JP5950283B2 - Reinforcing bar expansion simulated loading test apparatus and loading test method - Google Patents

Reinforcing bar expansion simulated loading test apparatus and loading test method Download PDF

Info

Publication number
JP5950283B2
JP5950283B2 JP2013243825A JP2013243825A JP5950283B2 JP 5950283 B2 JP5950283 B2 JP 5950283B2 JP 2013243825 A JP2013243825 A JP 2013243825A JP 2013243825 A JP2013243825 A JP 2013243825A JP 5950283 B2 JP5950283 B2 JP 5950283B2
Authority
JP
Japan
Prior art keywords
pushing
expansion
concrete
loading test
reinforcing bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013243825A
Other languages
Japanese (ja)
Other versions
JP2015102448A (en
Inventor
平野 裕一
裕一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Priority to JP2013243825A priority Critical patent/JP5950283B2/en
Publication of JP2015102448A publication Critical patent/JP2015102448A/en
Application granted granted Critical
Publication of JP5950283B2 publication Critical patent/JP5950283B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、鉄筋コンクリート構造物の鉄筋腐食膨張がコンクリート内部や表面に影響することによって、はく離やはく落が起こる現象を、鉄筋腐食膨張の模擬を行うことで、容易かつ精度よく実験的に把握するための、鉄筋膨張模擬載荷試験装置及び載荷試験方法に関するものである。   The present invention is intended to easily and accurately experimentally grasp the phenomenon of delamination and delamination caused by the reinforcement corrosion expansion of a reinforced concrete structure affecting the interior and surface of the concrete, by simulating the reinforcement corrosion expansion. The present invention relates to a reinforcing bar expansion simulated loading test apparatus and a loading test method.

適切な設計・施工・維持管理が行われた鉄筋コンクリートは、長期に渡りその形状を維持し、機能が保持されるものである。   Reinforced concrete that has been properly designed, constructed, and maintained maintains its shape and retains its function over a long period of time.

しかし、不適切な設計・施工や設計荷重を上回るような使用、地震、アルカリシリカ反応によるコンクリート膨張等により、コンクリートにひび割れが生じると、コンクリート内部に、塩化物イオン、酸素、水、その他コンクリートに好ましくない物質が侵入する。   However, if cracks occur in the concrete due to improper design / construction or use exceeding the design load, earthquakes, concrete expansion due to alkali silica reaction, etc., chloride ions, oxygen, water, and other concrete will enter the concrete. Undesirable substances enter.

そして、アルカリ性に保たれて安定するはずの鉄筋コンクリート内部で、鉄筋の不動態被膜が破壊される。鉄筋は、腐食により膨張して、ひび割れがさらに進行していくという悪循環に陥り、コンクリート表面のはく離やはく落が起こる。   And the passive film of a reinforcing bar is destroyed inside the reinforced concrete which should be stabilized by being kept alkaline. Reinforcing bars expand due to corrosion and fall into a vicious circle in which cracks further progress, causing the concrete surface to peel off and flake off.

そのため、コンクリートはく離やはく落のメカニズムの解明、はく離やはく落を未然に防ぐ対策の研究は、喫緊の課題である。   Therefore, elucidation of the mechanism of concrete peeling and flaking and research on measures to prevent flaking and flaking are urgent issues.

それらの研究を行うため、コンクリート内部で装置を膨張させることによって物性値を得る方法や、コンクリート内部で鉄筋膨張を模擬しようとする方法について提案されている(特許文献1〜2、非特許文献1)。   In order to conduct such research, methods for obtaining physical property values by expanding an apparatus inside concrete and methods for simulating reinforcing bar expansion inside concrete have been proposed (Patent Documents 1 and 2, Non-Patent Document 1). ).

特許文献1には、鉄筋コンクリートを削孔して、その孔内に、油圧により加圧できる載荷試験装置を挿入して、孔径方向のコンクリートの変位を測定する装置及び方法について開示されている。   Patent Document 1 discloses an apparatus and method for measuring a displacement of concrete in a hole diameter direction by drilling a reinforced concrete and inserting a loading test apparatus capable of being pressurized by hydraulic pressure into the hole.

特許文献2には、鉄筋コンクリート内の鉄筋を、鉄筋の軸に垂直方向に、はく離面と反対の方向から鉄筋を押し出す構造により、鉄筋膨張を模擬する装置及び方法について開示されている。   Patent Document 2 discloses an apparatus and a method for simulating rebar expansion by a structure in which a reinforcing bar in a reinforced concrete is pushed out in a direction perpendicular to the axis of the reinforcing bar and from a direction opposite to the peeling surface.

