JP5948600B2 - Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission - Google Patents

Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission Download PDF

Info

Publication number
JP5948600B2
JP5948600B2 JP2011285298A JP2011285298A JP5948600B2 JP 5948600 B2 JP5948600 B2 JP 5948600B2 JP 2011285298 A JP2011285298 A JP 2011285298A JP 2011285298 A JP2011285298 A JP 2011285298A JP 5948600 B2 JP5948600 B2 JP 5948600B2
Authority
JP
Japan
Prior art keywords
variable transmission
continuously variable
metal belt
same
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011285298A
Other languages
Japanese (ja)
Other versions
JP2013133894A (en
Inventor
菅野 淳一
淳一 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011285298A priority Critical patent/JP5948600B2/en
Publication of JP2013133894A publication Critical patent/JP2013133894A/en
Application granted granted Critical
Publication of JP5948600B2 publication Critical patent/JP5948600B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Transmissions By Endless Flexible Members (AREA)

Description

本発明は、無段変速機用金属ベルト、及び無段変速機用金属ベルトの設計方法に関する。   The present invention relates to a metal belt for a continuously variable transmission and a method for designing a metal belt for a continuously variable transmission.

従来、下記特許文献1に開示されているようなブロック式金属ベルトや、特許文献2に開示されているような製造方法により製造された無段変速機用金属ベルトが提供されている。これらの従来技術は、従前より提供されている無段変速機用金属ベルトを無段変速機に用いた場合に発生する騒音レベルを抑制しようとするものである。   Conventionally, a block-type metal belt disclosed in Patent Document 1 below and a metal belt for continuously variable transmission manufactured by a manufacturing method disclosed in Patent Document 2 have been provided. These prior arts are intended to suppress the noise level generated when a metal belt for a continuously variable transmission provided in the past is used in a continuously variable transmission.

下記特許文献1,2に開示されている従来技術においては、無段変速機用金属ベルトに用いられる多数のエレメントを、厚みの異なる複数種のもので構成することにより、騒音レベルの低下を試みている。具体的には、下記特許文献1の従来技術においては、厚みの異なるエレメントをランダムに配列して環状に形成している。また、下記特許文献2の従来技術においては、環状に形成されるベルトを周方向前半部分と後半部分とに分け、前半部分を構成するエレメントの厚みと、後半部分を構成するエレメントの厚みとを相違させることとしている。   In the prior art disclosed in Patent Documents 1 and 2 below, a number of elements used in the metal belt for continuously variable transmissions are configured with a plurality of types having different thicknesses, thereby attempting to reduce the noise level. ing. Specifically, in the prior art disclosed in Patent Document 1 below, elements having different thicknesses are randomly arranged to form an annular shape. Moreover, in the prior art of the following Patent Document 2, the belt formed in an annular shape is divided into a circumferential first half part and a second half part, and the thickness of the element constituting the first half part and the thickness of the element constituting the second half part are determined. It is supposed to be different.

特許第2532253号公報Japanese Patent No. 2532253 特許第4557704号公報Japanese Patent No. 4557704

本発明者らが、上記特許文献1,2に開示されている従来技術の金属ベルトにつき、騒音の抑制効果について検討したところ、全てのエレメントの厚みが同一である従前の金属ベルトに比べて幾ばくか騒音レベルが低下することが見いだされた。しかしながら、従来技術の金属ベルトにおいては騒音レベルの抑制効果が不十分であり、より一層の騒音抑制効果を有する無段変速機用金属ベルトの提供が求められている。また、騒音抑制効果の高い無段変速機用金属ベルトを容易かつ精度良く設計可能な設計方法の提供が求められている。   The present inventors examined the noise suppression effect of the prior art metal belts disclosed in Patent Documents 1 and 2 and found that it was a little more than a conventional metal belt in which all elements had the same thickness. It was found that the noise level decreased. However, the metal belt of the prior art has an insufficient effect of suppressing the noise level, and there is a demand for providing a metal belt for continuously variable transmission that has a further noise suppressing effect. There is also a need to provide a design method that can easily and accurately design a metal belt for a continuously variable transmission having a high noise suppression effect.

そこで、本発明は、騒音の抑制効果が高い無段変速機用金属ベルト、及び当該無段変速機用金属ベルトの設計方法の提供を目的とした。   Therefore, the present invention has an object to provide a metal belt for continuously variable transmission having a high noise suppressing effect and a method for designing the metal belt for continuously variable transmission.

上述した課題を解決すべく提供される本発明の無段変速機用金属ベルトは、無端環状体に沿って厚みが相違する複数種のエレメントを配置することにより形成された無段変速機用金属ベルトであって、板厚の厚い前記エレメントを前記無端環状体に沿って連続的に配置した第1の同厚エレメント群を複数有し、板厚の薄い前記エレメントを前記無端環状体に沿って連続的に配置した第2の同厚エレメント群を複数有し、前記第1の同厚エレメント群及び前記第2の同厚エレメント群のそれぞれが、前記無端環状体の全長に対して1%以上の長さを有するものであり、前記第1の同厚エレメント群と前記第2の同厚エレメント群とが長さを異ならせて交互に配置されていることを特徴としている。 The metal belt for continuously variable transmission of the present invention provided to solve the above-described problem is a metal for continuously variable transmission formed by arranging a plurality of types of elements having different thicknesses along an endless annular body. a belt, a plurality of the first equal-thickness element group of plate thickness thick the element arranged above the continuously along an endless annular body along the thickness thin the element in the endless annular body There are a plurality of second same-thickness element groups arranged continuously, and each of the first same-thickness element group and the second same-thickness element group is 1% or more with respect to the total length of the endless annular body. der having a length of is, wherein the first equal-thickness element group and the second equal-thickness element groups with different lengths are characterized by being arranged alternately.

