JP5948042B2 - UV irradiation equipment - Google Patents

UV irradiation equipment Download PDF

Info

Publication number
JP5948042B2
JP5948042B2 JP2011249050A JP2011249050A JP5948042B2 JP 5948042 B2 JP5948042 B2 JP 5948042B2 JP 2011249050 A JP2011249050 A JP 2011249050A JP 2011249050 A JP2011249050 A JP 2011249050A JP 5948042 B2 JP5948042 B2 JP 5948042B2
Authority
JP
Japan
Prior art keywords
ultraviolet
light
lamp
tube
intensity meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011249050A
Other languages
Japanese (ja)
Other versions
JP2013103180A (en
Inventor
出口 憲一郎
憲一郎 出口
山口 智
智 山口
藤井 隆
隆 藤井
弘 中垣
弘 中垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Kohan Co Ltd
Original Assignee
Chiyoda Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Kohan Co Ltd filed Critical Chiyoda Kohan Co Ltd
Priority to JP2011249050A priority Critical patent/JP5948042B2/en
Publication of JP2013103180A publication Critical patent/JP2013103180A/en
Application granted granted Critical
Publication of JP5948042B2 publication Critical patent/JP5948042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、対象流体に紫外線を照射して種々の処理を行う紫外線照射装置に係り、具体的には、直交流型の紫外線照射装置の紫外線ランプ配置、紫外線ランプの紫外線強度の監視、紫外線強度計の校正、及びランプ保護管や強度計保護管に付着する汚れを除去する洗浄技術に関する。   The present invention relates to an ultraviolet irradiation apparatus that performs various treatments by irradiating a target fluid with ultraviolet rays. Specifically, the ultraviolet lamp arrangement of a cross-flow type ultraviolet irradiation apparatus, monitoring of the ultraviolet intensity of the ultraviolet lamp, ultraviolet intensity The present invention relates to calibration of a meter and a cleaning technique for removing dirt adhering to a lamp protection tube and a strength meter protection tube.

紫外線照射装置は、紫外線ランプを収容した槽あるいは容器内に対象流体を流通させて紫外線を照射し、例えば上水、飲料、食品などの対象流体に含まれる菌などの微生物の死滅化あるいは不活化の処理に用いられる。その他、紫外線照射装置は、下水などの対象流体の脱色、微生物の死滅化あるいは不活化、有機物などの化学物質の分解又は合成、あるいは、対象流体に含まれる物質の酸化促進、TOCの分解、半導体の洗浄水の製造に用いられる。   The ultraviolet irradiation device irradiates the target fluid in a tank or container containing an ultraviolet lamp and irradiates the target with ultraviolet light, for example, kills or inactivates microorganisms such as bacteria contained in the target fluid such as drinking water, beverages and foods. Used for processing. In addition, ultraviolet irradiation devices are used for decolorizing target fluids such as sewage, killing or inactivating microorganisms, decomposing or synthesizing chemical substances such as organic substances, or promoting oxidation of substances contained in target fluids, TOC decomposition, semiconductors Used for the production of washing water.

例えば、微生物の不活化などに用いる紫外線ランプは、表1に示すように、低圧水銀ランプ又は中圧水銀ランプが用いられる。低圧水銀ランプは、水銀封入圧が2Pa以下(通常は、0.2〜1.6Pa程度)であり、微生物の不活化に適する波長が253.7nmの紫外線の放射効率が高い。一方、中圧水銀ランプは、水銀封入圧が4×10〜4×10Paであり、低圧水銀ランプよりも253.7nmの波長の放射効率は低い。しかし、中圧水銀ランプは大電力化(高出力化)できるから、253.7nmの波長成分の放射量を十分確保できるので、微生物の不活化に用いられている(例えば、非特許文献1)。また、低圧水銀ランプの場合は、外周面にフッ素樹脂被膜が施された石英ガラス管などの透明なランプ保護管内に収容して用いられるが、中圧水銀ランプはランプ表面温度が高いため、耐熱性が低いフッ素樹脂被膜を施さないで用いられる。 For example, as shown in Table 1, a low-pressure mercury lamp or a medium-pressure mercury lamp is used as an ultraviolet lamp used for inactivating microorganisms. The low-pressure mercury lamp has a mercury sealing pressure of 2 Pa or less (usually about 0.2 to 1.6 Pa), and has high radiation efficiency of ultraviolet rays having a wavelength suitable for inactivating microorganisms of 253.7 nm. On the other hand, the medium pressure mercury lamp has a mercury filling pressure of 4 × 10 4 to 4 × 10 6 Pa, and its radiation efficiency at a wavelength of 253.7 nm is lower than that of the low pressure mercury lamp. However, since the medium-pressure mercury lamp can increase the power (high output), the radiation amount of the wavelength component of 253.7 nm can be sufficiently secured, and thus is used for inactivating microorganisms (for example, Non-Patent Document 1). . In the case of a low-pressure mercury lamp, it is used by being housed in a transparent lamp protection tube such as a quartz glass tube with a fluororesin coating on its outer peripheral surface. It is used without applying a fluororesin film having low properties.

Figure 0005948042
Figure 0005948042

紫外線ランプは、電気入力が同じであっても点灯累積時間で紫外線強度が劣化する。そこで、紫外線ランプの紫外線強度を監視して、劣化した場合は調光器により紫外線ランプの電気入力を増加し、あるいは紫外線ランプを交換する必要がある。通常、紫外線照射装置に円筒状に配置された複数の紫外線ランプを全て見通すことができる位置に、紫外線強度計の受光部を設置して紫外線強度を計測することが行われている。   In the ultraviolet lamp, even if the electric input is the same, the ultraviolet intensity deteriorates with the cumulative lighting time. Therefore, it is necessary to monitor the UV intensity of the UV lamp and, if it deteriorates, increase the electrical input of the UV lamp using a dimmer or replace the UV lamp. Usually, the ultraviolet intensity is measured by installing a light-receiving unit of an ultraviolet intensity meter at a position where a plurality of ultraviolet lamps arranged in a cylindrical shape can be seen through the ultraviolet irradiation device.

例えば、特許文献1には、複数の紫外線ランプを全て見通す位置に1個の紫外線強度計を配置し、複数の紫外線ランプの合計紫外線強度を計測して監視している。また、各紫外線ランプの紫外線強度を個別に監視するため、複数の紫外線ランプを見通す位置に1個の監視用紫外線強度計を配置し、個別監視用紫外線強度計の受光部を覆って遮光筒を二重に設け、一方の遮光筒の各紫外線ランプに対応する位置に紫外線を受光部に導く導光孔をそれぞれ穿設し、他方の遮光筒に監視対象の紫外線ランプを選択する1個のランプ選択孔を穿設し、他方の遮光筒を移動してランプ選択孔を各導光孔に順次重ね合わせて、個々の紫外線ランプの紫外線強度を個別に監視することが提案されている。   For example, in Patent Document 1, one ultraviolet intensity meter is disposed at a position where all the plurality of ultraviolet lamps are seen, and the total ultraviolet intensity of the plurality of ultraviolet lamps is measured and monitored. In addition, in order to individually monitor the ultraviolet intensity of each ultraviolet lamp, a single monitoring ultraviolet intensity meter is arranged at a position where a plurality of ultraviolet lamps can be seen. A single light guide hole is provided in which a light guide hole for guiding ultraviolet light to the light receiving portion is formed at a position corresponding to each ultraviolet lamp of one light shielding tube, and a UV light to be monitored is selected for the other light shielding tube. It has been proposed that a selection hole is formed, the other light shielding tube is moved, the lamp selection holes are sequentially overlapped with the respective light guide holes, and the ultraviolet intensity of each ultraviolet lamp is individually monitored.

特開2011−50830号公報JP 2011-50830 A

UV Disinfection Guidance Manual For the Final LT2ESWTR, US EPA,November 2006, P(2-17), Table2.1UV Disinfection Guidance Manual For the Final LT2ESWTR, US EPA, November 2006, P (2-17), Table2.1

ところで、従来技術において、紫外線照射領域における紫外線強度を高くするためには、低圧あるいは中圧に拘わらず、紫外線ランプの出力を大きくする他、紫外線ランプの本数を増やして対応している。しかし、対象流体を紫外線ランプ軸に直交させて流通する、いわゆる直交流型の紫外線照射装置の場合、対象流体に直交する流路断面(例えば、矩形又は円形)の幅内に、紫外線ランプの発光長を収めなければならない。   By the way, in the prior art, in order to increase the ultraviolet intensity in the ultraviolet irradiation region, in addition to increasing the output of the ultraviolet lamp regardless of the low pressure or the medium pressure, the number of ultraviolet lamps is increased. However, in the case of a so-called cross-flow type ultraviolet irradiation device that circulates the target fluid orthogonally to the ultraviolet lamp axis, the ultraviolet lamp emits light within the width of the channel cross section (for example, rectangular or circular) orthogonal to the target fluid. I have to keep the length.

しかも、一般に大型の紫外線照射装置の場合、対象流体は円筒状の管路により紫外線ランプが収納された円筒状の容器に導入される。そのため、円筒状に配置された紫外線ランプのうち円形流路断面の円弧部の弦に配置される紫外線ランプは、流路断面から外れる部分が生じるので対象流体への照射効率が低下する。そこで、発光長の短い紫外線ランプを用いて目標の紫外線照射量を確保することが考えられる。しかし、発光長あたりの出力を大きくすると、例えば1個の紫外線ランプが切れた場合に、装置全体の紫外線照射量が大きく減少してしまうという問題がある。つまり、大出力の紫外線ランプを例えば6本設けた場合、1本の紫外線ランプが切れると全体の照射能力は、水の偏流のために切れたランプの場所によって違いが生じるが、概ね5/6(約83%)に低下するリスクがある。このようなリスクを減少でき、かつ紫外線ランプの経時劣化(例えば、約20%)を考慮して装置性能を保証するために、紫外線ランプを余分に設置することが考えられる。しかし、余分に設置した紫外線ランプの分、ランニングコストが増加するという問題がある。   Moreover, in general, in the case of a large ultraviolet irradiation device, the target fluid is introduced into a cylindrical container in which an ultraviolet lamp is accommodated by a cylindrical pipe line. For this reason, among the ultraviolet lamps arranged in a cylindrical shape, the ultraviolet lamp arranged on the string of the circular arc section of the circular flow path section has a portion that deviates from the cross section of the flow path, so that the irradiation efficiency to the target fluid is reduced. Therefore, it is conceivable to secure a target ultraviolet irradiation amount using an ultraviolet lamp having a short emission length. However, when the output per light emission length is increased, for example, when one ultraviolet lamp is cut off, there is a problem that the ultraviolet irradiation amount of the entire apparatus is greatly reduced. That is, when six high-power ultraviolet lamps are provided, for example, if one ultraviolet lamp is burned out, the overall irradiation ability varies depending on the location of the lamp burned out due to the drift of water, but it is generally 5/6. There is a risk of falling to (about 83%). In order to reduce such a risk and to guarantee the apparatus performance in consideration of the deterioration of the ultraviolet lamp over time (for example, about 20%), it is conceivable to install an extra ultraviolet lamp. However, there is a problem that the running cost increases due to the extra installed ultraviolet lamp.

このような問題について検討した結果、本発明の発明者らは、次に述べるように、直交流型の紫外線照射装置における紫外線ランプの配置を工夫して、紫外線ランプが切れたときのリスクを減少し、かつ、照射性能を向上することを提案している(特願2011−234556号)。すなわち、円筒状の容器内に容器軸に平行に、かつ容器軸を中心軸とする仮想円筒の周方向に分散して紫外線ランプを収容する透明な複数のランプ保護管を配置し、容器軸に直交する方向に対象流体を流通させるようにしたいわゆる直交流型の紫外線照射装置を構成する。特に、各ランプ保護管にそれぞれ1本又は複数本の紫外線ランプを収容して、各ランプ保護管に収容する紫外線ランプを、流通管路の中心を通りランプ保護管の軸に直交する流路中心面を基準に、保護管軸方向に位置をずらし、例えば互いに対称に設置する。また、円形流路断面の円弧部に1又は2本程度の紫外線ランプを設置し、中央部には2本以上の紫外線ランプを設置する。そして、1本又は奇数本の紫外線ランプを設置する場合は、真中の紫外線ランプの中心を流路中心面に合わせて設置する。さらに、ランプ保護管の本数及びランプ保護管に収容する紫外線ランプの本数の如何によって、装置全体の紫外線強度が目標値を超える場合は、対称に配置する紫外線ランプを適宜間引いて、全体としての紫外線照射量を満たすように配置する。   As a result of studying such problems, the inventors of the present invention devised the arrangement of the ultraviolet lamps in the cross-flow type ultraviolet irradiation device, as described below, to reduce the risk when the ultraviolet lamps are burned out. In addition, it has been proposed to improve the irradiation performance (Japanese Patent Application No. 2011-234556). That is, a plurality of transparent lamp protection tubes that are distributed in the circumferential direction of a virtual cylinder that is parallel to the container axis and that has the container axis as the central axis in the cylindrical container to accommodate the ultraviolet lamps are arranged on the container axis. A so-called cross-flow type ultraviolet irradiation device configured to circulate a target fluid in a direction orthogonal to each other is configured. In particular, one or a plurality of ultraviolet lamps are accommodated in each lamp protection tube, and the ultraviolet lamps accommodated in each lamp protection tube pass through the center of the flow conduit and are perpendicular to the axis of the lamp protection tube. The positions are shifted in the direction of the protective tube axis with respect to the surface, and are installed symmetrically, for example. In addition, about one or two ultraviolet lamps are installed in the arc portion of the circular channel cross section, and two or more ultraviolet lamps are installed in the central portion. When one or an odd number of ultraviolet lamps are installed, the center of the middle ultraviolet lamp is installed in accordance with the flow path center plane. Furthermore, if the UV intensity of the entire device exceeds the target value, depending on the number of lamp protection tubes and the number of UV lamps accommodated in the lamp protection tubes, symmetrically arranged UV lamps are appropriately thinned out to obtain the overall UV Arrange so as to satisfy the irradiation dose.

一方、紫外線照射装置においては、紫外線照射量を常時監視して運用管理することが要求される。しかし、仮想円筒上に分散して配置される各ランプ保護管に、1本又は複数本の紫外線ランプを収容すると、全ての紫外線ランプから照射される合計紫外線強度を精度よく計測できないという問題がある。つまり、通常、紫外線強度を常時監視する紫外線強度計は、受光部を石英ガラスなどにより形成された強度計保護管内に収容して仮想円筒の中心軸に設置される。従来は、発光長が同じ紫外線ランプを並べて配置しているから、紫外線強度計の受光部を紫外線ランプが配置された仮想円筒の中心軸上の中心部に設置すれば、全紫外線ランプの合計紫外線強度を精度よく計測できる。しかし、1本又は複数本の紫外線ランプを軸方向にずらして収容すると、紫外線強度計の受光部と各紫外線ランプ間の距離が区々となる。各紫外線ランプから紫外線強度計間の距離が異なると、対象流体による紫外線の減衰量に違いが生じるため、各紫外線ランプの合計紫外線強度を精度よく計測する工夫が必要になる。   On the other hand, in the ultraviolet irradiation device, it is required to constantly monitor and manage the ultraviolet irradiation amount. However, if one or a plurality of ultraviolet lamps are accommodated in each lamp protective tube distributed on the virtual cylinder, there is a problem that the total ultraviolet intensity irradiated from all the ultraviolet lamps cannot be measured with high accuracy. . That is, normally, an ultraviolet intensity meter that constantly monitors the ultraviolet intensity is housed in an intensity meter protective tube made of quartz glass or the like and installed on the central axis of a virtual cylinder. Conventionally, UV lamps with the same emission length are arranged side by side, so if the light receiving part of the UV intensity meter is placed in the center of the central axis of the virtual cylinder where the UV lamp is placed, the total UV light of all UV lamps Strength can be measured accurately. However, if one or a plurality of ultraviolet lamps are accommodated while being shifted in the axial direction, the distance between the light receiving portion of the ultraviolet intensity meter and each of the ultraviolet lamps varies. If the distance between each ultraviolet lamp and the ultraviolet intensity meter is different, there is a difference in the amount of attenuation of the ultraviolet ray due to the target fluid. Therefore, a device for accurately measuring the total ultraviolet intensity of each ultraviolet lamp is required.

また、紫外線強度計の受光部は、一般に、紫外線を可視光に変換する変換材料を石英ガラスなどの管体に充填して形成され、変換された可視光を光ファイバーで外部に引き出して光電変換素子で電気信号に変換することにより、紫外線強度を計測する。このような受光部の変換材料は、紫外線に暴露される時間に応じて変換性能が劣化することから、常時監視用の紫外線強度計は経時劣化に応じて計測値を校正する必要がある。そこで、従来は、定期的に紫外線強度計の受光部を抜き出し、代わりに劣化していない、あるいは劣化が小さい校正用の受光部を挿入して合計紫外線強度を計測し、その計測値を校正データとして常時監視用の紫外線強度計の計測値を校正するようにしている。   In addition, the light-receiving part of the ultraviolet intensity meter is generally formed by filling a tube material such as quartz glass with a conversion material that converts ultraviolet light into visible light, and the converted visible light is extracted to the outside with an optical fiber, and a photoelectric conversion element. The UV intensity is measured by converting it into an electrical signal. Since the conversion material of such a light-receiving part deteriorates in conversion performance in accordance with the time of exposure to ultraviolet rays, an ultraviolet intensity meter for constant monitoring needs to calibrate the measurement value in accordance with deterioration over time. Therefore, in the past, the UV light intensity meter's light-receiving unit was periodically extracted, and instead a non-degraded or light-degraded light-receiving unit was inserted to measure the total UV intensity, and the measured value was used as calibration data. As a result, the measurement value of the UV intensity meter for continuous monitoring is calibrated.

しかし、校正データを取得するための作業に手間がかかることから、自動で校正データを取得して監視用の紫外線強度計の計測値を校正することが望まれている。しかも、上述したように、各ランプ保護管に1本又は複数本の紫外線ランプを軸方向にずらして収容すると、監視用と校正用の紫外線強度計の受光部の位置によっては、精度のよい校正データを取得することができないという問題がある。   However, since it takes a lot of work to acquire calibration data, it is desired to automatically acquire calibration data and calibrate the measurement value of the monitoring ultraviolet intensity meter. In addition, as described above, when one or a plurality of ultraviolet lamps are housed in the respective lamp protection tubes while being shifted in the axial direction, accurate calibration is possible depending on the positions of the light receiving portions of the UV intensity meter for monitoring and calibration. There is a problem that data cannot be acquired.

本発明が解決しようとする第1の課題は、仮想円筒上に配置された各ランプ保護管に1本又は複数本の紫外線ランプを軸方向にずらして収容してなる直交流型の紫外線照射装置において、紫外線ランプの紫外線強度を精度よく計測して監視できるようにすることにある。
また、本発明が解決しようとする第2の課題は、第1の課題に加えて、監視用紫外線強度計の校正データを精度よく容易に取得できるようにすることにある。
さらに、本発明が解決しようとする第3の課題は、第1と第2の課題に加えて、複数の紫外線ランプの紫外線強度を個別に監視できるようにすることにある。
A first problem to be solved by the present invention is a cross-flow type ultraviolet irradiation apparatus in which one or a plurality of ultraviolet lamps are housed in each lamp protection tube arranged on a virtual cylinder while being shifted in the axial direction. Therefore, it is possible to accurately measure and monitor the ultraviolet intensity of the ultraviolet lamp.
In addition to the first problem, the second problem to be solved by the present invention is to enable easy and accurate acquisition of calibration data of the monitoring ultraviolet intensity meter.
Furthermore, a third problem to be solved by the present invention is to make it possible to individually monitor the ultraviolet intensities of a plurality of ultraviolet lamps in addition to the first and second problems.

上記の第1の課題を解決するため、本発明の第1の態様は、円筒状の容器と、前記容器の容器軸を中心軸とする仮想円筒の周方向に分散して前記容器内に設けられた透明な複数のランプ保護管と、前記各ランプ保護管内に収容された紫外線ランプと、前記容器軸と同軸に前記容器内に設けられた透明な強度計保護管と、該強度計保護管内に挿入された受光部を有する監視用紫外線強度計と、前記容器軸に直交する筒壁の対向する位置に設けられ、対象流体の流通管路が接続される流入口及び流出口とを備えてなる紫外線照射装置において、前記ランプ保護管には1又は複数の前記紫外線ランプが収容され、前記各ランプ保護管に収容される前記紫外線ランプの発光部が、前記流通管路の中心を通り前記ランプ保護管の軸に直交する流路中心面を基準に、前記ランプ保護管の軸方向に位置をずらして収容され、前記監視用紫外線強度計は、前記強度計保護管が前記流路中心面と交差する中心位置に受光部を位置させて挿入され、前記受光部を包囲して円筒状の遮光筒が設けられ、該遮光筒は軸方向及び周方向に分散させて紫外線を前記受光部に導く複数の導光孔が筒壁に穿設され、該各導光孔は前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を、前記各紫外線ランプの位置に応じて前記受光部に導く位置に設けられていることを特徴とする。 In order to solve the first problem described above, a first aspect of the present invention includes a cylindrical container and a container disposed in the circumferential direction of a virtual cylinder having a container axis of the container as a central axis. A plurality of transparent lamp protection tubes, an ultraviolet lamp housed in each of the lamp protection tubes, a transparent strength meter protection tube provided in the container coaxially with the container axis, and the strength meter protection tube A UV intensity meter for monitoring having a light receiving portion inserted into the tube, and an inlet and an outlet that are provided at opposing positions on the cylindrical wall perpendicular to the container axis and to which a flow conduit of the target fluid is connected. In the ultraviolet irradiation device, the lamp protection tube contains one or a plurality of the ultraviolet lamps, and a light emitting portion of the ultraviolet lamp accommodated in each of the lamp protection tubes passes through the center of the distribution pipe. Channel center plane perpendicular to the axis of the protective tube The monitoring ultraviolet intensity meter is inserted with the light receiving portion positioned at a central position where the intensity meter protective tube intersects the flow path center plane. A cylindrical light shielding tube is provided surrounding the light receiving portion, and a plurality of light guide holes are formed in the cylindrical wall for guiding the ultraviolet rays to the light receiving portion by dispersing the light shielding tube in an axial direction and a circumferential direction. Each light guide hole is provided at a position for guiding the ultraviolet light emitted from the light receiving length set with reference to the light emission length center of each ultraviolet lamp to the light receiving unit according to the position of each ultraviolet lamp. It is characterized by that.