非特許文献1には、円柱空洞を設けた鉄筋コンクリートに、円柱状の弾性体ゴムを挿入して、その弾性体ゴムを挿入方向に変形させることで、孔径方向に変位させて、鉄筋膨張を模擬する装置及び方法について開示されている。   In Non-Patent Document 1, a cylindrical elastic rubber is inserted into reinforced concrete provided with a cylindrical cavity, and the elastic rubber is deformed in the insertion direction, thereby displacing in the hole diameter direction and simulating the reinforcement of the reinforcing bar. An apparatus and method is disclosed.

特許第4358728号公報Japanese Patent No. 4358728 特開2012−172975号公報JP 2012-172975 A

高谷ら:「弾性体を用いた鉄筋腐食膨張圧モデル化の実証的検証」、土木学会第59回年次学術講演会講演概要集、pp547、2004Takatani et al .: “Empirical verification of rebar corrosion expansion pressure modeling using elastic bodies”, Proceedings of the 59th Annual Conference of the Japan Society of Civil Engineers, pp547, 2004

特許文献1では、油圧により加圧させて孔径を測定するには、装置の組み込みのために、ある程度の大きさの孔径が必要である。また、油圧装置のため、設備全体が大がかりとなる、という課題がある。   In Patent Document 1, in order to measure the hole diameter by applying pressure by hydraulic pressure, a hole diameter of a certain size is required for incorporating the device. In addition, because of the hydraulic device, there is a problem that the entire facility becomes large.

特許文献2では、膨張の方向が一方向のために、必ずしも実際の腐食膨張を再現できていない。また、特殊な組み方の設備であるため、設備全体が大がかりとなり、汎用性が高くない、という課題がある。   In Patent Document 2, since the expansion direction is one direction, the actual corrosion expansion cannot always be reproduced. In addition, since the equipment is specially assembled, there is a problem that the whole equipment becomes large and versatility is not high.

非特許文献1では、孔径方向の膨張量と孔径方向に広がろうとする力を、膨張部分の弾性体ゴムを完全な弾性体とみなして換算して算出する必要があるため、データの正確性に欠ける、という課題がある。   In Non-Patent Document 1, since it is necessary to calculate the amount of expansion in the hole diameter direction and the force for spreading in the hole diameter direction by considering the elastic rubber in the expanded portion as a complete elastic body, the accuracy of the data There is a problem of lacking.

そこで、本発明は、上記課題を解決し、鉄筋コンクリートのはく落やはく落のメカニズムの解明、はく落やはく落を未然に防ぐ対策の研究を、正確かつ容易に行うことを可能にするための、鉄筋膨張模擬載荷試験装置及び載荷試験方法を提供することを目的としている。   Therefore, the present invention solves the above-mentioned problems, elucidates the mechanism of peeling and peeling of reinforced concrete, and makes it possible to accurately and easily perform research on measures to prevent peeling and peeling. An object of the present invention is to provide a loading test apparatus and a loading test method.

上記目的を達成するために、本発明の鉄筋膨張模擬載荷試験装置は、鉄筋コンクリートの鉄筋膨張の影響をコンクリート内部や表面に伝えて、鉄筋の腐食膨張の模擬を可能とする載荷試験装置であって、先端が角錐状の押し込み部と、いくつかの、前記押し込み部の先端の角錐部分の角度と同じ角度のクサビ型の膨張部と、前記押し込み部の先端を差し込むことができる程度の穴のあいたガイド部と、前記押し込み部を押し込む載荷手段と、前記押し込み部を押し込んでいる最中に、前記押し込み部の変位量を計測する変位計測手段と、前記押し込み部を押し込んでいる最中に、その押し込む荷重を計測する荷重計測手段を備えたことを特徴とする。   In order to achieve the above-mentioned object, the rebar expansion simulation loading test apparatus of the present invention is a loading test apparatus that enables simulation of rebar corrosion expansion by transmitting the effect of rebar expansion of reinforced concrete to the interior and surface of the concrete. The tip has a pyramid-shaped pushing portion, a wedge-shaped inflating portion having the same angle as the angle of the pyramid portion at the tip of the pushing portion, and a hole to the extent that the tip of the pushing portion can be inserted. A guide part, a loading means for pushing the pushing part, a displacement measuring means for measuring a displacement amount of the pushing part while pushing the pushing part, and a pushing part for pushing the pushing part A load measuring means for measuring the load to be pushed in is provided.

