JP5949683B2 - Hot Blast Gitter Brick - Google Patents

Hot Blast Gitter Brick Download PDF

Info

Publication number
JP5949683B2
JP5949683B2 JP2013133963A JP2013133963A JP5949683B2 JP 5949683 B2 JP5949683 B2 JP 5949683B2 JP 2013133963 A JP2013133963 A JP 2013133963A JP 2013133963 A JP2013133963 A JP 2013133963A JP 5949683 B2 JP5949683 B2 JP 5949683B2
Authority
JP
Japan
Prior art keywords
ridges
brick
hot
ridge
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013133963A
Other languages
Japanese (ja)
Other versions
JP2015010237A (en
Inventor
岡田 邦明
邦明 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013133963A priority Critical patent/JP5949683B2/en
Publication of JP2015010237A publication Critical patent/JP2015010237A/en
Application granted granted Critical
Publication of JP5949683B2 publication Critical patent/JP5949683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/02Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using rigid bodies, e.g. of porous material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/10Secondary fins, e.g. projections or recesses on main fins
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Description

本発明は、高炉に付設した熱風炉の蓄熱室に積み重ねられる外形が六角柱状の煉瓦単体で構成される熱風炉用ギッター煉瓦に関する。   TECHNICAL FIELD The present invention relates to a hot blast furnace jitter brick constructed by a hexagonal column-shaped brick that is stacked in a heat storage chamber of a hot blast furnace attached to a blast furnace.

従来から、高炉操業は、燃料費の低減を図るため、高温度の高炉送風が求められている。
高炉送風は、一般的に高炉に付設した3〜5基の熱風炉を1〜2基ずつ交互に稼働し、燃焼室で生成した高温の燃焼ガスを蓄熱室に組み込んだギッター煉瓦に形成した貫通孔に流通させ、燃焼ガスの顕熱をギッター煉瓦に蓄熱し、ついで高炉へ送風する空気をギッター煉瓦の貫通孔に流通させ、熱風となして高炉へ供給するものである。
Conventionally, in blast furnace operation, high temperature blast furnace blast has been demanded in order to reduce fuel costs.
Blast furnace blasting is generally a through-hole formed in a brick brick that operates three to five hot blast furnaces attached to the blast furnace alternately one by two, and incorporates high-temperature combustion gas generated in the combustion chamber into the heat storage chamber. The sensible heat of the combustion gas is stored in the glitter brick, and then the air blown to the blast furnace is circulated through the through hole of the glitter brick to be supplied as hot air to the blast furnace.

上記のギッター煉瓦は、一般には図10に示すものが多く用いられており、その構造は、六角柱の単体煉瓦101の軸芯方向に多数の孔102を貫通させ、この単体煉瓦101の側面同士を接触させて所謂「蜂の巣状」に配置するようにしている。このようなギッター煉瓦を、前記蓄熱室内に、貫通孔が垂直方向に互いに連通するようにして合計25〜40mの高さに積み重ねて充填される。   As for the above-mentioned glitter bricks, those shown in FIG. 10 are generally used, and the structure thereof is such that a large number of holes 102 are penetrated in the axial direction of the hexagonal prism unit brick 101, and the side surfaces of the unit bricks 101 are arranged side by side. Are placed in contact with each other in a so-called “honeycomb shape”. Such glitter bricks are stacked and filled in the heat storage chamber to a total height of 25 to 40 m so that the through holes communicate with each other in the vertical direction.

そして、熱風炉における送風温度は、ギッター煉瓦の構造、すなわち熱交換率により大きく左右される。そこで、従来から熱風炉における熱交換率の蓋然方法について種々の検討がなされている。
上記ギッター煉瓦の貫通孔は、概ね内面が円筒型である。このため、高温の燃焼ガスと接触する各ガス孔の伝熱面積が小さく熱交換(蓄熱)の効率が高くなく、新設時では、ギッター煉瓦容積を大きくする必要があった。
And the blowing temperature in a hot stove greatly depends on the structure of the jitter brick, that is, the heat exchange rate. Therefore, various studies have been made on the method of covering the heat exchange rate in a hot stove.
The through hole of the above-mentioned glitter brick is generally cylindrical on the inner surface. For this reason, the heat transfer area of each gas hole in contact with the high-temperature combustion gas is small and the efficiency of heat exchange (heat storage) is not high, and it was necessary to increase the volume of the brick brick when newly installed.

その改善策として従来例から特許文献1〜3に記載された技術が提案されている。
特許文献1に記載された熱風炉用ギッターレンガは、貫通孔の内周面に螺旋状の凹突部を形成して伝熱面積を増加させるようにしている。
また、特許文献2に記載された熱風炉用ギッターレンガは、貫通孔の内壁面における上端側に段状突起を形成して熱伝達係数の増加を図っている。
As an improvement measure, techniques described in Patent Documents 1 to 3 have been proposed from conventional examples.
In the hot brick furnace brick described in Patent Document 1, a spiral concave protrusion is formed on the inner peripheral surface of the through-hole to increase the heat transfer area.
In addition, the hot brick furnace brick described in Patent Document 2 has a stepped protrusion formed on the upper end side of the inner wall surface of the through hole to increase the heat transfer coefficient.

さらに、特許文献3に記載された熱風炉用ギッター煉瓦は、貫通孔を傾斜させることにより、伝熱面積を増加させている。
また、特許文献4に記載の熱風炉用ギッター煉瓦は、貫通孔の内面形状を6個ずつの凹凸を有する概略花弁形に形成し、伝熱面積を増加させるようにしている。
Furthermore, the hot brick furnace bricker described in Patent Document 3 increases the heat transfer area by inclining the through holes.
In addition, the hot brick furnace bricker described in Patent Document 4 is formed so that the inner surface shape of the through-hole is roughly petal-shaped with six irregularities to increase the heat transfer area.