本発明のように、板厚の厚いエレメントを無端環状体に沿って連続的に配置した第1の同厚エレメント群と板厚の薄いエレメントを無端環状体に沿って連続的に配置した第2の同厚エレメント群とのそれぞれについて、無端環状体の全長に対して1%以上の長さのものとし、第1の同厚エレメント群と第2の同厚エレメント群とが長さを異ならせて交互に配置することにより、騒音の発生ピークの分散化、及び低振幅化を図り、無段変速機において発生する騒音を最小限に抑制可能な無段変速機用金属ベルトを提供することができる。 As in the present invention, the second arranged the thick element a first thin elements of equal-thickness element group and the plate thickness in continuously along the endless member which is continuously arranged along an endless annular body Each of the same-thickness element groups has a length of 1% or more with respect to the total length of the endless annular body, and the first same-thickness element group and the second same-thickness element group have different lengths. The metal belt for a continuously variable transmission can be provided by dispersing the noise generation peak and reducing the amplitude by alternately arranging them, and suppressing the noise generated in the continuously variable transmission to a minimum. it can.

また、同様の課題を解決すべく提供される本発明の無段変速機用金属ベルトの設計方法は、無端環状体に沿って厚みが相違する複数種のエレメントを配置することにより形成され、板厚の厚いエレメントを前記無端環状体に沿って連続的に配置した第1の同厚エレメント群を複数有し、板厚の薄いエレメントを無端環状体に沿って連続的に配置した第2の同厚エレメント群を複数有し、前記同厚エレメント群のそれぞれが、前記無端環状体の全長に対して1%以上の長さを有し、前記第1の同厚エレメント群と前記第2の同厚エレメント群とが長さを異ならせて交互に配置されている無段変速機用金属ベルトの設計方法であって、前記第1の同厚エレメント群及び前記第2の同厚エレメント群の配列として想定されるものを導出する配列導出工程と、前記配列導出工程において導出された配列の一部又は全部につき、当該配列を有する無段変速機用金属ベルトを所定の無段変速機に用いた場合における騒音の発生レベルを導出する騒音導出工程と、前記騒音導出工程において導出された騒音の発生レベルのうち最も低いものに相当する前記第1の同厚エレメント群及び前記第2の同厚エレメント群の同厚エレメント群の配列を導出する配列選定工程とを有することを特徴としている。 Moreover, the design method of the metal belt for a continuously variable transmission of the present invention provided to solve the same problem is formed by arranging a plurality of kinds elements of which thickness is different along the endless member, a plate A plurality of first same-thickness element groups in which thick elements are continuously arranged along the endless annular body, and second elements in which thin plate elements are continuously arranged along the endless annular body. has a plurality of thicknesses element group, wherein each of the equal-thickness element group, said to have a 1% or more in length with respect to the entire length of the endless annular body, said first of said second same the same thickness element group A method for designing a metal belt for continuously variable transmission, wherein the thick element groups are alternately arranged with different lengths, and the arrangement of the first same thickness element group and the second same thickness element group Array derivation to derive what is assumed as The noise for deriving the noise generation level when a metal belt for continuously variable transmission having the arrangement is used for a predetermined continuously variable transmission for a part or all of the arrangement derived in the arrangement deriving step. An derivation step and an array of the same thickness element groups of the first same thickness element group and the second same thickness element group corresponding to the lowest noise generation level derived in the noise derivation step are derived. And a sequence selection step to perform.

本発明の無段変速機用金属ベルトの設計方法によれば、騒音の発生ピークの分散化、及び低振幅化を図る上で最適な同厚エレメント群の配列を容易に導出することが可能となる。これにより、無段変速機において発生する騒音を最小限に抑制可能な無段変速機用金属ベルトを容易かつ精度良く設計することが可能となる。   According to the method for designing a metal belt for continuously variable transmission according to the present invention, it is possible to easily derive an optimal arrangement of elements having the same thickness for dispersion of noise generation peaks and reduction in amplitude. Become. This makes it possible to easily and accurately design a continuously variable transmission metal belt capable of minimizing noise generated in the continuously variable transmission.

本発明によれば、騒音の抑制効果が高い無段変速機用金属ベルト、及び当該無段変速機用金属ベルトの設計方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the design method of the metal belt for continuously variable transmission with the high noise suppression effect and the said metal belt for continuously variable transmission can be provided.