また、前記押し込み部の先端が円錐形状であることができる。   The tip of the push-in part may be conical.

また、前記押し込み部及び膨張部に、膨張部分の動作を一方向にするための溝、レール又はねじ切りをさらに備えた構成にすることができる。   Moreover, it can be set as the structure further equipped with the groove | channel, rail, or threading for making the operation | movement of an expansion | swelling part into one direction in the said pushing part and an expansion | swelling part.

また、前記膨張部が、鉄筋腐食膨張を模擬しようとする位置となるように調節するための位置調節用スペーサーをさらに備えた構成にすることができる。   Moreover, it can be set as the structure further equipped with the spacer for position adjustment for adjusting the said expansion | swelling part so that it may become the position which is going to simulate rebar corrosion expansion | swelling.

また、本発明の載荷試験方法は、前記押し込み部、前記膨張部及び前記ガイド部を挿入できて、それらの外周が接する程度の円柱状の穴が空いたコンクリートを打設して、あるいは打設後にその円柱状の穴を空けて、供試体を製作する工程と、前記膨張部を、鉄筋腐食膨張を模擬しようとする位置となるように調節する工程と、前記押し込み部で、前記膨張部に接しない方の端を、前記載荷装置で押し込む工程と、前記押し込み部を押し込んでいる最中に、その押し込む荷重を計測する荷重計測手段と、その押し込み量を計測する工程を備えたことを特徴とする。   Further, the loading test method of the present invention is such that the pushing portion, the expanding portion, and the guide portion can be inserted, and a concrete having a cylindrical hole that is in contact with the outer periphery thereof is placed or placed. The step of making a cylindrical hole later, the step of manufacturing a specimen, the step of adjusting the expansion part to be a position to simulate rebar corrosion expansion, and the pushing part, It is provided with a step of pushing the end that is not in contact with the loading device described above, a load measuring means for measuring the load to be pushed in while the push portion is being pushed, and a step for measuring the push amount. And

また、前記載荷試験方法は、コンクリート内部や表面に、はく離やはく落を防止する工法を施工して、その工法の試験を行うことができる。   Moreover, the above-mentioned load test method can perform the test of the construction method by constructing the construction method which prevents peeling and peeling in the concrete inside or surface.

また、前記載荷試験方法は、コンクリートを円筒状に作製して、前記膨張部が前記円筒状の中心位置となるように調整して膨張させて、コンクリートの引張応力の試験を行うことができる。   In the load test method described above, concrete can be produced in a cylindrical shape, adjusted so that the inflated portion is positioned at the center of the cylindrical shape, and inflated, and the tensile stress of the concrete can be tested.

本発明は、長さや径が異なる膨張部を簡易に作製することが可能であるため、多種多様な試験方法が可能である。   Since the present invention can easily produce inflatable portions having different lengths and diameters, various test methods are possible.

また、押し込み部を押し込むことができる装置さえあればどこの実験室でも試験可能であるので、汎用性に非常に優れている。   Moreover, since any laboratory can test as long as there is an apparatus that can push in the push-in part, it is very versatile.

さらに、従来技術と比較して、膨張部分の半径変化量と、押し込み力を変換した鉄筋の膨張力が容易かつ精度よく算出できるという優れた点がある。   Furthermore, compared with the prior art, there is an excellent point that the amount of change in radius of the expanded portion and the expansion force of the reinforcing bar converted from the pushing force can be calculated easily and accurately.

そのため、鉄筋コンクリートの鉄筋膨張の影響をコンクリート内部や表面に伝えて、鉄筋の腐食膨張の模擬が可能となり、コンクリートのはく離やはく落のメカニズムの解明や、はく離やはく落時期の予測に向けての研究が容易となる。   Therefore, it is possible to simulate the corrosion expansion of reinforcing bars by transmitting the effect of reinforcing bar expansion of the reinforced concrete to the inside and the surface of the concrete. It becomes easy.

また、コンクリート内部や表面に、はく離やはく落を防止する工法を施工して、その工法の試験を容易に行うことができるので、はく離やはく落を未然に防ぐ技術の試験方法となることができる。   In addition, since a method for preventing peeling or flaking can be applied to the inside or the surface of the concrete and the method can be easily tested, it can be a test method for a technique for preventing flaking and flaking.