実開昭52−41306号公報Japanese Utility Model Publication No. 52-41306 特公昭57−34322号公報Japanese Patent Publication No.57-34322 特開昭62−83413号公報JP-A-62-83413 特許第4015052号公報Japanese Patent No. 4015052

しかしながら、上記特許文献1及び2に記載された従来例では、貫通孔において、燃焼ガスまたは空気の流れにおいて、乱流を促進することにより、蓄熱効率の向上を図ることができるものであるが、貫通孔形状が複雑なため、圧力損失が大きく、またレンガ成型時に型枠から外し難く制作費が嵩むなどの未解決の課題がある。
また、上記特許文献3に記載された従来例では、貫通孔を傾斜させることにより、伝熱面積を増加させているが、従来のギッター煉瓦と同一外形かつ平面形状が同一サイズの貫通孔を形成するものは、耐火物の残厚が略20mm以下の薄い個所が生じ、煉瓦の製作・据付け・使用時に強度不足となり破損等が頻繁に発生し、実用的な技術ではないという未解決の課題がある。
However, in the conventional examples described in Patent Documents 1 and 2, the heat storage efficiency can be improved by promoting the turbulent flow in the flow of the combustion gas or air in the through hole. Due to the complicated shape of the through-hole, there are unsolved problems such as large pressure loss and difficulty in removing from the formwork during brick molding, which increases production costs.
In addition, in the conventional example described in Patent Document 3, the heat transfer area is increased by inclining the through-hole, but a through-hole having the same outer shape and the same planar shape as the conventional glitter brick is formed. There is an unresolved issue that the refractory has a thin thickness of approximately 20 mm or less, the strength is insufficient when bricks are manufactured, installed, and used, breakage occurs frequently, and is not a practical technology. is there.

さらに、上記特許文献4に記載された従来例では、貫通孔の形状を6個ずつの凹凸を有する概略花弁状に形成し、伝熱面積を増加させるようにしている。しかしながら、その伝熱面積増加比率は、円形の最大2.06倍と記載されているが、耐久性の面でギッター煉瓦に括れ部を作らないための実用状の形状として、円形に対して最大1.5倍程度であり、著しい伝熱面積の増加は見込めないという未解決の課題がある。
そこで、本発明は上記従来例の未解決の課題に着目してなされたものであり、ギッター煉瓦での圧力損失を抑制しながらギッター煉瓦の伝熱面積を飛躍的に増加させるようにした熱風炉用ギッター煉瓦を提供することを目的としている。
Further, in the conventional example described in Patent Document 4, the shape of the through hole is formed in a substantially petal shape having six irregularities, thereby increasing the heat transfer area. However, although the heat transfer area increase ratio is described as 2.06 times the maximum of the circular shape, it is the maximum practical shape for the circular shape as a practical shape not to make a constricted part in the glitter brick in terms of durability. There is an unsolved problem that it is about 1.5 times and a significant increase in heat transfer area cannot be expected.
Therefore, the present invention has been made paying attention to the above-mentioned unsolved problems of the conventional example, and the hot air furnace in which the heat transfer area of the glitter brick is dramatically increased while suppressing the pressure loss in the glitter brick. The purpose is to provide a brickwork brick.

上記目的を達成するために、本発明に係る熱風炉用ギッター煉瓦の第1の態様は、熱風炉の蓄熱室に積み重ねられる外形が六角柱状の煉瓦単体で構成される熱風炉用ギッター煉瓦であって、前記煉瓦単体に軸方向に設けられた貫通孔の内壁面に、熱風の流れ方向に沿って延長し、円周方向に連続する第1の凸条及び第1の凹条を交互に形成し、各第1の凸条及び第1の凹条が成す1辺に複数の第2の凸条を形成し、前記第1の凸条及び前記第1の凹条は頂角が60度以下の正三角形又は二等辺三角形の形状を有し、前記第1の凸条及び前記第1の凹条が成す1辺に複数の第2の凸条を形成し、伝熱面積を単純円筒内壁面に比較して2.1倍以上に増加させている。 In order to achieve the above object, a first aspect of the hot-blast stove Gitter brick according to the present invention is a hot-blast stove Gitter brick whose outer shape stacked in the heat storage chamber of the hot stove is composed of bricks having a hexagonal columnar shape. Then, on the inner wall surface of the through-hole provided in the axial direction in the brick unit alone, first ridges and first ridges extending in the hot air flow direction and continuous in the circumferential direction are alternately formed. A plurality of second ridges are formed on one side formed by the first ridges and the first ridges, and the first ridges and the first ridges have an apex angle of 60 degrees or less. A plurality of second ridges are formed on one side formed by the first ridges and the first ridges, and the heat transfer area is a simple cylindrical inner wall surface. It is increased 2.1 times or more.

また、本発明に係る熱風炉用ギッター煉瓦の第2の態様は、熱風炉の蓄熱室に積み重ねられる外形が六角柱状の煉瓦単体で構成される熱風炉用ギッター煉瓦であって、前記煉瓦単体に軸方向に設けられた貫通孔の内壁面に、熱風の流れ方向に沿って延長し、円周方向に連続する第1の凸条及び第1の凹条を交互に形成し、各第1の凸条及び第1の凹条が成す1辺に複数の第2の凸条を形成し、前記第1の凸条及び前記第1の凹条は頂角が60度を超える二等辺三角形の形状を有し、前記第1の凸条及び前記第1の凹条が成す1辺に複数の前記第2の凸条を形成し、前記第2の凸条は頂角が60度以下の正三角形又は二等辺三角形の形状を有し、伝熱面積を単純円筒内壁面に比較して2.1倍以上に増加させている。 Moreover, the second aspect of the hot-blast stove Gitter brick according to the present invention is a hot-blast stove Gitter brick whose outer shape is a hexagonal column-shaped brick that is stacked in the heat storage chamber of the hot stove. On the inner wall surface of the through-hole provided in the axial direction, first ridges and first ridges extending in the hot air flow direction and continuing in the circumferential direction are alternately formed, and each first A plurality of second ridges are formed on one side formed by the ridges and the first ridges, and the first ridges and the first ridges are isosceles triangles whose apex angle exceeds 60 degrees. A plurality of the second protrusions are formed on one side formed by the first protrusions and the first recesses, and the second protrusions are equilateral triangles having an apex angle of 60 degrees or less. Or it has the shape of an isosceles triangle, and is increasing the heat-transfer area 2.1 times or more compared with a simple cylindrical inner wall surface.

また、本発明に係る熱風炉用ギッター煉瓦の第の態様は、前記第1の凸条及び第1の凹条は前記貫通孔の内壁面に10以上形成されている。 Moreover, as for the 3rd aspect of the hot-blast stove Gitter brick which concerns on this invention, the said 1st protruding item | line and the 1st recessed item | line are formed 10 or more in the inner wall face of the said through-hole.

本発明によれば、熱風炉の蓄熱室内に積み重ねられる熱風炉用ギッター煉瓦の製作が容易で使用時に強度上の問題もないと共に、圧力損失の増加を抑制し、さらに伝熱面積増加による熱風炉の排熱効率の向上も同時に達成することが可能となる。また、熱風炉の新設時には、ギッター煉瓦の容積を従来よりも減じることができ、建設費の安価化が可能となる。   According to the present invention, it is easy to produce hot-blast stove-type bricks stacked in a heat storage chamber of a hot stove, and there is no problem in strength at the time of use, and the increase in pressure loss is suppressed, and further, the hot stove by increasing the heat transfer area Improvement of exhaust heat efficiency can be achieved at the same time. In addition, when a hot stove is newly installed, the volume of the glitter brick can be reduced as compared with the conventional one, and the construction cost can be reduced.

本発明に係る熱風炉用ギッター煉瓦の第1の実施形態の概略構成を示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing a schematic configuration of a first embodiment of a hot-blast furnace glitter brick according to the present invention. 図1の貫通孔を拡大して示す平面図である。It is a top view which expands and shows the through-hole of FIG. 図2の貫通孔の第2の凹部をさらに拡大して示す平面図である。It is a top view which expands further and shows the 2nd recessed part of the through-hole of FIG. 熱風炉用ギッター煉瓦を3個組み合わせた状態の平面図である。It is a top view in the state where three hot brick stove bricks were combined. 第2の凹部の変形例を示す拡大平面図である。It is an enlarged plan view which shows the modification of a 2nd recessed part. 本発明の第2の実施形態の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the 2nd Embodiment of this invention. 図6の貫通孔を拡大して示す平面図である。It is a top view which expands and shows the through-hole of FIG. 図7の貫通孔の第2の凹部をさらに拡大して示す平面図である。It is a top view which expands and shows the 2nd recessed part of the through-hole of FIG. 第2の凹部の変形例を示す拡大平面図である。It is an enlarged plan view which shows the modification of a 2nd recessed part. 従来の熱風炉用ギッター煉瓦を示す斜視図である。It is a perspective view which shows the conventional brick for hot stove furnaces.

以下、本発明の一実施形態について図面を伴って説明する。
図1は本発明の第1の実施形態を示す熱風炉用ギッター煉瓦を示す概略構成図であり、図2にその貫通孔を拡大して示す平面図、図3は貫通孔の第2の凹部をさらに拡大して示す平面図、図4は熱風炉用ギッター煉瓦を3個組み合わせた平面図である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a hot-blast furnace jitter brick according to a first embodiment of the present invention. FIG. 2 is an enlarged plan view of the through hole, and FIG. 3 is a second recess of the through hole. FIG. 4 is a plan view obtained by combining three hot-blast furnace glitter bricks.

図中、1は高炉に付設する熱風炉内に積み重ねて配置する熱風炉用ギッター煉瓦である。この熱風炉用ギッター煉瓦1は、図1に示すように、外形が六角柱形状に形成された単体煉瓦2で構成されている。この単体煉瓦2は、内部に軸芯位置に軸方向すなわち熱風の流れ方向に沿って延長する貫通孔3aと、この貫通孔3aの中心から六角形の頂点に向かう放射線上に形成された軸方向すなわち熱風の流れ方向に沿って延長する6個の貫通孔3b〜3gとで計7個の貫通孔が形成されているとともに、各頂部位置に1/3周分の軸方向に延長する貫通孔形成部4a〜4fと各頂部を結ぶ辺の中央位置に半周分の軸方向に延長する貫通孔形成部5a〜5fが形成されている。   In the figure, reference numeral 1 denotes a hot blast furnace jitter brick arranged in a hot blast furnace attached to the blast furnace. As shown in FIG. 1, the hot-blast furnace glitter brick 1 is composed of a single brick 2 whose outer shape is formed in a hexagonal prism shape. The single brick 2 has a through hole 3a extending in the axial direction, that is, along the flow direction of hot air inside the axial center, and an axial direction formed on the radiation from the center of the through hole 3a toward the apex of the hexagon. That is, a total of seven through-holes are formed with six through-holes 3b to 3g extending along the flow direction of hot air, and through-holes extending in the axial direction for 1/3 of the circumference at each top position Through-hole forming portions 5a to 5f extending in the axial direction for a half circumference are formed at the center position of the side connecting the forming portions 4a to 4f and the respective top portions.

各貫通孔3a〜3g、貫通孔形成部4a〜4f及び5a〜5fの内周壁には、図2に拡大図示するように、一点鎖線図示の円形貫通孔6に対して、半径方向内方に突出し、且つ軸方向に延長する16個の第1の凸条7が形成されているとともに、各第1の凸条7間に円形貫通孔6から半径方向内方に凹み、且つ軸方向に延長する16個の第1の凹条8が形成されている。すなわち、貫通孔3a〜3g及び貫通孔形成部4a〜4f及び5a〜5fの内周壁に第1の凸条7と第1の凹条8とが円周方向に交互に形成されている。   As shown in an enlarged view in FIG. 2, the inner peripheral walls of the through holes 3a to 3g and the through hole forming portions 4a to 4f and 5a to 5f are radially inward with respect to the circular through hole 6 shown by a one-dot chain line. 16 first protrusions 7 that protrude and extend in the axial direction are formed, and the first protrusions 7 are recessed between the first protrusions 7 inward in the radial direction from the circular through hole 6 and extend in the axial direction. Sixteen first concave stripes 8 are formed. That is, the first protrusions 7 and the first recesses 8 are alternately formed in the circumferential direction on the inner peripheral walls of the through holes 3a to 3g and the through hole forming portions 4a to 4f and 5a to 5f.

これら第1の凸条7及び第1の凹条8は、図2に拡大図示するように平面から見て頂角が例えば60度となる正三角形状に形成されている。同様に凹条8も平面から見て頂角が例えば60度となる正三角形に形成されている。これら第1の凸条7及び第1の凹条8の形状は、正三角形に限らず、頂角が60度未満の二等辺三角形で形成するようにしてもよい。   The first ridges 7 and the first ridges 8 are formed in a regular triangle shape having an apex angle of, for example, 60 degrees when viewed from the plane as shown in an enlarged view in FIG. Similarly, the concave strip 8 is also formed in a regular triangle having an apex angle of 60 degrees when viewed from the plane. The shapes of the first ridges 7 and the first ridges 8 are not limited to equilateral triangles, and may be formed as isosceles triangles having apex angles of less than 60 degrees.

そして、第1の凸条7及び第1の凹条8が成す1辺に、図3に拡大図示するように、複数の第2の凸条11a及び11bが形成されている。この第2の凸条11aは、第1の凸条7の両側面に平面から見て頂角が120度となる二等辺三角形状に形成され、第2の凸条11bは、第1の凹条8の両内面に第2の凸条11aと連接して形成された平面から見て頂部が120度となる二等辺三角形状に形成されている。これら第2の凸条11a及び11bは同一形状であっても相似形状であってもよい。また、第2の凸条11a及び11bの個数は2個に限定されるものではなく、3以上の任意数形成するようにしてもよい。   A plurality of second ridges 11a and 11b are formed on one side formed by the first ridges 7 and the first ridges 8 as shown in an enlarged view in FIG. The second ridge 11a is formed in an isosceles triangle shape having an apex angle of 120 degrees when viewed from the plane on both side surfaces of the first ridge 7, and the second ridge 11b is formed in the first recess. It is formed in the shape of an isosceles triangle whose top is 120 degrees as viewed from the plane formed on both inner surfaces of the strip 8 and connected to the second convex strip 11a. These second ridges 11a and 11b may have the same shape or similar shapes. Further, the number of the second ridges 11a and 11b is not limited to two, and an arbitrary number of three or more may be formed.

上記構成を有する例えば3個の熱風炉用ギッター煉瓦1A〜1Cを、図4に示すように、側面同士を接触させてハニカム構造とすることにより、3個の熱風炉用ギッター煉瓦1A〜1Cが接合する位置で熱風炉用ギッター煉瓦1Aの頂部に形成された1/3周分の貫通孔形成部4dと、熱風炉用ギッター煉瓦1Bの頂部に形成された1/3周分の貫通孔形成部4fと、熱風炉用ギッター煉瓦1Cの頂部に形成された1/3周分の貫通孔形成部4bとが互いに連接して第1の凸条7及び第1の凹条8と第2の凸条11a,11bとを有する1つの貫通孔が形成される。   For example, as shown in FIG. 4, the three hot-blast furnace jitter bricks 1 </ b> A to 1 </ b> C having the above-described configuration are brought into contact with each other to form a honeycomb structure as shown in FIG. 4. 1 / 3-round through-hole forming part 4d formed at the top of the hot-blast stove Gitter brick 1A at the joining position, and 1 / 3-round through-hole formed at the top of the hot-blast furnace Gitter brick 1B The first protrusion 7 and the first recess 8 and the second protrusion 4b and the through-hole formation part 4b for 1/3 of the circumference formed on the top of the hot brick furnace brick 1C are connected to each other. One through hole having the ridges 11a and 11b is formed.

また、熱風炉用ギッター煉瓦1Aの辺に形成された1/2周分の貫通孔形成部5cと、熱風炉用ギッター煉瓦1Bの辺に形成された1/2周分の貫通孔形成部5fとが連接して第1の凸条7及び第1の凹条8と第2の凸条11a,11bとを有する1つの貫通孔が形成される。
同様に、熱風炉用ギッター煉瓦1Bの辺に形成された1/2周分の貫通孔形成部5eと、熱風炉用ギッター煉瓦1Cの辺に形成された1/2周分の貫通孔形成部5bとが連接して第1の凸条7及び第1の凹条8と第2の凸条11a,11bとを有する1つの貫通孔が形成される。
Moreover, the through-hole formation part 5c for 1/2 circumference formed in the edge | side of the hot brick furnace brick 1A and the through-hole formation part 5f for 1/2 circumference formed in the edge | side of the hot brick furnace brick 1B. Are connected to each other to form one through-hole having the first ridge 7 and the first recess 8 and the second ridges 11a and 11b.
Similarly, the through hole forming part 5e for 1/2 circumference formed in the side of the hot brick furnace brick 1B and the through hole forming part for 1/2 circumference formed in the side of the hot brick furnace brick 1C. 5b is connected and the 1st protruding item | line 7 and the 1st recessed item | line 8 and the 1st through-hole which has 2nd protruding item | line 11a, 11b are formed.

さらに、熱風炉用ギッター煉瓦1Cの辺に形成された1/2周分の貫通孔形成部5aと、熱風炉用ギッター煉瓦1Aの辺に形成された1/2周分の貫通孔形成部5dとが連接して第1の凸条7及び第1の凹条8と第2の凸条11a,11bとを有する1つの貫通孔が形成される。   Furthermore, the through hole forming part 5a for 1/2 turn formed on the side of the hot brick furnace brick 1C and the through hole forming part 5d for 1/2 turn formed on the side of the hot brick furnace brick 1A. Are connected to each other to form one through-hole having the first ridge 7 and the first recess 8 and the second ridges 11a and 11b.

このように、上記第1の実施形態によると、貫通孔3a〜3g、貫通孔形成部4a〜4f及び5a〜5fの内周面に、第1の凸条7及び第1の凹条8を形成し、さらに第1の凸条7及び第1の凹条8の成す1辺に複数の第2の凸条11a及び11bを形成することにより、貫通孔3a〜3gと、貫通孔形成部4a〜4f及び5a〜5fを集めて形成される貫通孔との伝熱面積を図3で一点鎖線図示の円筒形状の伝熱面積と比較して約2.3倍に増加させることができる。この場合の貫通孔の形状によって決まる無次元の形状係数kは、一つの貫通孔における周長Lと一つの貫通孔における断面積(ガス通過横断面積)Aとに基づいて下記(1)式で表される。
k=L/√A …………(1)
このとき、第1の実施形態では、孔直径が45mmφの場合Lは326.3mm、Aは1590mmであるので、形状係数kは8.18となる。
Thus, according to the first embodiment, the first ridges 7 and the first ridges 8 are formed on the inner peripheral surfaces of the through holes 3a to 3g and the through hole forming portions 4a to 4f and 5a to 5f. By forming and forming a plurality of second ridges 11a and 11b on one side formed by the first ridges 7 and the first ridges 8, the through holes 3a to 3g and the through hole forming part 4a are formed. The heat transfer area with the through holes formed by collecting ˜4f and 5a to 5f can be increased by about 2.3 times compared to the cylindrical heat transfer area shown in FIG. The dimensionless shape factor k determined by the shape of the through hole in this case is expressed by the following equation (1) based on the circumferential length L of one through hole and the cross-sectional area (gas passage cross-sectional area) A of one through hole. expressed.
k = L / √A (1)
At this time, in the first embodiment, when the hole diameter is 45 mmφ, L is 326.3 mm and A is 1590 mm 2 , so the shape factor k is 8.18.

ここで、貫通孔の形状を前述した特許文献4に記載されている花弁形状とした場合には、形状係数kが7.3を超えると、耐火材である材質で花弁形状を製作する場合に、耐火材の充填が不均一となるため、好ましくないものであるが、上記第1の実施形態のように、第1の凸条7と第1の凹条8と、第1の凸条7及び第1の凹条8の成す1辺に複数の第2の凸条11a,11bを形成する場合には、図3で拡大図示するように、全体として凸条と凹条との組合せであり、花弁形状のように複雑な円弧形状とならないので、形状係数kが7.4以上となっても耐火材の充填を不均一となることなく容易に行うことができる。   Here, when the shape of the through hole is the petal shape described in Patent Document 4 described above, when the shape factor k exceeds 7.3, the petal shape is made of a material that is a refractory material. Since the refractory material is not uniformly filled, it is not preferable. However, as in the first embodiment, the first ridges 7, the first ridges 8, and the first ridges 7 are not preferable. When a plurality of second ridges 11a and 11b are formed on one side formed by the first ridge 8, as shown in an enlarged view in FIG. 3, it is a combination of ridges and ridges as a whole. Since the arc shape is not complicated like the petal shape, the filling of the refractory material can be easily performed without unevenness even if the shape factor k is 7.4 or more.

しかも、本実施形態では、第1の凸条7及び第1の凹条8が成す1辺に第2の凸条11a及び11bを形成するので、前述した特許文献4に記載されている花弁形状のように括れ部が生じることがなく使用時の強度を十分に確保することができる。さらに、第1の凸条7及び第1の凹条8と第2の凸条11a,11bが熱風炉用ギッター煉瓦1の軸方向に延長しているので圧力損失の増加を抑制することができる。   In addition, in the present embodiment, since the second ridges 11a and 11b are formed on one side formed by the first ridges 7 and the first recesses 8, the petal shape described in Patent Document 4 described above is used. Thus, the constricted portion does not occur, and the strength during use can be sufficiently secured. Furthermore, since the 1st protruding item | line 7 and the 1st recessed item | line 8 and the 2nd protruding item | line 11a, 11b are extended in the axial direction of the hot brick furnace brick 1, the increase in pressure loss can be suppressed. .

したがって、第1の実施形態によると、熱風炉の蓄熱室内に積み重ねられる熱風炉用ギッター煉瓦の製作が容易で使用時に強度上の問題もないと共に、圧力損失を殆ど増加させることがなく、かつ伝熱面積増加による熱風炉の排熱効率の向上も同時に達成することが可能となる。また、伝熱面積を増加させることができるので、熱風炉の新設時には、ギッター煉瓦の容積を従来よりも減じることができ、建設費の安価化が可能となる。   Therefore, according to the first embodiment, it is easy to manufacture the hot-blast stove Gitter brick stacked in the heat storage chamber of the hot stove, there is no problem in strength at the time of use, there is almost no increase in pressure loss, and the transmission. Improvement of the exhaust heat efficiency of the hot stove by increasing the heat area can be achieved at the same time. In addition, since the heat transfer area can be increased, when a hot stove is newly installed, the volume of the glitter brick can be reduced as compared with the conventional one, and the construction cost can be reduced.

なお、上記第1の実施形態においては、第1の凸条7及び第1の凹条8と第2の凸条11a,11bとを三角形状に形成した場合について説明したが、これに限定されるものではなく、図5に示すように、第1の凸条7及び第1の凹条8と第2の凸条11a,11bとの三角形状の角部にR面取り部12を形成して全体として丸みを持たせるようにしてもよい。この場合には、尖った角部を形成することがないので、熱風炉用ギッター煉瓦1を製作する場合に、耐火物の充填を不均一となることなくより容易に行うことができる。   In the first embodiment, the case where the first ridges 7 and the first ridges 8 and the second ridges 11a and 11b are formed in a triangular shape has been described. However, the present invention is not limited to this. As shown in FIG. 5, R chamfered portions 12 are formed at the triangular corners of the first ridges 7 and the first ridges 8 and the second ridges 11a and 11b. You may make it give roundness as a whole. In this case, since sharp corners are not formed, the refractory filling can be performed more easily without making the refractory filling uneven when manufacturing the hot brick furnace brick 1.

次に、本発明の第2の実施形態について図6〜図8を伴って説明する。
この第2の実施形態では、第1の凸条及び第1の凹条の頂角を前述した第1の実施形態より大きくして第2の突条を多数形成可能としたものである。
すなわち、第2の実施形態では、熱風炉用ギッター煉瓦1の外形及び貫通孔3a〜3g、貫通孔形成部4a〜4f及び5a〜5fの個数及び配置位置については図1と同様である。
Next, a second embodiment of the present invention will be described with reference to FIGS.
In the second embodiment, the apex angles of the first ridges and the first ridges are made larger than those in the first embodiment described above, and a large number of second ridges can be formed.
That is, in the second embodiment, the outer shape of the hot-blast stove Gitter brick 1 and the numbers and arrangement positions of the through holes 3a to 3g, the through hole forming portions 4a to 4f and 5a to 5f are the same as those in FIG.

しかしながら、貫通孔3a〜3g、貫通孔形成部4a〜4f及び5a〜5fの内周壁に形成する第1の凸条7及び第1の凹条8の形状が、共に頂角を120度とする二等辺三角形状に形成されている。これら第1の凸条7及び第1の凹条8の数は1つの貫通孔で共に12個に設定されている。ここで、第1の凸条7の二等辺の辺の長さが第1の凹条8の二等辺の辺の長さより短く設定されている。   However, the shapes of the first ridges 7 and the first ridges 8 formed on the inner peripheral walls of the through holes 3a to 3g and the through hole forming portions 4a to 4f and 5a to 5f are both set to an apex angle of 120 degrees. It is formed in an isosceles triangle shape. The number of the first ridges 7 and the first ridges 8 is set to 12 in one through hole. Here, the length of the isosceles side of the first ridge 7 is set shorter than the length of the isosceles side of the first recess 8.

そして、第1の凸条7と第1の凹条8との成す辺に、図8に示すように、第2の凸条21が形成されている。この第2の凸条21は、頂角が60°の平面から見て正三角形状に形成され、第1の凸条7に例えば4個、第1の凹条8に例えば3個の計7個が連接されて形成されている。ここで、第1の凹条8の頂部には第2の凸条21が形成されない凸条非形成部22が形成されて、第1の凹条8の二等辺に形成された第2の凸条21同士が互いに干渉しない構成とされている。   And the 2nd protruding item | line 21 is formed in the edge | side which the 1st protruding item | line 7 and the 1st recessed item | line 8 comprise, as shown in FIG. The second ridges 21 are formed in the shape of an equilateral triangle when viewed from a plane having an apex angle of 60 °. The pieces are connected and formed. Here, a convex non-formed portion 22 where the second convex 21 is not formed is formed at the top of the first concave 8, and the second convex formed on the isosceles side of the first concave 8. The strips 21 are configured not to interfere with each other.

この第2の実施形態によると、第1の凸条7及び第1の凹条8の個数が共に12個と前述した第1の実施形態の16個に比較して少ないが、第1の凸条7及び第1の凹条8の成す1辺に形成される第2の凸条21の個数が7個と第1の実施形態の2個に比較して多く設定されている。このため、1つの貫通孔における円形貫通孔に対する伝熱面積倍率は前述した第1の実施形態と同様に約2.3倍に増加することができる。   According to the second embodiment, the number of the first ridges 7 and the first ridges 8 are both 12, which is smaller than the 16 of the first embodiment described above. The number of the second convex stripes 21 formed on one side formed by the stripes 7 and the first concave stripes 8 is set to be larger than seven and two in the first embodiment. For this reason, the heat transfer area magnification with respect to the circular through-hole in one through-hole can be increased to about 2.3 times as in the first embodiment.

このとき、第2の実施形態では、孔直径が45mmφの場合、周長Lは326.3mm、断面積Aは1590mmであるので、形状係数kは8.18となる。
したがって、第1の凸条7と第1の凹条8と、第1の凸条7及び第1の凹条8の成す1辺に複数7個の第2の凸条21を形成する場合には、図8で拡大図示するように、全体として凸条と凹条との組合せであり、花弁形状のように複雑な円弧形状とならないので、形状係数kが7.4以上となっても耐火材の充填を不均一となることなく容易に行うことができる。
At this time, in the second embodiment, when the hole diameter is 45 mmφ, the circumferential length L is 326.3 mm and the cross-sectional area A is 1590 mm 2 , so the shape factor k is 8.18.
Therefore, when a plurality of second ridges 21 are formed on one side formed by the first ridges 7 and the first ridges 8 and the first ridges 7 and the first ridges 8. Is a combination of ridges and ridges as a whole, as shown in an enlarged view in FIG. 8, and does not have a complicated arc shape like a petal shape. Therefore, even if the shape factor k is 7.4 or more, fire resistance The filling of the material can be easily performed without becoming uneven.

しかも、本実施形態では、第1の凸条7及び第1の凹条8が成す1辺に第2の凸条21を形成するので、前述した特許文献4に記載されている花弁形状のように括れ部が生じることがなく使用時の強度を十分に確保することができる。さらに、第1の凸条7及び第1の凹条8と第2の凸条21が熱風炉用ギッター煉瓦1の軸方向に延長しているので圧力損失の増加を抑制することができる。   Moreover, in this embodiment, since the second ridges 21 are formed on one side formed by the first ridges 7 and the first ridges 8, like the petal shape described in Patent Document 4 described above. Therefore, it is possible to ensure sufficient strength during use. Furthermore, since the 1st protruding item | line 7 and the 1st recessed item | line 8 and the 2nd protruding item | line 21 are extended in the axial direction of the hot-blast stove for the brick 1 for a furnace, the increase in a pressure loss can be suppressed.

したがって、第2の実施形態によると、熱風炉の蓄熱室内に積み重ねられる熱風炉用ギッター煉瓦の製作が容易で使用時に強度上の問題もないと共に、圧力損失の増加も抑制することができ、さらに伝熱面積増加による熱風炉の排熱効率の向上も同時に達成することが可能となる。また、伝熱面積を増加させることができるので、熱風炉の新設時には、ギッター煉瓦の容積を従来よりも減じることができ、建設費の安価化が可能となる。
なお、上記第2の実施形態においては、第1の凸条7及び第1の凹条8が頂角を120度とする二等辺三角形で構成されている場合について説明したが、これに限定されるものではなく、頂角を、60度を超える略二等辺三角形で形成すればよい。
Therefore, according to the second embodiment, it is easy to manufacture hot-blast stove Gitter bricks stacked in the heat storage chamber of the hot stove, there is no problem in strength during use, and an increase in pressure loss can be suppressed. Improvement of exhaust heat efficiency of the hot stove by increasing the heat transfer area can be achieved at the same time. In addition, since the heat transfer area can be increased, when a hot stove is newly installed, the volume of the glitter brick can be reduced as compared with the conventional one, and the construction cost can be reduced.
In the second embodiment, the case where the first ridges 7 and the first ridges 8 are composed of isosceles triangles having an apex angle of 120 degrees has been described. However, the present invention is not limited to this. What is necessary is just to form an apex angle with the substantially isosceles triangle exceeding 60 degree | times rather than a thing.

同様に、第2の凸条21についても、正三角形に限定されるものではなく、頂角を60度未満の二等辺三角形とすることができる。
また、上記第2の実施形態においては、第2の凸条21が角部を有する正三角形又は二等辺三角形で形成されている場合について説明したが、これに限定されるものではなく、図9に示すように、第2の凸条21の頂部及び連接部にR面取りを施すようにしてもよい。この場合には、尖った角部を形成することがないので、熱風炉用ギッター煉瓦1を製作する場合に、耐火物の充填を不均一となることなくより容易に行うことができる。
Similarly, the second ridges 21 are not limited to equilateral triangles, and may be isosceles triangles having apex angles of less than 60 degrees.
Moreover, in the said 2nd Embodiment, although the case where the 2nd protruding item | line 21 was formed by the equilateral triangle which has a corner | angular part, or an isosceles triangle was demonstrated, it is not limited to this, FIG. As shown in FIG. 2, the chamfer may be applied to the top and the connecting portion of the second ridge 21. In this case, since sharp corners are not formed, the refractory filling can be performed more easily without making the refractory filling uneven when manufacturing the hot brick furnace brick 1.

また、上記第1及び第2の実施形態においては、貫通孔が上下方向の各断面積が等しい略円筒面である場合について説明したが、貫通孔を僅かなテーパーを有する円錐内面として熱風炉用ギッター煉瓦1の製作に使用する型枠から抜取り易くしてもよい。
さらに、上記第1及び第2の実施形態においては、円筒面の断面積に対する断面積倍率を2.3に設定する場合について説明したが、これに限定されるものではなく、断面積倍率を2.1以上に設定して形状係数kを7.4以上に設定するようにしてもよい。このためには、第1の凸条7及び第1の凹条8の個数を10以上に設定し、第2の凸条11a,11b及び21の個数を2以上に設定するようにすればよい。
In the first and second embodiments, the case where the through hole is a substantially cylindrical surface having the same vertical sectional area is described. However, the through hole is used as a conical inner surface having a slight taper for a hot stove. You may make it easy to extract from the formwork used for manufacture of the glitter brick 1. FIG.
Furthermore, in the first and second embodiments, the case where the cross-sectional area magnification with respect to the cross-sectional area of the cylindrical surface is set to 2.3 has been described. However, the present invention is not limited to this, and the cross-sectional area magnification is set to 2 The shape factor k may be set to 7.4 or more by setting it to .1 or more. For this purpose, the number of the first ridges 7 and the first ridges 8 may be set to 10 or more, and the number of the second ridges 11a, 11b and 21 may be set to 2 or more. .

1,1A〜1C…熱風炉用ギッター煉瓦、2…単体煉瓦、3a〜3g…貫通孔、4a〜4f,5a〜5f…貫通孔形成部、6…円形貫通孔、7…第1の凸条、8…第1の凹条、11a,11b……第2の凸条、12…面取り部、21…第2の凸条   DESCRIPTION OF SYMBOLS 1,1A-1C ... Gitter brick for hot-blast furnaces, 2 ... Single unit brick, 3a-3g ... Through-hole, 4a-4f, 5a-5f ... Through-hole formation part, 6 ... Circular through-hole, 7 ... 1st protruding item | line , 8... First concave strip, 11a, 11b... Second convex strip, 12... Chamfered portion, 21.

Claims (3)