(a)は本発明の一実施形態に係る無段変速機用金属ベルトを無段変速機のプーリに装着した状態を示す正面図、(b)は(a)の無段変速機用金属ベルトの一部を示す斜視図、(c)は(a)の無段変速機用金属ベルトを示す正面図である。(A) is a front view which shows the state which mounted | wore the pulley of the continuously variable transmission with the metal belt for continuously variable transmission which concerns on one Embodiment of this invention, (b) is the metal belt for continuously variable transmission of (a). (C) is a front view which shows the metal belt for continuously variable transmission of (a). (a),(b)は図1に示す無段変速機用金属ベルトを騒音低減の観点から設計する際の設計方法の概念を示す説明図、(c)は騒音発生状態のシミュレーション結果の一例を示すグラフである。(A), (b) is explanatory drawing which shows the concept of the design method at the time of designing the metal belt for continuously variable transmission shown in FIG. 1 from a viewpoint of noise reduction, (c) is an example of the simulation result of a noise generation state It is a graph which shows. (a)〜(e)は比較例に係る無段変速機用金属ベルトにおける騒音発生状態のシミュレーション結果を示すグラフである。(A)-(e) is a graph which shows the simulation result of the noise generation state in the metal belt for continuously variable transmissions concerning a comparative example. (a)は本実施形態及び比較例に係る無段変速機用金属ベルトにおける騒音の振幅と出現頻度との関係を示すグラフ、(b)は本実施形態の無段変速機用金属ベルトにおける騒音発生状態のシミュレーション結果を示すグラフである。(A) is a graph which shows the relationship between the amplitude and appearance frequency of the noise in the metal belt for continuously variable transmission which concerns on this embodiment and a comparative example, (b) is the noise in the metal belt for continuously variable transmission of this embodiment. It is a graph which shows the simulation result of an occurrence state.

続いて、本発明の一実施形態に係る無段変速機用金属ベルト10について、図面を参照しつつ詳細に説明する。図1(a)に示すように、無段変速機用金属ベルト10は、無段変速機を構成する二つのプーリP1,P2間に掛け回した状態で使用されるものである。図1(b)に示すように、無段変速機用金属ベルト10は、金属板を複数積層し、環状にすることにより形成されたフープ12(無端環状体)に対し、多数のエレメント20を連ねた状態で装着することにより形成されたものである。無段変速機用金属ベルト10を構成するエレメント20の数はいかなるものであっても良いが、本実施形態では約400個のエレメント20によって無段変速機用金属ベルト10が構成されている。   Next, a continuously variable transmission metal belt 10 according to an embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1A, the continuously variable transmission metal belt 10 is used in a state of being wound around two pulleys P1 and P2 constituting the continuously variable transmission. As shown in FIG. 1 (b), the continuously variable transmission metal belt 10 includes a plurality of elements 20 with respect to a hoop 12 (endless annular body) formed by laminating a plurality of metal plates into an annular shape. It is formed by mounting in a state of being connected. The number of the elements 20 constituting the continuously variable transmission metal belt 10 may be any number, but in the present embodiment, about 400 elements 20 constitute the continuously variable transmission metal belt 10.

エレメント20は、鋼板製のプレートによって構成されている。図1(b)に示すように、エレメント20は、無段変速機のプーリP1,P2に当接するボディ部22と、ボディ部22に対してピラー部24を介して接続されたヘッド部26とを有する。ピラー部24の両脇であって、ボディ部22とヘッド部26との間の部分には、フープ12を受け入れるためのサドル部28が形成されている。   The element 20 is composed of a steel plate. As shown in FIG. 1B, the element 20 includes a body portion 22 that contacts the pulleys P1 and P2 of the continuously variable transmission, and a head portion 26 connected to the body portion 22 via a pillar portion 24. Have Saddle portions 28 for receiving the hoops 12 are formed on both sides of the pillar portion 24 and between the body portion 22 and the head portion 26.

本実施形態においては、エレメント20として、板厚が相違する複数種のものが用いられている。具体的には、図1(c)においてハッチングの有無によって区別して示すように、エレメント20として、板厚が厚いものと薄いものの二種類のものが用いられている。エレメント20の厚みtは、いかなるものであっても良いが、板厚の厚いエレメント20(以下、「エレメント20a」とも称す)の厚みtが1.5[mm]とされている。板厚の薄いエレメント20(以下、「エレメント20b」とも称す)は、厚みtが1.4[mm]とされている。また、エレメント20a,20bは、厚みt以外の構成については同一とされている。   In the present embodiment, as the element 20, a plurality of types having different plate thicknesses are used. Specifically, as shown in FIG. 1C by distinguishing the presence / absence of hatching, two types of elements 20 are used, one having a thick plate and the other having a thin plate. The thickness t of the element 20 may be anything, but the thickness t of the thick element 20 (hereinafter also referred to as “element 20a”) is 1.5 [mm]. The thin element 20 (hereinafter also referred to as “element 20b”) has a thickness t of 1.4 [mm]. Further, the elements 20a and 20b are the same except for the structure except for the thickness t.

無段変速機用金属ベルト10は、上述したエレメント20a,20bの配列構造に特徴を有する。具体的には、無段変速機用金属ベルト10は、厚みtが同一であるエレメント20(20a,20b)をフープ12に沿って連続的に配置した同厚エレメント群30を複数有する。すなわち、板厚の厚いエレメント20aを連続的に配置することにより構成された同厚エレメント群30(以下、「同厚エレメント群30a」とも称す)、及び板厚の薄いエレメント20bを連続的に配置することにより構成された同厚エレメント群30(以下、「同厚エレメント群30b」とも称す)によって無段変速機用金属ベルト10が構成されている。同厚エレメント群30a,30bは長さが異なり、無段変速機用金属ベルト10の周方向に交互に並ぶように配置されている。 The continuously variable transmission metal belt 10 is characterized by the arrangement structure of the elements 20a and 20b described above. Specifically, the continuously variable transmission metal belt 10 includes a plurality of elements 30 having the same thickness in which the elements 20 (20 a, 20 b) having the same thickness t are continuously arranged along the hoop 12. That is, the same-thickness element group 30 (hereinafter also referred to as “same-thickness element group 30a”) configured by continuously disposing the thick plate elements 20a and the thin plate element 20b are continuously disposed. The metal belt 10 for a continuously variable transmission is configured by the same thickness element group 30 (hereinafter, also referred to as “same thickness element group 30b”) configured as described above. The same-thickness element groups 30a and 30b have different lengths and are arranged alternately in the circumferential direction of the continuously variable transmission metal belt 10.