他の効果として、コンクリートを円筒状に作製して、円筒の直径と比較して、円筒の厚さを十分に小さくした供試体と、円筒の内側に接する程度の適切な前記押し込み部、膨張部、ガイド部を利用すると、引張応力以外を無視することができて、円筒状のコンクリートには引張応力のみが作用するとみなすことができるので、コンクリートの引張応力の試験を行うことができる。   As other effects, concrete is produced in a cylindrical shape, and a specimen whose thickness is sufficiently small compared to the diameter of the cylinder, and the appropriate pushing-in part and expanding part that are in contact with the inside of the cylinder. When the guide portion is used, it is possible to ignore other than the tensile stress, and it can be considered that only the tensile stress acts on the cylindrical concrete, so that the tensile stress test of the concrete can be performed.

本発明実施例のコンクリートはく離模擬試験の構成を示した正面図である。It is the front view which showed the structure of the concrete delamination simulation test of this invention Example. 本発明実施例のコンクリートはく離模擬試験の構成を示した側面図である。It is the side view which showed the structure of the concrete delamination simulation test of this invention Example. 膨張部を模式的に示した図である。It is the figure which showed the expansion | swelling part typically. 図1のコンクリート表面にはく離に抵抗する表面保護工法を追加した正面図である。It is the front view which added the surface protection construction method which resists peeling to the concrete surface of FIG. 図2のコンクリート表面にはく離に抵抗する表面保護工法を追加した側面図である。It is the side view which added the surface protection construction method which resists peeling to the concrete surface of FIG. 本発明実施例のコンクリート引張試験を模式的に示した断面図である。It is sectional drawing which showed the concrete tensile test of this invention Example typically.

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施例1の形態の正面図、図2は、その側面図である。   FIG. 1 is a front view of the embodiment 1 and FIG. 2 is a side view thereof.

実施例1は、鉄筋コンクリートの表面にはく離を生じさせることができる模擬試験である。   Example 1 is a simulation test that can cause delamination on the surface of reinforced concrete.

押し込み部1、膨張部2及びガイド部3を挿入できて、それらの外周が接する程度の円柱状の穴が空いたコンクリートであって、適所に鉄筋6を配置したコンクリートを打設して、鉄筋コンクリートの供試体5を製作して、底面10に設置する。   A concrete in which a pushing-in part 1, an inflating part 2 and a guide part 3 can be inserted and a columnar hole is formed so that the outer periphery of the pushing part 1, the concrete part in which the reinforcing bar 6 is arranged at a proper position, and reinforced concrete. The specimen 5 is manufactured and installed on the bottom surface 10.

鉄筋コンクリートの供試体5に、膨張部2が鉄筋腐食膨張を模擬しようとする位置となるように調節したスペーサー4と、ガイド部3、膨張部2、押し込み部1を挿入する。   A spacer 4, a guide portion 3, an expansion portion 2, and a push-in portion 1, which are adjusted so that the expansion portion 2 is positioned to simulate rebar corrosion expansion, are inserted into a specimen 5 of reinforced concrete.

必要に応じて、荷重計8、鉛直変位計9をセットして、載荷装置7で載荷を行う。   If necessary, the load meter 8 and the vertical displacement meter 9 are set and loaded by the loading device 7.

図3は、膨張部2を模式的に示した図である。   FIG. 3 is a diagram schematically showing the inflating portion 2.

実施例1では、押し込み部1の勾配部分は正四角錐台として、勾配角を3度とした。   In Example 1, the gradient portion of the push-in portion 1 was a regular quadrangular pyramid, and the gradient angle was 3 degrees.

非常にゆっくりと載荷する場合、押し込み部1と膨張部2、膨張部2とガイド部3の摩擦力を無視することができて、押し込み力に対して、膨張部2を約20倍の力で膨張させることができる。   When loading very slowly, the frictional force of the pushing part 1 and the inflating part 2, and the inflating part 2 and the guide part 3 can be ignored, and the inflating part 2 is about 20 times stronger than the pushing force. Can be inflated.

膨張部分の動作を一方向にするために、押し込み部1及び膨張部2に、溝、レール又はねじ切りを設けることができる。   In order to make the operation of the expansion part in one direction, the pushing part 1 and the expansion part 2 can be provided with grooves, rails or threading.

また、押し込み部1の先端を円錐形状にすることができる。   Moreover, the front-end | tip of the pushing part 1 can be made into a cone shape.