すなわち、紫外線照射装置の全体の紫外線の総出力を同じにする場合、あるいは全体の紫外線照射量を同じにする場合、1本のランプ保護管内に発光長の短い低出力の紫外線ランプを複数本収容することにより、紫外線ランプの本数を多く配置することができる。これにより、紫外線ランプが切れたときのリスクを低減することができる。特に、本発明では、各ランプ保護管に収容される1又は複数の紫外線ランプの発光部を、流通管路の中心を通りランプ保護管の軸に直交する流路中心面を基準にランプ保護管の軸方向に位置をずらして収容することを1つの特徴とする。このようなランプ配置にすると、紫外線ランプのランプ軸に直交流となる対象流体は、円筒状に配置された複数の紫外線ランプから紫外線の照射を受けるので、ランプ配置の自由度が増す。したがって、円筒状に配設されたランプ保護管に収容する紫外線ランプの本数を適宜変えることにより、目標の合計紫外線照射強度を得ることができるので、紫外線照射性能を向上できる。例えば、円形流路断面の円弧部の弦に配置されるランプ保護管の紫外線ランプを例えば1本又は2本にし、円形流路断面の中央部に配置される他のランプ保護管に収容する紫外線ランプを適宜増やして、全体としての紫外線照射量を満たすことができる。また、紫外線ランプを保護管軸方向に位置をずらして設置する場合、流路中心面に対して互いに対称に配置することが好ましい。   In other words, when the total ultraviolet output of the entire ultraviolet irradiation device is the same, or when the total amount of ultraviolet irradiation is the same, a plurality of low-output ultraviolet lamps having a short light emission length are accommodated in one lamp protection tube. By doing so, a large number of ultraviolet lamps can be arranged. Thereby, the risk when the ultraviolet lamp is burned out can be reduced. In particular, according to the present invention, the light-emitting portion of one or a plurality of ultraviolet lamps housed in each lamp protection tube is passed through the center of the flow conduit, and the lamp protection tube is based on the flow path center plane perpendicular to the axis of the lamp protection tube. One feature is that the housing is displaced in the axial direction. With such a lamp arrangement, the target fluid that is orthogonal to the lamp axis of the ultraviolet lamp is irradiated with ultraviolet rays from the plurality of ultraviolet lamps arranged in a cylindrical shape, so that the degree of freedom in lamp arrangement increases. Therefore, the target total ultraviolet irradiation intensity can be obtained by appropriately changing the number of the ultraviolet lamps accommodated in the cylindrical lamp protection tube, so that the ultraviolet irradiation performance can be improved. For example, the number of ultraviolet lamps of the lamp protection tube disposed on the string of the arc portion of the circular flow path cross section is one or two, and the ultraviolet light accommodated in another lamp protective tube disposed at the center of the circular flow path cross section. The number of lamps can be increased as appropriate to satisfy the overall UV irradiation amount. Further, when the ultraviolet lamps are installed with their positions shifted in the protective tube axis direction, they are preferably arranged symmetrically with respect to the flow path center plane.

また、本発明のランプ配置によれば、ランプ保護管の本数及びランプ保護管に収容する紫外線ランプの本数を変更して、流路中心面に対して位置をずらして、あるいは紫外線ランプを間引いて、全体としての紫外線照射量を満たすように配置して、目標とする紫外線照射量を調整することができる。なお、本発明は、低圧水銀ランプを用いて構成することができるが、出力が大きい中圧水銀ランプを用いて構成することにより、一層、優れた効果を奏することができる。   Further, according to the lamp arrangement of the present invention, the number of lamp protection tubes and the number of ultraviolet lamps accommodated in the lamp protection tubes are changed, the position is shifted with respect to the flow path center plane, or the ultraviolet lamps are thinned out. The target ultraviolet ray irradiation amount can be adjusted by arranging so as to satisfy the ultraviolet ray irradiation amount as a whole. In addition, although this invention can be comprised using a low pressure mercury lamp, it can show | play the still more excellent effect by comprising using a medium pressure mercury lamp with a large output.

本発明の第1の態様において、監視用の紫外線強度計の受光部を強度計保護管が流路中心面と交差する中心位置に位置させて、かつ、受光部を包囲する円筒状の遮光筒を設け、その遮光筒は、軸方向及び周方向に分散させて紫外線を前記受光部に導く複数の導光孔が筒壁に穿設され、各導光孔は各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を、各紫外線ランプの位置に応じて受光部に導く位置に設けられていることを特徴とする。   In the first aspect of the present invention, the light-receiving portion of the monitoring ultraviolet intensity meter is positioned at the center position where the intensity-meter protective tube intersects the flow path center plane, and the cylindrical light-shielding tube surrounding the light-receiving portion The light-shielding tube is provided with a plurality of light guide holes, which are dispersed in the axial direction and the circumferential direction to guide the ultraviolet rays to the light receiving portion, in the cylindrical wall, and each light guide hole has a light emission length center of each ultraviolet lamp. The present invention is characterized in that the ultraviolet light emitted from the light receiving length set as a reference is provided at a position for guiding the ultraviolet light to the light receiving unit according to the position of each ultraviolet lamp.

つまり、紫外線ランプは、発光長にわたって複数の点光源が配列されていると看做すことができるから、設定された受光長から照射される紫外線強度を計測することにより、各紫外線ランプの紫外線強度を計測できる。したがって、本発明によれば、各紫外線ランプに設定された受光長にそれぞれ対応させた位置及び口径に導光孔が穿設されているので、紫外線ランプをランプ保護管の任意の位置に配置しても、また同一のランプ保護管に複数本配置しても、受光部は全ての紫外線ランプから照射される紫外線を受光できる。これにより、本発明によれば、全ての紫外線ランプの合計紫外線強度を精度よく監視できる。   In other words, an ultraviolet lamp can be regarded as having a plurality of point light sources arranged over the light emission length. Therefore, by measuring the intensity of ultraviolet rays emitted from the set light receiving length, the ultraviolet intensity of each ultraviolet lamp is measured. Can be measured. Therefore, according to the present invention, since the light guide hole is formed at the position and the diameter corresponding to the light receiving length set for each ultraviolet lamp, the ultraviolet lamp is arranged at an arbitrary position of the lamp protection tube. In addition, even if a plurality of lamps are arranged on the same lamp protection tube, the light receiving unit can receive ultraviolet rays emitted from all ultraviolet lamps. Thereby, according to this invention, the total ultraviolet intensity of all the ultraviolet lamps can be monitored accurately.

また、本発明の第2の課題を解決するため、本発明の第2の態様は、前記第1の態様において、前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部を前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲する円筒状の第1遮光筒が設けられ、該第1遮光筒を包囲する円筒状の第2遮光筒が軸方向移動可能に設けられ、前記第1遮光筒は軸方向及び周方向に分散させて紫外線を前記受光部に導く複数の導光孔が筒壁に穿設され、該各導光孔は前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を、前記各紫外線ランプの位置に応じて前記受光部に導く位置及び径に設定され、前記第2遮光筒は前記第1遮光筒の全ての前記導光孔を覆う第1位置と全て露出させる第2位置の間で移動可能に設けられてなることを特徴とする。   In order to solve the second problem of the present invention, the second aspect of the present invention is the end on the opposite side in which the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube in the first aspect. The calibration ultraviolet intensity meter is inserted from the section, the light receiving portion of the calibration ultraviolet intensity meter is fixed at a position away from the light receiving portion of the monitoring ultraviolet intensity meter, and surrounds the light receiving portion of the calibration ultraviolet intensity meter A cylindrical first light shielding cylinder is provided, and a cylindrical second light shielding cylinder surrounding the first light shielding cylinder is provided so as to be movable in the axial direction, and the first light shielding cylinder is dispersed in the axial direction and the circumferential direction. A plurality of light guide holes for guiding ultraviolet light to the light receiving portion are formed in the cylindrical wall, and each light guide hole receives the ultraviolet light emitted from the light receiving length set on the basis of the light emission length center of each ultraviolet lamp. Depending on the position of each ultraviolet lamp, it is set to the position and diameter leading to the light receiving part, The second light-shielding tube, characterized by comprising movably provided between the second position that exposes all the first position to cover all of the light guide holes of the first light-shielding tube.

このように構成されることから、本発明の第2の態様によれば、校正用紫外線強度計を監視用紫外線強度計の強度計保護管に常時挿入しておいても、通常時は第2遮光筒を第1位置に位置させて第1遮光筒の導光孔を全て覆うことにより、校正用紫外線強度計の受光部の紫外線暴露時間を極小化できる。また、校正データを計測する際は、第2遮光筒を第2位置に移動させて第1遮光筒の全ての導光孔を露出させることにより、全ての紫外線ランプの合計紫外線強度を計測できるから、監視用紫外線強度計の合計紫外線強度を校正する校正データを容易に取得できる。   Due to such a configuration, according to the second aspect of the present invention, even if the calibration ultraviolet intensity meter is always inserted into the intensity meter protective tube of the monitoring ultraviolet intensity meter, the second is normally used. By exposing the light shielding tube to the first position and covering all the light guide holes of the first light shielding tube, the exposure time of the light receiving part of the calibration ultraviolet intensity meter can be minimized. Further, when measuring calibration data, the total UV intensity of all the UV lamps can be measured by moving the second light shielding tube to the second position and exposing all the light guide holes of the first light shielding tube. The calibration data for calibrating the total ultraviolet intensity of the monitoring ultraviolet intensity meter can be easily obtained.

なお、本発明の第2の態様において、第2遮光筒は、校正用紫外線強度計の受光部を完全に覆う長さを有すればよいから、第2遮光筒を第1位置と第2位置に移動する移動機構の位置決め精度は要求されない。したがって、第1遮光筒を包囲して強度計保護管内に設け、第2遮光筒に連結した駆動部材を外部に引き出し、駆動部材を手動又はモータ等を用いた直線運動機構などにより移動するように構成できる。また、第1遮光筒を包囲して第2遮光筒を強度計保護管の外周に装着し、その第2遮光筒を後述するランプ保護管の洗浄機構の移動駆動機構により移動させるようにすれば、格別な移動機構を設ける必要がないので、装置構成を簡単化できる。   In the second aspect of the present invention, the second light shielding tube only needs to have a length that completely covers the light receiving portion of the calibration ultraviolet intensity meter, so that the second light shielding tube is positioned at the first position and the second position. The positioning accuracy of the moving mechanism that moves to the position is not required. Therefore, the first light-shielding tube is surrounded and provided in the strength meter protection tube, the drive member connected to the second light-shielding tube is pulled out, and the drive member is moved manually or by a linear motion mechanism using a motor or the like. Can be configured. In addition, if the second light-shielding tube is mounted on the outer periphery of the strength meter protection tube so as to surround the first light-shielding tube, the second light-shielding tube is moved by a moving drive mechanism of a lamp protection tube cleaning mechanism described later. Since it is not necessary to provide a special moving mechanism, the apparatus configuration can be simplified.

また、本発明の第3の課題を解決するため、本発明の第3の態様は、第1の態様において、前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部は前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲して固定された第1遮光筒と筒軸周りに回転可能な第2遮光筒とが二重に設けられ、第1遮光筒の筒壁にランプ軸方向が異なる位置と周方向位置が異なる前記各紫外線ランプにそれぞれ対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、第2遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて複数のランプ選択孔が穿設され、前記第2遮光筒の回転角度を変えて前記導光孔と前記ランプ選択孔が重ね合わさる位置に対応した1個の前記紫外線ランプから照射される紫外線を前記受光部に導入可能に形成し、前記第1遮光筒と前記第2遮光筒のうち前記受光部側に設けられる遮光筒に穿設される前記導光孔又は前記ランプ選択孔は、それぞれ前記ランプ保護管に収容された1又は複数の前記紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く位置に設けられていることを特徴とする。   In order to solve the third problem of the present invention, the third aspect of the present invention is the end of the first aspect in which the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube. A calibration ultraviolet intensity meter is inserted, and the light receiving portion of the calibration ultraviolet intensity meter is fixed at a position away from the light receiving portion of the monitoring ultraviolet intensity meter, and surrounds the light receiving portion of the calibration ultraviolet intensity meter. The fixed first light shielding tube and the second light shielding tube rotatable around the tube axis are provided in a double manner, and each ultraviolet ray having a different lamp axis direction and a circumferential position on the tube wall of the first light shielding tube. A plurality of light guide holes for guiding ultraviolet rays to the light receiving portion are formed corresponding to the respective lamps, and a plurality of lamp selection holes are provided corresponding to the ultraviolet lamps at different positions in the lamp axis direction on the cylindrical wall of the second light shielding cylinder. The light guide is changed by changing the rotation angle of the second light shielding cylinder. And ultraviolet light emitted from one ultraviolet lamp corresponding to the position where the lamp selection hole overlaps is formed so as to be able to be introduced into the light receiving part, and the light receiving part among the first light shielding cylinder and the second light shielding cylinder The light guide hole or the lamp selection hole drilled in the light shielding tube provided on the side is a light receiving length set based on the light emission length center of one or a plurality of the ultraviolet lamps housed in the lamp protection tube, respectively. It is provided in the position which guide | induces the ultraviolet-ray irradiated from the said light-receiving part.

本発明の第3の態様によれば、第1の態様及び第2の態様に加えて、複数の紫外線ランプの紫外線強度を個別に監視できるという効果が得られる。すなわち、第2遮光筒の回転角度を順次変えると、導光孔とランプ選択孔が重ね合わさる位置が変わり、その位置に対応した1個の紫外線ランプから照射される紫外線の強度を個別に計測することができる。これにより、監視用紫外線強度計による常時監視において、合計の紫外線強度が急に低下したとき、あるいは低下の度合いが比較的大きいなどの不具合が発生したとき、校正用紫外線強度計により各紫外線ランプの個別の紫外線強度を計測して、紫外線ランプの球切れ、急速な性能劣化などを診断できる。   According to the 3rd aspect of this invention, in addition to the 1st aspect and the 2nd aspect, the effect that the ultraviolet intensity of a several ultraviolet lamp can be monitored separately is acquired. That is, when the rotation angle of the second light-shielding tube is sequentially changed, the position where the light guide hole and the lamp selection hole overlap is changed, and the intensity of the ultraviolet rays emitted from one ultraviolet lamp corresponding to the position is individually measured. be able to. As a result, in the constant monitoring by the monitoring ultraviolet intensity meter, when the total ultraviolet intensity suddenly decreases or when a problem such as a relatively large degree of decrease occurs, the calibration ultraviolet intensity meter Individual UV intensity can be measured to diagnose UV lamp breakage and rapid performance degradation.

また、本発明の第3の態様によれば、校正データを取得する時は、同様にして計測した各紫外線ランプの個別の紫外線強度を積算ないし合計した合計紫外線強度データを校正データとして取得することができる。そして、監視用紫外線強度計により計測された合計紫外線強度と校正データとを比較して、監視用紫外線強度計の受光部の経年劣化を校正した合計紫外線強度の計測データを求めることができる。   According to the third aspect of the present invention, when the calibration data is acquired, the total ultraviolet intensity data obtained by accumulating or totaling the individual ultraviolet intensities measured in the same manner is acquired as the calibration data. Can do. Then, by comparing the total ultraviolet intensity measured by the monitoring ultraviolet intensity meter with the calibration data, the measurement data of the total ultraviolet intensity obtained by calibrating the aging deterioration of the light receiving part of the monitoring ultraviolet intensity meter can be obtained.

また、本発明の第3の課題を解決するため、本発明の第4の態様は、第1の態様において、前記強度計保護管に第1遮光筒が固定して設けられ、該第1遮光筒の両端から前記監視用紫外線強度計と校正用紫外線強度計とが挿入され、前記監視用紫外線強度計と前記校正用紫外線強度計は、それぞれの受光部が、前記強度計保護管が前記流路中心面と交差する前記中心位置と該中心位置から挿入方向に沿って後退した位置との間で移動可能に設けられ、前記第1遮光筒の前記中心位置に対応する筒壁に、ランプ軸方向が異なる位置と周方向位置が異なる前記紫外線ランプにそれぞれ対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、前記監視用紫外線強度計が軸方向に移動可能に設けられ、当該監視用紫外線強度計の前記受光部を包囲する第2遮光筒が当該受光部に固定して設けられ、該第2遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、前記校正用紫外線強度計の前記受光部を包囲する第3遮光筒が前記受光部に固定して設けられ、前記校正用紫外線強度計の前記受光部が軸周りに回転可能にかつ軸方向に移動可能に設けられ、該第3遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて紫外線を導く複数のランプ選択孔が穿設され、前記監視用紫外線強度計の前記受光部を軸方向に移動させる第1駆動機構と前記校正用紫外線強度計の前記受光部を軸周りに回転させる第2駆動機構及び軸方向に移動させる第3駆動機構とが設けられ、監視時は、前記監視用紫外線強度計の前記受光部を前記中心位置に位置させて全ての前記紫外線ランプから照射される合計紫外線強度を計測し、校正データ取得時は、前記監視用紫外線強度計の前記受光部を後退させて、前記校正用紫外線強度計の前記受光部を前記中心位置に位置させ、かつ前記受光部を回転させて前記第3遮光筒前記ランプ選択孔が前記第1遮光筒の前記導光孔に重ね合わさせられる位置に対応した1個の紫外線ランプから照射される紫外線を前記受光部に導入可能に形成され、前記第2遮光筒の前記導光孔と前記第3遮光筒の前記ランプ選択孔は、それぞれ前記ランプ保護管にそれぞれ収容された1又は複数の前記紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く位置に設けられていることを特徴とする。 In order to solve the third problem of the present invention, in a fourth aspect of the present invention, in the first aspect, a first light shielding tube is fixedly provided on the strength meter protective tube, and the first light shielding is provided. The monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter are inserted from both ends of the cylinder. The monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter each have a light receiving portion, and the intensity meter protective tube is connected to the flowmeter. A lamp shaft is provided on a cylinder wall corresponding to the center position of the first light shielding cylinder, and is provided between the center position intersecting the road center plane and a position retracted from the center position along the insertion direction. A plurality of light guide holes for guiding ultraviolet rays to the light receiving portion are formed corresponding to the ultraviolet lamps having different directions and different circumferential positions, and the monitoring ultraviolet intensity meter is provided to be movable in the axial direction. , The light receiving part of the monitoring ultraviolet intensity meter A surrounding second light-shielding tube is fixed to the light-receiving unit, and a plurality of guides for guiding ultraviolet rays to the light-receiving unit corresponding to the ultraviolet lamps at different positions in the lamp axis direction on the tube wall of the second light-shielding tube. A third light-shielding tube that is provided with a light hole and surrounds the light-receiving portion of the calibration ultraviolet intensity meter is fixed to the light-receiving portion, and the light-receiving portion of the calibration ultraviolet intensity meter rotates around an axis. A plurality of lamp selection holes for guiding ultraviolet rays corresponding to the ultraviolet lamps at different positions in the axial direction of the lamp are provided in the cylindrical wall of the third light shielding cylinder so as to be movable in the axial direction. A first drive mechanism for moving the light receiving part of the ultraviolet intensity meter for an axis in the axial direction, a second drive mechanism for rotating the light receiving part of the ultraviolet ray intensity meter for calibration around the axis, and a third drive mechanism for moving in the axial direction The monitoring ultraviolet is used for monitoring. The light receiving unit of the intensity meter is positioned at the center position to measure the total ultraviolet intensity irradiated from all the ultraviolet lamps, and when the calibration data is acquired, the light receiving unit of the monitoring ultraviolet intensity meter is moved backward. The light receiving portion of the calibration ultraviolet intensity meter is positioned at the center position, and the light receiving portion is rotated so that the lamp selection hole of the third light shielding tube overlaps the light guiding hole of the first light shielding tube. The ultraviolet light emitted from one ultraviolet lamp corresponding to the position to be moved can be introduced into the light receiving portion, and the light guide hole of the second light shielding tube and the lamp selection hole of the third light shielding tube are Each of the plurality of ultraviolet lamps respectively accommodated in the lamp protection tube is provided at a position for guiding ultraviolet rays emitted from a light receiving length set with reference to a light emission length center of the one or more ultraviolet lamps to the light receiving unit. To do.

