is three, the signal number estimation means performs an FDOA correlation operation between a third reception sensor pair different from the two reception sensor pairs in order to calculate an FDOA inner product matrix. 6. The positioning according to claim 5, wherein an FDOA correlation value of the third receiving sensor pair in a difference value between a plurality of FDOAs obtained by the receiving sensor pair is read and used as each element of the FDOA inner product matrix. apparatus. 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、第1の受信センサと第2の受信センサ、第2の受信センサと第3の受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと第3の受信センサ、第3の受信センサと第4の受信センサで同様に信号数推定及びペアリングを行い、これを最後の受信センサまで順次行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるFDOAのペアを統合して同一の電波源のFDOAのペアリングを行うことを特徴とする請求項5または請求項6記載の測位装置。   When the number of reception sensors is four or more, the signal number estimation means and the pairing means estimate the number of signals and pair with the first reception sensor and the second reception sensor, and the second reception sensor and the third reception sensor. Then, the second reception sensor and the third reception sensor, and the third reception sensor and the fourth reception sensor similarly perform signal number estimation and pairing, and sequentially perform this until the last reception sensor. And performing the pairing of the FDOAs of the same radio wave source by integrating the estimation of the number of signals commonly received by all reception sensors and the pair of FDOAs obtained for each reception sensor pair. The positioning device according to claim 5 or 6. 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、特定の受信センサを基準受信センサとして、第1の受信センサと前記基準受信センサ、第2の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと前記基準受信センサ、第3の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、これを前記基準受信センサ以外のすべての受信センサまで行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるFDOAのペアを統合して同一の電波源のFDOAのペアリングを行うことを特徴とする請求項5または請求項6記載の測位装置。   When there are four or more reception sensors, the signal number estimation means and the pairing means use a specific reception sensor as a reference reception sensor, the first reception sensor, the reference reception sensor, the second reception sensor, and the reference The number of signals is estimated and paired by the receiving sensor, and then the number of signals is estimated and paired by the second receiving sensor and the reference receiving sensor, and the third receiving sensor and the reference receiving sensor. By performing all of the receiving sensors other than the receiving sensor, the number of signals received in common by all the receiving sensors and the FDOA pair obtained for each receiving sensor pair are integrated to form a pair of FDOAs of the same radio wave source. The positioning device according to claim 5 or 6, wherein a ring is provided. 3つ以上の受信センサによって受信された電波の到来時間差(TDOA:Time Difference of Arrival)と、ドップラー周波数差(FDOA:Frequency Difference Of Arrival)とを用いて電波源を測位する測位装置において、
前記受信センサ間の電波の到来時間差を計測するために、各受信センサペアの受信信号間でTDOA及びFDOA相関演算を行った場合に、複数の相関ピークを有するTDOA及びFDOAが得られ、かつ、その相関ピーク数が、受信センサペア毎に異なる場合、2つの受信センサペアにおける異なる受信センサの受信信号をそれぞれの受信センサペアのTDOA及びFDOA分シフトして内積した値を要素とするTDOA及びFDOA内積行列を計算し、前記TDOA及びFDOA内積行列を対称化した行列の固有値を計算し、予め定めた閾値より大きい固有値の数を計算し、その数を前記二つの受信センサペアで共通して受信している信号数の推定値とする信号数推定手段と、
前記内積行列を用いて、同一のTDOA及びFDOAが異なる複数のTDOA及びFDOAに重複してペアリングされることなく、かつ、内積行列の要素の大きさの和が大きくなるように各相関演算で得られたTDOA及びFDOAのペアを求め、これを、同一の電波源から得られたTDOA及びFDOAのペアとするペアリング手段とを備えたことを特徴とする測位装置。
In a positioning device for positioning a radio wave source using a time difference of arrival (TDOA) and a frequency difference of arrival (FDOA) received by three or more receiving sensors,
When TDOA and FDOA correlation calculation is performed between the reception signals of each reception sensor pair in order to measure the arrival time difference of radio waves between the reception sensors, TDOA and FDOA having a plurality of correlation peaks are obtained, and When the number of correlation peaks differs for each receiving sensor pair, the TDOA and FDOA inner product matrix is calculated with the elements obtained by shifting the received signals of the different receiving sensors in the two receiving sensor pairs by the TDOA and FDOA of each receiving sensor pair. Calculating the eigenvalues of the symmetrized TDOA and FDOA inner product matrices, calculating the number of eigenvalues larger than a predetermined threshold, and the number of signals received in common by the two receiving sensor pairs. Means for estimating the number of signals to be estimated values of