押し込み部1を載荷すると、膨張部2はガイド部3の上端で力の向きを変えて、押し込み方向に対して直角に広がり、周囲のコンクリートを押し広げていく。   When the pushing portion 1 is loaded, the expanding portion 2 changes the direction of the force at the upper end of the guide portion 3, spreads at right angles to the pushing direction, and spreads the surrounding concrete.

周りのコンクリートが鉄筋膨張に耐えられなくなる、ある段階を過ぎると、内部からコンクリートにひび割れが生じ始めて、やがて、コンクリート表面にひび割れが表れて、はく離に至る。   After a certain stage when the surrounding concrete can no longer withstand the reinforcement of the reinforcing bars, the concrete begins to crack from the inside, and eventually the crack appears on the concrete surface, resulting in peeling.

このように、押し込み力を変換した鉄筋の膨張力と、鉄筋の膨張量の関係が正確に把握できて、さらに、コンクリートにひび割れが生じ始める時期やはく離に至る時期との関係を把握することができる。   In this way, it is possible to accurately grasp the relationship between the expansion force of the reinforcing bar converted from the indentation force and the amount of expansion of the reinforcing bar, and also to grasp the relationship between the time when cracking starts in concrete and the time when separation occurs. it can.

そこで、鉄筋の腐食量と腐食速度を予測できれば、コンクリート表面にひび割れが入り始めて、はく離に至る時期を精度よく予測することができる。   Therefore, if the corrosion amount and corrosion rate of the reinforcing bar can be predicted, it is possible to accurately predict the time when cracks begin to enter the concrete surface and debond.

また、コンクリート表面のひび割れ状態から、鉄筋の腐食量を予測できて、さらに腐食速度を予測できれば、そこから、はく離に至る時期を精度よく予測することができる。   Further, if the corrosion amount of the reinforcing bar can be predicted from the cracked state of the concrete surface, and further the corrosion rate can be predicted, the time to release can be accurately predicted.

加えて、鉄筋の膨張の各段階で、コンクリート内部のひび割れ進展の過程を把握することができれば、コンクリートがはく離やはく落に至るメカニズム解明に向けた研究を大きく前進させることが期待できる。   In addition, if the process of crack growth in the concrete can be grasped at each stage of rebar expansion, research for elucidating the mechanism of concrete peeling and flaking can be expected to greatly advance.

図4は、実施例2の形態の正面図、図5は、その側面図である。   FIG. 4 is a front view of the embodiment 2 and FIG. 5 is a side view thereof.

実施例2は、実施例1の形態に加えて、コンクリート表面にはく離やはく落を防止する表面保護工法を適用することで、表面保護工法の性質や性能を検査可能な試験方法である。   Example 2 is a test method capable of inspecting the properties and performance of the surface protection method by applying a surface protection method for preventing peeling and flaking to the concrete surface in addition to the form of Example 1.

鉄筋コンクリートの供試体5のはく離を生じさせる面に、はく離に抵抗する表面保護工11を適用する。   A surface protection work 11 that resists peeling is applied to the surface of the reinforced concrete specimen 5 that is peeled off.

表面保護工を適用した場合と、表面保護工を未適用の場合とのデータの比較、あるいは、他の表面保護工とのデータの比較を行うことで、表面保護工の性質や効果の評価が可能となる。   By comparing the data with and without applying surface protection work, or comparing data with other surface protection work, the properties and effects of surface protection work can be evaluated. It becomes possible.

図6は、実施例3のコンクリート引張試験を模式的に示した断面図である。   6 is a cross-sectional view schematically showing the concrete tensile test of Example 3. FIG.

実施例3は、コンクリートの供試体5を円筒状に作製して、膨張部2が円筒の中心となるように設置して載荷を行い、コンクリートの引張応力を行う試験である。   Example 3 is a test in which a concrete specimen 5 is produced in a cylindrical shape, placed so that the inflatable portion 2 is at the center of the cylinder, loaded, and tensile stress of the concrete is applied.

円筒の直径と比較して円筒の厚さを十分に小さくしたコンクリートの円筒状の供試体5を作製して、その内径に合わせた押し込み部1、膨張部2、ガイド部3を作製して設置して、載荷を行う。   A concrete cylindrical specimen 5 having a sufficiently small cylinder thickness compared to the diameter of the cylinder is prepared, and a push-in part 1, an expansion part 2 and a guide part 3 are prepared and installed in accordance with the inner diameter. And loading.