熱風炉の蓄熱室に積み重ねられる外形が六角柱状の煉瓦単体で構成される熱風炉用ギッター煉瓦であって、
前記煉瓦単体に軸方向に設けられた貫通孔の内壁面に、熱風の流れ方向に沿って延長し、円周方向に連続する第1の凸条及び第1の凹条を交互に形成し、各第1の凸条及び第1の凹条が成す1辺に複数の第2の凸条を形成し
前記第1の凸条及び前記第1の凹条は頂角が60度以下の正三角形又は二等辺三角形の形状を有し、前記第1の凸条及び前記第1の凹条が成す1辺に複数の第2の凸条を形成し、伝熱面積を単純円筒内壁面に比較して2.1倍以上に増加させたことを特徴とする熱風炉用ギッター煉瓦。
It is a hot-blast furnace Gitter brick whose outer shape stacked in the heat storage chamber of the hot-blast furnace is composed of hexagonal columnar bricks,
Extending along the flow direction of hot air on the inner wall surface of the through hole provided in the axial direction in the brick alone, alternately forming first ridges and first ridges continuous in the circumferential direction, A plurality of second ridges are formed on one side formed by each first ridge and the first groove ,
The first ridge and the first groove have a shape of an equilateral triangle or an isosceles triangle having an apex angle of 60 degrees or less, and one side formed by the first ridge and the first groove. A hot blast furnace brick brick characterized by having a plurality of second ridges formed thereon and having a heat transfer area increased 2.1 times or more compared to the inner wall surface of a simple cylinder .
熱風炉の蓄熱室に積み重ねられる外形が六角柱状の煉瓦単体で構成される熱風炉用ギッター煉瓦であって、
前記煉瓦単体に軸方向に設けられた貫通孔の内壁面に、熱風の流れ方向に沿って延長し、円周方向に連続する第1の凸条及び第1の凹条を交互に形成し、各第1の凸条及び第1の凹条が成す1辺に複数の第2の凸条を形成し、
前記第1の凸条及び前記第1の凹条は頂角が60度を超える二等辺三角形の形状を有し、前記第1の凸条及び前記第1の凹条が成す1辺に複数の前記第2の凸条を形成し、前記第2の凸条は頂角が60度以下の正三角形又は二等辺三角形の形状を有し、伝熱面積を単純円筒内壁面に比較して2.1倍以上に増加させたことを特徴とする熱風炉用ギッター煉瓦。
It is a hot-blast furnace Gitter brick whose outer shape stacked in the heat storage chamber of the hot-blast furnace is composed of hexagonal columnar bricks,
Extending along the flow direction of hot air on the inner wall surface of the through hole provided in the axial direction in the brick alone, alternately forming first ridges and first ridges continuous in the circumferential direction, A plurality of second ridges are formed on one side formed by each first ridge and the first groove,
The first ridge and the first groove have an isosceles triangle shape with an apex angle exceeding 60 degrees, and a plurality of edges are formed on one side formed by the first ridge and the first groove. The second ridge is formed, and the second ridge has a shape of an equilateral triangle or an isosceles triangle having an apex angle of 60 degrees or less, and the heat transfer area is 2. Checker fireclay bricks heat air furnace you characterized in that increased to more than 1 times.
前記第1の凸条及び第1の凹条は前記貫通孔の内壁面に10以上形成されていることを特徴とする請求項1又は2に記載の熱風炉用ギッター煉瓦。 10 or more of said 1st protruding item | line and 1st recessed item | strip | row are formed in the inner wall face of said through-hole, The hot-blast furnace jitter brick according to claim 1 or 2 characterized by the above-mentioned.
JP2013133963A 2013-06-26 2013-06-26 Hot Blast Gitter Brick Active JP5949683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013133963A JP5949683B2 (en) 2013-06-26 2013-06-26 Hot Blast Gitter Brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013133963A JP5949683B2 (en) 2013-06-26 2013-06-26 Hot Blast Gitter Brick

Publications (2)

Publication Number Publication Date
JP2015010237A JP2015010237A (en) 2015-01-19
JP5949683B2 true JP5949683B2 (en) 2016-07-13

Family

ID=52303672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013133963A Active JP5949683B2 (en) 2013-06-26 2013-06-26 Hot Blast Gitter Brick

Country Status (1)

Country Link
JP (1) JP5949683B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015205552A1 (en) * 2015-02-26 2016-09-01 Dürr Systems GmbH Shaped body for tempering a fluid and constructed with such moldings heat exchanger
CN113606574B (en) * 2021-07-29 2024-04-16 郑州豫兴热风炉科技有限公司 High-temperature low-nitrogen high-efficiency preheating energy-saving environment-friendly hot blast stove

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4407352A (en) * 1982-05-06 1983-10-04 Koppers Company, Inc. High efficiency coke oven regenerator checker brick
JP4015052B2 (en) * 2003-04-18 2007-11-28 新日鉄エンジニアリング株式会社 Gitter brick for hot stove
EP2101134A1 (en) * 2008-02-28 2009-09-16 Paul Wurth Refractory & Engineering GmbH Checker brick
CN101550740A (en) * 2009-04-30 2009-10-07 郑州方圆耐火材料有限公司 Checker brick with plum blossom hole for air heating furnace

Also Published As

Publication number Publication date
JP2015010237A (en) 2015-01-19

Similar Documents

Publication Publication Date Title
JP5949683B2 (en) Hot Blast Gitter Brick
CN202039080U (en) Heat accumulating lattice brick for a blast-furnace hot blast stove
CN202543234U (en) Novel 37-hole checker brick with annular grooves
JP5465681B2 (en) Checker brick
JPH10506984A (en) Heat exchanger bricks
JP2628403B2 (en) Refractory segment for heat storage room
JP5477125B2 (en) Checker bricks and hot stove
JP4015052B2 (en) Gitter brick for hot stove
JP6313797B2 (en) Manufacturing method of honeycomb structure
CN202403533U (en) Low resistance lattice brick structure for heat storage
JP6221797B2 (en) Kiln furnace and furnace construction method
CN201809372U (en) Efficient 19-hole checker brick
CN214881636U (en) Novel hot-blast furnace heat accumulator
JP5946853B2 (en) Honeycomb structure
CN215328199U (en) Spiral trapezoidal rib hole checker brick
CN217578666U (en) Novel regenerator checker brick for glass kiln
CN210426216U (en) Combined ceramic heat accumulator
CN202272901U (en) Hot-blast stove combination furnace grill suitable for stacking checker bricks with different structures
JP7152334B2 (en) Checker bricks and integrated blocks
CN212316159U (en) Checker brick with gas channel
JP2020147836A (en) Checker brick
CN206832056U (en) Plug-in refractory brick
CN202157086U (en) Checker brick with thirty seven holes
CN202329160U (en) Octagonal-cylindrical low-resistance lattice brick capable of improving thermal storage area
JPS63376B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R150 Certificate of patent or registration of utility model

Ref document number: 5949683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250