By using the inner product matrix, the same TDOA and FDOA are not paired with a plurality of different TDOA and FDOA, and each correlation operation is performed so that the sum of the sizes of the elements of the inner product matrix is increased. A positioning apparatus comprising: a pairing means for obtaining a pair of TDOA and FDOA obtained and using the pair as a pair of TDOA and FDOA obtained from the same radio wave source.
前記信号数推定手段は、受信センサが3機である場合、TDOA及びFDOA内積行列を計算するために、二つの受信センサペアとは異なる第3の受信センサペア間のTDOA及びFDOA相関演算を行っておき、前記二つの受信センサペアで得られた複数のTDOA及びFDOA間の差の値における前記第3の受信センサペアのTDOA及びFDOA相関値を読み取り、その値をTDOA及びFDOA内積行列の各要素として用いることを特徴とする請求項9記載の測位装置。   The signal number estimating means performs TDOA and FDOA correlation calculation between a third receiving sensor pair different from the two receiving sensor pairs in order to calculate a TDOA and FDOA inner product matrix when there are three receiving sensors. Reading the TDOA and FDOA correlation values of the third receiving sensor pair in the difference values between the plurality of TDOA and FDOA obtained by the two receiving sensor pairs, and using the values as the elements of the TDOA and FDOA inner product matrix The positioning device according to claim 9. 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、第1の受信センサと第2の受信センサ、第2の受信センサと第3の受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと第3の受信センサ、第3の受信センサと第4の受信センサで同様に信号数推定及びペアリングを行い、これを最後の受信センサまで順次行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるTDOA及びFDOAのペアを統合して同一の電波源のTDOA及びFDOAのペアリングを行うことを特徴とする請求項9または請求項10記載の測位装置。   When the number of reception sensors is four or more, the signal number estimation means and the pairing means estimate the number of signals and pair with the first reception sensor and the second reception sensor, and the second reception sensor and the third reception sensor. Then, the second reception sensor and the third reception sensor, and the third reception sensor and the fourth reception sensor similarly perform signal number estimation and pairing, and sequentially perform this until the last reception sensor. By performing the estimation, the number of signals received in common by all reception sensors and the pair of TDOA and FDOA obtained for each reception sensor pair are integrated to perform TDOA and FDOA pairing of the same radio wave source. The positioning device according to claim 9 or 10, wherein the positioning device is characterized in that: 前記信号数推定手段及び前記ペアリング手段は、受信センサが4機以上の場合、特定の受信センサを基準受信センサとして、第1の受信センサと前記基準受信センサ、第2の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、次に、第2の受信センサと前記基準受信センサ、第3の受信センサと前記基準受信センサで信号数推定及びペアリングを行い、これを前記基準受信センサ以外のすべての受信センサまで行うことにより、全受信センサで共通して受信されている信号数推定と、受信センサペア毎に得られるTDOA及びFDOAのペアを統合して同一の電波源のTDOA及びFDOAのペアリングを行うことを特徴とする請求項9または請求項10記載の測位装置。   When there are four or more reception sensors, the signal number estimation means and the pairing means use a specific reception sensor as a reference reception sensor, the first reception sensor, the reference reception sensor, the second reception sensor, and the reference The number of signals is estimated and paired by the receiving sensor, and then the number of signals is estimated and paired by the second receiving sensor and the reference receiving sensor, and the third receiving sensor and the reference receiving sensor. By performing all the receiving sensors other than the receiving sensor, the number of signals received in common by all the receiving sensors and the TDOA and FDOA pairs obtained for each receiving sensor pair are integrated to obtain the TDOA of the same radio wave source. The positioning device according to claim 9 or 10, wherein pairing of the FDOA and the FDOA is performed.
JP2012187654A 2012-08-28 2012-08-28 Positioning device Active JP5950761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012187654A JP5950761B2 (en) 2012-08-28 2012-08-28 Positioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012187654A JP5950761B2 (en) 2012-08-28 2012-08-28 Positioning device

Publications (2)

Publication Number Publication Date
JP2014044160A JP2014044160A (en) 2014-03-13
JP5950761B2 true JP5950761B2 (en) 2016-07-13

Family

ID=50395519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012187654A Active JP5950761B2 (en) 2012-08-28 2012-08-28 Positioning device

Country Status (1)

Country Link
JP (1) JP5950761B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3136121B1 (en) * 2014-04-21 2020-10-28 Mitsubishi Electric Corporation Localization device
EP3282275B1 (en) * 2016-08-12 2019-05-29 Nokia Technologies Oy Position detection of user equipment within a wireless telecommunications network
JP7244325B2 (en) 2019-03-27 2023-03-22 株式会社Soken object detector
WO2022259500A1 (en) * 2021-06-11 2022-12-15 三菱電機株式会社 Positioning device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3647621B2 (en) * 1997-11-07 2005-05-18 三菱電機株式会社 Radio direction detector
US6734824B2 (en) * 2002-08-06 2004-05-11 Lockheed Martin Corporation System and method for locating emitters
US7869810B2 (en) * 2005-04-25 2011-01-11 Agilent Technologies, Inc. Method and system for computing and displaying location information from cross-correlation data
JP4977849B2 (en) * 2006-05-19 2012-07-18 三菱電機株式会社 Radio wave arrival direction detector
US7403157B2 (en) * 2006-09-13 2008-07-22 Mitsubishi Electric Research Laboratories, Inc. Radio ranging using sequential time-difference-of-arrival estimation
JP2010203849A (en) * 2009-03-02 2010-09-16 Mitsubishi Electric Corp Geolocation system

Also Published As

Publication number Publication date
JP2014044160A (en) 2014-03-13

Similar Documents

Publication Publication Date Title
US8004464B2 (en) Multiple object localisation with a network of receivers
JP5950761B2 (en) Positioning device
KR101529516B1 (en) Sound sourcelocalization device and sound sourcelocalization method
JP2017129558A (en) Estimation device and estimation method
KR101777381B1 (en) Device for Estimating DOA of a target echo signal using Adaptive Filters in PCL receivers, and DOA Estimation Method using the same
JP2016042075A5 (en)
JP2019117055A (en) Estimation method, estimation device and program
US20150160169A1 (en) Method and system for multi-path active defect detection, localization and characterization with ultrasonic guided waves
WO2019220503A1 (en) Object detection device and object detection method
JP5606151B2 (en) Radar equipment
CN106597462A (en) Range measuring method and rang measuring apparatus
KR20140073657A (en) Method and system for detecting location of multi-target
JP6362262B2 (en) Angle estimation apparatus and angle estimation method
CN106486769A (en) Spatial interpolation methods for linear phased array antenna and equipment
CN111819466A (en) Apparatus, system, and method for locating a target in a scene
JP5047002B2 (en) Wave number estimation device
RU2545068C1 (en) Measurement method of changes of heading angle of movement of source of sounding signals
US9568588B2 (en) Geolocation of wireless access points for wireless platforms
JP2018204968A5 (en) Electronic control device
KR101480834B1 (en) Target motion analysis method using target classification and ray tracing of underwater sound energy
JP2570110B2 (en) Underwater sound source localization system
GB2457030A (en) Filtering or cancelling noise present in data received from three-dimensional position measurement apparatus
US20200209984A1 (en) Optical positioning systems and methods
RU2559310C2 (en) Method of estimating distance to noisy object at sea
JP3557463B2 (en) Super resolution antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160607

R150 Certificate of patent or registration of utility model

Ref document number: 5950761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250