すなわち、本発明の第4の態様は、第3の態様と異なり、監視用紫外線強度計と校正用紫外線強度計の計測位置を同一位置にしたことを特徴とする。これにより、両者の紫外線強度計で計測される計測値の対比を精度良く行うことができるから、校正精度が向上するという効果が得られる。   That is, the fourth aspect of the present invention is characterized in that, unlike the third aspect, the monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter have the same measurement position. Thereby, since the comparison of the measured value measured with both ultraviolet intensity meters can be performed accurately, the effect that calibration accuracy improves is acquired.

本発明の第5の態様は、第2の態様又は第4の態様の変形例と考えることができる。つまり、前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部が前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲する円筒状の第1遮光筒が設けられ、該第1遮光筒を包囲する円筒状の第2遮光筒が軸方向移動可能に設けられ、前記第1遮光筒の筒壁に軸方向及び周方向に分散させて、前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く複数の導光孔が穿設され、該各導光孔は前記各ランプ保護管の位置に応じて前記受光長から照射される紫外線を前記受光部に導く径に設定され、前記第2遮光筒は筒壁の軸方向及び周方向にずらして前記第1遮光筒の前記導光孔の位置に対応する位置に複数のランプ選択孔を穿設して形成され、かつ、軸方向に移動可能に設けられてなることを特徴とする。これによれば、第2遮光筒の軸方向位置をずらすと、第1遮光筒の導光孔と第2遮光筒のランプ選択孔が重なる組合せは、それぞれ1個の紫外線ランプに対応する。したがって、校正用紫外線強度計によって個別の紫外線ランプの紫外線強度を監視又は計測することができる。   The fifth aspect of the present invention can be considered as a modification of the second aspect or the fourth aspect. That is, a calibration ultraviolet intensity meter is inserted from the opposite end where the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube, and a light receiving portion of the calibration ultraviolet intensity meter is connected to the monitoring ultraviolet intensity meter. A cylindrical first light-shielding tube that is fixed at a position away from the light-receiving unit and surrounds the light-receiving unit of the calibration ultraviolet intensity meter is provided, and the cylindrical second light-shielding tube that surrounds the first light-shielding tube is an axis. UV light emitted from a light receiving length set on the basis of the light emission length center of each ultraviolet lamp is distributed in the axial direction and circumferential direction on the cylindrical wall of the first light shielding cylinder. A plurality of light guide holes leading to the light guide portion, and each light guide hole is set to a diameter for guiding the ultraviolet light emitted from the light receiving length to the light receiving portion according to the position of each lamp protection tube, 2 The light-shielding cylinder is shifted in the axial direction and the circumferential direction of the cylinder wall, and the first light-shielding cylinder It is formed by drilling a plurality of lamps selected hole to a position corresponding to the position of Kishirubekoana, and characterized by comprising movable in the axial direction. According to this, when the axial position of the second light shielding tube is shifted, the combination in which the light guide hole of the first light shielding tube and the lamp selection hole of the second light shielding tube overlap each corresponds to one ultraviolet lamp. Therefore, the ultraviolet intensity of each ultraviolet lamp can be monitored or measured by the calibration ultraviolet intensity meter.

本発明の第1の態様によれば、仮想円筒上に配置された各ランプ保護管に1本又は複数本の紫外線ランプを軸方向にずらして収容してなる直交流型の紫外線照射装置において、紫外線ランプの紫外線強度を精度よく計測して監視できるという効果がある。
また、本発明の第2の態様によれば、第1の態様の効果に加えて、監視用紫外線強度計の校正データを精度よく容易に取得できるという効果がある。
さらに、本発明の第3乃至5の態様によれば、第1,2の態様の効果に加えて、複数の紫外線ランプの紫外線強度を個別に監視できるという効果がある。
According to the first aspect of the present invention, in the cross-flow type ultraviolet irradiation device in which one or a plurality of ultraviolet lamps are housed in the respective lamp protection tubes arranged on the virtual cylinder while being shifted in the axial direction, There is an effect that the ultraviolet intensity of the ultraviolet lamp can be accurately measured and monitored.
Moreover, according to the 2nd aspect of this invention, in addition to the effect of a 1st aspect, there exists an effect that the calibration data of the ultraviolet intensity meter for monitoring can be acquired easily accurately.
Furthermore, according to the third to fifth aspects of the present invention, in addition to the effects of the first and second aspects, there is an effect that the ultraviolet intensity of the plurality of ultraviolet lamps can be individually monitored.

本発明の実施形態1の紫外線照射装置を模式的に示した正面断面図である。It is front sectional drawing which showed typically the ultraviolet irradiation device of Embodiment 1 of this invention. 図1の実施形態の矢視II−IIから見た図である。It is the figure seen from the arrow II-II of embodiment of FIG. 図1の実施形態の紫外線ランプの配置を説明する模式図である。It is a schematic diagram explaining arrangement | positioning of the ultraviolet lamp of embodiment of FIG. 図1の実施形態の監視用紫外線強度計と校正用紫外線強度計の受光部周りの詳細構成図である。It is a detailed block diagram around the light-receiving part of the ultraviolet-ray intensity meter for monitoring and the ultraviolet-ray intensity meter for calibration of embodiment of FIG. 図1の実施形態の洗浄機構の特徴であるワイパーの詳細構成図である。It is a detailed block diagram of the wiper which is the characteristic of the washing | cleaning mechanism of embodiment of FIG. 本発明の紫外線照射装置の実施形態2の監視用紫外線強度計と校正用紫外線強度計の受光部周りの詳細構成図である。It is a detailed block diagram around the light-receiving part of the ultraviolet-ray intensity meter for monitoring and the ultraviolet-ray intensity meter for calibration of Embodiment 2 of the ultraviolet irradiation device of the present invention. 本発明の紫外線照射装置の実施形態3の監視用紫外線強度計と校正用紫外線強度計の受光部周りの詳細構成図である。It is a detailed block diagram around the light-receiving part of the ultraviolet-ray intensity meter for monitoring and the ultraviolet-ray intensity meter for calibration of Embodiment 3 of the ultraviolet irradiation device of the present invention. 本発明の紫外線照射装置の実施形態4の監視用紫外線強度計と校正用紫外線強度計の受光部周りの詳細構成図である。It is a detailed block diagram around the light-receiving part of the ultraviolet-ray intensity meter for monitoring and the ultraviolet-ray intensity meter for calibration of Embodiment 4 of the ultraviolet irradiation device of the present invention. 本発明の紫外線照射装置の実施形態6に係る紫外線ランプ配置を模式的に示した図であり、(a)は図1と同様に対象流体の流入方向から見た正面図、(b)は断面図である。It is the figure which showed typically the ultraviolet lamp arrangement | positioning which concerns on Embodiment 6 of the ultraviolet irradiation device of this invention, (a) is the front view seen from the inflow direction of object fluid like FIG. 1, (b) is a cross section FIG. 本発明の紫外線照射装置の実施形態7に係る紫外線ランプ配置を模式的に示した図であり、(a)は図1と同様に対象流体の流入方向から見た正面図、(b)は断面図である。It is the figure which showed typically the ultraviolet lamp arrangement | positioning which concerns on Embodiment 7 of the ultraviolet irradiation device of this invention, (a) is the front view seen from the inflow direction of object fluid like FIG. 1, (b) is a cross section FIG.

以下、本発明の紫外線照射装置を実施形態に基づいて説明する。
(実施形態1)
図1〜図4を参照して、本発明の一実施形態の構成を説明する。本実施形態の紫外線照射装置は、円筒状の容器1と、容器1の筒壁に筒軸に直交させて流入管2と流出管3が筒壁の対向する位置に連結されている。これにより、対象流体が容器1の筒軸に直交する方向に容器1内に流通されるようになっている。流入管2と流出管3には、それぞれフランジ4,5を備えた対象流体の流入口6及び流出口7が設けられている。フランジ4,5は、対象流体を容器1に流入あるいは容器1から排出する図示していない流通管路が連結可能に形成されている。
Hereinafter, the ultraviolet irradiation device of the present invention will be described based on embodiments.
(Embodiment 1)
The configuration of one embodiment of the present invention will be described with reference to FIGS. In the ultraviolet irradiation device of the present embodiment, a cylindrical container 1 and an inflow pipe 2 and an outflow pipe 3 are connected to a position facing the cylinder wall so as to be orthogonal to the cylinder axis of the cylinder wall of the container 1. Thereby, the target fluid is circulated in the container 1 in a direction orthogonal to the cylinder axis of the container 1. The inflow pipe 2 and the outflow pipe 3 are provided with an inflow port 6 and an outflow port 7 for the target fluid having flanges 4 and 5, respectively. The flanges 4 and 5 are formed so as to be able to connect a flow conduit (not shown) for flowing the target fluid into or out of the container 1.

容器1内には、容器軸に平行に延在させて配置された透明な複数のランプ保護管13が収容され、各ランプ保護管13内にはそれぞれ直状の紫外線ランプ14が挿入されている。ランプ保護管13の両端は、容器1の管体10の両端近傍に設けられた一対のエンドプレート11に形成された貫通孔15に挿入されて支持されている。また、容器1の図において左右の両端のフランジ12には、図示していないカバープレートが装着されるようになっている。カバープレートには、各ランプ保護管13を挿入可能な貫通孔が形成され、貫通孔に挿入された各ランプ保護管13はグランドパッキンなどのシール機構によって水密にシールされている。また、各紫外線ランプ14は、両端に形成された口金部16に装着された例えばセラミック製の鍔17を介してランプ保護管13の内面に支持されている。   A plurality of transparent lamp protection tubes 13 arranged so as to extend in parallel with the container axis are accommodated in the container 1, and a straight ultraviolet lamp 14 is inserted into each lamp protection tube 13. . Both ends of the lamp protection tube 13 are inserted into and supported by through holes 15 formed in a pair of end plates 11 provided in the vicinity of both ends of the tube 10 of the container 1. Further, in the drawing of the container 1, cover plates (not shown) are attached to the flanges 12 at both the left and right ends. The cover plate is formed with a through-hole into which each lamp protection tube 13 can be inserted, and each lamp protection tube 13 inserted into the through-hole is sealed watertight by a sealing mechanism such as a gland packing. Further, each ultraviolet lamp 14 is supported on the inner surface of the lamp protection tube 13 via, for example, a ceramic ridge 17 attached to a cap portion 16 formed at both ends.

また、各紫外線ランプ14には、図示していない耐熱性のPTFE被膜ケーブルを介して、ランプ保護管13の端部又は外部に設けられた安定器及び調光器から電気入力が供給されるようになっている。本実施形態の紫外線ランプ14は、両端の口金部16に電気入力を供給する例を示したが、本発明は、これに限らず、紫外線ランプ14のいずれか一方の片側の口金部16から電気入力を供給する形式の紫外線ランプにも適用できる。   Each ultraviolet lamp 14 is supplied with electric input from a ballast and a dimmer provided at the end or outside of the lamp protection tube 13 via a heat-resistant PTFE-coated cable (not shown). It has become. Although the ultraviolet lamp 14 of this embodiment showed the example which supplies an electrical input to the nozzle | cap | die part 16 of both ends, this invention is not restricted to this, The electric power is supplied from the nozzle | cap | die part 16 of one side of the ultraviolet lamp 14. It can also be applied to UV lamps that supply input.

本実施形態では、容器軸に平行に延在させて複数n(図示例は、n=9)本のランプ保護管13が配置されている。複数のランプ保護管13は、図3に示すように、容器軸を軸心とする仮想円筒18の周方向に沿って等間隔に配置されている。各ランプ保護管13には、本実施形態では同一の公称出力(例えば、電気入力120W/cm、発光長25cmの中圧水銀ランプ)を有する紫外線ランプ14が、1本ずつ収容されている。   In the present embodiment, a plurality of n (n = 9 in the illustrated example) lamp protection tubes 13 are arranged so as to extend parallel to the container axis. As shown in FIG. 3, the plurality of lamp protection tubes 13 are arranged at equal intervals along the circumferential direction of the virtual cylinder 18 whose axis is the container axis. In each lamp protection tube 13, one ultraviolet lamp 14 having the same nominal output (for example, an electric input 120 W / cm, a medium pressure mercury lamp having a light emission length of 25 cm) is accommodated one by one in this embodiment.

本実施形態では、複数の紫外線ランプ14をA群14−(A)とB群14−(B)とに分け、周方向の任意位置(例えば、図3の「0°」位置)を基準として、紫外線ランプ14の発光長の中心位置を時計回り及び反時計回りに交互に、軸方向位置をA位置とB位置に振り分けて配置している。ここで、説明のため、9本の紫外線ランプ14に、図3に示すように、基準位置(0°)から時計回りに、紫外線ランプ14−1(A),14−2(B),14−3(A)、・・・、14−9(B)の識別符号を付して示す。本実施形態では、紫外線ランプ14−1,14−3、14−5、14−6、14−8がA位置の紫外線ランプ14−(A)に分けられ、紫外線ランプ14−2,14−4、14−7、14−9がB位置の紫外線ランプ14−(B)に振り分けられている。   In the present embodiment, the plurality of ultraviolet lamps 14 are divided into A group 14- (A) and B group 14- (B), and an arbitrary position in the circumferential direction (for example, the “0 °” position in FIG. 3) is used as a reference. The center position of the emission length of the ultraviolet lamp 14 is alternately arranged clockwise and counterclockwise, and the axial position is divided into the A position and the B position. Here, for the sake of explanation, as shown in FIG. 3, the nine ultraviolet lamps 14 are rotated clockwise from the reference position (0 °) as shown in FIG. 3, and the ultraviolet lamps 14-1 (A), 14-2 (B), 14 −3 (A),..., 14-9 (B) are attached with identification codes. In the present embodiment, the ultraviolet lamps 14-1, 14-3, 14-5, 14-6, and 14-8 are divided into ultraviolet lamps 14- (A) at the A position, and the ultraviolet lamps 14-2 and 14-4. , 14-7 and 14-9 are distributed to the ultraviolet lamp 14- (B) at the B position.

紫外線ランプ14−(A)と14−(B)は、図1に示すように、流入口6と流出口7の中心を通り、かつランプ軸(容器軸)に直交する面(以下、流路中心面という。)19に対して、発光長の中心を対称にずらして配置されている。なお、図1では、繁雑を避けるため、図3に示す仮想円筒18の流入口6側に配置された紫外線ランプ14−1(A)、14−9(B)のみを示している。また、図1と図3から分かるように、紫外線ランプ14−(A)と14−(B)は、仮想円筒18の周方向に沿って、ランプ軸方向に位置をずらしてジグザグに配置されている。なお、紫外線ランプ14の発光長は紫外線が照射される有効長であり、発光長の中心は、通常は紫外線ランプ14の中心と看做すことができる。   As shown in FIG. 1, the ultraviolet lamps 14- (A) and 14- (B) pass through the centers of the inlet 6 and the outlet 7 and are perpendicular to the lamp axis (container axis) (hereinafter referred to as flow paths). The center of the light emission length is symmetrically shifted with respect to 19). In FIG. 1, only ultraviolet lamps 14-1 (A) and 14-9 (B) arranged on the inflow port 6 side of the virtual cylinder 18 shown in FIG. 3 are shown to avoid complication. As can be seen from FIGS. 1 and 3, the ultraviolet lamps 14-(A) and 14-(B) are arranged in a zigzag manner along the circumferential direction of the virtual cylinder 18 with the positions shifted in the lamp axis direction. Yes. The light emission length of the ultraviolet lamp 14 is an effective length irradiated with ultraviolet light, and the center of the light emission length can be generally regarded as the center of the ultraviolet lamp 14.

また、本実施形態によれば、流路中心面19に対して、A群の紫外線ランプ14−(A)とB群の紫外線ランプ14−(B)を保護管軸方向にずらし、かつ発光長の中心を流路中心面19に対して互いに対称に配置したことから、対象流体の流れ方向における紫外線ランプの重なりを少なくすることができる。しかも、紫外線ランプ14をランプ軸方向に広く分散できるから、紫外線照射領域を流通する対象流体が受ける紫外線の密度を均等化して、照射性能を上げることができる。   Further, according to the present embodiment, the group A ultraviolet lamps 14-(A) and the group B ultraviolet lamps 14-(B) are shifted in the protective tube axis direction with respect to the flow path center plane 19, and the emission length is increased. Are arranged symmetrically with respect to the flow path center plane 19, so that the overlap of the ultraviolet lamps in the flow direction of the target fluid can be reduced. In addition, since the ultraviolet lamp 14 can be widely dispersed in the lamp axis direction, the density of ultraviolet rays received by the target fluid flowing through the ultraviolet irradiation region can be equalized to improve the irradiation performance.

このように構成される本実施形態1の紫外線照射装置の基本動作について説明する。対象流体は、図2に示す流入口6から矢印8の方向から容器1内に流入され、複数本のランプ保護管13が並べられた紫外線照射領域を流通して、流出口7から排出される。対象流体は、紫外線照射領域を流通する際に、ランプ保護管13内に収容された紫外線ランプ14から放射される紫外線の照射を受けて処理される。例えば、対象流体が上水、飲料、食品などの場合は、それらの流体中に含まれる菌などの微生物が死滅化あるいは不活化される。また、対象流体が、下水などの排水の場合は、流体の脱色、微生物の死滅化あるいは不活化、有機物などの化学物質の分解又は合成、あるいは、対象流体に含まれる物質の酸化促進、TOCの分解処理を行う。さらに、純水などを流通させて半導体の洗浄水を製造することができる。   The basic operation of the ultraviolet irradiation apparatus of the first embodiment configured as described above will be described. The target fluid flows into the container 1 from the inlet 6 shown in FIG. 2 in the direction of the arrow 8, flows through the ultraviolet irradiation region where the plurality of lamp protection tubes 13 are arranged, and is discharged from the outlet 7. . The target fluid is processed by being irradiated with ultraviolet rays emitted from the ultraviolet lamp 14 accommodated in the lamp protection tube 13 when flowing through the ultraviolet irradiation region. For example, when the target fluid is water, beverages, foods, etc., microorganisms such as bacteria contained in those fluids are killed or inactivated. In addition, when the target fluid is wastewater such as sewage, decolorization of the fluid, killing or inactivation of microorganisms, decomposition or synthesis of chemical substances such as organic substances, or promotion of oxidation of substances contained in the target fluid, TOC Perform disassembly. Further, semiconductor cleaning water can be produced by circulating pure water or the like.

次に、本実施形態の洗浄機構について説明する。洗浄機構21は、紫外線ランプ14のランプ保護管13及び後述する強度計保護管31の外表面に付着した汚れを除去する装置であり、必要に応じて設けられる。洗浄機構21は、一対のエンドプレート11の間に渡して設けられた3本の走行レール22と、各走行レール22上を走行可能に設けられた3組の走行台車23と、3組の走行台車23に支持されたリング状のワイパー保持部材24を含んで構成されている。ワイパー保持部材24のリング内径は、円筒状に配列された複数のランプ保護管13の外周径よりも大きく形成されている。そして、ワイパー保持部材24のリング内径側から各ランプ保護管13及び強度計保護管31の外周面を包囲するワイパー25がそれぞれ張り出して設けられている。   Next, the cleaning mechanism of this embodiment will be described. The cleaning mechanism 21 is a device that removes dirt attached to the outer surfaces of the lamp protection tube 13 of the ultraviolet lamp 14 and the strength meter protection tube 31 described later, and is provided as necessary. The cleaning mechanism 21 includes three traveling rails 22 provided between the pair of end plates 11, three sets of traveling carriages 23 provided so as to be able to travel on each traveling rail 22, and three sets of traveling. The ring-shaped wiper holding member 24 supported by the carriage 23 is included. The ring inner diameter of the wiper holding member 24 is formed larger than the outer diameter of the plurality of lamp protection tubes 13 arranged in a cylindrical shape. A wiper 25 is provided so as to project from the inner diameter side of the ring of the wiper holding member 24 so as to surround the outer peripheral surfaces of the lamp protection tube 13 and the strength meter protection tube 31.

また、洗浄機構21は、一対のエンドプレート11の間に渡して回転可能に軸受26に支持された送りねじロッド27と、送りねじロッド27に螺合された内ねじを有する円筒状のナット28とを含んで構成されている。ナット28は、ナット保持部材29を介してリング状のワイパー保持部材24に支持されている。送りねじロッド27の一端27aは、エンドプレート11とフランジ12に装着される図示していないカバープレートを貫通させて外部に引き出され、図示していない駆動モータにより回転可能に形成されている。カバープレートには送りねじロッド27の一端27aを水密シールする部材が設けられている。   Further, the cleaning mechanism 21 includes a feed screw rod 27 that is rotatably supported by a bearing 26 across a pair of end plates 11, and a cylindrical nut 28 having an inner screw screwed to the feed screw rod 27. It is comprised including. The nut 28 is supported by the ring-shaped wiper holding member 24 via the nut holding member 29. One end 27a of the feed screw rod 27 is drawn out through a cover plate (not shown) attached to the end plate 11 and the flange 12, and is formed to be rotatable by a drive motor (not shown). The cover plate is provided with a member that hermetically seals one end 27 a of the feed screw rod 27.