円筒の直径と比較して円筒の厚さが十分に小さい場合は、薄肉円筒とみなすことができて、コンクリートには円周方向の引張応力のみが作用するとみなすことができるので、コンクリートの引張応力の試験を行うことができる。   If the thickness of the cylinder is sufficiently small compared to the diameter of the cylinder, it can be regarded as a thin cylinder, and it can be considered that only the tensile stress in the circumferential direction acts on the concrete. Can be tested.

以上、実施例を記述してきたが、現在や今後の土木建築分野におけるコンクリートに代わる新材料の開発も見据えて、本発明が対象とする試験材料は、鉄筋コンクリートに限らず、広く土木建築材料一般に対して、鉄筋膨張を模擬した載荷試験を行うことができるので、これも本発明に含まれる。   As described above, the examples have been described. However, in view of the development of new materials to replace concrete in the field of civil engineering and construction in the present and future, the test materials targeted by the present invention are not limited to reinforced concrete, but widely applied to civil engineering and building materials in general. In addition, since a loading test simulating rebar expansion can be performed, this is also included in the present invention.

ただし、その場合は、押し込み部、膨張部及びガイド部の材料が、試験の対象とする供試体の材料よりも十分硬い場合において可能となる、   However, in that case, it is possible in the case where the material of the push-in part, the expansion part and the guide part is sufficiently harder than the material of the specimen to be tested.

また、本発明は以上説明した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内で、当分野において通常の知識を有する者により可能な実施形態の変更は、本発明に含まれる。   Further, the present invention is not limited to the embodiments described above, and modifications of the embodiments that can be made by those having ordinary knowledge in the art within the scope of the present invention are within the scope of the present invention. included.

1 押し込み部
2 膨張部
3 ガイド部
4 スペーサー
5 供試体
6 鉄筋
7 載荷装置
8 荷重計
9 鉛直変位計
10 底面
11 はく離に抵抗する表面保護工
DESCRIPTION OF SYMBOLS 1 Pushing part 2 Expansion part 3 Guide part 4 Spacer 5 Specimen 6 Reinforcing bar 7 Loading device 8 Load meter 9 Vertical displacement meter 10 Bottom surface 11 Surface protection work resisting peeling

Claims (7)