また、上述した同厚エレメント群30a,30bは、それぞれフープ12の全長に対して1%以上の長さを有するものとされている。言い換えれば、各同厚エレメント群30a,30bは、少なくとも5個以上のエレメント20a,20bを連続的に配置することによって構成されている。従って、無段変速機用金属ベルト10は、従来技術のもののようにエレメント20(20a,20b)の板厚tがフープ12の周方向に短周期で次々と変化するのではなく、比較的長周期で切り替わる。   Further, the same thickness element group 30a, 30b described above has a length of 1% or more with respect to the entire length of the hoop 12. In other words, each same-thickness element group 30a, 30b is configured by continuously arranging at least five elements 20a, 20b. Therefore, the continuously variable transmission metal belt 10 does not change the plate thickness t of the elements 20 (20a, 20b) in a short cycle one after another in the circumferential direction of the hoop 12 as in the prior art. It changes at a cycle.

続いて、無段変速機用金属ベルト10を騒音低減の観点から設計する設計方法について、図面を参照しつつ詳細に説明する。無段変速機用金属ベルト10を無段変速機のプーリP1,P2間に掛け回して作動させた場合、エレメント20がプーリP1,P2に進入すること、及びプーリP1,P2から脱離することにより衝突することにより、振動騒音が発生する。この騒音は、エレメント20が所定の一点を通過する際の周波数に相当する。   Next, a design method for designing the continuously variable transmission metal belt 10 from the viewpoint of noise reduction will be described in detail with reference to the drawings. When the continuously variable transmission metal belt 10 is operated by being wound between the pulleys P1 and P2 of the continuously variable transmission, the element 20 enters the pulleys P1 and P2 and is detached from the pulleys P1 and P2. Due to the collision, vibration noise is generated. This noise corresponds to the frequency at which the element 20 passes a predetermined point.

かかる知見の下、図2(a)に示すように、エレメント20がプーリP1,P2に衝突することにより発生する衝撃波を正弦波と同視可能であると共に、エレメント20の厚みtの変化に応じて前述した正弦波の波長が変化すると仮定すれば、フーリエ解析(FFT)により解析を実行することにより、無段変速機用金属ベルト10において発生する騒音についてピークとなる周波数の位置、及び大きさを図2(c)に示すように導出することができる。そこで、無段変速機における使用時に騒音が最小となる同厚エレメント群30a,30bの配列について、下記の設計手順によって導出することができる。   Under such knowledge, as shown in FIG. 2A, the shock wave generated when the element 20 collides with the pulleys P1 and P2 can be equated with a sine wave, and according to the change in the thickness t of the element 20 Assuming that the wavelength of the sine wave changes, the position and magnitude of the peak frequency for noise generated in the metal belt 10 for continuously variable transmission can be determined by performing analysis by Fourier analysis (FFT). It can be derived as shown in FIG. Therefore, the arrangement of the same thickness element groups 30a and 30b that minimizes noise when used in a continuously variable transmission can be derived by the following design procedure.

<無段変速機用金属ベルト10の設計手順について>
無段変速機用金属ベルト10は、配列導出工程、騒音導出工程、配列選定工程を実行することにより、騒音低減の観点から設計することができる。無段変速機用金属ベルト10の設計は、上述した各工程について実施するための設計用プログラムをインストールしてなるコンピュータを用いて実行することができる。
<Design procedure of metal belt 10 for continuously variable transmission>
The continuously variable transmission metal belt 10 can be designed from the viewpoint of noise reduction by executing an array derivation process, a noise derivation process, and an array selection process. The design of the continuously variable transmission metal belt 10 can be performed using a computer in which a design program for executing the above-described steps is installed.

配列導出工程は、同厚エレメント群30a,30bの配列として想定されるものを導出する工程である。この工程においては、同厚エレメント群30a,30bがエレメント20a,20bを最低限n個(n=5以上の整数)備えたものとの設定の下で配列の導出処理を実行することが望ましい。このようにして配列導出工程を実施することにより、同厚エレメント群30a,30bの配列、及び各同厚エレメント群30a,30bを構成するエレメント20a,20bの数量についてのバリエーションが導出される。   The arrangement deriving step is a step of deriving what is assumed as the arrangement of the same thickness element groups 30a and 30b. In this step, it is desirable to execute the array derivation process under the setting that the element groups 30a and 30b having the same thickness include at least n elements 20a and 20b (an integer equal to or greater than 5). By carrying out the arrangement deriving step in this way, variations in the arrangement of the same-thickness element groups 30a and 30b and the quantity of the elements 20a and 20b constituting each of the same-thickness element groups 30a and 30b are derived.

騒音導出工程は、配列導出工程において導出された同厚エレメント群30a,30bの配列につき、この配列を有する無段変速機用金属ベルト10を所定の無段変速機に用いた場合における騒音の発生レベルを導出する工程である。騒音導出工程において配列導出工程において導出された配列の全てについて騒音の発生レベルを導出することとしても良いが、明らかに騒音が高いと想定される配列を除外する等して一部の配列のみについて騒音の発生レベルを導出することとしても良い。   The noise deriving step generates noise when the continuously variable transmission metal belt 10 having this arrangement is used in a predetermined continuously variable transmission with respect to the arrangement of the same thickness element groups 30a and 30b derived in the arrangement deriving step. This is a process of deriving a level. In the noise derivation process, the noise generation level may be derived for all of the arrays derived in the array derivation process, but only some of the arrays are excluded, such as excluding arrays that are clearly assumed to be high in noise. The generation level of noise may be derived.

騒音導出工程は、下記(1)〜(3)に記載の仮定、及び導出方法に則って実行される。
(1) 無段変速機用金属ベルト10において発生する騒音を、プーリP1,P2との衝突による振動発生と想定し、振動波形を振幅が1の正弦波と仮定する(図2(a)参照)。
(2) 上記(1)において仮定する正弦波の波長を、エレメント20a,20bの厚みtに相当するものと仮定する。すなわち、エレメント20a,20bの厚みtに依存して、騒音をなす正弦波の波長が変化するものと仮定する(図2(b)参照)。
(3) 配列導出工程において導出された同厚エレメント群30a,30bの配列に則り、エレメント20a,20bの厚みt相当の波長を有する正弦波を一列に配置する。これにより、無段変速機用金属ベルト10を一周させた場合に発生する騒音に相当する波形(騒音波形)を形成する(図2(b)参照)。
(4) 上記(3)において導出された無段変速機用金属ベルト10の一周分相当の騒音波形につき、フーリエ解析(FFT)を実行する(図2(c)参照)。
The noise derivation step is executed in accordance with the assumptions and derivation methods described in (1) to (3) below.
(1) The noise generated in the continuously variable transmission metal belt 10 is assumed to be vibration generated by a collision with the pulleys P1 and P2, and the vibration waveform is assumed to be a sine wave having an amplitude of 1 (see FIG. 2A). ).
(2) It is assumed that the wavelength of the sine wave assumed in the above (1) corresponds to the thickness t of the elements 20a and 20b. That is, it is assumed that the wavelength of the sine wave that makes noise changes depending on the thickness t of the elements 20a and 20b (see FIG. 2B).
(3) In accordance with the arrangement of the same-thickness element groups 30a and 30b derived in the arrangement deriving step, sine waves having wavelengths corresponding to the thickness t of the elements 20a and 20b are arranged in a line. As a result, a waveform (noise waveform) corresponding to noise generated when the continuously variable transmission metal belt 10 is made to make one round is formed (see FIG. 2B).
(4) A Fourier analysis (FFT) is performed on the noise waveform corresponding to one round of the continuously variable transmission metal belt 10 derived in (3) (see FIG. 2C).

上述したようにして騒音導出工程を実行すると、プーリP1,P2間において無段変速機用金属ベルト10を一周させた場合に発生する騒音が、次数と振幅との関係として導出される。ここで、次数とは、入力回転数に対して発生する騒音の周波数の比のことである。さらに詳細には、エレメント20の厚みtが全て同じであるとした場合、プーリP1,P2間において無段変速機用金属ベルト10を1回転させた際に、エレメント20がプーリP1,P2に対して衝突することによってn回分の衝撃音(騒音)が発生する場合の次数はn次となる。本実施形態では、エレメント20として、厚みtの相違する2種類のもの(エレメント20a,20b)を用いている。そのため、無段変速機用金属ベルト10の全長をLとし、エレメント20a,20bの厚みをそれぞれA,Bとした場合、L/A次、及びL/B次の次数において他を卓越した衝撃音(騒音)が発生しうる。   When the noise derivation process is executed as described above, the noise generated when the continuously variable transmission metal belt 10 makes a round between the pulleys P1 and P2 is derived as a relationship between the order and the amplitude. Here, the order is the ratio of the frequency of noise generated with respect to the input rotational speed. More specifically, assuming that the thickness t of all the elements 20 is the same, when the metal belt 10 for continuously variable transmission is rotated once between the pulleys P1 and P2, the element 20 is compared with the pulleys P1 and P2. When the impact sound (noise) for n times is generated by the collision, the order is n-th order. In the present embodiment, as the element 20, two types (elements 20a and 20b) having different thicknesses t are used. Therefore, when the overall length of the continuously variable transmission metal belt 10 is L and the thicknesses of the elements 20a and 20b are A and B, respectively, the impact sound that is outstanding in the L / A and L / B orders. (Noise) may occur.

続いて、上述した騒音導出工程により得られる結果の一例について説明する。先ず、本実施形態の無段変速機用金属ベルト10の比較例である無段変速機用金属ベルト100〜104について説明する。無段変速機用金属ベルト100〜104について騒音導出工程により騒音の発生状態についてシミュレーションすると、図3(a)〜(e)に示すような結果が得られる。   Subsequently, an example of a result obtained by the noise derivation process described above will be described. First, the continuously variable transmission metal belts 100 to 104, which are comparative examples of the continuously variable transmission metal belt 10 of the present embodiment, will be described. When the noise generation state is simulated by the noise derivation process for the continuously variable transmission metal belts 100 to 104, the results shown in FIGS. 3A to 3E are obtained.

具体的には、無段変速機用金属ベルト100は、エレメント20を全て同一の厚みtを有するものによって構成したもの、すなわち全てのエレメント20をエレメント20a,20bのいずれかのみによって構成したものである。無段変速機用金属ベルト100について騒音導出工程による騒音の発生シミュレーションを実行すると、図3(a)に示すような急峻なピークが発現する。また、厚みtの異なるエレメント20a,20bを交互に配列した無段変速機用金属ベルト101の場合は、図3(b)に示すように所定の次数位置にピークが発現する。この状態では、略一定周期で大きな騒音が発生してしまうことが想定される。   Specifically, the continuously variable transmission metal belt 100 is composed of all elements 20 having the same thickness t, that is, all elements 20 composed of only one of the elements 20a and 20b. is there. When a noise generation simulation by the noise derivation process is executed for the continuously variable transmission metal belt 100, a steep peak as shown in FIG. In the case of the continuously variable transmission metal belt 101 in which the elements 20a and 20b having different thicknesses t are alternately arranged, a peak appears at a predetermined order position as shown in FIG. In this state, it is assumed that a large noise is generated at a substantially constant period.

また、無段変速機用金属ベルト102は、周方向前半部分をエレメント20a,20bのいずれか一方のみで構成し、後半部分をエレメント20a,20bの他方のみで構成したものである。この場合について騒音導出工程による騒音の発生シミュレーションを実行すると、図3(c)に示すように二つのピークが発現する。各ピークの高さ(振幅)が図3(a),(b)の無段変速機用金属ベルト100,101に比べて低いため、各次数位置において発生する騒音は低くなる。しかしながら、無段変速機用金属ベルト102が一周する間に二つの騒音が発生することになり、好ましい騒音の発生状態とは言えない。   Further, the continuously variable transmission metal belt 102 is configured such that the first half of the circumferential direction is configured by only one of the elements 20a and 20b and the second half is configured by only the other of the elements 20a and 20b. In this case, when a noise generation simulation by the noise derivation process is executed, two peaks appear as shown in FIG. Since the height (amplitude) of each peak is lower than that of the continuously variable transmission metal belts 100 and 101 of FIGS. 3A and 3B, noise generated at each order position is low. However, two noises are generated while the continuously variable transmission metal belt 102 makes one round, which is not a preferable noise generation state.

無段変速機用金属ベルト103は、従来技術として例示したように、厚みtの異なるエレメント20a,20bをランダムに配列したものである。これについて騒音導出工程による騒音の発生シミュレーションを実行すると、図3(d)に示すような騒音の発生状態になるとの結果が得られる。この場合は、図3(a),(b)に示すものと同様に急峻なピークが発現し、騒音が際だつ状態になる。また、無段変速機用金属ベルト104は、上述した従来技術のように、周方向前半部分と後半部分とでエレメント20a,20bの配合比率を変化させたものである。これについて騒音導出工程による騒音の発生シミュレーションを実行すると、図3(e)に示すように二つのピークが発現する。図3(e)に示す騒音発生状態は、上述した図3(c)に示すものと同様であり、好ましい騒音の発生状態とは言えない。   The continuously variable transmission metal belt 103 is formed by randomly arranging elements 20a and 20b having different thicknesses t as exemplified in the prior art. When a noise generation simulation by the noise derivation process is executed for this, a result that a noise generation state as shown in FIG. 3D is obtained is obtained. In this case, as in the case shown in FIGS. 3 (a) and 3 (b), a steep peak appears and the noise becomes conspicuous. Further, the continuously variable transmission metal belt 104 is obtained by changing the blending ratio of the elements 20a and 20b between the first half and the second half in the circumferential direction as in the above-described prior art. When a noise generation simulation by the noise derivation process is executed, two peaks appear as shown in FIG. The noise generation state shown in FIG. 3 (e) is the same as that shown in FIG. 3 (c) described above and cannot be said to be a preferable noise generation state.

これに対し、本実施形態において示す無段変速機用金属ベルト10に相当する配列でエレメント20a,20bを配置した場合の騒音の次数と振幅との関係についてシミュレーションを行うと、図4(b)に示すような結果が得られる。このように、無段変速機用金属ベルト10については、無段変速機の駆動時に発生する騒音がピーク性(周期性)を有するものではなく、その振幅も小さい。   On the other hand, when a simulation is performed on the relationship between the order of noise and the amplitude when the elements 20a and 20b are arranged in an arrangement corresponding to the continuously variable transmission metal belt 10 shown in the present embodiment, FIG. The result shown in is obtained. As described above, in the continuously variable transmission metal belt 10, noise generated when the continuously variable transmission is driven does not have a peak characteristic (periodicity), and the amplitude thereof is small.

上述したようにして騒音導出工程においてエレメント20a,20b(同厚エレメント群30a,30b)を種々変化させた場合の騒音発生状態のシミュレーションが完了すると、無段変速機用金属ベルト10の設計用プログラムにより、配列選定工程が実施される。配列選定工程においては、上述した騒音導出工程において導出された騒音の発生レベルのうち、最も低いものに相当する同厚エレメント群30a,30bの配列を導出する工程である。具体的には、無段変速機の駆動時に発生すると想定される騒音についてピーク性がなく、振幅が最も低くなる同厚エレメント群30a,30bの配列が、無段変速機用金属ベルト10のものとして選定される。   When the simulation of the noise generation state is completed when the elements 20a and 20b (the same thickness element groups 30a and 30b) are variously changed in the noise derivation process as described above, the program for designing the metal belt 10 for continuously variable transmission is completed. Thus, the sequence selection process is performed. The array selection step is a step of deriving an array of the same-thickness element groups 30a and 30b corresponding to the lowest noise generation level derived in the noise deriving step. More specifically, the arrangement of the same-thickness element groups 30a and 30b having no peak and no amplitude in the noise assumed to be generated when the continuously variable transmission is driven is that of the metal belt 10 for the continuously variable transmission. Selected as

上述したようにして同厚エレメント群30a,30bの最適な配列を導出及び選定して作成された無段変速機用金属ベルト10について、無段変速機のプーリP1,P2間において回動させた場合の騒音について、振幅及び騒音レベル(騒音の大きさ)と、発生頻度との関係を調べたところ、図4(a)に示すような結果となった。図4(a)に併記するように、上述した比較例の無段変速機用金属ベルト103,104の結果と比較すると、無段変速機用金属ベルト10は、比較例のものよりも振幅及び騒音レベルの双方とも小さくなる。従って、無段変速機用金属ベルト10のように、フープ12の全長に対して1%以上の長さを有する同厚エレメント群30a,30bを、上述した設計手順に則って導出された最適な配列で配置することにより、騒音の発生ピークの分散化、及び低振幅化を図ることが可能となる。   The continuously variable transmission metal belt 10 created by deriving and selecting the optimum arrangement of the same thickness element groups 30a and 30b as described above was rotated between the pulleys P1 and P2 of the continuously variable transmission. Regarding the noise in the case, the relationship between the amplitude and noise level (noise level) and the occurrence frequency was examined, and the result shown in FIG. 4A was obtained. 4A, when compared with the results of the above-described comparative example continuously variable transmission metal belts 103 and 104, the continuously variable transmission metal belt 10 has an amplitude and Both noise levels are reduced. Therefore, like the metal belt 10 for continuously variable transmission, the same-thickness element groups 30a and 30b having a length of 1% or more with respect to the entire length of the hoop 12 are optimally derived in accordance with the design procedure described above. By arranging in an array, it is possible to achieve dispersion of noise generation peaks and reduction in amplitude.

また、上述した無段変速機用金属ベルト10の設計方法によれば、騒音の発生ピークの分散化、及び低振幅化を図る上で最適な同厚エレメント群の配列を容易に導出することができる。これにより、無段変速機において発生する騒音を最小限に抑制可能な無段変速機用金属ベルト10を容易かつ精度良く設計することが可能となり、設計に要する手間及びコストを最小限に抑制できる。   In addition, according to the above-described design method of the continuously variable transmission metal belt 10, it is possible to easily derive an optimal arrangement of elements having the same thickness in order to disperse noise generation peaks and reduce the amplitude. it can. As a result, the continuously variable transmission metal belt 10 capable of minimizing noise generated in the continuously variable transmission can be easily and accurately designed, and the effort and cost required for the design can be minimized. .

本発明の無段変速機用金属ベルトは、CVTを搭載した車両において好適に利用することができる。   The metal belt for continuously variable transmission of the present invention can be suitably used in a vehicle equipped with a CVT.

10 無段変速機用金属ベルト
12 フープ
20 エレメント
30 同厚エレメント群
P1,P2 プーリ
10 Metal belt for continuously variable transmission 12 Hoop 20 Element 30 Same thickness element group P1, P2 Pulley

Claims (2)

無端環状体に沿って厚みが相違する複数種のエレメントを配置することにより形成された無段変速機用金属ベルトであって、
板厚の厚い前記エレメントを前記無端環状体に沿って連続的に配置した第1の同厚エレメント群を複数有し、
板厚の薄い前記エレメントを前記無端環状体に沿って連続的に配置した第2の同厚エレメント群を複数有し、
前記第1の同厚エレメント群及び前記第2の同厚エレメント群のそれぞれが、前記無端環状体の全長に対して1%以上の長さを有するものであり、
前記第1の同厚エレメント群と前記第2の同厚エレメント群とが長さを異ならせて交互に配置されていることを特徴とする無段変速機用金属ベルト。
A metal belt for continuously variable transmission formed by arranging a plurality of types of elements having different thicknesses along an endless annular body,
A plurality of first same-thickness element groups in which the thick elements are continuously arranged along the endless annular body;
A plurality of second same-thickness element groups in which the thin elements are continuously arranged along the endless annular body;
Wherein the first respective same thicknesses element group and the second equal-thickness element group of state, and are not having more than 1% of the length over the full length of the endless annular body,
The metal belt for continuously variable transmission, wherein the first same-thickness element group and the second same-thickness element group are alternately arranged with different lengths .
無端環状体に沿って厚みが相違する複数種のエレメントを配置することにより形成され、板厚の厚い前記エレメントを前記無端環状体に沿って連続的に配置した第1の同厚エレメント群を複数有し、板厚の薄い前記エレメントを前記無端環状体に沿って連続的に配置した第2の同厚エレメント群を複数有し、前記第1の同厚エレメント群及び前記第2の同厚エレメント群のそれぞれが、前記無端環状体の全長に対して1%以上の長さを有し、前記第1の同厚エレメント群と前記第2の同厚エレメント群とが長さを異ならせて交互に配置されている無段変速機用金属ベルトの設計方法であって、
前記第1の同厚エレメント群及び前記第2の同厚エレメント群の配列として想定されるものを導出する配列導出工程と、
前記配列導出工程において導出された配列の一部又は全部につき、当該配列を有する無段変速機用金属ベルトを所定の無段変速機に用いた場合における騒音の発生レベルを導出する騒音導出工程と、
前記騒音導出工程において導出された騒音の発生レベルのうち最も低いものに相当する前記第1の同厚エレメント群及び前記第2の同厚エレメント群の配列を導出する配列選定工程とを有することを特徴とする無段変速機用金属ベルトの設計方法。
A plurality of first same-thickness element groups formed by arranging a plurality of types of elements having different thicknesses along an endless annular body and continuously arranging the elements having a large plate thickness along the endless annular body. A plurality of second same-thickness element groups in which the elements having a thin plate thickness are continuously arranged along the endless annular body, the first same-thickness element group and the second same-thickness element alternating each group is the so have a 1% or more in length with respect to the entire length of the endless annular body, varies the first equal-thickness element group and the second equal-thickness element group and the length A method for designing a metal belt for a continuously variable transmission arranged in
An array derivation step for deriving what is assumed as an array of the first same-thickness element group and the second same-thickness element group ;
A noise deriving step for deriving a noise generation level when a metal belt for continuously variable transmission having the arrangement is used for a predetermined continuously variable transmission for a part or all of the arrangement derived in the arrangement deriving step; ,
An array selection step of deriving an array of the first same-thickness element group and the second same-thickness element group corresponding to the lowest noise generation level derived in the noise derivation step. A method for designing a metal belt for a continuously variable transmission.
JP2011285298A 2011-12-27 2011-12-27 Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission Active JP5948600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011285298A JP5948600B2 (en) 2011-12-27 2011-12-27 Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011285298A JP5948600B2 (en) 2011-12-27 2011-12-27 Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2013133894A JP2013133894A (en) 2013-07-08
JP5948600B2 true JP5948600B2 (en) 2016-07-06

Family

ID=48910736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011285298A Active JP5948600B2 (en) 2011-12-27 2011-12-27 Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5948600B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1040570C2 (en) * 2013-12-24 2015-06-26 Bosch Gmbh Robert Method for assembling a drive belt with different types of transverse members for a continuously variable transmission and a thus assembled drive belt.
NL1040569C2 (en) * 2013-12-24 2015-06-26 Bosch Gmbh Robert Method for assembling a drive belt with different types of transverse members for a continuously variable transmission and a thus assembled drive belt.
JP2015194226A (en) * 2014-03-31 2015-11-05 本田技研工業株式会社 Continuously variable transmission metal belt
NL1041129B1 (en) * 2014-12-30 2016-10-11 Bosch Gmbh Robert Method for assembling a drive belt with different types of transverse members for a continuously variable transmission and a thus assembled drive belt.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532253B2 (en) * 1987-08-24 1996-09-11 富士重工業株式会社 Block type metal belt
JP4371007B2 (en) * 2004-08-24 2009-11-25 トヨタ自動車株式会社 PRESSING BELT AND MANUFACTURING METHOD THEREOF
JP4457832B2 (en) * 2004-09-27 2010-04-28 トヨタ自動車株式会社 Noise suppression type endless belt, sorting apparatus and sorting method thereof

Also Published As

Publication number Publication date
JP2013133894A (en) 2013-07-08

Similar Documents

Publication Publication Date Title
JP5948600B2 (en) Metal belt for continuously variable transmission and design method for metal belt for continuously variable transmission
US8104159B2 (en) Belt for continuously variable transmission and manufacturing method of the same
CN100434747C (en) Endless metal belt and its maufacturing method and continuously variable transmission
US7691020B2 (en) Chain transmission device
JP2007092850A (en) Silent chain
JPH04363234A (en) Method for forming tread of tire and tire having said tread
WO2016136832A1 (en) Metal plate molded object, reduced noise brake disc using same, and method for manufacturing metal plate molded object
DE102013000404A1 (en) Rotor with divisible core for an electric motor and manufacturing method therefor
US7703325B2 (en) Method for relieving residual stress in an object
DE102007055477A1 (en) Internal combustion engine noise producing method for motor vehicle, involves determining sum of segment time lengths of signal segments and sequence time lengths of signal sequence sections, where two segments in section are unequal
JP2007192254A (en) Cvt element and manufacturing method for cvt element
JP4767809B2 (en) Continuously variable transmission belt, continuously variable transmission belt design method and design program
JP2015194226A (en) Continuously variable transmission metal belt
EP2587090A2 (en) Chain-Type Continuously Variable Transmission
US8888634B2 (en) Toothed plate-link chain
JP5655287B2 (en) Assembly method of power transmission chain
DE112015001936T5 (en) Damping system of the type with a pendulum oscillator
EP2842655B1 (en) Assembly method and assembly equipment for power transmission chain
CN103307208A (en) Quick speed change chain and structure of outer chain sheet thereof
JP6619984B2 (en) Washer manufacturing method and washer
KR100264383B1 (en) An arranging method for pitch of a tire
Lu et al. Target setting and source contribution for sound quality of a motorcycle
JP6685309B2 (en) Method of assembling a drive belt with different types of transverse members for a continuously variable transmission and drive belt assembled thereby
JP6573889B2 (en) Method for assembling drive belts with various types of cross members for continuously variable transmissions, and drive belts thus assembled
DE102012220746A1 (en) Spring unit for continuously variable transmission connected to internal combustion engine in motor vehicle, is made to contact periodically with belt during operation of transmission, to produce noise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160506

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160509

R150 Certificate of patent or registration of utility model

Ref document number: 5948600

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250