ここで、本実施形態の洗浄機構21の特徴であるワイパー25の構成について、図5を参照して説明する。ワイパー25は、図5(c)に示すように、ランプ保護管13と強度計保護管31の外周に遊嵌するリング状のブラシ部25aと、ブラシ部25aの外周縁を緩く保持する環状溝を有するブラシ保持部材であるブラシカバー25bとを備えている。ブラシ部25aは、図5(a)に示すように、リング状のベース部材25cの内周面に金属製のブラシ25dを保持させて形成されている。ブラシ25dは例えばステンレスの細線(例えば、0.8〜1.0mm径)を用いて形成され、ブラシ部25aの内径はランプ保護管13又は強度計保護管31の外径と同等又は若干小径に形成されている。ベース部材25cとブラシ25dの固定は、周知の種々の方法を適用することができる。また、直線状のベース部材25cにブラシ25dを固定し、ブラシ25dを内周面側にしてベース部材25cを螺旋状に巻き付け加工した後に切断し、切断面25eを突き合わせてリング状のブラシ部25aを製造することができる。一方、ブラシカバー25bは、図5(b)に示すように、リング平板25fの外周縁を絞り加工で起立させた縁部25gを有する一対のカバー部材25hを形成する。そして、同図(c)に示す組立図のように、リング状のブラシ部25aを一対のカバー部材25hに内包させて縁部25gの先端面を突き合わせ接着して、ワイパー25を形成することができる。   Here, the configuration of the wiper 25 which is a feature of the cleaning mechanism 21 of the present embodiment will be described with reference to FIG. As shown in FIG. 5C, the wiper 25 includes a ring-shaped brush portion 25a that is loosely fitted to the outer periphery of the lamp protection tube 13 and the strength meter protection tube 31, and an annular groove that loosely holds the outer periphery of the brush portion 25a. A brush cover 25b which is a brush holding member having As shown in FIG. 5A, the brush portion 25a is formed by holding a metal brush 25d on the inner peripheral surface of a ring-shaped base member 25c. The brush 25d is formed using, for example, a thin stainless steel wire (for example, 0.8 to 1.0 mm in diameter), and the inner diameter of the brush portion 25a is equal to or slightly smaller than the outer diameter of the lamp protection tube 13 or the strength meter protection tube 31. Is formed. Various known methods can be applied to fix the base member 25c and the brush 25d. In addition, the brush 25d is fixed to the linear base member 25c, the base member 25c is wound in a spiral shape with the brush 25d on the inner peripheral surface side, and then cut, and the cut surface 25e is abutted to contact the ring-shaped brush portion 25a. Can be manufactured. On the other hand, as shown in FIG. 5B, the brush cover 25b forms a pair of cover members 25h each having an edge portion 25g in which the outer peripheral edge of the ring flat plate 25f is raised by drawing. Then, as shown in the assembly diagram of FIG. 7C, the ring-shaped brush portion 25a is enclosed in a pair of cover members 25h, and the tip surface of the edge portion 25g is abutted and bonded to form the wiper 25. it can.

ここで、本実施形態では、リング状のベース部材25cの外径を、ブラシカバー25bの縁部25gの内周面の径よりも小径とし、ブラシカバー25bの内面とブラシ部25aの外周面との間に隙間を形成し、ブラシ部25aがブラシカバー25b内で径方向に自由に移動できるようにしている。   Here, in the present embodiment, the outer diameter of the ring-shaped base member 25c is smaller than the diameter of the inner peripheral surface of the edge portion 25g of the brush cover 25b, and the inner surface of the brush cover 25b and the outer peripheral surface of the brush portion 25a A gap is formed between them so that the brush portion 25a can freely move in the radial direction within the brush cover 25b.

このように構成される本実施形態の洗浄機構21の動作を説明する。洗浄機構21は、図示していない駆動モータによって送りねじロッド27を正転させると、ナット28に支持されているワイパー保持部材24は、走行台車23を介して走行レール22に沿って、退避位置Cから図1において右方向に移動する。この移動により、ワイパー保持部材24に保持されたワイパー25がランプ保護管13の外表面に沿って摺動され、ランプ保護管13の外表面に付着している汚れを掻き落としながら前進端位置Dに至る。そして、駆動モータを逆回転させて送りねじロッド27を逆転させると、ワイパー25が前進端位置Dから逆方向に移動して、ランプ保護管13の外表面に付着している汚れを掻き落としながら退避位置Cに戻って、1回の洗浄操作が終了する。なお、必要に応じて、洗浄操作を複数回繰り返して、ランプ保護管13の外表面に強力に、又は多量に付着している汚れを除去することができる。また、洗浄機構21を退避位置Cに戻すのは、対象流体の流入口6と流出口7を結ぶ紫外線照射領域から、走行台車23、ワイパー保持部材24、ワイパー25、ナット28などの部材を退避させて、紫外線照射及び対象流体の流れを妨げないようにするためである。   The operation of the cleaning mechanism 21 of the present embodiment configured as described above will be described. When the cleaning mechanism 21 rotates the feed screw rod 27 forward by a drive motor (not shown), the wiper holding member 24 supported by the nut 28 moves along the traveling rail 22 via the traveling carriage 23 to the retracted position. Move from C to the right in FIG. By this movement, the wiper 25 held by the wiper holding member 24 is slid along the outer surface of the lamp protection tube 13, and the forward end position D is scraped off the dirt adhering to the outer surface of the lamp protection tube 13. To. When the drive motor is rotated in the reverse direction and the feed screw rod 27 is rotated in the reverse direction, the wiper 25 moves in the reverse direction from the forward end position D while scraping off the dirt adhering to the outer surface of the lamp protection tube 13. Returning to the retreat position C, one cleaning operation is completed. If necessary, the cleaning operation can be repeated a plurality of times to remove strongly or abundantly adhered dirt on the outer surface of the lamp protection tube 13. The cleaning mechanism 21 is returned to the retracted position C because the traveling carriage 23, the wiper holding member 24, the wiper 25, the nut 28, and the like are retracted from the ultraviolet irradiation region connecting the inlet 6 and the outlet 7 of the target fluid. This is to prevent the ultraviolet irradiation and the flow of the target fluid from being hindered.

特に、本実施形態の洗浄機構21によれば、ブラシ部25aがブラシカバー25b内で全周にわたって径方向に自由に移動できることから、例えば、ランプ保護管13を石英ガラス管で構成する場合、製作公差が比較的大きいが、製作公差を吸収することができる。また、ランプ保護管13又は強度計保護管31が撓み等によりワイパー保持部材24との相対位置がずれても、ブラシ部25aが移動して相対位置のずれを吸収できるから、ランプ保護管13又は強度計保護管31の損傷を防ぐことができる。また、ブラシ25dを金属製の細線で形成したことから、ランプ表面温度が高い中圧水銀ランプを紫外線ランプ14に適用することが可能になる。   In particular, according to the cleaning mechanism 21 of the present embodiment, since the brush portion 25a can freely move in the radial direction over the entire circumference in the brush cover 25b, for example, when the lamp protection tube 13 is formed of a quartz glass tube, it is manufactured. Although tolerances are relatively large, manufacturing tolerances can be absorbed. Further, even if the lamp protection tube 13 or the strength meter protection tube 31 is displaced relative to the wiper holding member 24 due to bending or the like, the brush portion 25a can move and absorb the displacement of the relative position, so that the lamp protection tube 13 or Damage to the strength meter protection tube 31 can be prevented. Further, since the brush 25d is formed of a thin metal wire, an intermediate pressure mercury lamp having a high lamp surface temperature can be applied to the ultraviolet lamp 14.

次に、本実施形態の特徴である監視用紫外線強度計及び校正用紫外線強度計の構成について、図1〜図4を参照して説明する。図に示すように、仮想円筒18上に配置されたランプ保護管13及び紫外線ランプ14の仮想円筒18の中心軸に、強度計保護管31が一対のエンドプレート11に渡して設けられている。強度計保護管31は透明な石英ガラス管などを用いて形成され、両端はフランジ12に装着される図示していないカバープレートを貫通させて外部に引き出されている。強度計保護管31内には、図1において右側の端部から監視用紫外線強度計32が挿入され、左側端部から校正用紫外線強度計33が挿入されている。   Next, the configuration of the monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter, which are the features of this embodiment, will be described with reference to FIGS. As shown in the drawing, an intensity meter protection tube 31 is provided across the pair of end plates 11 on the central axis of the virtual cylinder 18 of the lamp protection tube 13 and the ultraviolet lamp 14 disposed on the virtual cylinder 18. The strength meter protection tube 31 is formed using a transparent quartz glass tube or the like, and both ends are drawn out through a cover plate (not shown) attached to the flange 12. 1, a monitoring ultraviolet intensity meter 32 is inserted from the right end in FIG. 1, and a calibration ultraviolet intensity meter 33 is inserted from the left end.

監視用紫外線強度計32は、挿入方向の先端に設けられた受光部32aと、受光部32aを支持する支持ロッド32bと、図4に示すように、受光部32aの外周を包囲して設けられた遮光筒32cと、遮光筒32cを支持ロッド32bに固定する固定部材32dと、受光部32aに結合された図示していない光ファイバーを備えて形成されている。監視用紫外線強度計32は、紫外線の受光部32aの中心を、強度計保護管31が流路中心面19と交差する中心位置に位置させて設置されている。   The monitoring ultraviolet intensity meter 32 is provided so as to surround the outer periphery of the light receiving portion 32a, as shown in FIG. 4, a light receiving portion 32a provided at the distal end in the insertion direction, a support rod 32b that supports the light receiving portion 32a. The light shielding cylinder 32c, a fixing member 32d for fixing the light shielding cylinder 32c to the support rod 32b, and an optical fiber (not shown) coupled to the light receiving portion 32a are provided. The monitoring ultraviolet intensity meter 32 is installed such that the center of the ultraviolet light receiving portion 32 a is located at the center position where the intensity meter protection tube 31 intersects the flow path center plane 19.

また、校正用紫外線強度計33は、挿入方向の先端に設けられた受光部33aと、受光部33aを支持する支持ロッド33bと、図4に示すように、受光部33aの外周を包囲して設けられた第1遮光筒である遮光筒33cと、遮光筒33cを支持ロッド33bに固定する固定部材33dと、受光部33aに結合された図示していない光ファイバーを備えて形成されている。校正用紫外線強度計33は、紫外線の受光部33aの中心を、監視用紫外線強度計32の受光部32aの位置から離れた流路断面内に位置させて設置されている。また、遮光筒33cを包囲する円筒状の第2遮光筒である遮光筒34が、強度計保護管31の外周に軸方向移動可能に設けられている。   The calibration ultraviolet intensity meter 33 surrounds the outer periphery of the light receiving portion 33a, as shown in FIG. 4, the light receiving portion 33a provided at the tip in the insertion direction, the support rod 33b that supports the light receiving portion 33a. The light shielding cylinder 33c, which is a first light shielding cylinder, a fixing member 33d that fixes the light shielding cylinder 33c to the support rod 33b, and an optical fiber (not shown) coupled to the light receiving portion 33a are provided. The calibration ultraviolet intensity meter 33 is installed such that the center of the ultraviolet light receiving portion 33a is located in the flow path cross section away from the position of the light receiving portion 32a of the monitoring ultraviolet intensity meter 32. Further, a light shielding cylinder 34 which is a cylindrical second light shielding cylinder surrounding the light shielding cylinder 33 c is provided on the outer periphery of the strength meter protection tube 31 so as to be movable in the axial direction.

受光部32aと受光部33aは、同一の構成を有して形成され、紫外線を可視光に変換する変換材料を石英ガラスなどの管体32e、33eに充填して形成されている。そして、管体32e、33eの外周面の全方位から入射される紫外線を受光して変換可能になっている。変換材料により変換された可視光は光ファイバーを介して、中空に形成された支持ロッド32b、33b内を通して外部に引き出され、図示していない光電変換素子で電気信号に変換し、演算処理装置にて紫外線強度を計測して監視するようになっている。   The light receiving portion 32a and the light receiving portion 33a are formed to have the same configuration, and are formed by filling tubes 32e and 33e such as quartz glass with a conversion material that converts ultraviolet light into visible light. Then, ultraviolet rays incident from all directions of the outer peripheral surfaces of the tubular bodies 32e and 33e can be received and converted. Visible light converted by the conversion material is drawn out through the hollow support rods 32b and 33b through an optical fiber, converted into an electric signal by a photoelectric conversion element (not shown), and then processed by an arithmetic processing unit. UV intensity is measured and monitored.

遮光筒32cと遮光筒33cは、それぞれ例えばアルミ製などの遮光性を有する管体の端部を封止して形成され、固定部材32dと固定部材33dを介して止めネジ等により支持ロッド32b、33bの先端に固定されている。遮光筒32cには、軸方向及び周方向に分散させて紫外線を受光部32aに導く複数の導光孔36、すなわち紫外線ランプの本数に合わせて複数の導光孔36が筒壁に穿設されている。本実施形態では、9本の紫外線ランプ14−1(A)〜14−9(B)に合わせて、9個の導光孔36−1(A)〜36−9(B)が、A群とB群に対応させて軸方向の2か所に分散され、かつ図3の0°位置を基準に周方向に分散して穿設されている。すなわち、各導光孔36は、図1に示す紫外線ランプ14−(A)又は14−(B)の発光長中心を基準に設定された受光長Lsから照射される紫外線を、受光部32aに導く位置に穿設されている。特に、各導光孔36の孔径は、図1に示すように、各紫外線ランプ14の位置に応じて、受光長Lsから照射される紫外線を受光可能な大きさに設定されている。   Each of the light shielding cylinder 32c and the light shielding cylinder 33c is formed by sealing an end portion of a light-shielding tube made of, for example, aluminum, and the support rod 32b by a set screw or the like via the fixing member 32d and the fixing member 33d. It is fixed to the tip of 33b. The light shielding tube 32c has a plurality of light guide holes 36 which are dispersed in the axial direction and the circumferential direction to guide the ultraviolet light to the light receiving portion 32a, that is, a plurality of light guide holes 36 are formed in the tube wall according to the number of ultraviolet lamps. ing. In the present embodiment, nine light guide holes 36-1 (A) to 36-9 (B) are arranged in the A group in accordance with the nine ultraviolet lamps 14-1 (A) to 14-9 (B). Are distributed at two locations in the axial direction in correspondence with the B group and distributed in the circumferential direction with reference to the 0 ° position in FIG. That is, each light guide hole 36 transmits ultraviolet light irradiated from the light receiving length Ls set with reference to the light emission length center of the ultraviolet lamp 14- (A) or 14- (B) shown in FIG. It is drilled at the guiding position. In particular, as shown in FIG. 1, the diameter of each light guide hole 36 is set to a size capable of receiving ultraviolet rays emitted from the light receiving length Ls according to the position of each ultraviolet lamp 14.

本実施形態では、A群の紫外線ランプ14−(A)とB群の紫外線ランプ14−(B)は、流路中心面19に対して互いに対称な位置に配置し、監視用紫外線強度計32の受光部32aを流路中心面19の位置に配置しているから、受光部32aから見て紫外線ランプ14−(A)、14−(B)の受光長Lsまでの距離が同一距離になる。そのため、その間に存在する対象流体による紫外線の減衰量が同じになるから、精度良く合計紫外線強度を計測することができる。   In the present embodiment, the group A ultraviolet lamp 14-(A) and the group B ultraviolet lamp 14-(B) are arranged symmetrically with respect to the flow path center plane 19, and the monitoring ultraviolet intensity meter 32. Since the light receiving portion 32a is disposed at the position of the flow path center plane 19, the distance from the light receiving portion 32a to the light receiving length Ls of the ultraviolet lamps 14- (A) and 14- (B) is the same distance. . Therefore, since the attenuation amount of the ultraviolet rays by the target fluid existing in the meantime becomes the same, the total ultraviolet intensity can be accurately measured.

同様に、遮光筒33cには、軸方向及び周方向に分散させて紫外線を受光部33aに導く複数の導光孔37が紫外線ランプの本数に合わせて筒壁に穿設されている。本実施形態では、9本の紫外線ランプ14−1(A)〜14−9(B)に合わせて、9個の導光孔37−1(A)〜37−9(B)が、A群とB群に対応させて軸方向の2か所に分散され、かつ図3の0°位置を基準に周方向に分散して穿設されている。また、導光孔37は、導光孔36と同様に、紫外線ランプ14−(A)又は14−(B)の発光長中心を基準に設定された受光長Lsから照射される紫外線を、受光部33aに導く位置に穿設されている。本実施形態では、受光部33aとA群の各紫外線ランプ14−(A)の受光長Lsの両端までの距離と、受光部33aとB群の各紫外線ランプ14−(B)の受光長Lsの両端までの距離が同じではない。したがって、各導光孔37の孔径は、A群の各紫外線ランプ14−(A)用と、B群の各紫外線ランプ14−(B)用に対応させて受光長Lsの両端から照射される紫外線を透過して受光部33aに導く大きさに設定されている。つまり、本実施形態では、校正用紫外線強度計33の受光部33aが流路中心面19から離れた位置に固定して設けられているから、各導光孔37は、導光孔36とは軸方向の位置及び孔径が異なることになる。なお、一般に、受光部と紫外線ランプの受光長との間の距離が異なると、対象流体の紫外線透過率によって計測される紫外線強度が影響を受ける。そこで、対象流体の透過率スペクトルを計測し、受光部と紫外線ランプの受光長との間の距離を考慮して、紫外線強度の計測値を演算で補正することができる。このように演算による補正をする場合は、紫外線ランプから受光部に導かれる紫外線強度を補正できるから、本実施形態の各導光孔37の孔径を同一に形成することができる。   Similarly, a plurality of light guide holes 37 that guide the ultraviolet rays to the light receiving portion 33a by being dispersed in the axial direction and the circumferential direction are formed in the light shielding tube 33c in the tube wall according to the number of the ultraviolet lamps. In the present embodiment, nine light guide holes 37-1 (A) to 37-9 (B) are arranged in the A group in accordance with the nine ultraviolet lamps 14-1 (A) to 14-9 (B). Are distributed at two locations in the axial direction in correspondence with the B group and distributed in the circumferential direction with reference to the 0 ° position in FIG. Similarly to the light guide hole 36, the light guide hole 37 receives ultraviolet rays emitted from the light receiving length Ls set with the light emission length center of the ultraviolet lamp 14- (A) or 14- (B) as a reference. It is drilled at a position leading to the portion 33a. In the present embodiment, the distance to both ends of the light receiving length Ls of the light receiving section 33a and each of the ultraviolet lamps 14- (A) of the A group, and the light receiving length Ls of each of the light receiving sections 33a and each of the ultraviolet lamps 14- (B) of the B group. The distance to both ends of is not the same. Therefore, the diameter of each light guide hole 37 is irradiated from both ends of the light receiving length Ls so as to correspond to each ultraviolet lamp 14- (A) in the A group and each ultraviolet lamp 14- (B) in the B group. It is set to a size that transmits ultraviolet light and guides it to the light receiving portion 33a. That is, in the present embodiment, the light receiving portion 33a of the calibration ultraviolet intensity meter 33 is fixedly provided at a position away from the flow path center plane 19, so that each light guide hole 37 is different from the light guide hole 36. The axial position and hole diameter will be different. In general, when the distance between the light receiving unit and the light receiving length of the ultraviolet lamp is different, the ultraviolet intensity measured by the ultraviolet transmittance of the target fluid is affected. Therefore, the transmittance spectrum of the target fluid is measured, and the measured value of the ultraviolet intensity can be corrected by calculation in consideration of the distance between the light receiving unit and the light receiving length of the ultraviolet lamp. In the case of performing correction by calculation in this way, since the ultraviolet intensity guided from the ultraviolet lamp to the light receiving unit can be corrected, the diameter of each light guide hole 37 of the present embodiment can be formed to be the same.

また、遮光筒34には導光孔は穿設されていないが、遮光筒32cの全ての導光孔36を覆う第1位置と全て露出させる第2位置の間で移動可能に設けられている。本実施形態では、遮光筒34の一端を洗浄機構のワイパー保持部材24に支持させることにより、洗浄機構21の移動機構を用いれば、図1の退避位置Cと前進端位置Dの間で移動可能に構成することができる。   The light shielding tube 34 is not provided with a light guide hole, but is provided to be movable between a first position that covers all the light guide holes 36 of the light shielding tube 32c and a second position that exposes all the light guide holes 36. . In this embodiment, one end of the light shielding cylinder 34 is supported by the wiper holding member 24 of the cleaning mechanism, so that the movement mechanism of the cleaning mechanism 21 can be used to move between the retracted position C and the forward end position D of FIG. Can be configured.

このように構成される監視用紫外線強度計32による紫外線強度の計測動作について説明する。監視用紫外線強度計32は図1に示す位置に固定して設けられているから、図4(b)に示したように、A群の紫外線ランプ14に対応させて遮光筒32cに穿設された導光孔36−1(A)、36−3(A)、36−5(A),36−6(A),36−8(A)と、B群の紫外線ランプ14に対応させて遮光筒32cに穿設された導光孔36−2(B)、36−4(B)、36−7(B),36−9(B)とを通って、各紫外線ランプ14の受光長Lsの部分から照射される紫外線が受光部32aに入射される。受光部32aで変換された可視光はグラスファイバーを介して演算処理装置を備えて構成される強度計測機に入力され、全部の紫外線ランプ14の合計紫外線強度として計測される。その計測値を適宜、演算処理装置に取り込むとともにメモリに記録し、紫外線照射装置全体の紫外線強度変化を監視することができる。   The measurement operation of the ultraviolet intensity by the monitoring ultraviolet intensity meter 32 configured as described above will be described. Since the monitoring ultraviolet intensity meter 32 is fixedly provided at the position shown in FIG. 1, as shown in FIG. 4B, the light shielding cylinder 32c is drilled in correspondence with the ultraviolet lamp 14 of the A group. The light guide holes 36-1 (A), 36-3 (A), 36-5 (A), 36-6 (A), 36-8 (A), and the ultraviolet lamps 14 of the B group The light receiving length of each ultraviolet lamp 14 passes through the light guide holes 36-2 (B), 36-4 (B), 36-7 (B), and 36-9 (B) drilled in the light shielding cylinder 32c. Ultraviolet rays irradiated from the Ls portion are incident on the light receiving portion 32a. Visible light converted by the light receiving unit 32 a is input to an intensity measuring device configured to include an arithmetic processing device via a glass fiber, and is measured as a total ultraviolet intensity of all the ultraviolet lamps 14. The measured value is appropriately taken into the arithmetic processing unit and recorded in the memory, and the change in the ultraviolet intensity of the entire ultraviolet irradiation apparatus can be monitored.

紫外線強度変化の管理は、合計紫外線強度の計測値の低下の度合い等を監視して、紫外線ランプ14の性能が全体的に劣化したのか、対象流体の濁度が一次的に高くなったのかなど、を診断して対応する。なお、一部の紫外線ランプ14が玉切れを起こした場合は、各紫外線ランプ14の電気入力を監視して診断できるから、監視用紫外線強度計32で計測するまでもない。また、本実施形態では、全部の紫外線ランプ14の合計紫外線強度を計測しているから、一部の紫外線ランプ14の性能劣化により合計紫外線強度が低下した場合は判別できない。この場合は、後述する実施形態3、4に説明するように、紫外線ランプ14の紫外線強度を個別に計測するようにすれば、交換すべき紫外線ランプ14を特定できる。   In managing the change in ultraviolet intensity, the degree of decrease in the measured value of the total ultraviolet intensity is monitored, whether the performance of the ultraviolet lamp 14 has deteriorated as a whole, or whether the turbidity of the target fluid has increased primarily. Diagnose and respond. When some of the ultraviolet lamps 14 are blown out, the electrical input of each ultraviolet lamp 14 can be monitored and diagnosed, and need not be measured by the monitoring ultraviolet intensity meter 32. In the present embodiment, since the total ultraviolet intensity of all the ultraviolet lamps 14 is measured, it cannot be determined when the total ultraviolet intensity is reduced due to the performance deterioration of some of the ultraviolet lamps 14. In this case, as described in Embodiments 3 and 4 to be described later, the ultraviolet lamp 14 to be replaced can be specified by individually measuring the ultraviolet intensity of the ultraviolet lamp 14.

次に、校正用紫外線強度計33により紫外線強度を計測して、監視用紫外線強度計32の校正データを取得する動作について説明する。校正用紫外線強度計33は、図1に示すように、監視用紫外線強度計32の受光部32aの位置から離れた位置に、その受光部33aを位置させて固定されている。また、校正用紫外線強度計33の受光部33aは、監視用紫外線強度計32の受光部32aと同一の変換材料を用いて紫外線を可視光に変換しているから、紫外線に長い時間暴露されると変換特性が劣化してしまう。そこで、通常時は、導光孔が穿設されていない遮光筒34によって、遮光筒33cに穿設された導光孔37を全て覆う位置に保持される。この遮光筒34は、洗浄機構21のワイパー保持部材24に支持されているから、校正データを取得しない通常時は、洗浄機構21の退避位置Cに対応する位置に保持されている。   Next, an operation of measuring the ultraviolet intensity with the calibration ultraviolet intensity meter 33 and acquiring the calibration data of the monitoring ultraviolet intensity meter 32 will be described. As shown in FIG. 1, the calibration ultraviolet intensity meter 33 is fixed by positioning the light receiving portion 33 a at a position away from the position of the light receiving portion 32 a of the monitoring ultraviolet intensity meter 32. In addition, the light receiving unit 33a of the calibration ultraviolet intensity meter 33 converts the ultraviolet light into visible light using the same conversion material as the light receiving unit 32a of the monitoring ultraviolet intensity meter 32, and thus is exposed to the ultraviolet light for a long time. And conversion characteristics will deteriorate. Therefore, in a normal state, the light guide tube 34 in which no light guide hole is formed is held at a position covering all the light guide holes 37 formed in the light shield tube 33c. Since the light shielding cylinder 34 is supported by the wiper holding member 24 of the cleaning mechanism 21, the light shielding cylinder 34 is held at a position corresponding to the retracted position C of the cleaning mechanism 21 during normal times when calibration data is not acquired.

校正データを取得する場合は、洗浄機構21を前進端位置Dに移動させる。これにより、遮光筒34が校正用紫外線強度計33の受光部33aを覆う位置から前進端位置Dに対応する位置に移動して、遮光筒33cに穿設された導光孔37を全て露出させる。これにより、監視用紫外線強度計32と同様、図4(a)に示したように、A群の紫外線ランプ14―(A)に対応させて遮光筒33cに穿設された導光孔37−1(A)、37−3(A)、37−5(A),37−6(A),37−8(A)と、B群の紫外線ランプ14−(B)に対応させて遮光筒33cに穿設された導光孔37−2(B)、37−4(B)、37−7(B),37−9(B)とを通って、各紫外線ランプ14の受光長Lsの部分から照射される紫外線が受光部33aに入射される。受光部33aで変換された可視光はグラスファイバーを介して図示していない強度計測機及び演算処理装置に入力され、全部の紫外線ランプ14の合計紫外線強度の計測値が求められ、校正データとしてメモリ等に記録する。   When acquiring the calibration data, the cleaning mechanism 21 is moved to the forward end position D. As a result, the light shielding tube 34 moves from a position covering the light receiving portion 33a of the calibration ultraviolet intensity meter 33 to a position corresponding to the forward end position D, and all the light guide holes 37 formed in the light shielding tube 33c are exposed. . Accordingly, as with the monitoring ultraviolet intensity meter 32, as shown in FIG. 4A, the light guide hole 37- formed in the light shielding tube 33c corresponding to the ultraviolet lamp 14- (A) of the A group. 1 (A), 37-3 (A), 37-5 (A), 37-6 (A), 37-8 (A), and the light blocking cylinder corresponding to the ultraviolet lamp 14- (B) of the B group The light receiving length Ls of each ultraviolet lamp 14 passes through the light guide holes 37-2 (B), 37-4 (B), 37-7 (B), and 37-9 (B) bored in 33c. Ultraviolet rays irradiated from the portion are incident on the light receiving portion 33a. Visible light converted by the light receiving unit 33a is input to an intensity measuring device and an arithmetic processing unit (not shown) via a glass fiber, and a measurement value of the total ultraviolet intensity of all the ultraviolet lamps 14 is obtained and stored as calibration data. Record in etc.

ここで、校正データは、監視用紫外線強度計32により計測される合計紫外線強度に対応するから、校正データ取得時と同時に又は前後に計測された監視用紫外線強度計32の計測値と比較して、監視用紫外線強度計32の計測値を校正データに一致させる校正係数又は校正関数を求め、監視用紫外線強度計32の計測値を校正することができる。これらの計測動作は、全て自動で行うようにすることができる。また、本実施形態によれば、通常時は受光部33aが遮光筒34によって紫外線が遮られており、計測時のみ受光部33aに紫外線が導入されるので紫外線の暴露時間が極めて短いため、容器1内に常時装着しておいても、受光部33aの変換材料の劣化が少ない。なお、校正データを従来と同様に取得する場合は、本実施形態の校正用紫外線強度計33及び関連部品である例えば、遮光筒33、遮光筒34は全て省略することができる。   Here, since the calibration data corresponds to the total ultraviolet intensity measured by the monitoring ultraviolet intensity meter 32, the calibration data is compared with the measured value of the monitoring ultraviolet intensity meter 32 measured at the same time or before and after the calibration data is acquired. Then, a calibration coefficient or a calibration function for matching the measured value of the monitoring ultraviolet intensity meter 32 with the calibration data can be obtained, and the measured value of the monitoring ultraviolet intensity meter 32 can be calibrated. All of these measurement operations can be performed automatically. Further, according to the present embodiment, the light receiving unit 33a is normally shielded by the light blocking cylinder 34 and the ultraviolet light is introduced into the light receiving unit 33a only at the time of measurement. Even if it is always mounted in 1, the deterioration of the conversion material of the light receiving portion 33a is small. When the calibration data is acquired in the same manner as before, the calibration ultraviolet intensity meter 33 of this embodiment and the related parts such as the light shielding cylinder 33 and the light shielding cylinder 34 can be omitted.

なお、本実施形態の校正用紫外線強度計33の受光部33aの位置は、A群の紫外線ランプ14−(A)とB群の紫外線ランプ14−(B)に対して等距離の位置ではない。したがって、受光部33aから見て紫外線ランプ14−(A)、14−(B)の受光長Lsまでの距離が異なるため、その間に存在する対象流体による紫外線の減衰量が異なるので、合計紫外線強度を必ずしも精度よく計測することができない。しかし、紫外線照射装置の初期運転時に、監視用紫外線強度計32と校正用紫外線強度計33の合計紫外線強度を同一条件でそれぞれ計測し、それらの比率を補正比率として校正データに含めて記録しておけば、精度よく校正することができる。   Note that the position of the light receiving portion 33a of the calibration ultraviolet intensity meter 33 of the present embodiment is not equidistant from the group A ultraviolet lamp 14- (A) and the group B ultraviolet lamp 14- (B). . Accordingly, since the distance to the light receiving length Ls of the ultraviolet lamps 14- (A) and 14- (B) is different as viewed from the light receiving unit 33a, the attenuation amount of ultraviolet rays due to the target fluid existing between them is different, so that the total ultraviolet intensity is increased. Cannot always be measured accurately. However, during the initial operation of the ultraviolet irradiation device, the total ultraviolet intensity of the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 are respectively measured under the same conditions, and the ratio is included in the calibration data as a correction ratio and recorded. If so, it can be calibrated with high accuracy.

(実施形態2)
本発明の紫外線照射装置の実施形態2について説明する。本実施形態が実施形態1と異なる点は、校正用紫外線強度計の構成にある。そこで、本実施形態の校正用紫外線強度計の主要部の構成を図6に示して説明する。その他の点は、実施形態1と同一であることから、図示を省略する。
(Embodiment 2)
Embodiment 2 of the ultraviolet irradiation device of the present invention will be described. This embodiment is different from the first embodiment in the configuration of a calibration ultraviolet intensity meter. Therefore, the configuration of the main part of the calibration ultraviolet intensity meter of the present embodiment will be described with reference to FIG. Since other points are the same as those of the first embodiment, illustration is omitted.

本実施形態は、図1に記載の紫外線照射装置における校正用紫外線強度計33を用いて、複数の紫外線ランプ14の紫外線強度を個別に計測できるようにしたことにある。すなわち、図6に示すように、校正用紫外線強度計33は、実施形態1の第1遮光筒である遮光筒33cに代えて遮光筒43が用いられ、遮光筒43の外周に同軸に第2遮光筒である遮光筒44が固定して設けられ、二重の遮光筒43,44を備えて構成されている。また、支持ロッド33bは図示していない回転機構によって回転可能に設けられ、これによって遮光筒43が遮光筒44に対して回転駆動される点が相違する。その他の部品は、実施形態1と同一構成を有することから同一の符号を付して説明を省略する。   In the present embodiment, the ultraviolet intensity of the plurality of ultraviolet lamps 14 can be individually measured using the calibration ultraviolet intensity meter 33 in the ultraviolet irradiation apparatus shown in FIG. That is, as shown in FIG. 6, the calibration ultraviolet intensity meter 33 uses a light shielding cylinder 43 instead of the light shielding cylinder 33c, which is the first light shielding cylinder of the first embodiment, and is coaxially arranged on the outer periphery of the light shielding cylinder 43. A light shielding cylinder 44 which is a light shielding cylinder is fixedly provided, and is configured to include double light shielding cylinders 43 and 44. Further, the support rod 33b is rotatably provided by a rotation mechanism (not shown), whereby the light shielding cylinder 43 is rotationally driven with respect to the light shielding cylinder 44. Since other parts have the same configuration as that of the first embodiment, the same reference numerals are given and description thereof is omitted.

遮光筒43には、A群の紫外線ランプ14−(A)に対応する軸方向位置に1個のランプ選択孔43aが穿設され、B群の紫外線ランプ14−(B)に対応する軸方向位置に1個のランプ選択孔43bが穿設されている。これらのランプ選択孔43a,43bは遮光筒43の周方向に180°位相をずらして設けられている。すなわち、各ランプ選択孔43a,43bは、A群の紫外線ランプ14−(A)又はB群の紫外線ランプ14−(B)の受光長Lsから照射される紫外線を受光部33aに導く軸方向位置に穿設され、かつ、それらの孔径は、受光長Lsから照射される紫外線を受光可能な大きさに設定されている。   The light shielding tube 43 is provided with one lamp selection hole 43a at an axial position corresponding to the A group ultraviolet lamp 14- (A), and an axial direction corresponding to the B group ultraviolet lamp 14- (B). One lamp selection hole 43b is formed at the position. These lamp selection holes 43 a and 43 b are provided with a 180 ° phase shift in the circumferential direction of the light shielding cylinder 43. That is, each lamp selection hole 43a, 43b is an axial position that guides the ultraviolet rays irradiated from the light receiving length Ls of the A group ultraviolet lamp 14- (A) or the B group ultraviolet lamp 14- (B) to the light receiving portion 33a. The diameters of these holes are set to a size capable of receiving the ultraviolet rays irradiated from the light receiving length Ls.

一方、遮光筒44には、9本の紫外線ランプ14−1(A)〜14−9(B)に合わせて、9個の導光孔44−1(A)〜44−9(B)が、A群とB群に対応させて軸方向の2か所に分散され、かつ図3の0°位置を基準に周方向に分散して穿設されている。すなわち、各導光孔44−1(A)〜44−9(B)は、それぞれ対応する紫外線ランプ14−1(A)〜14−9(B)の受光長Lsからの紫外線を、遮光筒43のランプ選択孔43a又は43bを通して受光部33aに導くようになっている。なお、これらの導光孔44−1(A)〜44−9(B)は、遮光筒43を回転して計測対象の紫外線ランプ14−1(A)〜14−9(B)を選択した位置において、ランプ選択孔43a又は43bに紫外線を導けばよい。したがって、各導光孔44−1(A)〜44−9(B)の孔径の精度は要求されないので大きめの孔径にすることができる。   On the other hand, the light shielding tube 44 has nine light guide holes 44-1 (A) to 44-9 (B) corresponding to the nine ultraviolet lamps 14-1 (A) to 14-9 (B). These are distributed at two locations in the axial direction corresponding to the A group and the B group, and are distributed in the circumferential direction with reference to the 0 ° position in FIG. That is, the light guide holes 44-1 (A) to 44-9 (B) respectively block the ultraviolet rays from the light receiving lengths Ls of the corresponding ultraviolet lamps 14-1 (A) to 14-9 (B). The light guide 33a is led through the 43 lamp selection holes 43a or 43b. In addition, these light guide holes 44-1 (A) to 44-9 (B) selected the ultraviolet lamps 14-1 (A) to 14-9 (B) to be measured by rotating the light shielding tube 43. In the position, ultraviolet rays may be guided to the lamp selection hole 43a or 43b. Therefore, the accuracy of the hole diameters of the light guide holes 44-1 (A) to 44-9 (B) is not required, so that a larger hole diameter can be obtained.

このように構成される本実施形態によれば、実施形態1と同様に監視用紫外線強度計32を用いて全部の紫外線ランプ14の合計紫外線強度を常時計測することができる。また、校正用紫外線強度計33を用いれば、以下に述べるように、各紫外線ランプ14−1(A)〜14−9(B)の紫外線強度を個別に計測するとともに、その計測値に基づいて校正データを取得することができる。まず、支持ロッド33bを図示矢印45のようにいずれかの方向に回転して、例えば、遮光筒43のランプ選択孔43aを遮光筒44の導光孔44−1(A)に合わせる。これにより、紫外線ランプ14―1(A)の受光長Lsから紫外線がランプ選択孔43aを通して受光部33aに導かれる。また、遮光筒43のランプ選択孔43bを遮光筒44の導光孔44−4(B)に合わせると、紫外線ランプ14―4(B)の受光長Lsから紫外線がランプ選択孔43bを通して受光部33aに導かれる。このようにして、遮光筒43をいずれかの方向に1回転する間に、ランプ選択孔43a又は43bによって1個の紫外線ランプ14が順次選択され、選択された紫外線ランプ14の受光長Lsから照射される紫外線のみが受光部33aに導かれ、紫外線ランプ14の個別の紫外線強度を計測することができる。また、個別の紫外線強度の計測値を積算又は合計することにより、合計紫外線強度を求めることができ、これを校正データとして記録する。   According to the present embodiment configured as described above, the total ultraviolet intensity of all the ultraviolet lamps 14 can be constantly measured using the monitoring ultraviolet intensity meter 32 as in the first embodiment. Further, when the calibration ultraviolet intensity meter 33 is used, the ultraviolet intensity of each of the ultraviolet lamps 14-1 (A) to 14-9 (B) is individually measured as described below, and based on the measured value. Calibration data can be acquired. First, the support rod 33b is rotated in either direction as shown by the arrow 45 in the figure, and for example, the lamp selection hole 43a of the light shielding tube 43 is aligned with the light guide hole 44-1 (A) of the light shielding tube 44. Thereby, ultraviolet rays are guided from the light receiving length Ls of the ultraviolet lamp 14-1 (A) to the light receiving portion 33a through the lamp selection hole 43a. Further, when the lamp selection hole 43b of the light shielding tube 43 is aligned with the light guide hole 44-4 (B) of the light shielding tube 44, the ultraviolet light from the light reception length Ls of the ultraviolet lamp 14-4 (B) passes through the lamp selection hole 43b. 33a. In this way, while the light shielding cylinder 43 is rotated once in either direction, one ultraviolet lamp 14 is sequentially selected by the lamp selection hole 43a or 43b, and irradiation is performed from the light receiving length Ls of the selected ultraviolet lamp 14. Only the ultraviolet rays to be transmitted are guided to the light receiving unit 33a, and the individual ultraviolet intensity of the ultraviolet lamp 14 can be measured. Further, the total ultraviolet intensity can be obtained by integrating or summing the individual measured values of the ultraviolet intensity, and this is recorded as calibration data.

本実施形態によれば、校正用紫外線強度計33の受光部33aを包囲して固定された第1遮光筒である遮光筒44と、筒軸周りに回転可能な第2遮光筒である遮光筒43とを二重に設け、遮光筒44の筒壁に各紫外線ランプ14にそれぞれ対応する複数の導光孔44−1(A)〜44−9(B)が穿設され、遮光筒43の筒壁にランプ軸方向が異なる位置の紫外線ランプ14−(A)と14−(B)に対応する複数(2つ)のランプ選択孔43a,43bを穿設したことから、遮光筒43の回転角度を変えることにより、ランプ選択孔43a,43bが導光孔44−1(A)〜44−9(B)とが重ね合わさる位置に対応した1個の紫外線ランプ14から照射される紫外線の強度を個別に計測することができる。これにより、監視用紫外線強度計32による常時監視において、合計の紫外線強度が急に低下したとき、あるいは低下の度合いが比較的大きいなどの不具合が発生したとき、校正用紫外線強度計33により各紫外線ランプ14の個別の紫外線強度を計測して、紫外線ランプ14の球切れ、急速な性能劣化などを診断できる。   According to the present embodiment, the light shielding tube 44 that is the first light shielding tube that surrounds and fixes the light receiving portion 33a of the calibration ultraviolet intensity meter 33, and the light shielding tube that is the second light shielding tube that can rotate around the tube axis. 43, and a plurality of light guide holes 44-1 (A) to 44-9 (B) corresponding to the respective ultraviolet lamps 14 are formed in the cylindrical wall of the light shielding tube 44. Since a plurality of (two) lamp selection holes 43a and 43b corresponding to the ultraviolet lamps 14- (A) and 14- (B) at positions where the lamp axis directions are different are formed in the tube wall, the rotation of the light shielding tube 43 is performed. By changing the angle, the intensity of ultraviolet rays emitted from one ultraviolet lamp 14 corresponding to the position where the lamp selection holes 43a and 43b overlap with the light guide holes 44-1 (A) to 44-9 (B). Can be measured individually. Thereby, in the constant monitoring by the monitoring ultraviolet intensity meter 32, when the total ultraviolet intensity is suddenly decreased or when a problem such as a relatively large degree of decrease occurs, each ultraviolet intensity is corrected by the calibration ultraviolet intensity meter 33. By measuring the individual ultraviolet intensity of the lamp 14, it is possible to diagnose breakage of the ultraviolet lamp 14, rapid performance deterioration, and the like.

(実施形態3)
図7に、本発明の紫外線照射装置の実施形態3の特徴部の構成を示す。本実施形態が実施形態1、2と異なる点は、監視用紫外線強度計及び校正用紫外線強度計の構成にある。そこで、本実施形態の監視用紫外線強度計32及び校正用紫外線強度計33の主要部の構成を図7を参照して説明する。その他の点は、実施形態1,2と同一であることから、図示及び説明を省略する。
(Embodiment 3)
In FIG. 7, the structure of the characteristic part of Embodiment 3 of the ultraviolet irradiation device of this invention is shown. This embodiment is different from the first and second embodiments in the configuration of a monitoring ultraviolet intensity meter and a calibration ultraviolet intensity meter. Therefore, the configuration of the main parts of the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 of this embodiment will be described with reference to FIG. Since other points are the same as those of the first and second embodiments, illustration and description are omitted.

本実施形態の監視用紫外線強度計32及び校正用紫外線強度計33は、強度計保護管31内に同軸に収容して固定された遮光筒50内に、図示矢印51,52の軸方向にそれぞれ前進後退可能に挿入されている。これら監視用紫外線強度計32及び校正用紫外線強度計33を軸方向に前進後退させる駆動機構については図示していないが、それぞれの支持ロッド32b、33bの端部を強度計保護管31外に引き出し、その端部に取り付けたラック歯車にモータ軸に連結された歯車を噛み合わせて構成することができる。また、校正用紫外線強度計33は、図示矢印53に示すように、支持ロッド32bを図示していない回転駆動機構を介してステッピングモータ等の回転角度位置を高精度で制御可能なモータで回転可能に形成されている。   The monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 of the present embodiment are respectively arranged in the axial direction of the arrows 51 and 52 in the light shielding cylinder 50 accommodated and fixed coaxially in the intensity meter protection tube 31. It is inserted so that it can move forward and backward. Although a drive mechanism for moving the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 forward and backward in the axial direction is not shown, the ends of the support rods 32b and 33b are pulled out of the intensity meter protective tube 31. The gear connected to the motor shaft can be meshed with the rack gear attached to the end thereof. Further, the calibration ultraviolet intensity meter 33 can be rotated by a motor capable of controlling the rotation angle position of a stepping motor or the like with high accuracy via a rotation drive mechanism (not shown) as shown by an arrow 53 in the drawing. Is formed.

監視用紫外線強度計32の受光部32a、遮光筒32c、固定部材32d等は、実施形態1の図4(b)と同一に形成されている。また、校正用紫外線強度計33の受光部33a、遮光筒33c、固定部材33d等は、実施形態2の図6と同一に形成されている。本実施形態の遮光筒50は、強度計保護管31内に位置を固定して設けられたアルミ製の筒体であり、図6と同様に導光孔44が穿設されている。特に、本実施形態の遮光筒50は、A群の紫外線ランプ14−(A)対応させて穿設された導光孔44−1(A)〜44−8(A)の軸方向位置と、B群の紫外線ランプ14−(B)対応させて穿設された導光孔44−2(B)〜44−9(B)の軸方向位置の中間点を、紫外線照射装置の流路中心面19の位置に合わせて固定している。   The light receiving portion 32a, the light shielding cylinder 32c, the fixing member 32d, and the like of the monitoring ultraviolet intensity meter 32 are formed in the same manner as in FIG. Further, the light receiving portion 33a, the light shielding tube 33c, the fixing member 33d, etc. of the calibration ultraviolet intensity meter 33 are formed in the same manner as in FIG. 6 of the second embodiment. The light-shielding tube 50 of the present embodiment is an aluminum tube that is fixed in position within the strength meter protection tube 31, and has a light guide hole 44 formed in the same manner as in FIG. In particular, the light shielding tube 50 of the present embodiment includes axial positions of light guide holes 44-1 (A) to 44-8 (A) drilled corresponding to the ultraviolet lamps 14- (A) of the A group, The midpoint of the axial position of the light guide holes 44-2 (B) to 44-9 (B) drilled in correspondence with the group B ultraviolet lamps 14- (B) is the channel center plane of the ultraviolet irradiation device. It is fixed to 19 position.

このように構成されることから、本実施形態の監視用紫外線強度計32と校正用紫外線強度計33を用いて、以下に述べるように、紫外線照射装置の全部の紫外線ランプ14の合計紫外線強度と、各紫外線ランプ14の個別の紫外線強度と、監視用紫外線強度計32の校正データとを計測することができる。まず、通常時は、校正用紫外線強度計33を図1又は7において左側に後退させる。この後退量は、図7において受光部32aと受光部33aの位置を、少なくとも流路中心面19に互いに置き換えられればよい。これにより、受光部33aは遮光筒50の導光孔44から外れ、受光部33aに導光される紫外線が遮断されるから、受光部33aの変換材料の劣化が抑制される。この状態にて、監視用紫外線強度計32を前進させて受光部32aを流路中心面19の位置に合わせる。これにより、各紫外線ランプ14から照射される紫外線が遮光筒50の導光孔44と遮光筒32cの導光孔36を通して受光部32aに導かれ、全部の紫外線ランプ14の合計紫外線強度を計測することができる。   Since it is configured as described above, the total ultraviolet intensity of all the ultraviolet lamps 14 of the ultraviolet irradiation apparatus is described as follows using the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 of the present embodiment. The individual ultraviolet intensity of each ultraviolet lamp 14 and the calibration data of the monitoring ultraviolet intensity meter 32 can be measured. First, at normal time, the calibration ultraviolet intensity meter 33 is moved backward to the left in FIG. The retreat amount may be such that the positions of the light receiving part 32a and the light receiving part 33a in FIG. Thereby, the light receiving part 33a is detached from the light guide hole 44 of the light shielding tube 50, and the ultraviolet light guided to the light receiving part 33a is blocked, so that the deterioration of the conversion material of the light receiving part 33a is suppressed. In this state, the monitoring ultraviolet intensity meter 32 is advanced to align the light receiving part 32a with the position of the flow path center plane 19. Thereby, the ultraviolet rays irradiated from the respective ultraviolet lamps 14 are guided to the light receiving part 32a through the light guide hole 44 of the light shielding cylinder 50 and the light guide hole 36 of the light shielding cylinder 32c, and the total ultraviolet intensity of all the ultraviolet lamps 14 is measured. be able to.

一方、校正データ取得時は、監視用紫外線強度計32を図1又は図7において右側に後退させ、校正用紫外線強度計33を前進させて受光部33aの位置を流路流中心面19の位置に合わせる。これにより、各紫外線ランプ14から照射される紫外線が遮光筒50の導光孔44から受光部33aに導くことが可能になる。しかし、遮光筒33cのランプ選択孔43a、43bの位置によっては、受光部33aに達する紫外線が遮光される。次に、支持ロッド33bを介して遮光筒33cを回転させ、ランプ選択孔43a、43bのいずれか一方と導光孔44の1つが重なり合うと、1つの紫外線ランプ14の受光長Lsから照射される紫外線が受光部33aに導かれ、その1つの紫外線ランプ14の個別紫外線強度を計測することができる。このようにして、遮光筒33cを回転させて計測対象の1つの紫外線ランプ14を順次選択して、全ての紫外線ランプ14の紫外線強度を個別に計測する。   On the other hand, when the calibration data is acquired, the monitoring ultraviolet intensity meter 32 is retracted to the right in FIG. 1 or FIG. 7 and the calibration ultraviolet intensity meter 33 is advanced so that the position of the light receiving portion 33a is the position of the flow path center plane 19. To match. Thereby, the ultraviolet rays irradiated from the respective ultraviolet lamps 14 can be guided from the light guide hole 44 of the light shielding tube 50 to the light receiving portion 33a. However, depending on the position of the lamp selection holes 43a and 43b of the light shielding tube 33c, the ultraviolet rays reaching the light receiving portion 33a are shielded. Next, the light shielding cylinder 33c is rotated via the support rod 33b, and when one of the lamp selection holes 43a and 43b and one of the light guide holes 44 overlap each other, the light is irradiated from the light receiving length Ls of one ultraviolet lamp 14. The ultraviolet rays are guided to the light receiving unit 33a, and the individual ultraviolet intensity of the one ultraviolet lamp 14 can be measured. In this way, the light shielding cylinder 33c is rotated to sequentially select one ultraviolet lamp 14 to be measured, and the ultraviolet intensity of all the ultraviolet lamps 14 is individually measured.

ここで、校正用紫外線強度計33は、通常時は受光部33aが遮光筒50によって紫外線が遮られており、計測時のみ受光部33aに紫外線が導入されるので紫外線の暴露時間が極めて短いため、容器1内に常時装着しておいても、受光部33aの変換材料の劣化が少ない。したがって、校正用紫外線強度計33によって計測された各紫外線ランプ14の紫外線強度を積算又は合計することにより、監視用紫外線強度計32の合計紫外線強度の計測値の校正データを取得できる。   Here, in the calibration ultraviolet intensity meter 33, the light receiving part 33a is normally shielded by the light shielding tube 50 and the ultraviolet light is introduced into the light receiving part 33a only at the time of measurement. Even if it is always mounted in the container 1, the deterioration of the conversion material of the light receiving portion 33a is small. Therefore, by integrating or summing the ultraviolet intensity of each ultraviolet lamp 14 measured by the calibration ultraviolet intensity meter 33, calibration data of the measured value of the total ultraviolet intensity of the monitoring ultraviolet intensity meter 32 can be acquired.

すなわち、本実施形態は、強度計保護管31に第1遮光筒である遮光筒50が固定して設けられ、この遮光筒50の両端から監視用紫外線強度計32と校正用紫外線強度計33とが挿入され、それらの紫外線強度計32,33はそれぞれ受光部32a、32bが強度計保護管31の流路中心面19の位置と、その位置から挿入方向に沿って後退した位置との間で移動可能に設けられている。また、第1遮光筒である遮光筒50の筒壁にランプ軸方向が異なる位置と周方向位置が異なる各紫外線ランプ14にそれぞれ対応させ、流路中心面19から軸方向に振り分けてA群の導光孔44―(A)とB群の導光孔44―(B)が周方向に分散して穿設されている。また、監視用紫外線強度計32の受光部32aを包囲する第2遮光筒である遮光筒32cが受光部32aに固定して設けられ、かつその受光部32aが支持ロッド32bを介して軸方向に移動可能に設けられている。遮光筒32cの筒壁には、ランプ軸方向が異なる位置の各紫外線ランプ14に対応させて複数の導光孔36が穿設されている。一方、校正用紫外線強度計33の受光部33aを包囲する第3遮光筒である遮光筒33cが受光部33aを支持する支持ロッド33bに固定して設けられている。また、校正用紫外線強度計33の受光部33aが軸周りに回転可能にかつ軸方向に移動可能に設けられ、遮光筒33cの筒壁にランプ軸方向が異なる位置の各紫外線ランプ14−(A)、14−(B)に対応させて複数(図示例では2個)のランプ選択孔43a、43bが穿設されている。さらに、監視用紫外線強度計32の受光部32aを軸方向に移動させる第1駆動機構(図示せず。)と、校正用紫外線強度計33の受光部33aを軸周りに回転させる第2駆動機構(図示せず。)及び軸方向に移動させる第3駆動機構(図示せず。)とが設けられている。   That is, in this embodiment, a light shielding tube 50 as a first light shielding tube is fixed to the intensity meter protection tube 31, and a monitoring ultraviolet intensity meter 32 and a calibration ultraviolet intensity meter 33 are provided from both ends of the light shielding tube 50. Are inserted between the positions of the light receiving portions 32a and 32b on the flow path center surface 19 of the intensity meter protection tube 31 and the positions where the light intensity retreats along the insertion direction. It is provided to be movable. Further, the ultraviolet light lamps 14 having different positions in the lamp axial direction and different positions in the circumferential direction are associated with the cylindrical wall of the light shielding cylinder 50 which is the first light shielding cylinder, respectively, and distributed in the axial direction from the flow path center plane 19 to The light guide holes 44- (A) and the light guide holes 44- (B) of the B group are formed by being dispersed in the circumferential direction. Further, a light shielding tube 32c, which is a second light shielding tube surrounding the light receiving portion 32a of the monitoring ultraviolet intensity meter 32, is provided fixed to the light receiving portion 32a, and the light receiving portion 32a is provided in the axial direction via the support rod 32b. It is provided to be movable. A plurality of light guide holes 36 are formed in the cylindrical wall of the light shielding cylinder 32c so as to correspond to the respective ultraviolet lamps 14 at different positions in the lamp axis direction. On the other hand, a light shielding tube 33c, which is a third light shielding tube surrounding the light receiving portion 33a of the calibration ultraviolet intensity meter 33, is fixed to a support rod 33b that supports the light receiving portion 33a. Further, the light receiving portion 33a of the calibration ultraviolet intensity meter 33 is provided so as to be rotatable about the axis and movable in the axial direction, and each ultraviolet lamp 14- (A ), 14- (B), a plurality (two in the illustrated example) of lamp selection holes 43a and 43b are formed. Further, a first drive mechanism (not shown) that moves the light receiving portion 32a of the monitoring ultraviolet intensity meter 32 in the axial direction, and a second drive mechanism that rotates the light receiving portion 33a of the calibration ultraviolet intensity meter 33 around the axis. (Not shown) and a third drive mechanism (not shown) that moves in the axial direction are provided.

そして、監視時は、監視用紫外線強度計32の受光部32aを流路中心面19に位置させて全ての紫外線ランプ14から照射される合計紫外線強度を計測する。校正データ取得時は、監視用紫外線強度計33の受光部33aを後退させて、校正用紫外線強度計33の受光部33aを流路中心面19に位置させ、受光部33aを回転させて遮光筒33cランプ選択孔43a、43bが遮光筒50の導光孔44のいずれか1つに重ね合わさせられる位置に対応した1個の紫外線ランプ14から照射される紫外線を受光部33aに導入可能に形成されている。特に、遮光筒32cの導光孔36と遮光筒33cのランプ選択孔43a、43bは、それぞれランプ保護管13に収容された1又は複数の紫外線ランプ14の発光長中心を基準に設定された受光長から照射される紫外線を受光部32a、33aに導く位置及び孔径に設定されている。 At the time of monitoring, the light receiving portion 32a of the monitoring ultraviolet intensity meter 32 is positioned on the flow path center plane 19 and the total ultraviolet intensity irradiated from all the ultraviolet lamps 14 is measured. At the time of acquisition of calibration data, the light receiving portion 33a of the monitoring ultraviolet intensity meter 33 is retracted, the light receiving portion 33a of the calibration ultraviolet intensity meter 33 is positioned on the flow path center plane 19, and the light receiving portion 33a is rotated to rotate the light shielding cylinder. The ultraviolet light emitted from one ultraviolet lamp 14 corresponding to the position where the lamp selection holes 43a and 43b of 33c are overlapped with any one of the light guide holes 44 of the light shielding tube 50 is formed so as to be introduced into the light receiving portion 33a. Has been. In particular, the light guide hole 36 of the light shielding tube 32c and the lamp selection holes 43a and 43b of the light shielding tube 33c are light receptions set based on the light emission length centers of one or more ultraviolet lamps 14 housed in the lamp protection tube 13, respectively. The position and the hole diameter are set so as to guide the ultraviolet rays irradiated from the long to the light receiving portions 32a and 33a.

特に、本実施形態によれば、監視用紫外線強度計32と校正用紫外線強度計33は、いずれも流路中心面19において各紫外線ランプ14−(A)と14−(B)の紫外線強度を計測している点で、実施形態1,2と相違する。つまり、受光部32aと各紫外線ランプ14−(A)と14−(B)の受光長までの距離と、受光部33aと各紫外線ランプ14−(A)と14−(B)の受光長までの距離が等距離であるから、対象流体の透過率に拘わらず同一の条件で各紫外線ランプの紫外線強度を計測できる。これにより、本実施形態によれば、実施形態1,2に比べて、精度よく合計紫外線強度と、個別の紫外線強度と、校正データを関係付けて計測することができる。   In particular, according to the present embodiment, the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 both have the ultraviolet intensity of the ultraviolet lamps 14-(A) and 14-(B) at the flow path center plane 19. It is different from the first and second embodiments in that it is measured. That is, the distance between the light receiving unit 32a and the light receiving lengths of the ultraviolet lamps 14- (A) and 14- (B) and the light receiving length of the light receiving unit 33a and the ultraviolet lamps 14- (A) and 14- (B). Therefore, the ultraviolet intensity of each ultraviolet lamp can be measured under the same conditions regardless of the transmittance of the target fluid. Thereby, according to this embodiment, compared with Embodiment 1, 2, it can measure by relating the total ultraviolet intensity, the individual ultraviolet intensity, and the calibration data with higher accuracy.

(実施形態4)
図8に、本発明の紫外線照射装置の実施形態4の特徴部の構成を示す。本実施形態は実施形態3の変形例であり、校正用紫外線強度計33の遮光筒の構成が相違する。そこで、本実施形態の監視用紫外線強度計32及び校正用紫外線強度計33の主要部の構成を図8に示して説明する。その他の点は、実施形態1、3と同一であることから、図示を省略する。
(Embodiment 4)
In FIG. 8, the structure of the characteristic part of Embodiment 4 of the ultraviolet irradiation device of this invention is shown. This embodiment is a modification of the third embodiment, and the configuration of the light shielding cylinder of the calibration ultraviolet intensity meter 33 is different. Therefore, the configuration of the main parts of the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 of the present embodiment will be described with reference to FIG. Since other points are the same as those in the first and third embodiments, the illustration is omitted.

図8に示すように、本実施形態が図7の実施形態3と相違する点は、まず、図6の校正用紫外線強度計33の遮光筒33cの複数のランプ選択孔43a、43bに代えて、図4の実施形態1の複数の導光孔37を採用したことにある。また、図6の校正用紫外線強度計33の遮光筒44に代えて、図4の実施形態1の遮光筒34に代えてランプ選択孔61を有する遮光筒60を強度計保護管31の外周に装着したことにある。また、遮光筒60は図8の矢印63に示すように軸方向移動可能に設け、洗浄機構21のワイパー保持部材24に支持させて設けられている。すなわち、遮光筒33cには、図8(a)に示すように、複数(図示例では9個)の導光孔37−1(A)〜37−9(B)が穿設されている。そして、遮光筒60には、遮光筒33cの導光孔37の周方向位置に対応させて、軸方向に位置をずらして複数(図示例では9個)のランプ選択孔61−1〜61−9が穿設されている。そして、洗浄機構21を移動させて遮光筒60を図示矢印63の方向に移動させることにより、ランプ選択孔61−1〜61−9と導光孔37−1(A)〜37−9(B)が重なり合う位置の紫外線ランプ14が選択され、選択された紫外線ランプ14の受光長から照射される紫外線が受光部33aに受光されて、紫外線強度を個別に計測するようになっている。   As shown in FIG. 8, this embodiment is different from the third embodiment of FIG. 7 in that first, instead of the plurality of lamp selection holes 43a and 43b of the light shielding tube 33c of the calibration ultraviolet intensity meter 33 of FIG. 4 is that the plurality of light guide holes 37 of the first embodiment of FIG. 4 are employed. Further, in place of the light shielding tube 44 of the calibration ultraviolet intensity meter 33 in FIG. 6, a light shielding tube 60 having a lamp selection hole 61 instead of the light shielding tube 34 in the first embodiment in FIG. It is in wearing. Further, the light shielding cylinder 60 is provided so as to be movable in the axial direction as indicated by an arrow 63 in FIG. 8 and is supported by the wiper holding member 24 of the cleaning mechanism 21. That is, as shown in FIG. 8A, a plurality (9 in the illustrated example) of light guide holes 37-1 (A) to 37-9 (B) are formed in the light shielding cylinder 33c. The light shielding tube 60 has a plurality of (9 in the illustrated example) lamp selection holes 61-1 to 61- that are shifted in the axial direction so as to correspond to the circumferential position of the light guide hole 37 of the light shielding tube 33c. 9 is drilled. Then, by moving the cleaning mechanism 21 and moving the light shielding cylinder 60 in the direction of the arrow 63 in the figure, the lamp selection holes 61-1 to 61-9 and the light guide holes 37-1 (A) to 37-9 (B). ) Are selected, and the ultraviolet light emitted from the selected light receiving length of the ultraviolet lamp 14 is received by the light receiving unit 33a, and the ultraviolet intensity is individually measured.

このように構成されることから、実施形態3と同様に、監視用紫外線強度計32と校正用紫外線強度計33の受光部32a、33aをそれぞれ流路中心面19の位置に移動して,紫外線強度を計測できる。そのため、A群とB群の紫外線ランプから見た対称位置における紫外線強度を計測できるから計測精度を高くできる。つまり、受光部32aと各紫外線ランプ14−(A)と14−(B)の受光長までの距離と、受光部33aと各紫外線ランプ14−(A)と14−(B)の受光長までの距離が等距離であるから、対象流体の透過率に拘わらず同一の条件で各紫外線ランプの紫外線強度を計測できる。これにより、本実施形態によれば、実施形態3と同様、精度よく合計紫外線強度と、個別の紫外線強度と、校正データを関係付けて計測することができる。また、精度の高い校正データを取得できるなどの効果に加え、遮光筒60の移動に洗浄機構21を用いていることから、実施形態3よりも移動機構を簡素化できる。   Since it is configured in this manner, as in the third embodiment, the light receiving portions 32a and 33a of the monitoring ultraviolet intensity meter 32 and the calibration ultraviolet intensity meter 33 are moved to the position of the flow path center plane 19, respectively. Strength can be measured. Therefore, since the ultraviolet intensity at the symmetrical position viewed from the ultraviolet lamps of the A group and the B group can be measured, the measurement accuracy can be increased. That is, the distance between the light receiving unit 32a and the light receiving lengths of the ultraviolet lamps 14- (A) and 14- (B) and the light receiving length of the light receiving unit 33a and the ultraviolet lamps 14- (A) and 14- (B). Therefore, the ultraviolet intensity of each ultraviolet lamp can be measured under the same conditions regardless of the transmittance of the target fluid. Thus, according to the present embodiment, as in the third embodiment, the total ultraviolet intensity, the individual ultraviolet intensity, and the calibration data can be related and measured with high accuracy. Further, in addition to the effect that highly accurate calibration data can be acquired and the like, since the cleaning mechanism 21 is used to move the light shielding tube 60, the moving mechanism can be simplified as compared with the third embodiment.

(実施形態5)
図示していないが、図1、図4の実施形態1の遮光筒34に代えて、実施形態4の遮光筒60を適用することができる。これによれば、実施形態1の効果に加えて、実施形態2と同様に、紫外線強度を個別に計測することができ、かつ校正データを取得することができる。
(Embodiment 5)
Although not shown, the light shielding cylinder 60 of the fourth embodiment can be applied in place of the light shielding cylinder 34 of the first embodiment shown in FIGS. According to this, in addition to the effects of the first embodiment, similarly to the second embodiment, the ultraviolet intensity can be individually measured and the calibration data can be acquired.

以上説明したように、本発明の各実施形態では、紫外線出力の総量の要求値を満たすように、同一の公称出力(電気入力120W/cm、発光長25cm)の中圧水銀ランプを9本用いた例を示した。しかし、本発明はこれに限られるものではなく、紫外線出力の総量の要求値に合わせ、紫外線照射領域における照射性能を考慮して、適宜、公称出力が異なる紫外線ランプを適宜組み合わせて構成することができる。   As described above, in each embodiment of the present invention, nine medium-pressure mercury lamps having the same nominal output (electric input 120 W / cm, emission length 25 cm) are used so as to satisfy the required value of the total amount of ultraviolet output. An example was given. However, the present invention is not limited to this, and in accordance with the required value of the total amount of ultraviolet output, considering the irradiation performance in the ultraviolet irradiation region, it is possible to appropriately combine ultraviolet lamps having different nominal outputs. it can.

また、複数の紫外線ランプ14を仮想円筒18上に等間隔で配置する例を示したが、本発明はこれに限らず、紫外線照射領域を流通する対象流体が受ける紫外線の照射密度を均等化することを満たすために、仮想円筒18上に不等間隔で配置することを妨げるものではない。また、紫外線ランプ14に、低圧銀ランプを用いて構成することができる。   Moreover, although the example which arrange | positions the several ultraviolet lamp 14 at equal intervals on the virtual cylinder 18 was shown, this invention is not restricted to this, The irradiation density of the ultraviolet-ray which the target fluid which distribute | circulates an ultraviolet irradiation area receives is equalized In order to satisfy this, it does not preclude disposing at unequal intervals on the virtual cylinder 18. Further, the ultraviolet lamp 14 can be configured using a low-pressure silver lamp.

また、実施形態1〜5では、周方向の同一位置に1本ずつの紫外線ランプ14を配置した例を示したが、本発明はこれに限らず、以下に述べるように、周方向の異なる位置ごとに、1又は複数の紫外線ランプ14を配置することができる。   Moreover, although Embodiment 1-5 showed the example which has arrange | positioned the ultraviolet lamp 14 one by one in the same position of the circumferential direction, this invention is not restricted to this, As mentioned below, the position where circumferential direction differs For each, one or more UV lamps 14 can be arranged.

(実施形態6)
図9に、本発明の紫外線ランプ配置が異なる実施形態6を示す。本実施形態6が実施形態1と異なる点は、ランプ保護管と紫外線ランプの配置構成にあり、その他の構成は実施形態1と同一であるから記載を適宜省略して示している。同図(a)は、本実施形態の紫外線ランプ配置構成を、対象流体の管路2の流入口6側から見た図であり、同図(b)は実施形態1の図3と同様にランプ軸に直交する断面図である。本実施形態の紫外線ランプ配置構成は、対象流体の管路2の管径が実施形態1よりも大きい(例えば600〜1000mm)、比較的中型の紫外線照射装置に適する例である。
(Embodiment 6)
FIG. 9 shows a sixth embodiment in which the ultraviolet lamp arrangement of the present invention is different. The sixth embodiment is different from the first embodiment in the arrangement configuration of the lamp protection tube and the ultraviolet lamp, and the other configurations are the same as those in the first embodiment, so that the description is omitted as appropriate. FIG. 5A is a view of the arrangement of the ultraviolet lamp of the present embodiment as viewed from the inlet 6 side of the pipe 2 of the target fluid, and FIG. 5B is the same as FIG. 3 of the first embodiment. It is sectional drawing orthogonal to a lamp axis. The ultraviolet lamp arrangement configuration of the present embodiment is an example suitable for a relatively medium-sized ultraviolet irradiation device in which the pipe diameter of the pipe line 2 of the target fluid is larger than that of the first embodiment (for example, 600 to 1000 mm).

図9に示すように、本実施形態の複数(図示例では、6本)のランプ保護管13は、1本の紫外線ランプ14が収容された第1のランプ保護管13(図示例では、2本)と、複数本(図示例は、2本)の紫外線ランプ14が収容された第2のランプ保護管13II(図示例では、4本)が備えられている。第1のランプ保護管13内の紫外線ランプ14は、紫外線ランプ14の軸方向中心、つまり発光長の中心を実施形態1で説明した流路中心面19に位置させて対称に配置している。第2のランプ保護管13II内の複数本(図示例は、2本)の紫外線ランプ14a,14bは、同様に流路中心面19に対して対称にずらして配置されている。 As shown in FIG. 9, a plurality of (six in the illustrated example) lamp protection tubes 13 of the present embodiment are the first lamp protection tubes 13 I (in the illustrated example, in which one ultraviolet lamp 14 is accommodated). 2) and a second lamp protection tube 13 II (four in the illustrated example) in which a plurality of (two in the illustrated example) ultraviolet lamps 14 are accommodated. Ultraviolet lamp 14 of the first lamp protective tube 13 in the I, the axial center of the UV lamp 14, i.e. by positioning the flow path center plane 19 described the center of the emission length in the embodiment 1 are arranged symmetrically . A plurality of (two in the illustrated example) ultraviolet lamps 14 a and 14 b in the second lamp protection tube 13 II are similarly arranged symmetrically with respect to the flow path center plane 19.

このように、本実施形態によれば、第2のランプ保護管13IIに収容する複数本(図示例は、2本)の紫外線ランプ14a,bを流路中心面19に対して、保護管軸方向に互いに対称に配置したことから、流入管2の紫外線照射領域に流れる対象流体に対する紫外線照射量を均等化できる。また、流路断面における紫外線ランプ14a,bをランプ軸方向に広く分散できるから照射密度を向上でき、管路2に流れる対象流体が受ける紫外線の照射性能を高めることができる。 Thus, according to the present embodiment, a plurality of (two in the illustrated example) ultraviolet lamps 14a and b housed in the second lamp protection tube 13 II are protected against the flow path center plane 19. Since they are arranged symmetrically in the axial direction, it is possible to equalize the ultraviolet irradiation amount for the target fluid flowing in the ultraviolet irradiation region of the inflow pipe 2. Moreover, since the ultraviolet lamps 14a and 14b in the cross section of the flow path can be widely dispersed in the lamp axis direction, the irradiation density can be improved, and the irradiation performance of the ultraviolet rays received by the target fluid flowing in the pipe line 2 can be improved.

本実施形態では、第2のランプ保護管13IIに収容される複数本の紫外線ランプ14a,bを流路中心面19に対して対称にずらして配置したが、本発明はこれに限られるものではない。要は、第2のランプ保護管13IIに収容する複数本の紫外線ランプ14a,bを保護管軸方向(ランプ軸方向)に分散して配置すればよい。例えば、図9(b)の流れ方向の前後に重なって配置される複数本のランプ保護管13IIに収容される紫外線ランプ14a,bは、互いに保護管軸方向の発光長の重なりを少なくするように、保護管軸方向に位置をずらして収容することが好ましい。 Those in the present embodiment, a plurality of ultraviolet lamps 14a housed in the second lamp protective tube 13 II, has been shifted symmetrically disposed b to the flow path center plane 19, the invention is not limited thereto is not. In short, a plurality of ultraviolet lamps 14a and 14b accommodated in the second lamp protection tube 13 II may be distributed in the protection tube axis direction (lamp axis direction). For example, a plurality of lamps protective tube 13 II to accommodated the ultraviolet lamp 14a, b which are arranged to overlap in the longitudinal flow direction of FIG. 9 (b), reducing the overlap of the protective tube axis direction of the light emitting length to each other Thus, it is preferable that the position is shifted in the protective tube axis direction.

また、本実施形態では、ランプ保護管13の本数が6本の例を示したが、本発明はこれに限らず、本数を増やすことにより、あるいは1本の保護管に収容する紫外線ランプ14の本数を減らすことにより、装置の全体の紫外線照射量を増減調整することができ、設計の自由度を向上することができる。例えば、1本の保護管に収容する紫外線ランプ14の本数を実施形態1のように適宜減らすことにより、装置の全体の紫外線照射量を満たし、かつ、紫外線の照射密度を適宜調整することができる。さらに、ランプ保護管13の本数を増やす一方で、1本の保護管に収容する紫外線ランプ14の本数を適宜減らすことができる。   In the present embodiment, the number of the lamp protection tubes 13 is six. However, the present invention is not limited to this, and the number of the ultraviolet lamps 14 accommodated in one protection tube is increased by increasing the number. By reducing the number, it is possible to increase / decrease the amount of ultraviolet irradiation of the entire apparatus, and to improve the degree of design freedom. For example, by appropriately reducing the number of the ultraviolet lamps 14 accommodated in one protective tube as in the first embodiment, the entire ultraviolet irradiation amount of the apparatus can be satisfied and the ultraviolet irradiation density can be appropriately adjusted. . Furthermore, while increasing the number of the lamp protection tubes 13, the number of the ultraviolet lamps 14 accommodated in one protection tube can be appropriately reduced.

(実施形態7)
図10に、本発明の紫外線照射装置の実施形態7の紫外線ランプ配置構成を示す。本実施形態が実施形態1と異なる点は、ランプ保護管と紫外線ランプの配置構成にあり、その他の構成は実施形態1と同一であるから記載を適宜省略して示している。同図(a)は、本実施形態の紫外線ランプ配置構成を、対象流体の管路2の流入口6側から見た図であり、同図(b)は実施形態1の図3と同様にランプ軸に直交する断面図である。本実施形態の紫外線ランプ配置構成は、対象流体の流入管2の管径が実施形態1及び実施形態6よりも大きい(例えば1000mm以上)の比較的大型の紫外線照射装置に適する。
(Embodiment 7)
In FIG. 10, the ultraviolet lamp arrangement configuration of Embodiment 7 of the ultraviolet irradiation device of the present invention is shown. This embodiment is different from the first embodiment in the arrangement configuration of the lamp protection tube and the ultraviolet lamp, and the other configurations are the same as those in the first embodiment, and therefore the description is omitted as appropriate. FIG. 5A is a view of the arrangement of the ultraviolet lamp of the present embodiment as viewed from the inlet 6 side of the pipe 2 of the target fluid, and FIG. 5B is the same as FIG. 3 of the first embodiment. It is sectional drawing orthogonal to a lamp axis. The ultraviolet lamp arrangement configuration of the present embodiment is suitable for a relatively large ultraviolet irradiation apparatus in which the diameter of the inflow pipe 2 of the target fluid is larger than that of the first and sixth embodiments (for example, 1000 mm or more).

図10に示すように、本実施形態の複数(図示例では、8本)のランプ保護管13は、複数本(図示例では、2本)の紫外線ランプ14が収容された第1のランプ保護管13(図示例では、2本)と、複数本(図示例は、3本)の紫外線ランプ14が収容された第2のランプ保護管13II(図示例では、6本)が備えられている。第1のランプ保護管13内の紫外線ランプ14は、紫外線ランプ14の発光長の中心を実施形態1で説明した流路中心面19に対して対称に配置されている。第2のランプ保護管13II内の複数本(図示例は、3本)の紫外線ランプ14a,14b、14cは、同様に流路中心面19に対して対称にずらして配置されている。 As shown in FIG. 10, the plurality of (eight in the illustrated example) lamp protection tube 13 of the present embodiment is a first lamp protection in which a plurality of (two in the illustrated example) ultraviolet lamps 14 are accommodated. A tube 13 I (two in the illustrated example) and a second lamp protection tube 13 II (six in the illustrated example) containing a plurality of (three in the illustrated) ultraviolet lamps 14 are provided. ing. Ultraviolet lamp 14 of the first lamp protective tube 13 within I are arranged symmetrically to the center of the emission length of the ultraviolet lamp 14 to the flow path center plane 19 described in the first embodiment. A plurality (three in the illustrated example) of ultraviolet lamps 14 a, 14 b, 14 c in the second lamp protection tube 13 II are similarly arranged symmetrically with respect to the flow path center plane 19.

このように、本実施形態によれば、第2のランプ保護管13に収容する複数本(図示例は、3本)の紫外線ランプ14a,b、cを流路中心面19に対して、保護管軸方向に互いに対称に配置したことから、対象流体の流入管2に流れる対象流体に対する紫外線照射量を均等化できる。また、流路断面における紫外線ランプ14a,b、cをランプ軸方向に広く分散できるから照射密度を向上でき、管路2に流れる対象流体が受ける紫外線の照射性能を上げることができる。 As described above, according to the present embodiment, a plurality of (three in the illustrated example) ultraviolet lamps 14a, b, and c accommodated in the second lamp protection tube 13I are arranged with respect to the flow path center plane 19. Since they are arranged symmetrically with each other in the protective tube axial direction, it is possible to equalize the amount of ultraviolet irradiation with respect to the target fluid flowing in the target fluid inflow pipe 2. Further, since the ultraviolet lamps 14a, b, and c in the cross section of the flow path can be widely dispersed in the lamp axis direction, the irradiation density can be improved, and the irradiation performance of the ultraviolet rays received by the target fluid flowing in the pipe line 2 can be improved.

本実施形態では、第2のランプ保護管13IIに収容される複数本の紫外線ランプ14a,b、cを流路中心面19に対して対称にずらして配置したが、本発明はこれに限られるものではない。要は、第2のランプ保護管13IIに収容する複数本の紫外線ランプ14a,b、cを保護管軸方向(ランプ軸方向)に分散して配置すればよい。例えば、図10(b)の流れ方向の前後に重なって配置される複数本のランプ保護管13IIに収容される紫外線ランプ14a,b、cは、互いに保護管軸方向の発光長の重なりを少なくするように、保護管軸方向に位置をずらして収容することが好ましい。 In this embodiment, a plurality of ultraviolet lamps 14a housed in the second lamp protective tube 13 II, b, was staggered symmetrically c to the flow path center plane 19, the invention is limited thereto It is not something that can be done. In short, a plurality of ultraviolet lamps 14a, b, c accommodated in the second lamp protection tube 13 II may be distributed in the protection tube axis direction (lamp axis direction). For example, an ultraviolet lamp 14a to be accommodated in the plurality of lamps protective tube 13 II which is arranged to overlap in the longitudinal flow direction of FIG. 10 (b), b, c overlaps the protective tube axis direction of the light emitting length together It is preferable that the position is shifted in the direction of the protective tube axis so as to reduce the amount.

なお、上記の各実施形態において、紫外線照射装置の容器1の軸を横向きに配置し、これに対して対象流体の流入管2を横向きに配置する例を示したが、本発明はこれに限らず、いずれか一方を縦向きに配置してもよい。   In each of the above embodiments, the example in which the axis of the container 1 of the ultraviolet irradiation device is disposed sideways and the inflow pipe 2 for the target fluid is disposed sideways is shown. However, the present invention is not limited thereto. Instead, either one may be arranged vertically.

また、ランプ配置を変えた実施形態6,7において、図示を省略したが、ランプ保護管13及び強度計保護管31の外表面に付着する汚れを除去するための洗浄装置を必要に応じて設けることができる。また、各紫外線ランプ14の個々の紫外線強度又は全体の紫外線強度を測定する監視用紫外線強度計及び校正用紫外線強度計を必要に応じて設けることができる。図9の実施形態6に監視用紫外線強度計及び校正用紫外線強度計を設ける場合は、実施形態1〜5の構成をそのまま転用することができる。   In the sixth and seventh embodiments in which the lamp arrangement is changed, although not shown, a cleaning device for removing dirt attached to the outer surfaces of the lamp protection tube 13 and the strength meter protection tube 31 is provided as necessary. be able to. In addition, a monitoring ultraviolet intensity meter and a calibration ultraviolet intensity meter for measuring the individual ultraviolet intensity of each ultraviolet lamp 14 or the total ultraviolet intensity can be provided as necessary. When the monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter are provided in the sixth embodiment of FIG. 9, the configurations of the first to fifth embodiments can be used as they are.

また、図10の実施形態7に監視用紫外線強度計及び校正用紫外線強度計を設ける場合は、実施形態1〜5の構成をそのまま転用することができる。また、監視用紫外線強度計を軸方向位置が異なる紫外線ランプ14を複数の群に分け、群ごとの紫外線ランプ14の中心位置に受光部を移動させて群ごとの合計紫外線強度を計測して合計することができる。また、校正用紫外線強度計の場合は、例えば、図7の実施形態3の校正用紫外線強度計を適用し、軸方向位置が異なる紫外線ランプ14の複数の群の中心位置に受光部を移動させて、個別に紫外線ランプの紫外線強度を計測するとともに、校正データを取得することができる。   Further, when the monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter are provided in the seventh embodiment of FIG. 10, the configurations of the first to fifth embodiments can be used as they are. In addition, the UV intensity meter for monitoring is divided into a plurality of groups, and the light receiving part is moved to the center position of the UV lamp 14 for each group to measure the total UV intensity for each group. can do. Further, in the case of a calibration ultraviolet intensity meter, for example, the calibration ultraviolet intensity meter of Embodiment 3 in FIG. 7 is applied, and the light receiving unit is moved to the center position of a plurality of groups of ultraviolet lamps 14 having different axial positions. Thus, it is possible to individually measure the UV intensity of the UV lamp and obtain calibration data.

さらに、各紫外線ランプ14は、通常、両端にフィラメントを備えて形成され、それらのフィラメントに電気を供給するケーブルが、紫外線ランプ14の両端から引き出された電極端子に接続される。しかし、両端のフィラメントに接続される電極端子を紫外線ランプ14の片側から引き出した形式のものを用いてもよい。後者の形式の紫外線ランプ14は、1本のランプ保護管13に2本の紫外線ランプ14を収容する場合、紫外線ランプ14に電力を供給するケーブルが高温の紫外線ランプ14に接触することがないので好ましい。なお、1本のランプ保護管13に3本以上の紫外線ランプ14を収容する場合は、ケーブルが高温の紫外線ランプ14に接触することがあるので、耐熱性が高いガラス繊維被覆ケーブルや金属被覆ケーブルを用いればよい。   Further, each ultraviolet lamp 14 is usually formed with filaments at both ends, and a cable for supplying electricity to the filaments is connected to electrode terminals drawn from both ends of the ultraviolet lamp 14. However, a type in which electrode terminals connected to the filaments at both ends are drawn from one side of the ultraviolet lamp 14 may be used. In the latter type of ultraviolet lamp 14, when two ultraviolet lamps 14 are accommodated in one lamp protection tube 13, a cable for supplying power to the ultraviolet lamp 14 does not come into contact with the high-temperature ultraviolet lamp 14. preferable. When three or more ultraviolet lamps 14 are accommodated in one lamp protective tube 13, the cable may come into contact with the high-temperature ultraviolet lamp 14, so that the glass fiber-covered cable or metal-coated cable with high heat resistance is high. May be used.

1 容器
2 流入管
6 流入口
7 流出口
10 管体
11 エンドプレート
13 ランプ保護管
14 紫外線ランプ
18 仮想円筒
19 流路中心面
21 洗浄機構
22 走行レール
23 走行台車
24 ワイパー保持部材
25 ワイパー
31 強度計保護管
32 監視用紫外線強度計
32a 受光部
32b 支持ロッド
32c 遮光筒
33 校正用紫外線強度計
33a 受光部
33b 支持ロッド
33c 遮光筒
34 遮光筒
36 導光孔
37 導光孔
43 遮光筒
43a,43b ランプ選択孔
44 導光孔
DESCRIPTION OF SYMBOLS 1 Container 2 Inflow pipe 6 Inlet 7 Outlet 10 Tube 11 End plate 13 Lamp protection pipe 14 Ultraviolet lamp 18 Virtual cylinder 19 Flow path center plane 21 Cleaning mechanism 22 Travel rail 23 Traveling carriage 24 Wiper holding member 25 Wiper 31 Strength meter Protective tube 32 UV intensity meter for monitoring 32a Light receiving portion 32b Support rod 32c Light blocking tube 33 UV intensity meter for calibration 33a Light receiving portion 33b Support rod 33c Light blocking tube 34 Light blocking tube 36 Light guide hole 37 Light guide hole 43 Light blocking tube 43a, 43b Lamp Selection hole 44 Light guide hole

Claims (7)

円筒状の容器と、前記容器の容器軸を中心軸とする仮想円筒の周方向に分散して前記容器内に設けられた透明な複数のランプ保護管と、前記各ランプ保護管内に収容された紫外線ランプと、前記容器軸と同軸に前記容器内に設けられた透明な強度計保護管と、該強度計保護管内に挿入された受光部を有する監視用紫外線強度計と、前記容器軸に直交する筒壁の対向する位置に設けられ、対象流体の流通管路が接続される流入口及び流出口とを備えてなる紫外線照射装置において、
前記ランプ保護管には1又は複数の前記紫外線ランプが収容され、前記各ランプ保護管に収容される前記紫外線ランプの発光部が、前記流通管路の中心を通り前記ランプ保護管の軸に直交する流路中心面を基準に、前記ランプ保護管の軸方向に位置をずらして収容され、前記監視用紫外線強度計は、前記強度計保護管が前記流路中心面と交差する中心位置に受光部を位置させて挿入され、前記受光部を包囲して円筒状の遮光筒が設けられ、該遮光筒は軸方向及び周方向に分散させて紫外線を前記受光部に導く複数の導光孔が筒壁に穿設され、該各導光孔は前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を、前記各紫外線ランプの位置に応じて前記受光部に導く位置に設けられていることを特徴とする紫外線照射装置。
A cylindrical container, a plurality of transparent lamp protection tubes provided in the container dispersed in the circumferential direction of a virtual cylinder centering on the container axis of the container, and each of the lamp protection tubes accommodated An ultraviolet lamp, a transparent intensity meter protective tube provided in the container coaxially with the container axis , a monitoring ultraviolet intensity meter having a light receiving portion inserted into the intensity meter protective tube, and orthogonal to the container axis In an ultraviolet irradiation device provided with an inlet and an outlet that are provided at opposite positions of the cylindrical wall, and to which a circulation pipe of a target fluid is connected,
One or a plurality of the ultraviolet lamps are accommodated in the lamp protection tube, and a light emitting portion of the ultraviolet lamp accommodated in each of the lamp protection tubes passes through the center of the flow conduit and is orthogonal to the axis of the lamp protection tube. The monitoring ultraviolet intensity meter is received at a central position where the intensity meter protection tube intersects the flow channel center plane. A cylindrical light-shielding tube is provided surrounding the light-receiving portion, and the light-shielding tube has a plurality of light-guiding holes for guiding ultraviolet rays to the light-receiving portion by dispersing the light-shielding tube in an axial direction and a circumferential direction. The light guide hole is formed in the cylindrical wall, and each light guide hole guides the ultraviolet light emitted from the light receiving length set with reference to the light emission length center of each ultraviolet lamp to the light receiving unit according to the position of each ultraviolet lamp. UV light characterized by being provided at a position Cum apparatus.
請求項1に記載の紫外線照射装置において、
前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部を前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲する円筒状の第1遮光筒が設けられ、該第1遮光筒を包囲する円筒状の第2遮光筒が軸方向移動可能に設けられ、前記第1遮光筒は軸方向及び周方向に分散させて紫外線を前記受光部に導く複数の導光孔が筒壁に穿設され、該各導光孔は前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を、前記各紫外線ランプの位置に応じて前記受光部に導く位置及び径に設定され、前記第2遮光筒は前記第1遮光筒の全ての前記導光孔を覆う第1位置と全て露出させる第2位置の間で移動可能に設けられてなることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to claim 1,
A calibration ultraviolet intensity meter is inserted from the opposite end where the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube, and the light receiving portion of the calibration ultraviolet intensity meter is the light receiving portion of the monitoring ultraviolet intensity meter. A cylindrical first light-shielding tube is provided that is fixed at a position away from the light-receiving unit and surrounds the light-receiving portion of the calibration ultraviolet intensity meter, and the cylindrical second light-shielding tube that surrounds the first light-shielding tube moves in the axial direction. A plurality of light guide holes are formed in the cylinder wall for guiding the ultraviolet rays to the light receiving portion by dispersing the first light shielding cylinder in an axial direction and a circumferential direction, and each of the light guide holes is formed by each of the ultraviolet lamps. UV light emitted from the light receiving length set with reference to the center of the light emitting length is set to a position and a diameter for guiding the ultraviolet light to the light receiving portion according to the position of each ultraviolet lamp, and the second light shielding cylinder is the first light shielding cylinder A first position covering all the light guide holes of the cylinder and a second position exposing all of the light guide holes. In the ultraviolet irradiation apparatus characterized by comprising movably provided.
請求項1に記載の紫外線照射装置において、
前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部は前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲して固定された第1遮光筒と筒軸周りに回転可能な第2遮光筒とが二重に設けられ、第1遮光筒の筒壁にランプ軸方向が異なる位置と周方向位置が異なる前記各紫外線ランプにそれぞれ対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、第2遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて複数のランプ選択孔が穿設され、前記第2遮光筒の回転角度を変えて前記導光孔と前記ランプ選択孔が重ね合わさる位置に対応した1個の前記紫外線ランプから照射される紫外線を前記受光部に導入可能に形成し、前記第1遮光筒と前記第2遮光筒のうち前記受光部側に設けられる遮光筒に穿設される前記導光孔又は前記ランプ選択孔は、それぞれ前記ランプ保護管に収容された1又は複数の前記紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く位置に設けられていることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to claim 1,
A calibration ultraviolet intensity meter is inserted from the opposite end where the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube, and the light receiving portion of the calibration ultraviolet intensity meter is the light receiving portion of the monitoring ultraviolet intensity meter A first light-shielding tube fixed at a position away from the light-receiving portion of the calibration ultraviolet intensity meter and a second light-shielding tube rotatable around the tube axis are provided in duplicate. A plurality of light guide holes are formed in the cylindrical wall of the light shielding cylinder to guide the ultraviolet rays to the light receiving portion in correspondence with the ultraviolet lamps having different positions in the lamp axial direction and in the circumferential direction, respectively. A position where a plurality of lamp selection holes are formed corresponding to the ultraviolet lamps at different positions in the lamp axis direction on the wall, and the light guide hole and the lamp selection holes are overlapped by changing the rotation angle of the second light shielding tube Irradiated from one ultraviolet lamp corresponding to The light guide hole or the lamp selection hole formed in the light-shielding cylinder provided on the light-receiving section side of the first light-shielding cylinder and the second light-shielding cylinder is formed so that ultraviolet light can be introduced into the light-receiving section. Each of the plurality of ultraviolet lamps accommodated in the lamp protection tube is provided at a position for guiding the ultraviolet rays irradiated from the light receiving length set with reference to the light emission length center of the ultraviolet lamp to the light receiving portion. UV irradiation device.
請求項1に記載の紫外線照射装置において、
前記強度計保護管に第1遮光筒が固定して設けられ、該第1遮光筒の両端から前記監視用紫外線強度計と校正用紫外線強度計とが挿入され、前記監視用紫外線強度計と前記校正用紫外線強度計は、それぞれの受光部が、前記強度計保護管が前記流路中心面と交差する前記中心位置と該中心位置から挿入方向に沿って後退した位置との間で移動可能に設けられ、
前記第1遮光筒の前記中心位置に対応する筒壁に、ランプ軸方向が異なる位置と周方向位置が異なる前記紫外線ランプにそれぞれ対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、
前記監視用紫外線強度計が軸方向に移動可能に設けられ、当該監視用紫外線強度計の前記受光部を包囲する第2遮光筒が当該受光部に固定して設けられ、該第2遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて紫外線を前記受光部に導く複数の導光孔が穿設され、
前記校正用紫外線強度計の前記受光部を包囲する第3遮光筒が前記受光部に固定して設けられ、前記校正用紫外線強度計の前記受光部が軸周りに回転可能にかつ軸方向に移動可能に設けられ、該第3遮光筒の筒壁にランプ軸方向が異なる位置の前記紫外線ランプに対応させて複数のランプ選択孔が穿設され、
前記監視用紫外線強度計の前記受光部を軸方向に移動させる第1駆動機構と前記校正用紫外線強度計の前記受光部を軸周りに回転させる第2駆動機構及び軸方向に移動させる第3駆動機構とが設けられ、
監視時は、前記監視用紫外線強度計の前記受光部を前記中心位置に位置させて全ての前記紫外線ランプから照射される合計紫外線強度を計測し、
校正データ取得時は、前記監視用紫外線強度計の前記受光部を後退させて、前記校正用紫外線強度計の前記受光部を前記中心位置に位置させ、かつ前記受光部を回転させて前記第3遮光筒前記ランプ選択孔が前記第1遮光筒の前記導光孔に重ね合わさせられる位置に対応した1個の紫外線ランプから照射される紫外線を前記受光部に導入可能に形成され、
前記第2遮光筒の前記導光孔と前記第3遮光筒の前記ランプ選択孔は、それぞれ前記ランプ保護管にそれぞれ収容された1又は複数の前記紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く位置に設けられていることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to claim 1,
A first light shielding tube is fixedly provided on the intensity meter protection tube, and the monitoring ultraviolet intensity meter and the calibration ultraviolet intensity meter are inserted from both ends of the first light shielding tube, and the monitoring ultraviolet intensity meter and the The calibration ultraviolet intensity meter is configured such that each light receiving portion is movable between the center position where the intensity meter protection tube intersects the flow path center plane and a position retracted from the center position along the insertion direction. Provided,
A plurality of light guide holes that guide ultraviolet rays to the light receiving portion are formed in the cylindrical wall corresponding to the center position of the first light shielding cylinder so as to correspond to the ultraviolet lamps having different lamp axial directions and circumferential positions. Established,
The monitoring ultraviolet intensity meter is provided so as to be movable in the axial direction, and a second light shielding tube surrounding the light receiving portion of the monitoring ultraviolet intensity meter is fixed to the light receiving portion. A plurality of light guide holes for guiding ultraviolet rays to the light receiving portion corresponding to the ultraviolet lamps at different positions in the axial direction of the lamp are formed in the cylindrical wall,
A third light-shielding tube surrounding the light receiving portion of the calibration ultraviolet intensity meter is fixed to the light receiving portion, and the light receiving portion of the calibration ultraviolet intensity meter is rotatable about an axis and moved in the axial direction. A plurality of lamp selection holes are formed in the tube wall of the third light-shielding tube so as to correspond to the ultraviolet lamps at different positions in the lamp axis direction;
A first drive mechanism for moving the light receiving part of the monitoring ultraviolet intensity meter in the axial direction, a second drive mechanism for rotating the light receiving part of the calibration ultraviolet intensity meter around the axis, and a third drive for moving in the axial direction Mechanism is provided,
At the time of monitoring, the total UV intensity irradiated from all the UV lamps is measured by positioning the light receiving part of the UV intensity meter for monitoring at the center position,
At the time of acquisition of calibration data, the light receiving portion of the monitoring ultraviolet intensity meter is moved backward, the light receiving portion of the calibration ultraviolet intensity meter is positioned at the center position, and the light receiving portion is rotated to move the third light receiving portion . is formed to be introduced the ultraviolet rays irradiated from one of the ultraviolet lamps corresponding to the position of the lamp selected hole of the light shielding barrel provoking superimposed on the light guide holes of the first light-shielding tube on the light-receiving portion,
The light guide hole of the second light shielding tube and the lamp selection hole of the third light shielding tube are set based on the light emission length center of one or a plurality of the ultraviolet lamps respectively accommodated in the lamp protection tube. An ultraviolet irradiation device, characterized in that the ultraviolet irradiation device is provided at a position for guiding ultraviolet rays irradiated from a light receiving length to the light receiving portion.
請求項1に記載の紫外線照射装置において、
前記強度計保護管に前記監視用紫外線強度計が挿入された反対側の端部から校正用紫外線強度計が挿入され、該校正用紫外線強度計の受光部が前記監視用紫外線強度計の受光部から離した位置に固定され、該校正用紫外線強度計の受光部を包囲する円筒状の第1遮光筒が設けられ、該第1遮光筒を包囲する円筒状の第2遮光筒が軸方向移動可能に設けられ、前記第1遮光筒の筒壁に軸方向及び周方向に分散させて、前記各紫外線ランプの発光長中心を基準に設定された受光長から照射される紫外線を前記受光部に導く複数の導光孔が穿設され、該各導光孔は前記各ランプ保護管の位置に応じて前記受光長から照射される紫外線を前記受光部に導く位置に設けられ、前記第2遮光筒は筒壁の軸方向及び周方向にずらして前記第1遮光筒の前記導光孔の位置に対応する位置に複数のランプ選択孔を穿設して形成され、かつ、軸方向に移動可能に設けられてなることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to claim 1,
A calibration ultraviolet intensity meter is inserted from the opposite end where the monitoring ultraviolet intensity meter is inserted into the intensity meter protective tube, and the light receiving portion of the calibration ultraviolet intensity meter is the light receiving portion of the monitoring ultraviolet intensity meter. A cylindrical first light-shielding tube is provided that is fixed at a position away from the light-receiving unit and surrounds the light-receiving portion of the calibration ultraviolet intensity meter, and the cylindrical second light-shielding tube that surrounds the first light-shielding tube moves in the axial direction. UV light emitted from a light receiving length set on the basis of the light emission length center of each ultraviolet lamp is distributed to the cylindrical wall of the first light shielding cylinder in the axial direction and the circumferential direction. A plurality of guiding light guide holes are formed, and each of the light guiding holes is provided at a position for guiding the ultraviolet light emitted from the light receiving length to the light receiving unit according to the position of each lamp protection tube, and the second light shielding The tube is shifted in the axial direction and circumferential direction of the tube wall, and the guide of the first light shielding tube is It is formed by drilling a plurality of lamps selected holes at positions corresponding to the positions of the holes, and the ultraviolet irradiation apparatus characterized by comprising movable in the axial direction.
請求項1乃至5のいずれか1項に記載の紫外線照射装置において、
前記容器の両端間に渡して設けられた複数本の走行レールと、前記走行レール上を走行可能に設けられた複数の走行台車と、前記走行台車に支持されたワイパー保持部材と、前記ワイパー保持部材に支持されて前記各ランプ保護管と前記強度計保護管の外周面に嵌合されたワイパーと、前記走行台車を走行させて前記ワイパーを前記ランプ保護管と前記強度計保護管の外周面に摺動させる洗浄機構とを備え、
前記ワイパーは、前記ランプ保護管と前記強度計保護管の外周に遊嵌する内径を有する円盤状に形成されたブラシ部と、該ブラシ部の外周縁を緩く保持する環状溝を有するブラシ保持部材とを備えて形成され、該ブラシ保持部材を介して前記ワイパー保持部材に支持されてなることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to any one of claims 1 to 5,
A plurality of traveling rails provided across both ends of the container; a plurality of traveling carriages provided so as to be able to travel on the traveling rail; a wiper holding member supported by the traveling carriage; and the wiper holding A wiper supported by a member and fitted to the outer peripheral surface of each of the lamp protection tube and the strength meter protection tube; and the outer periphery of the lamp protection tube and the strength meter protection tube by running the traveling carriage. And a cleaning mechanism that slides on
The wiper has a brush part formed in a disk shape having an inner diameter loosely fitted on the outer periphery of the lamp protection tube and the strength meter protection tube, and a brush holding member having an annular groove for loosely holding the outer peripheral edge of the brush part And an ultraviolet irradiation device characterized by being supported by the wiper holding member via the brush holding member.
請求項2に記載の紫外線照射装置において、
前記容器の両端間に渡して設けられた複数本の走行レールと、前記走行レール上を走行可能に設けられた複数の走行台車と、前記走行台車に支持されたワイパー保持部材と、前記ワイパー保持部材に支持されて前記各ランプ保護管と前記強度計保護管の外周面に嵌合されたワイパーと、前記走行台車を走行させて前記ワイパーを前記ランプ保護管と前記強度計保護管の外周面に摺動させる洗浄機構とを備え、
前記ワイパーは、前記ランプ保護管と前記強度計保護管の外周に遊嵌する内径を有する円盤状に形成されたブラシ部と、該ブラシ部の外周縁を緩く保持する環状溝を有するブラシ保持部材とを備えて形成され、該ブラシ保持部材を介して前記ワイパー保持部材に支持されてなり、
前記第2遮光筒は、前記強度計保護管の外周を包囲して設けられ、かつ、前記ワイパー保持部材に支持させて設けられ、前記洗浄機構により前記第1位置と前記第2位置の間で移動されることを特徴とする紫外線照射装置。
In the ultraviolet irradiation device according to claim 2,
A plurality of traveling rails provided across both ends of the container; a plurality of traveling carriages provided so as to be able to travel on the traveling rail; a wiper holding member supported by the traveling carriage; and the wiper holding A wiper supported by a member and fitted to the outer peripheral surface of each of the lamp protection tube and the strength meter protection tube; and the outer periphery of the lamp protection tube and the strength meter protection tube by running the traveling carriage. And a cleaning mechanism that slides on
The wiper has a brush part formed in a disk shape having an inner diameter loosely fitted on the outer periphery of the lamp protection tube and the strength meter protection tube, and a brush holding member having an annular groove for loosely holding the outer peripheral edge of the brush part And is supported by the wiper holding member via the brush holding member,
The second light shielding tube is provided so as to surround an outer periphery of the strength meter protection tube and is supported by the wiper holding member, and is provided between the first position and the second position by the cleaning mechanism. An ultraviolet irradiation device that is moved.
JP2011249050A 2011-11-14 2011-11-14 UV irradiation equipment Active JP5948042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011249050A JP5948042B2 (en) 2011-11-14 2011-11-14 UV irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011249050A JP5948042B2 (en) 2011-11-14 2011-11-14 UV irradiation equipment

Publications (2)

Publication Number Publication Date
JP2013103180A JP2013103180A (en) 2013-05-30
JP5948042B2 true JP5948042B2 (en) 2016-07-06

Family

ID=48623165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011249050A Active JP5948042B2 (en) 2011-11-14 2011-11-14 UV irradiation equipment

Country Status (1)

Country Link
JP (1) JP5948042B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113587047B (en) * 2021-08-02 2023-03-17 深圳市金顿士科技有限公司 Light guide illuminating system with adjustable brightness

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940075B2 (en) * 2001-03-15 2005-09-06 Christopher R. Schulz Ultraviolet-light-based disinfection reactor
JP4852250B2 (en) * 2005-02-10 2012-01-11 千代田工販株式会社 Spatial illuminance measuring apparatus and spatial illuminance calibration method
JP4168348B2 (en) * 2005-12-06 2008-10-22 千代田工販株式会社 Ultraviolet illuminance measurement device and ultraviolet irradiation device
JP2011050830A (en) * 2009-08-31 2011-03-17 Toshiba Corp Ultraviolet irradiation device

Also Published As

Publication number Publication date
JP2013103180A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
KR102368679B1 (en) a flowable typed sterilizing device and connector using the same
US6956648B2 (en) Miniaturized spectrometer
BRPI0717199A2 (en) "METHOD AND DEVICE FOR LIQUID DISINFECTION USING A TRANSPARENT LIGHT CONDUCT"
US6459087B1 (en) Sensor device for intensity measurement of UV light and a photochemical UV treatment system
WO2017077767A1 (en) Fluid sterilization apparatus
JP2011050830A (en) Ultraviolet irradiation device
US7628926B2 (en) System and method for monitoring water transmission of UV light in disinfection systems
EP1843981A1 (en) Treatment system comprising a dielectric barrier discharge lamp
US20130153514A1 (en) Apparatus and Methods for Treating Fluids Using Ultraviolet Light
JP5948042B2 (en) UV irradiation equipment
Lanzarini-Lopes et al. Germicidal glowsticks: Side-emitting optical fibers inhibit Pseudomonas aeruginosa and Escherichia coli on surfaces
KR20220032022A (en) a flowable typed sterilizing device and connector using the same
JP2004502959A (en) Optical radiation sensor system and method for measuring radiation transmission of a fluid
US6590217B1 (en) Ultraviolet sterilization device
US9442064B1 (en) Photometer with LED light source
WO2009024155A1 (en) A fluid treatment unit comprising a treatment source
JP2020000285A (en) Fluid sterilizer
JP6119281B2 (en) Fluid processing equipment
JP2009112943A (en) Ultraviolet sterilizing device
JP5468429B2 (en) Ultraviolet irradiation device and temperature measurement method
JP5854760B2 (en) UV irradiation equipment
JP6903551B2 (en) Fluid processing equipment
RU2308022C2 (en) Device for determining ultraviolet radiation transmission of liquids
JP2013220363A (en) External illumination type ultraviolet irradiation apparatus
JP2012240033A (en) Ultraviolet purifying device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160606

R150 Certificate of patent or registration of utility model

Ref document number: 5948042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250