鉄筋コンクリートの鉄筋膨張の影響をコンクリート内部や表面に伝えて、鉄筋の腐食膨張を再現する載荷試験装置であって、
先端が角錐状の押し込み部と、
いくつかの、前記押し込み部の先端の角錐部分の角度と同じ角度のクサビ型の膨張部と、
前記押し込み部の先端を差し込むことができる程度の穴のあいたガイド部と、
前記押し込み部を押し込む載荷手段と、
前記押し込み部を押し込んでいる最中に、その押し込む荷重を鉄筋の膨張力として計測する荷重計測手段と、
前記押し込み部を押し込んでいる最中に、その押し込み量を計測する変位計測手段と、
を備えたことを特徴とする鉄筋膨張模擬載荷試験装置。
It is a loading test device that reproduces the corrosion expansion of reinforcing bars by transmitting the effects of reinforcing bars of reinforced concrete to the interior and surface of the concrete.
The tip has a pyramidal push-in part;
Some wedge-shaped inflatable portions having the same angle as the angle of the pyramid portion at the tip of the push-in portion;
A guide part with a hole to the extent that the tip of the pushing part can be inserted;
Loading means for pushing in the pushing portion;
Load measuring means for measuring the pushing load as the expansion force of the reinforcing bar while pushing the pushing portion;
Displacement measuring means for measuring the pushing amount while pushing the pushing portion,
Reinforcing bar expansion simulation loading test apparatus characterized by comprising:
鉄筋コンクリートの鉄筋膨張の影響をコンクリート内部や表面に伝えて、鉄筋の腐食膨張を再現する載荷試験装置であって、
先端が円錐形状の押し込み部と、
いくつかの、前記押し込み部の先端の円錐部分の角度と同じ角度のクサビ型の膨張部と、
前記押し込み部の先端を差し込むことができる程度の穴のあいたガイド部と、
前記押し込み部を押し込む載荷手段と、
前記押し込み部を押し込んでいる最中に、その押し込む荷重を鉄筋の膨張力として計測する荷重計測手段と、
前記押し込み部を押し込んでいる最中に、その押し込み量を計測する変位計測手段と、
を備えたことを特徴とする鉄筋膨張模擬載荷試験装置。
It is a loading test device that reproduces the corrosion expansion of reinforcing bars by transmitting the effects of reinforcing bars of reinforced concrete to the interior and surface of the concrete.
A push-in part having a conical tip , and
Several wedge-shaped inflatable portions having the same angle as the angle of the conical portion at the tip of the push-in portion;
A guide part with a hole to the extent that the tip of the pushing part can be inserted;
Loading means for pushing in the pushing portion;
Load measuring means for measuring the pushing load as the expansion force of the reinforcing bar while pushing the pushing portion;
Displacement measuring means for measuring the pushing amount while pushing the pushing portion,
Reinforcing bar expansion simulation loading test apparatus characterized by comprising:
前記押し込み部及び膨張部に、膨張部分の動作を一方向にするための溝、レール又はねじ切りをさらに備えたこと、
を特徴とする請求項1又は2に記載の鉄筋膨張模擬載荷試験装置。
The pushing portion and the inflating portion further include a groove, a rail, or threading for unidirectional movement of the inflating portion,
The reinforcing bar expansion simulation loading test apparatus according to claim 1 or 2.
前記膨張部が、鉄筋腐食膨張を模擬しようとする位置となるように調節するための位置調節用スペーサーをさらに備えたこと、
を特徴とする請求項1ないし3のいずれか一項に記載の鉄筋膨張模擬載荷試験装置。
The expansion portion further includes a position adjusting spacer for adjusting the expansion portion so as to be a position to simulate rebar corrosion expansion;
The reinforcing bar expansion simulated loading test apparatus according to any one of claims 1 to 3.
請求項1ないし4のいずれか一項に記載の鉄筋膨張模擬載荷試験装置を用いた載荷試験方法であって、
前記押し込み部、前記膨張部及び前記ガイド部を挿入できて、それらの外周が接する程度の円柱状の穴が空いたコンクリートを打設して、供試体を作製する工程と、
前記膨張部を、鉄筋腐食膨張を模擬しようとする位置となるように調節する工程と、
前記押し込み部で、前記膨張部に接しない方の端を、前記載荷装置で押し込む工程と、
前記押し込み部を押し込んでいる最中に、その押し込む荷重を鉄筋の膨張力として計測する工程と、
前記押し込み部を押し込んでいる最中に、その押し込み量を計測する工程と、
を備えたことを特徴とする載荷試験方法。
A loading test method using the reinforcing bar expansion simulated loading test apparatus according to any one of claims 1 to 4,
The step of producing a specimen by placing the indented portion, the inflatable portion and the guide portion, placing concrete with a cylindrical hole to the extent that the outer periphery thereof is in contact, and
Adjusting the expansion portion to be a position where it is intended to simulate rebar corrosion expansion;
A step of pushing the end of the pushing portion that does not contact the expanding portion with the loading device described above;
A step of measuring the pushing load as an expansion force of the reinforcing bar while pushing the pushing portion; and
Measuring the amount of pushing while pushing the pushing portion; and
A loading test method characterized by comprising:
コンクリート内部や表面に、はく離やはく落を防止する工法を施工して、前記はく離やはく落を防止する工法の試験を行うこと、
を特徴とする請求項5に記載の載荷試験方法。
Applying a construction method to prevent peeling and flaking inside and on the concrete, and testing the construction method to prevent the peeling and flaking,
The loading test method according to claim 5.
コンクリート供試体を円筒状に作製して、前記膨張部が前記円筒状の中心位置となるように調整して膨張させて、コンクリートの引張応力の試験を行うこと、
を特徴とする請求項5に記載の載荷試験方法。
Producing a concrete specimen in a cylindrical shape, adjusting the expanded portion so as to be the central position of the cylindrical shape and expanding it, and testing the tensile stress of the concrete,
The loading test method according to claim 5.
JP2013243825A 2013-11-26 2013-11-26 Reinforcing bar expansion simulated loading test apparatus and loading test method Expired - Fee Related JP5950283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013243825A JP5950283B2 (en) 2013-11-26 2013-11-26 Reinforcing bar expansion simulated loading test apparatus and loading test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013243825A JP5950283B2 (en) 2013-11-26 2013-11-26 Reinforcing bar expansion simulated loading test apparatus and loading test method

Publications (2)

Publication Number Publication Date
JP2015102448A JP2015102448A (en) 2015-06-04
JP5950283B2 true JP5950283B2 (en) 2016-07-13

Family

ID=53378251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013243825A Expired - Fee Related JP5950283B2 (en) 2013-11-26 2013-11-26 Reinforcing bar expansion simulated loading test apparatus and loading test method

Country Status (1)

Country Link
JP (1) JP5950283B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167270A (en) * 2017-06-16 2017-09-15 青岛理工大学 Device for monitoring rusty expansion stress of steel bar in rear-mounted concrete

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019176464A1 (en) * 2018-03-15 2019-09-19 パナソニックIpマネジメント株式会社 Inspection device and inspection method
CN109822725B (en) * 2019-03-11 2020-10-27 安徽理工大学 Mold and method for manufacturing fiber cement soil test block
CN117309742B (en) * 2023-12-01 2024-02-02 内蒙古工业大学 Multisource corrosion acceleration simulation device for reinforced concrete member

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2744674B2 (en) * 1990-05-16 1998-04-28 三菱重工業株式会社 Crack growth suppression method
JPH07229878A (en) * 1994-02-21 1995-08-29 Ishikawajima Harima Heavy Ind Co Ltd Formation of stress corrosion crack defect in metal pipe and stress applying device used therein
JP3854253B2 (en) * 2003-07-29 2006-12-06 株式会社竹中工務店 Method for predicting remaining life of repaired concrete frame, method for calculating neutralization rate coefficient used for the prediction, and computer program
JP4163634B2 (en) * 2004-02-04 2008-10-08 株式会社リコー Strength measuring apparatus and strength measuring method for plastic molded product
JP4358728B2 (en) * 2004-12-13 2009-11-04 三菱重工業株式会社 Determination of physical properties of reinforced concrete structures
JP5099806B2 (en) * 2006-03-24 2012-12-19 学校法人日本大学 Test method for waterproofing concrete layer
JP2012172975A (en) * 2011-02-17 2012-09-10 Railway Technical Research Institute Load test equipment and load test method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107167270A (en) * 2017-06-16 2017-09-15 青岛理工大学 Device for monitoring rusty expansion stress of steel bar in rear-mounted concrete

Also Published As

Publication number Publication date
JP2015102448A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP5950283B2 (en) Reinforcing bar expansion simulated loading test apparatus and loading test method
JP5304683B2 (en) Method for measuring brittle crack arrest fracture toughness
Barsoum et al. Modeling of ductile crack propagation in expanded thin-walled 6063-T5 aluminum tubes
Martin Theoretical and experimental study of fully grouted rockbolts and cablebolts under axial loads
Mirza et al. Effects of strain regimes on the behaviour of headed stud shear connectors for composite steel-concrete beams
Zhong et al. Axial compression behavior of stub square concrete-filled steel tubes with regional defect
Wang et al. Mechanical behavior and damage evolution for granite subjected to cyclic loading
Mahmood et al. Effect of tube thickness on the face bending for blind-bolted connection to concrete filled tubular structures
Saxena et al. Establishing methodology to predict fracture behaviour of piping components by numerically predicting specimen fracture data using tensile specimen test
Zhang et al. A full-scale experimental study on the performance of jacking prestressed concrete cylinder pipe with misalignment angle
Likeb et al. Stress intensity factor and limit load solutions for new pipe-ring specimen with axial cracks
AbdelSalam et al. Laboratory characterization and numerical modeling of EPS geofoam
Torabian et al. Cyclic performance and behavior characterization of steel deck sidelap and framing Connections
Nicak Ductile Tearing Simulations to Support Design of Large Scale Tests on Ferritic Pipes to Be Performed in the European Project ATLAS+
CN206488984U (en) A kind of assembly type, which expands, pulls out device
Damjanović et al. The influence of torsion effect on fracture behavior of Pipe Ring Notched Bend specimen (PRNB)
Pinheiro et al. Stress concentration factors of dented pipelines
Valls et al. Influence of outer diameter in confinement effect of CFT sections under bending
Chung et al. Analysis on Flexural Behavior of Hollow Prestressed Concrete Filled Steel Tube Piles
HRP20121015T1 (en) Method for testing the driftability of metal tubes
CN114878041B (en) Method for measuring stress of in-service oil and gas pipeline by using bidirectional ultrasonic probe
Prince et al. A numerical study on predicting bond-slip relationship of reinforced concrete using surface based cohesive behavior
Sandvik et al. Fracture Control-Offshore Pipelines JIP Use of Abaqus/Explicit to Simulate Ductile Tearing In Pipes With Defects Loaded Beyond Yielding
Prinosil et al. THE INFLUENCE OF SPECIMENS PREPARATION METHOD ON COHESIVE BEHAVIOR OF FIBER COMPOSITES
Witzany et al. Load-bearing capacity determination of historic masonry structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5950283

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees