JP5940788B2 - Selective separation material, method for producing the same, and blood treatment device - Google Patents

Selective separation material, method for producing the same, and blood treatment device Download PDF

Info

Publication number
JP5940788B2
JP5940788B2 JP2011212918A JP2011212918A JP5940788B2 JP 5940788 B2 JP5940788 B2 JP 5940788B2 JP 2011212918 A JP2011212918 A JP 2011212918A JP 2011212918 A JP2011212918 A JP 2011212918A JP 5940788 B2 JP5940788 B2 JP 5940788B2
Authority
JP
Japan
Prior art keywords
antibody
substrate
polymer
immobilized
separation material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011212918A
Other languages
Japanese (ja)
Other versions
JP2013071074A (en
Inventor
香織 河野
香織 河野
伸一郎 長澤
伸一郎 長澤
裕美 杉坂
裕美 杉坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2011212918A priority Critical patent/JP5940788B2/en
Publication of JP2013071074A publication Critical patent/JP2013071074A/en
Application granted granted Critical
Publication of JP5940788B2 publication Critical patent/JP5940788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、選択的分離材及びその製造方法、並びに血液処理器に関する。   The present invention relates to a selective separation material, a method for producing the same, and a blood treatment device.

血液から特定成分を除去する目的で、該特定成分に対して親和性のある物質、すなわち、リガンドを水不溶性担体に固定した分離材が臨床的に広く利用されている。これら分離材は、患者の血液を一旦体外に取り出し、血液そのもの、又は血漿分離器で分離した血漿を分離材に流して処理した後、患者に返血するという形で使用される。   For the purpose of removing a specific component from blood, a substance having affinity for the specific component, that is, a separation material in which a ligand is fixed to a water-insoluble carrier is widely used clinically. These separating materials are used in such a manner that the blood of the patient is once taken out of the body, the blood itself or the plasma separated by the plasma separator is flowed through the separating material, processed, and then returned to the patient.

このため分離材からリガンドが溶離すると、リガンドが直接患者体内に入り、種々の生理作用を引き起こす危険性がある。よって、リガンドの溶離量が多い分離材は、安全性の点から臨床で利用できない。すなわち、これら分離材を実用化するにあたっては、水不溶性担体とリガンドとの結合を強固にし、溶離するリガンド量を減らせるかが最も重要な技術課題である。   For this reason, when the ligand is eluted from the separation material, there is a risk that the ligand directly enters the patient and causes various physiological effects. Therefore, a separation material having a large ligand elution amount cannot be clinically used from the viewpoint of safety. That is, in putting these separation materials into practical use, the most important technical issue is to strengthen the bond between the water-insoluble carrier and the ligand and reduce the amount of the eluted ligand.

また、分離材には、血液又は血漿中のタンパク質、細胞(例えば、白血球及び血小板)、及びその他血中成分が表面に吸着しにくいという血液適合性(生体適合性)も求められる。特に、選択的分離材においては、特定成分を選択的に吸着させるために、分離材そのものに目的成分以外の成分が非特異的に吸着しない特性が望まれている。   The separation material is also required to have blood compatibility (biocompatibility) in which proteins, cells (for example, leukocytes and platelets) in blood or plasma, and other blood components are difficult to adsorb on the surface. In particular, in a selective separation material, in order to selectively adsorb a specific component, it is desired that the separation material itself does not nonspecifically adsorb components other than the target component.

そこで、医療用材料表面の親水性及び疎水性を改善するため、放射線及び紫外線等を照射する方法、アーク、直流グロー、高周波、マイクロ波及びコロナ放電等によりプラズマ処理する方法、並びに、UV−オゾン処理する方法等により発生させたラジカルを開始点として、これにラジカル重合性モノマーを作用させて、医療用材料表面にグラフト重合層を形成させる方法が広く用いられている。   Therefore, in order to improve the hydrophilicity and hydrophobicity of the surface of the medical material, a method of irradiating with radiation and ultraviolet rays, a method of plasma processing by arc, direct current glow, high frequency, microwave, corona discharge, etc., and UV-ozone A method is widely used in which a radical generated by a treatment method or the like is used as a starting point and a radical polymerizable monomer is allowed to act thereon to form a graft polymerization layer on the surface of a medical material.

一方、生体適合性を高めるポリマーとして、グリシン型の両性基を持つN−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン(以下、「CMB」ともいう。)が提案されている(例えば、特許文献1、2及び3)。CMBと重合性モノマーとの共重合ポリマーはタンパク質及び血球等の生体成分との相互作用が小さいなどの優れた生体適合性を有しているとの報告がある(特許文献4)。   On the other hand, N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (hereinafter also referred to as “CMB”) having a glycine-type amphoteric group has been proposed as a polymer for enhancing biocompatibility. (For example, Patent Documents 1, 2, and 3). There is a report that a copolymer of CMB and a polymerizable monomer has excellent biocompatibility such as a small interaction with biological components such as proteins and blood cells (Patent Document 4).

しかしながら、生体適合性を向上させるために、CMBのような親水性ポリマーが基材表面に高含有される場合、タンパク質及び血球等の生体成分が吸着しにくくなると同時に、リガンド自体も結合できなくなるといった問題がある。   However, in order to improve biocompatibility, when a hydrophilic polymer such as CMB is highly contained on the substrate surface, biological components such as proteins and blood cells are difficult to adsorb, and at the same time, the ligand itself cannot be bound. There's a problem.

親水性ポリマーを含有した基材に抗体を固定する方法として、1M程度のリン酸水素二カリウムを含む緩衝液を使用する方法が開示されている(特許文献5)。また、非特許文献1には、エポキシ基と抗体との化学結合を促進するために、0.5M程度の硫酸アンモニウムを含む緩衝液を使用する方法が記載されている。   As a method for immobilizing an antibody on a substrate containing a hydrophilic polymer, a method using a buffer containing about 1M dipotassium hydrogen phosphate is disclosed (Patent Document 5). Non-Patent Document 1 describes a method of using a buffer containing about 0.5 M ammonium sulfate in order to promote chemical bonding between an epoxy group and an antibody.

特開平9−95474号公報JP-A-9-95474 特開平9−95586号公報JP-A-9-95586 特開平11−222470号公報JP-A-11-222470 特開2007−130194号公報JP 2007-130194 A 特開2008−128854号公報JP 2008-128854 A

Wheatly JB, et. al., J Chromatogr A. 849(1):1−12(1999).Wheatly JB, et. al. , J Chromatogr A .; 849 (1): 1-12 (1999).

上述のように、細胞分離材に限らず、血液中から選択的に目的物質を除去又は回収する選択的分離材を製造する場合には、分離材からのリガンドの漏出が極めて少ないといった安全性が重要である。つまり、リガンドの固定化を化学結合でほぼ達成し、リガンドの物理的な結合を十分に低減させておく必要がある。また、選択的分離材においては、特定成分を選択的に吸着させるために、基材そのものに目的成分以外の成分の非特異的な吸着が起きない基材が望まれており、その解決策の一つとして、親水性ポリマーを高含有する基材の使用が挙げられる。   As described above, when producing a selective separation material that selectively removes or recovers a target substance from blood as well as the cell separation material, the safety of leakage of the ligand from the separation material is extremely small. is important. That is, it is necessary to substantially achieve the immobilization of the ligand by chemical bonding and sufficiently reduce the physical bonding of the ligand. Further, in the selective separation material, in order to selectively adsorb specific components, a substrate that does not cause nonspecific adsorption of components other than the target component to the substrate itself is desired. One example is the use of a substrate containing a high amount of hydrophilic polymer.

特許文献5に記載の方法では、臨床使用するためには抗体固定量が不十分である。非特許文献1に記載の方法は、親水性ポリマーを高含有する基材への化学固定方法としては応用できない。また、基材にリガンドを固定した後、親水性ポリマーで基材表面をコートする方法も実施されているが、この場合、コートされたポリマーが溶出するという問題、及びリガンドの性能が低下するという問題がある。   In the method described in Patent Document 5, the amount of antibody immobilized is insufficient for clinical use. The method described in Non-Patent Document 1 cannot be applied as a chemical fixing method to a substrate containing a high amount of hydrophilic polymer. Moreover, after fixing a ligand to a base material, the method of coating the base-material surface with a hydrophilic polymer is also implemented, but in this case, the problem that the coated polymer elutes and the performance of the ligand decreases. There's a problem.

さらに、選択的分離材においては、リガンドが目的物質と効率よく結合できるように、リガンドの配向を制御することも重要である。例えば、リガンドとして抗体を使用した場合、抗体のFc部が基材と結合し、抗原との結合部位であるFab部が基材表面から外に向かうように抗体が固定される必要がある。Fc部が基材表面から外に向かうように抗体が固定された場合、目的物質との結合効率が低下することに加え、Fc部への血小板の吸着及び補体の活性化が起こるといった問題が生じる。   Further, in the selective separation material, it is also important to control the orientation of the ligand so that the ligand can efficiently bind to the target substance. For example, when an antibody is used as a ligand, the antibody needs to be immobilized such that the Fc part of the antibody binds to the base material and the Fab part, which is a binding site with the antigen, faces outward from the base material surface. When the antibody is immobilized so that the Fc part is directed outward from the substrate surface, the efficiency of binding to the target substance is reduced, and in addition, there is a problem that platelet adsorption to the Fc part and complement activation occur. Arise.

抗体の配向を制御する方法として、ProteinG/A又ビオチン・アビジンを利用して、抗体のFc部と特異的に吸着させる方法が挙げられる。しかしながら、ProteinG/Aはヒト血中の抗体との親和性が高く、リガンドとして用いる抗体と血中の抗体とが置き換わるため臨床使用することはできない。また、ビオチン・アビジンを利用する場合においても、ビオチンとアビジンとの結合が化学結合ではないため、分離材からの抗体の漏れ出しの問題があり臨床使用はされていない。   As a method for controlling the orientation of the antibody, there is a method of specifically adsorbing with the Fc part of the antibody using Protein G / A or biotin / avidin. However, Protein G / A cannot be used clinically because it has a high affinity for antibodies in human blood and the antibody used as a ligand is replaced with an antibody in blood. Further, even when biotin / avidin is used, since the binding between biotin and avidin is not a chemical bond, there is a problem of leakage of the antibody from the separating material and it is not clinically used.

本発明者は、蛋白質や血球などの生体成分との非特異的相互作用が少ないなどの優れた生体適合性を有し、リガンドを強固に結合し、固定化したリガンドとの特異的相互作用に基づく高い吸着性能を発揮し得るリガンド固定化用基材として、水不溶性担体の少なくとも表面にCMBと求電子官能基を有する重合性モノマーとの共重合体が結合してなるリガンド固定化用基材がこの課題を解決できることを見出しており、本出願人によって特許出願を行っている(特願2010−083455号)。しかしながら、先願明細書には、固定化するリガンドの配向制御に関してまでは記載されておらず、リガンドの使用効率が更に高いものが望まれていた。また、先願明細書に記載されているモノマーの重合条件と完全に同じではないが、本発明者らがモノマーの共重合を行ったところ、基材表面のCMBモル組成比が高くなるにつれ、血小板吸着は抑制されるが、リガンドが固定化されにくくなり、目的の細胞を除去する能力が低下してしまうことが分かった。また、先願明細書に記載されたリガンド固定化方法では抗体の配向が制御できていないことも明らかとなっている(本願比較例4及び7等参照)。   The present inventor has excellent biocompatibility such as low non-specific interaction with biological components such as proteins and blood cells, and binds the ligand firmly and allows specific interaction with the immobilized ligand. Ligand immobilization base material comprising a copolymer of CMB and a polymerizable monomer having an electrophilic functional group bonded to at least the surface of a water-insoluble carrier as a base material for ligand immobilization capable of exhibiting high adsorption performance based on Have found that this problem can be solved, and the applicant has filed a patent application (Japanese Patent Application No. 2010-083455). However, the specification of the prior application did not describe the control of the orientation of the ligand to be immobilized, and a higher usage efficiency of the ligand was desired. Further, although not completely the same as the polymerization conditions of the monomers described in the specification of the prior application, when the present inventors copolymerized the monomers, as the CMB molar composition ratio of the substrate surface increases, Although platelet adsorption is suppressed, it has been found that the ligand becomes difficult to be immobilized and the ability to remove the target cells is reduced. It has also been clarified that the ligand immobilization method described in the specification of the prior application cannot control the orientation of the antibody (see Comparative Examples 4 and 7, etc. of the present application).

本発明は、上記実情に鑑みてなされたものであり、優れた生体適合性を有し、かつ、十分量の抗体が配向よく強固に化学結合した選択的分離材を提供することを目的とする。本発明はまた、優れた生体適合性を有し、かつ、十分量の抗体が配向よく強固に化学結合した選択的分離材の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a selective separation material having excellent biocompatibility and having a sufficient amount of antibodies chemically bonded with good orientation. . Another object of the present invention is to provide a method for producing a selective separation material having excellent biocompatibility and having a sufficient amount of antibodies chemically bonded with good orientation.

本発明は下記[1]〜[9]に関する。
[1]
水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーと、該ポリマーに結合した抗体とを有し、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60であり、
前記抗体の単位表面積あたりの固定量が1.50mg/m以上であり、かつ抗体配向性を示す抗Fab/抗Fc比率の値が6以上である、選択的分離材。
[2]
前記抗体の化学固定率が80%以上である、[1]に記載の選択的分離材。
[3]
前記親水性モノマーが、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン、スルホベタイン及びポリエチレングリコールモノメタクリレートからなる群より選択される1種以上である、[1]又は[2]に記載の選択的分離材。
[4]
前記疎水性モノマーが、下記一般式(1)で表される重合性モノマーである、[1]〜[3]のいずれかに記載の選択的分離材。

Figure 0005940788

[一般式(1)中、RはH又はCH、Rは求電子官能基を有する有機基を示す。]
[5]
前記求電子官能基がエポキシ基である、[4]に記載の選択的分離材。
[6]
前記水不溶性担体が、多孔膜又は粒子である、[1]〜[5]のいずれかに記載の選択的分離材。
[7]
血液の導入口及び導出口を有する容器と、
該容器の内部に充填された[1]〜[6]のいずれかに記載の選択的分離材と、を備える、血液処理器。
[8]
[1]〜[6]のいずれかに記載の選択的分離材の製造における抗体固定化用基材の使用であって、
前記抗体固定化用基材が、水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーと、を有し、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60である、前記使用。
[9]
水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーとを有する抗体固定化用基材に対し、濃度が0.6M以上のアンチカオトロピックイオンの存在下、酸性pHの条件下で抗体を結合させる工程を備え、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60である、[1]〜[6]のいずれかに記載の選択的分離材を製造する製造方法。 The present invention relates to the following [1] to [9].
[1]
A water-insoluble carrier, a polymer bound to at least the surface of the water-insoluble carrier, and an antibody bound to the polymer,
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all the structural units. ,
The selective separation material, wherein the fixed amount per unit surface area of the antibody is 1.50 mg / m 2 or more, and the anti-Fab / anti-Fc ratio value indicating antibody orientation is 6 or more.
[2]
The selective separation material according to [1], wherein the antibody has a chemical fixation rate of 80% or more.
[3]
The hydrophilic monomer is at least one selected from the group consisting of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, sulfobetaine and polyethylene glycol monomethacrylate [1] Or the selective separation material as described in [2].
[4]
The selective separation material according to any one of [1] to [3], wherein the hydrophobic monomer is a polymerizable monomer represented by the following general formula (1).
Figure 0005940788

[In General Formula (1), R 1 represents H or CH 3 , and R 2 represents an organic group having an electrophilic functional group. ]
[5]
The selective separation material according to [4], wherein the electrophilic functional group is an epoxy group.
[6]
The selective separation material according to any one of [1] to [5], wherein the water-insoluble carrier is a porous membrane or particles.
[7]
A container having a blood inlet and outlet, and
A blood treatment device comprising: the selective separation material according to any one of [1] to [6] filled in the container.
[8]
Use of the antibody immobilization substrate in the production of the selective separation material according to any one of [1] to [6],
The antibody immobilization substrate comprises a water-insoluble carrier and a polymer bound to at least the surface of the water-insoluble carrier;
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all structural units. , Said use.
[9]
An antibody is immobilized on an antibody immobilization substrate comprising a water-insoluble carrier and a polymer bound to at least the surface of the water-insoluble carrier in the presence of an antichaotropic ion having a concentration of 0.6 M or more under acidic pH conditions. Comprising the step of combining,
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all structural units. The manufacturing method which manufactures the selective separation material in any one of [1]-[6].

本発明によれば、優れた生体適合性を有し、かつ、十分量の抗体が配向よく強固に化学結合した選択的分離材を提供することができる。また、本発明によれば、優れた生体適合性を有し、かつ、十分量の抗体が配向よく強固に化学結合した選択的分離材の製造方法を提供することができる。   According to the present invention, it is possible to provide a selective separation material having excellent biocompatibility and having a sufficient amount of antibodies chemically bonded with good orientation. Moreover, according to the present invention, it is possible to provide a method for producing a selective separation material having excellent biocompatibility and having a sufficient amount of antibodies chemically bonded with good orientation.

一実施形態に係る選択的分離材の模式断面図である。It is a schematic cross section of the selective separation material according to an embodiment. 一実施形態に係る選択的分離材の模式断面図である。It is a schematic cross section of the selective separation material according to an embodiment. 一実施形態に係る血液処理器の模式断面図である。It is a schematic cross section of the blood processing apparatus which concerns on one Embodiment.

以下、本発明を実施形態に基づいて詳細に説明するが、本発明はこれらの実施形態に限定されるものではない。   Hereinafter, although this invention is demonstrated in detail based on embodiment, this invention is not limited to these embodiment.

本実施形態に係る選択的分離材は、水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーと、該ポリマーに結合した抗体とを有する。   The selective separation material according to this embodiment includes a water-insoluble carrier, a polymer bound to at least the surface of the water-insoluble carrier, and an antibody bound to the polymer.

〔水不溶性担体〕
本明細書において、水不溶性担体とは、水に溶けない担体を意味する。例えば、血液に接触した場合、血液中に溶け出さないものである。
(Water-insoluble carrier)
In the present specification, the water-insoluble carrier means a carrier that is insoluble in water. For example, when it comes into contact with blood, it does not dissolve in the blood.

本実施形態に係る水不溶性担体を形成する素材としては、天然高分子、合成高分子、再生高分子等の有機高分子化合物、ガラス及び金属に代表される無機化合物、さらに有機/無機ハイブリッド化合物等が挙げられるが特に限定されない。   Examples of the material forming the water-insoluble carrier according to the present embodiment include organic polymer compounds such as natural polymers, synthetic polymers, and regenerated polymers, inorganic compounds typified by glass and metal, and organic / inorganic hybrid compounds. There is no particular limitation.

加工性の面からは、有機高分子素材が特に好ましく、例えば、ポリアルキレンテレフタレート類、ポリカーボネート類、ポリウレタン類、ポリ(メタ)アクリル酸エステル類、ポリアクリロニトリル、ポリビニルアルコール、エチレン/ビニルアルコール共重合体(エバール)、エチレン/ビニルアセテート共重合体、ポリビニルアセタール、ポリスチレン、ポリスルホン類、セルロース及びセルロース誘導体類、ポリフェニレンエーテル類、ポリエチレン、ポリプロピレン、ポリフッ化ビニル、ポリ塩化ビニル、ポリフッ化ビニリデン等、及びこれらを構成するモノマーの共重合体、更には上記高分子の1種又は2種以上のアロイ及びブレンド等が挙げられる。   From the viewpoint of workability, organic polymer materials are particularly preferred. For example, polyalkylene terephthalates, polycarbonates, polyurethanes, poly (meth) acrylates, polyacrylonitrile, polyvinyl alcohol, ethylene / vinyl alcohol copolymers (Eval), ethylene / vinyl acetate copolymer, polyvinyl acetal, polystyrene, polysulfones, cellulose and cellulose derivatives, polyphenylene ethers, polyethylene, polypropylene, polyvinyl fluoride, polyvinyl chloride, polyvinylidene fluoride, and the like. Examples thereof include a copolymer of monomers, and one or more alloys and blends of the above polymers.

水不溶性担体としては、医療用分離材(医療用吸着材)の担体として周知のもの全てを使用できるが、多孔膜又は粒子が好ましく、多孔質粒子、不織布又は中空糸膜が体外循環時の体液の流通性に優れるためより好ましい。また、目的吸着成分が細胞である場合は、不織布又は粒子が好ましい。なお、以下、目的吸着成分が細胞である場合の選択的分離材を、特に「細胞選択分離材」ともいう。   As the water-insoluble carrier, all known carriers for medical separation materials (medical adsorbents) can be used, but porous membranes or particles are preferred, and porous particles, nonwoven fabrics, or hollow fiber membranes are body fluids during extracorporeal circulation. It is more preferable because of its excellent flowability. Moreover, when a target adsorption component is a cell, a nonwoven fabric or particle | grains are preferable. Hereinafter, the selective separation material when the target adsorption component is a cell is also referred to as “cell selective separation material”.

多孔膜としては、これらの素材から得られる繊維状物(中実繊維及び中空繊維)を用いて製造される不織布、織布、編布及びメッシュ等が挙げられる。また、有機高分子素材又は無機高分子素材を、熱溶融した状態、溶媒によって溶解した溶液状態、可塑剤を用いて可塑化した状態等から、発泡法、相分離法(熱誘起相分離法や湿式相分離法)、延伸法及び焼結法等によって得ることができるシート状膜(平膜)及び空糸膜も使用できる。   Examples of the porous membrane include non-woven fabrics, woven fabrics, knitted fabrics, and meshes manufactured using fibrous materials (solid fibers and hollow fibers) obtained from these materials. In addition, from the state in which an organic polymer material or an inorganic polymer material is thermally melted, in a solution state dissolved with a solvent, or in a state of plasticization with a plasticizer, a foaming method, a phase separation method (thermally induced phase separation method or A sheet-like membrane (flat membrane) and an empty fiber membrane that can be obtained by a wet phase separation method), a stretching method, a sintering method, or the like can also be used.

多孔膜においては、連通孔を有し、連通孔の少なくとも表面部分に存在するアフィニティーリガンドとの接触によって目的成分が吸着されるのであればどのような構造であっても構わない。連通孔とは、支持多孔膜の一方の膜面から反対側の膜面にかけて連通した孔のことであって、その連通孔を通して液体が通過するとこができるのであれば、その孔の膜表面の形状や膜内部の構造はどのようなものであってもよい。   The porous membrane may have any structure as long as it has communication holes and the target component is adsorbed by contact with an affinity ligand present on at least the surface portion of the communication holes. The communication hole is a hole communicating from one membrane surface of the support porous membrane to the opposite membrane surface, and if the liquid can pass through the communication hole, the pore surface of the membrane The shape and the structure inside the film may be anything.

特に、細胞選択分離材の場合に好ましいものとしては、細胞浮遊液の透過性、及び細胞捕捉性の観点から、各種繊維状物から製造される不織布、織布、編布及びメッシュ等が挙げられ、特に不織布は好ましく用いられる多孔膜である。不織布形状の場合、その平均繊維径(平均繊維直径)は0.1μm〜50μmが好ましい。さらに平均繊維径は0.5μm〜40μmであることが好ましく、1μm〜30μmであることがより好ましく、1μm〜20μmであることが更に好ましく、2μm〜10μmであることが更により好ましい。平均繊維径が0.1μm未満であると、細胞選択分離材の機械的強度が低下しやすい。また50μmを超えると吸着表面積が小さくなり細胞捕捉性が低下しやすい。   In particular, in the case of a cell selective separation material, preferred are nonwoven fabrics, woven fabrics, knitted fabrics, meshes and the like manufactured from various fibrous materials from the viewpoint of permeability of cell suspension and cell trapping properties. In particular, a nonwoven fabric is a porous film that is preferably used. In the case of a nonwoven fabric shape, the average fiber diameter (average fiber diameter) is preferably 0.1 μm to 50 μm. Furthermore, the average fiber diameter is preferably 0.5 μm to 40 μm, more preferably 1 μm to 30 μm, still more preferably 1 μm to 20 μm, and even more preferably 2 μm to 10 μm. When the average fiber diameter is less than 0.1 μm, the mechanical strength of the cell selective separation material tends to decrease. On the other hand, if it exceeds 50 μm, the adsorption surface area becomes small and the cell trapping property tends to decrease.

粒子は目的吸着成分によって、無孔質又は多孔質を選択すればよい。また、多孔質においては、目的吸着成分によって、その孔径を選択すればよい。平均粒径は、25μm以上2500μm以下のものを利用できるが、その比表面積(分離材としての吸着能力)と体液の流通性を考慮すると、50μm以上1500μm以下のものが好ましい。   The particles may be nonporous or porous depending on the target adsorption component. In the case of a porous material, the pore size may be selected depending on the target adsorption component. An average particle diameter of 25 μm or more and 2500 μm or less can be used, but in view of its specific surface area (adsorption ability as a separating material) and fluidity of body fluid, a particle diameter of 50 μm or more and 1500 μm or less is preferable.

〔ポリマー〕
本実施形態に係るポリマーは、親水性モノマーと疎水性モノマーとの共重合体である。共重合体は、ランダム共重合体、ブロック共重合体、周期的共重合体及び交互共重合体のいずれであってもよい。
〔polymer〕
The polymer according to this embodiment is a copolymer of a hydrophilic monomer and a hydrophobic monomer. The copolymer may be any of a random copolymer, a block copolymer, a periodic copolymer, and an alternating copolymer.

<親水性モノマー>
本明細書において、「親水性モノマー」とは、重合性官能基(例えば、炭素−炭素二重結合等の不飽和結合を有する官能基)及び親水性官能基を有するモノマーを意味する。親水性官能基は、水分子との間で水素結合を形成可能な官能基であればよく、例えば、ヒドロキシル基、カルボキシル基、アミノ基、アルキレングリコール残基、ベタイン基が挙げられる。親水性官能基は、好ましくは、水中で電離し、正又は負に帯電する官能基である。
<Hydrophilic monomer>
In the present specification, the “hydrophilic monomer” means a monomer having a polymerizable functional group (for example, a functional group having an unsaturated bond such as a carbon-carbon double bond) and a hydrophilic functional group. The hydrophilic functional group may be any functional group that can form a hydrogen bond with a water molecule, and examples thereof include a hydroxyl group, a carboxyl group, an amino group, an alkylene glycol residue, and a betaine group. The hydrophilic functional group is preferably a functional group that is ionized in water and positively or negatively charged.

親水性モノマーとしては、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン(CMB)、スルホベタイン及びポリエチレングリコールモノメタクリレートからなる群より選択される1種以上であることが好ましい。中でも、抗体の配向性により優れるため、親水性モノマーとしては、下記式(2)で表されるCMBがより好ましい。

Figure 0005940788
The hydrophilic monomer is at least one selected from the group consisting of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (CMB), sulfobetaine and polyethylene glycol monomethacrylate. Is preferred. Among these, CMB represented by the following formula (2) is more preferable as the hydrophilic monomer because it is superior in the orientation of the antibody.
Figure 0005940788

CMBは、例えば、特開平9−95474号公報、特開平9−95586号公報、特開平11−222470号公報などに記載されている方法により、容易に高純度で調製することができる。   CMB can be easily prepared with high purity by the methods described in JP-A-9-95474, JP-A-9-95586, JP-A-11-222470, and the like.

<疎水性モノマー>
本明細書において、「疎水性モノマー」とは、重合性官能基(例えば、炭素−炭素二重結合等の不飽和結合を有する官能基)及び求電子官能基を有するモノマーを意味する。好ましくは、親水性官能基を有しないモノマーである。求電子官能基とは求電子的に反応する官能基を意味し、求電子官能基の具体例としては、例えば、エポキシ基、イソシアネート基又はアルデヒド基が挙げられる。
<Hydrophobic monomer>
In the present specification, the “hydrophobic monomer” means a monomer having a polymerizable functional group (for example, a functional group having an unsaturated bond such as a carbon-carbon double bond) and an electrophilic functional group. A monomer having no hydrophilic functional group is preferable. The electrophilic functional group means a functional group that reacts electrophilically, and specific examples of the electrophilic functional group include an epoxy group, an isocyanate group, and an aldehyde group.

疎水性モノマーとしては、下記一般式(1)で表される重合性モノマーが好ましい。

Figure 0005940788

一般式(1)中、RはH又はCH、Rは求電子官能基を有する有機基を示す。 As the hydrophobic monomer, a polymerizable monomer represented by the following general formula (1) is preferable.
Figure 0005940788

In general formula (1), R 1 represents H or CH 3 , and R 2 represents an organic group having an electrophilic functional group.

求電子官能基としてエポキシ基を分子内に有する重合性モノマーとしては、特に限定されないが、グリシジルアクリレート、グリシジルメタクリレート、グリシジルアクリルアミド、アリルグリシジルエーテル、メタクリルグリシジルエーテル、グリシジルソルベート、グリシジルメタイタコナート、エチルグリシジルマレアート、グリシジルビニルスルホナート等を例示でき、求電子官能基としてイソシアネート基を分子内に有する重合性モノマーとしては、アクリロイルオキシエチルイソシアネート、アクリロイルオキシメチルイソシアネート、アクリロイルイソシアネート、メタクリロイルイソシアネート、メタクリロイルエチルイソシアネート等を例示でき、さらに、求電子官能基としてアルデヒド基を分子内に有する重合性モノマーとしては、シンナムアルデヒド、クロトンアルデヒド、アクロレイン、メタクロレイン等を例示できるが、この中でも入手の容易さ、コスト、取り扱いの容易さから、求電子官能基としてエポキシ基を分子内に有する重合性モノマーが好ましく、その中でも特にグリシジルメタクリレートが好ましい。   The polymerizable monomer having an epoxy group in the molecule as an electrophilic functional group is not particularly limited, but glycidyl acrylate, glycidyl methacrylate, glycidyl acrylamide, allyl glycidyl ether, methacryl glycidyl ether, glycidyl sorbate, glycidyl metaitaconate, ethyl Examples thereof include glycidyl maleate and glycidyl vinyl sulfonate, and the polymerizable monomers having an isocyanate group as an electrophilic functional group in the molecule include acryloyloxyethyl isocyanate, acryloyloxymethyl isocyanate, acryloyl isocyanate, methacryloyl isocyanate, methacryloyl ethyl isocyanate. A polymerizable monomer having an aldehyde group in the molecule as an electrophilic functional group Examples thereof include cinnamaldehyde, crotonaldehyde, acrolein, methacrolein, etc. Among them, a polymerizable monomer having an epoxy group as an electrophilic functional group in the molecule because of availability, cost, and ease of handling. Among them, glycidyl methacrylate is particularly preferable.

<ポリマー>
本実施形態に係るポリマーは、優れた生体適合性を発揮するという観点から、親水性モノマーに由来する構造単位のモル組成比が、親水性モノマーに由来する構造単位及び疎水性モノマーに由来する構造単位の合計(すなわち、全構造単位)に対して、0.30〜0.60であればよい。このモル組成比が0.30未満であると、ポリマーの疎水性が高くなりすぎて、タンパク質及び血球等の生体成分の非特異的吸着が増加する傾向にある。一方、このモル組成比が0.60を超えると、抗体の結合量が低下する傾向にある。上記モル組成比は、好ましくは0.30〜0.50であり、より好ましくは0.40〜0.50である。
<Polymer>
From the viewpoint that the polymer according to the present embodiment exhibits excellent biocompatibility, the molar composition ratio of the structural unit derived from the hydrophilic monomer is a structure derived from the structural unit derived from the hydrophilic monomer and the hydrophobic monomer. What is necessary is just 0.30-0.60 with respect to the sum total (namely, all structural units). When this molar composition ratio is less than 0.30, the hydrophobicity of the polymer becomes too high, and nonspecific adsorption of biological components such as proteins and blood cells tends to increase. On the other hand, when the molar composition ratio exceeds 0.60, the amount of antibody binding tends to decrease. The molar composition ratio is preferably 0.30 to 0.50, and more preferably 0.40 to 0.50.

親水性モノマーに由来する構造単位とは、例えば、親水性ポリマーがCMBである場合、以下の構造単位を意味する。

Figure 0005940788

「*」は他の構造単位との結合を示す。
また、疎水性モノマーに由来する構造単位とは、例えば、疎水性ポリマーが上記一般式(1)で表される重合性モノマーである場合、以下の構造単位を意味する。
Figure 0005940788

「*」は他の構造単位との結合を示す。 The structural unit derived from the hydrophilic monomer means, for example, the following structural unit when the hydrophilic polymer is CMB.
Figure 0005940788

“*” Represents a bond with another structural unit.
Moreover, the structural unit derived from a hydrophobic monomer means the following structural units, for example, when a hydrophobic polymer is a polymerizable monomer represented by the general formula (1).
Figure 0005940788

“*” Represents a bond with another structural unit.

親水性ポリマーがCMBであり、疎水性ポリマーが上記一般式(1)で表される重合性モノマーである場合、ポリマーは下記一般式(2)で表すことができる。

Figure 0005940788

[一般式(2)中、n及びmは正の整数を示し、m/(n+m)の値は0.30以上0.60以下である。また、一般式(2)中、RはH又はCH、Rは求電子官能基を有する有機基、R
Figure 0005940788

を示す。] When the hydrophilic polymer is CMB and the hydrophobic polymer is a polymerizable monomer represented by the general formula (1), the polymer can be represented by the following general formula (2).
Figure 0005940788

[In general formula (2), n and m show a positive integer, and the value of m / (n + m) is 0.30 or more and 0.60 or less. In the general formula (2), R 1 is H or CH 3 , R 2 is an organic group having an electrophilic functional group, and R 3 is
Figure 0005940788

Indicates. ]

上述した水不溶性担体の少なくとも表面にポリマー(共重合体)がどのような様式で結合しているかは特に限定されず、共有結合、配位結合、イオン結合及び水素結合等の化学結合であれば、いずれの結合様式であってもよい。中でも、ポリマーの溶出が十分に低減されることから、共有結合であることが好ましい。   The manner in which the polymer (copolymer) is bonded to at least the surface of the water-insoluble carrier is not particularly limited as long as it is a chemical bond such as a covalent bond, a coordinate bond, an ionic bond, and a hydrogen bond. Any binding mode may be used. Among these, a covalent bond is preferable because elution of the polymer is sufficiently reduced.

水不溶性担体へのポリマーの結合方法としては、グラフト法及び不溶化沈殿法等、あらゆる公知の方法を用いることができる。したがって、高分子化合物又はそのモノマーを放射線又はプラズマ等を用いてグラフト重合する、又は共有結合する等の公知の方法により表面改質を施す方法(特開平1−249063号公報、特開平3−502094号公報)を好適に用いることができる。   As a method for bonding the polymer to the water-insoluble carrier, any known method such as a graft method and an insolubilized precipitation method can be used. Therefore, a method of performing surface modification by a known method such as graft polymerization of a polymer compound or a monomer thereof using radiation or plasma, or covalent bonding (Japanese Patent Laid-Open Nos. 1-249063 and 3-502094). Can be suitably used.

放射線照射グラフト重合法を用いる場合、種々の公知の方法を利用することができる。例えば、担体上に活性点を導入するための電離性放射線は、α線、β線、γ線、加速電子線、X線及び紫外線等が挙げられるが、実用的には加速電子線又はγ線が好ましい。加速電子線又はγ線の照射量は担体の性質、重合性モノマー(親水性モノマー及び疎水性モノマー)の性質、及びポリマーの固定量等により任意に変えることができるが、10kGyから200kGyが好ましい。水不溶性担体と重合性モノマーをグラフト重合させる方法としては、水不溶性担体と重合性モノマーの共存下で放射線を照射する同時照射法と、水不溶性担体のみに予め放射線を照射した後、重合性モノマーと水不溶性担体とを接触させる前照射法のいずれも使用可能であるが、前照射法が、グラフト重合以外の副反応を生成しにくいため好ましい。重合性モノマー濃度は通常1質量%以上20質量%以下、反応温度は5℃以上40℃以下の範囲で、重合性モノマーと水不溶性担体との反応を行うことができるが、この範囲に限定されるものではなく、適宜設定してよい。重合性モノマーと水不溶性担体との反応の際の溶媒は、無溶媒又は水、メタノール、エタノール、その他アルコール若しくはアセトン等の溶媒若しくはそれらの混合溶媒で、重合性モノマーが溶解、分散するものであれば用いることができる。また、放射線照射グラフト重合法を用いる場合、水不溶性担体への共重合体のグラフト率(G)は5%以上300%以下が好ましく、20%以上200%以下がさらに好ましく、50%以上150%以下が特に好ましい。グラフト率が5%未満であると、水不溶性担体表面のグラフト鎖による被覆が不十分となりやすく、水不溶性担体表面の改質が不十分となるおそれや、リガンド(抗体)の固定化量が不十分となるおそれがある。またグラフト率が300%を超えると、水不溶性担体自体の物理特性が失われるおそれがあり、分離材の設計上好ましくない。   When the radiation irradiation graft polymerization method is used, various known methods can be used. For example, examples of the ionizing radiation for introducing the active site on the carrier include α rays, β rays, γ rays, accelerated electron rays, X rays, and ultraviolet rays. Is preferred. The irradiation amount of the accelerated electron beam or γ-ray can be arbitrarily changed depending on the nature of the carrier, the nature of the polymerizable monomer (hydrophilic monomer and hydrophobic monomer), the amount of the fixed polymer, and the like, but preferably 10 kGy to 200 kGy. As a method for graft polymerization of a water-insoluble carrier and a polymerizable monomer, a simultaneous irradiation method in which radiation is irradiated in the coexistence of a water-insoluble carrier and a polymerizable monomer, or irradiation of only a water-insoluble carrier in advance, and then a polymerizable monomer Any of the pre-irradiation methods in which a water-insoluble carrier is brought into contact with each other can be used, but the pre-irradiation method is preferable because it hardly generates a side reaction other than graft polymerization. The polymerizable monomer concentration is usually 1% by mass or more and 20% by mass or less, and the reaction temperature is in the range of 5 ° C. or more and 40 ° C. or less. The reaction between the polymerizable monomer and the water-insoluble carrier can be carried out, but is limited to this range. It may be set appropriately. The solvent for the reaction between the polymerizable monomer and the water-insoluble carrier may be a solvent-free solvent such as water, methanol, ethanol, other alcohol or acetone, or a mixed solvent thereof, in which the polymerizable monomer is dissolved and dispersed. Can be used. When using the radiation irradiation graft polymerization method, the graft ratio (G) of the copolymer to the water-insoluble carrier is preferably 5% to 300%, more preferably 20% to 200%, and more preferably 50% to 150%. The following are particularly preferred: If the graft ratio is less than 5%, the surface of the water-insoluble carrier is likely to be insufficiently coated with the graft chains, and the surface of the water-insoluble carrier may not be sufficiently modified, and the amount of ligand (antibody) immobilized may be insufficient. May be sufficient. On the other hand, if the graft ratio exceeds 300%, the physical properties of the water-insoluble carrier itself may be lost, which is not preferable in designing the separating material.

なお、ここにいうグラフト率(G)は、下記式(4)で表される値である。
G(%)=[(グラフト後水不溶性担体重量−グラフト前水不溶性担体重量)/(グラフト前水不溶性担体重量)]×100 (4)
The graft ratio (G) referred to here is a value represented by the following formula (4).
G (%) = [(weight of water-insoluble carrier after grafting−weight of water-insoluble carrier before grafting) / (weight of water-insoluble carrier before grafting)] × 100 (4)

重合反応後は、過剰の重合性モノマーや連鎖移動反応によって生成したグラフトされていないポリマーを適当な溶剤にて十分洗浄除去すればよい。   After the polymerization reaction, the excess polymerizable monomer and the ungrafted polymer produced by the chain transfer reaction may be sufficiently washed away with a suitable solvent.

〔抗体固定化用基材〕
上述した水不溶性担体の少なくとも表面に上述したポリマーが結合した基材は、抗体(リガンド)固定化用基材として、好適に用いることができる。本実施形態に係る抗体固定化用基材は、疎水性ポリマーに由来する構造単位中の求電子官能基と抗体との間で共有結合させて抗体を固定することができる。
[Base material for antibody immobilization]
A substrate in which the above-described polymer is bonded to at least the surface of the above-described water-insoluble carrier can be suitably used as an antibody (ligand) immobilization substrate. The antibody immobilization substrate according to this embodiment can immobilize an antibody by covalent bonding between an electrophilic functional group in a structural unit derived from a hydrophobic polymer and the antibody.

求電子官能基としてエポキシ基を有する不織布型の抗体固定化用基材は、細胞選択分離材の製造には非常に有効である。グリシジルメタクリレートやその誘導体(エポキシ基とエステル基を結ぶメチレン基の数が2〜5のもの)を放射線照射グラフト重合法にて不織布(例えば、ポリエチレンやポリプロピレン不織布)へ固定化する方法でエポキシ基を導入したものは、これに抗体を固定化した場合は、抗体が有する本来の高いアフィニティーを問題なく発現して目的細胞を十分に捕捉する細胞選択分離材を得ることができる。   Nonwoven fabric type antibody immobilization substrates having an epoxy group as an electrophilic functional group are very effective in the production of cell selective separation materials. An epoxy group is formed by immobilizing glycidyl methacrylate or a derivative thereof (having 2 to 5 methylene groups connecting an epoxy group and an ester group) on a nonwoven fabric (for example, polyethylene or polypropylene nonwoven fabric) by a radiation-induced graft polymerization method. When the antibody is immobilized on the introduced one, a cell selective separation material that expresses the original high affinity of the antibody without any problem and sufficiently captures the target cell can be obtained.

〔抗体〕
本実施形態に係る選択的分離材に用いられる抗体は、求電子官能基と化学結合するものであれば特に制限されない。抗体としては、具体的には例えば、マウス抗体、ウサギ抗体、ヒツジ抗体、ヤギ抗体、ラット抗体、ハムスター抗体、ブタ抗体、ウシ抗体及びヒト抗体並びにこれらのキメラ抗体を挙げることができる。また、抗体が有する重鎖又は軽鎖の可変領域の相補性決定領域を形成しうるアミノ酸配列を有するF(ab’)、Fab、Fab’、及びその他ペプチド又はその修飾ペプチド型のリガンドであってもよい。
〔antibody〕
The antibody used for the selective separation material according to the present embodiment is not particularly limited as long as it is chemically bonded to the electrophilic functional group. Specific examples of antibodies include mouse antibodies, rabbit antibodies, sheep antibodies, goat antibodies, rat antibodies, hamster antibodies, pig antibodies, bovine antibodies, human antibodies, and chimeric antibodies thereof. Further, it is a ligand of F (ab ′) 2 , Fab, Fab ′, and other peptides or modified peptides thereof having an amino acid sequence capable of forming the complementarity determining region of the variable region of the heavy chain or light chain of the antibody. May be.

〔選択的分離材〕
図1は、一実施形態に係る選択的分離材の模式図である。図1に示す選択的分離材100は、水不溶性担体1と、水不溶性担体1の少なくとも表面に結合した、親水性モノマー及び疎水性モノマーの共重合体(ポリマー)2と、を備える。共重合体2は、ポリマー主鎖10の末端で水不溶性担体1と結合しており、選択的分離材100の表面に、親水性モノマーに由来する親水性基20及び疎水性モノマーに由来する求電子官能基30を呈している。求電子官能基30には、抗体40が結合している。
[Selective separator]
FIG. 1 is a schematic view of a selective separation material according to an embodiment. A selective separating material 100 shown in FIG. 1 includes a water-insoluble carrier 1 and a copolymer (polymer) 2 of a hydrophilic monomer and a hydrophobic monomer bonded to at least the surface of the water-insoluble carrier 1. The copolymer 2 is bonded to the water-insoluble carrier 1 at the end of the polymer main chain 10, and the hydrophilic group 20 derived from the hydrophilic monomer and the hydrophobic monomer derived from the hydrophobic monomer are formed on the surface of the selective separation material 100. An electronic functional group 30 is present. The antibody 40 is bound to the electrophilic functional group 30.

図2は、他の実施形態に係る選択的分離材の模式図である。図2に示す選択的分離材110は、共重合体2と水不溶性担体1とが、ポリマー主鎖10に相当する部分を介して結合している。なお、共重合体2と水不溶性担体1との間の結合は、図1に示すようにポリマー主鎖10の末端を介する結合、又は図2に示すようにポリマー主鎖10の全体を介する結合のみならず、ポリマー主鎖10の一部を介して結合していればよい。   FIG. 2 is a schematic view of a selective separation material according to another embodiment. In the selective separating material 110 shown in FIG. 2, the copolymer 2 and the water-insoluble carrier 1 are bonded through a portion corresponding to the polymer main chain 10. The bond between the copolymer 2 and the water-insoluble carrier 1 is a bond through the end of the polymer main chain 10 as shown in FIG. 1, or a bond through the entire polymer main chain 10 as shown in FIG. Not only that, it is only necessary that they are bonded via a part of the polymer main chain 10.

本実施形態に係る選択的分離材は、単位表面積あたりの抗体の固定量が1.50mg/m以上であり、1.70mg/m以上であることが好ましく、2.00mg/m以上であることがより好ましい。固定量の上限には特に制限はないが、通常2.50mg/m以下である。本実施形態に係る選択的分離材は、抗体の化学固定率が80%以上であることが好ましく、90%以上であることがより好ましい。抗体の化学固定率は、選択的分離材を2%ドデシル硫酸ナトリウム(以下「SDS」という。)で洗浄する前後における単位表面積あたりの抗体の固定量から求めることができる。 Selective separation material according to the present embodiment, a fixed amount of antibody per unit surface area of the 1.50 mg / m 2 or more, preferably 1.70mg / m 2 or more, 2.00 mg / m 2 or more It is more preferable that Although there is no restriction | limiting in particular in the upper limit of fixed amount, Usually, it is 2.50 mg / m < 2 > or less. The selective separation material according to this embodiment preferably has an antibody chemical fixation rate of 80% or more, and more preferably 90% or more. The antibody chemical immobilization rate can be determined from the amount of antibody immobilized per unit surface area before and after washing the selective separation material with 2% sodium dodecyl sulfate (hereinafter referred to as “SDS”).

本実施形態に係る選択的分離材は、抗体配向性を示す抗Fab/抗Fc比率の値が6以上であり、6.5以上であることが好ましく、7以上であることがより好ましい。抗Fab/抗Fc比率の値の上限には特に制限はないが、通常10以下である。なお、抗Fab/抗Fc比率の値は、選択的分離材への抗Fab抗体の結合量と、抗Fc抗体の結合量との比を意味しており、この値が大きいほど抗Fab抗体の結合量の方が多いことを意味している。すなわち、選択的分離材に固定された抗体のうち、抗原と結合可能なFab部分が基材表面から外へ向かう配向で固定された抗体の割合が高いことを意味している。   In the selective separation material according to the present embodiment, the anti-Fab / anti-Fc ratio value indicating antibody orientation is 6 or more, preferably 6.5 or more, and more preferably 7 or more. The upper limit of the anti-Fab / anti-Fc ratio value is not particularly limited, but is usually 10 or less. The value of the anti-Fab / anti-Fc ratio means the ratio of the binding amount of the anti-Fab antibody to the selective separation material and the binding amount of the anti-Fc antibody. This means that the amount of binding is greater. That is, among the antibodies immobilized on the selective separation material, it means that the ratio of antibodies in which the Fab portion capable of binding to the antigen is immobilized in an orientation outward from the substrate surface is high.

本実施形態に係る選択的分離材は、血液又は血漿中のタンパク質、細胞(例えば、白血球及び血小板)を特異的に吸着して分離することができる。そのため、本実施形態に係る選択的分離材は、血液浄化用として、又は血液浄化用吸着材としても好適に使用することができる。   The selective separation material according to this embodiment can specifically adsorb and separate proteins and cells (for example, leukocytes and platelets) in blood or plasma. Therefore, the selective separation material according to the present embodiment can be suitably used for blood purification or as an adsorbent for blood purification.

〔選択的分離材の製造方法〕
本実施形態に係る選択的分離材の製造方法は、上述した抗体固定化用基材に対し、濃度が0.6M以上と高濃度のアンチカオトロピックイオンの存在下、かつ酸性pHの条件下で抗体を結合させる工程を少なくとも備える。抗体固定化用基材と抗体との結合は、疎水性ポリマーに由来する構造単位中の求電子官能基と抗体との間の共有結合により行われる。
[Method for producing selective separating material]
The method for producing a selective separation material according to the present embodiment is an antibody in the presence of an anti-chaotropic ion having a high concentration of 0.6 M or higher and an acidic pH with respect to the antibody immobilization substrate described above. At least the step of bonding. The antibody immobilization substrate and the antibody are bound by a covalent bond between the electrophilic functional group in the structural unit derived from the hydrophobic polymer and the antibody.

抗体を基材に固定化する方法として、抗体と基材(疎水性)との疎水性相互作用を高める目的でアンチカオトロピックイオン強度の高い塩が使用されることがある。例えば、非特許文献1では、エポキシ基への抗体固定の際に0.5M程度の比較的低濃度の硫酸アンモニウムが使用されている。また、特許文献5には、親水性ポリマーを含有した基材へ抗体を固定化させる方法として、1M程度のリン酸水素二カリウムを含有する溶液を使用することが記載されている。さらに、pHを下げることで、抗体のFc部の疎水度を高めることができるとの報告もある(Clinical Chemistry,36巻,492−496頁,1990年)。しかしながら、親水性ポリマーを高含有する基材への抗体の化学固定方法として、塩濃度を高める、又はpHを下げるだけでは十分量の抗体が化学固定できないという問題があった。   As a method for immobilizing an antibody on a substrate, a salt having a high antichaotropic ionic strength may be used for the purpose of enhancing the hydrophobic interaction between the antibody and the substrate (hydrophobic). For example, in Non-Patent Document 1, a relatively low concentration of ammonium sulfate of about 0.5M is used when an antibody is immobilized on an epoxy group. Patent Document 5 describes the use of a solution containing about 1M dipotassium hydrogen phosphate as a method for immobilizing an antibody on a substrate containing a hydrophilic polymer. Furthermore, there is a report that the hydrophobicity of the Fc part of an antibody can be increased by lowering the pH (Clinical Chemistry, 36, 492-496, 1990). However, as a method for chemically immobilizing an antibody to a substrate containing a high amount of hydrophilic polymer, there is a problem that a sufficient amount of antibody cannot be chemically immobilized only by increasing the salt concentration or lowering the pH.

一般的にタンパク質はpH及び塩の影響を受けやすい。例えば、pH3以下の緩衝液では抗体が変性してしまい、リフォールディングできなくなるとの報告がある(Clinical Chemistry,36巻,492−496頁,1990年)。また、硫酸アンモニウム等のアンチカオトロピックイオンとしての強度の強い塩は濃度を高めすぎると、タンパク質が凝集・変性してしまうおそれがある。このような背景から、リガンドの固定化は、中性条件又はアルカリ条件下で行われるのが一般的である。例えば、リガンドをエポキシ基へと固定化する場合は、中性〜アルカリ性条件下で行われるのが一般的であり、リガンドをチオール基又はアミノ基へと固定化する場合は、中性条件下で行われるのが一般的である。すなわち、酸性条件下での固定化は推奨されていないのが現状であり、抗体の固定化は、抗体が失活する可能性のある、高塩濃度かつ低pHの条件下では行われてこなかった。   In general, proteins are sensitive to pH and salt. For example, it has been reported that an antibody is denatured and cannot be refolded in a buffer solution having a pH of 3 or less (Clinical Chemistry, 36, 492-496, 1990). In addition, if the concentration of a strong salt as an antichaotropic ion such as ammonium sulfate is too high, the protein may be aggregated or denatured. From such a background, the ligand is generally immobilized under neutral or alkaline conditions. For example, when immobilizing a ligand to an epoxy group, it is generally performed under neutral to alkaline conditions, and when immobilizing a ligand to a thiol group or an amino group, it is performed under neutral conditions. Generally done. In other words, immobilization under acidic conditions is not recommended at present, and antibody immobilization has not been performed under conditions of high salt concentration and low pH where the antibody may be inactivated. It was.

本実施形態に係る選択的分離材の製造方法によれば、親水性モノマーに由来する構造単位を高含有するポリマーへの化学固定量を増加させることができ、かつ抗体を配向よく固定化することが可能となる。この機構は必ずしも明らかではないが、本発明者らは、以下のように考えている。すなわち、高濃度のアンチカオトロピックイオンの存在下で酸性pHの条件下で抗体固定化用基材と抗体との結合を行うことにより、抗体固定化用基材と抗体との疎水性相互作用が向上し、親水性モノマーに由来する構造単位を高含有するポリマーへの化学固定量を増加させることができる。さらに、高濃度のアンチカオトロピックイオン及び酸性pHの影響により抗体の構造の中でもFc部の疎水度を高めることができ、抗体を配向よく抗体固定化用基材へと固定化することができる。一方、特許文献5に記載の方法では、1M程度のリン酸水素二カリウムを含有する溶液がpH8〜9と高pHの溶液であり、基材と抗体の反応としては、ニトロフェニルエステル基と抗体のアミノ酸中のN末端、又はランダムに存在するリシン側鎖のアミノ基とが結合していると考えられる。したがって、特許文献5に記載の固定化方法では、抗体の配向は向上していない。   According to the method for producing a selective separation material according to this embodiment, the amount of chemical immobilization to a polymer containing a high amount of structural units derived from hydrophilic monomers can be increased, and the antibody can be immobilized with good orientation. Is possible. Although this mechanism is not necessarily clear, the present inventors consider as follows. In other words, the hydrophobic interaction between the antibody immobilization substrate and the antibody is improved by binding the antibody immobilization substrate and the antibody under acidic pH conditions in the presence of a high concentration of anti-chaotropic ions. In addition, it is possible to increase the amount of chemical fixation to a polymer containing a high amount of structural units derived from hydrophilic monomers. Furthermore, the hydrophobicity of the Fc part can be increased in the structure of the antibody due to the influence of high concentration of antichaotropic ions and acidic pH, and the antibody can be immobilized on the antibody immobilization substrate with good orientation. On the other hand, in the method described in Patent Document 5, a solution containing about 1M dipotassium hydrogen phosphate is a solution having a pH of 8 to 9 and a high pH, and the reaction between the substrate and the antibody includes a nitrophenyl ester group and an antibody. It is considered that the N-terminal in the amino acid of the amino acid or the amino group of the lysine side chain which is present at random is bound. Therefore, in the immobilization method described in Patent Document 5, the orientation of the antibody is not improved.

<アンチカオトロピックイオン>
本実施形態に係る選択的分離材の製造方法では、高濃度のアンチカオトロピックイオンの存在下で抗体固定化用基材と抗体との結合を行う。
<Anti-chaotropic ion>
In the method for producing a selective separation material according to the present embodiment, the antibody immobilization substrate and the antibody are bound in the presence of a high concentration of antichaotropic ions.

アンチカオトロピックイオンは、一般に水分子との水素結合を強める作用を有しており、また疎水性相互作用を強化する作用がある。本実施形態に係る製造方法において、好適に使用することのできるアンチカオトロピックイオンとしては、例えば、PO 3−、SO 2−、CHCO 、NH 、K、Naが挙げられる。これらのアンチカオトロピックイオンは1種を単独で、又は2種以上を混合して用いてもよい。 Anti-chaotropic ions generally have a function of strengthening hydrogen bonds with water molecules, and a function of strengthening hydrophobic interactions. In the production method according to the present embodiment, examples of the antichaotropic ion that can be suitably used include PO 4 3− , SO 4 2− , CH 3 CO 2 , NH 4 + , K + , and Na +. Can be mentioned. These antichaotropic ions may be used alone or in combination of two or more.

アンチカオトロピックイオンを生じるアンチカオトロピック塩としては、例えば、リン酸アンモニウム、リン酸カリウム、リン酸ナトリウム、リン酸水素カリウム、リン酸水素二カリウム、リン酸水素ナトリウム、リン酸水素二ナトリウム、リン酸水素アンモニウム、リン酸二アンモニウム、リン酸二カリウム、リン酸二水素アンモニウム、リン酸二水素カリウム、リン酸二水素ナトリウム、硫酸アンモニウム、硫酸カリウム、硫酸ナトリウム、硫酸水素カリウム、硫酸水素二カリウム、硫酸水素ナトリウム、硫酸水素二ナトリウム、硫酸水素アンモニウム、硫酸二水素アンモニウム、硫酸二水素カリウム、硫酸二水素ナトリウム、酢酸アンモニウム、酢酸カリウム、酢酸ナトリウム、酢酸水素カリウム、酢酸水素二カリウム、酢酸水素ナトリウム、酢酸水素二ナトリウム、酢酸水素アンモニウム、酢酸二水素アンモニウム、酢酸二水素カリウム、酢酸二水素ナトリウム等が挙げられる。これらのアンチカオトロピック塩は1種を単独で、又は2種以上を混合して用いてもよい。   Examples of the anti-chaotropic salt that generates anti-chaotropic ions include, for example, ammonium phosphate, potassium phosphate, sodium phosphate, potassium hydrogen phosphate, dipotassium hydrogen phosphate, sodium hydrogen phosphate, disodium hydrogen phosphate, hydrogen phosphate Ammonium, diammonium phosphate, dipotassium phosphate, ammonium dihydrogen phosphate, potassium dihydrogen phosphate, sodium dihydrogen phosphate, ammonium sulfate, potassium sulfate, sodium sulfate, potassium hydrogen sulfate, dipotassium hydrogen sulfate, sodium hydrogen sulfate , Disodium hydrogen sulfate, ammonium hydrogen sulfate, ammonium dihydrogen sulfate, potassium dihydrogen sulfate, sodium dihydrogen sulfate, ammonium acetate, potassium acetate, sodium acetate, potassium hydrogen acetate, dipotassium hydrogen acetate, sodium hydrogen acetate Um, sodium hydrogen acetate disodium, acid ammonium hydrogen acetate dihydrogen ammonium, potassium acetate dihydrogen acetate dihydrogen sodium, and the like. These antichaotropic salts may be used alone or in combination of two or more.

アンチカオトロピックイオンの濃度は、0.6M以上であることが好ましく、1M以上であることがより好ましい。また、アンチカオトロピックイオンの濃度の上限には特に制限はないが、通常2M以下である。   The concentration of the antichaotropic ion is preferably 0.6M or more, and more preferably 1M or more. Moreover, although there is no restriction | limiting in particular in the upper limit of the density | concentration of an antichaotropic ion, Usually, it is 2M or less.

<pH>
本実施形態に係る選択的分離材の製造方法では、酸性pH条件下で抗体固定化用基材と抗体との結合を行う。pHとしては、2.6〜6.0であることが好ましい。また、3.0〜5.0であることがより好ましく、3.0〜4.0であることが更に好ましい。
<PH>
In the method for producing a selective separation material according to this embodiment, the antibody immobilization substrate and the antibody are bound under acidic pH conditions. The pH is preferably 2.6 to 6.0. Moreover, it is more preferable that it is 3.0-5.0, and it is still more preferable that it is 3.0-4.0.

〔血液処理器〕
本実施形態に係る血液処理器は、内部に血液を導入するための入口(導入口)と、内部の血液を外部に排出するための出口(導出口)とを有する容器と、容器の内部に充填された上記選択的分離材とを備えるものである。上記選択的分離材が選択的にターゲット成分を吸着することができるため、例えば、血液から特定の成分を除去する目的に好ましく利用することができる。具体的には、直接血液灌流用の血液成分吸着器や特異的細胞吸着器等が挙げられる。
[Blood processor]
The blood processing apparatus according to the present embodiment includes a container having an inlet (inlet port) for introducing blood into the inside and an outlet (outlet port) for discharging the blood inside to the outside, And the above-mentioned selective separation material filled. Since the selective separation material can selectively adsorb a target component, it can be preferably used for the purpose of removing a specific component from blood, for example. Specific examples include a blood component adsorber for direct blood perfusion and a specific cell adsorber.

図3は、一実施形態に係る血液処理器の模式断面図である。血液処理器200は、容器50と、容器50の内部に充填された複数の選択的分離材120とを有する。容器50の両端部には、ヘッダーキャップ60a、60bが設けられている。ヘッダーキャップ60aは内部に血液を導入するための入口(導入口)となり、ヘッダーキャップ60bは血液を外部に排出するための出口(導出口)となる。ヘッダーキャップ60aの導入口より矢印Fの方向から血液処理器200の内部に流入した血液が、選択的分離材120と接することにより、抗体40の抗原となる血液中の成分が吸着する。これにより、ヘッダーキャップ60bの導出口から流出した際には血液中から上記成分が除去されている。   FIG. 3 is a schematic cross-sectional view of a blood processing apparatus according to an embodiment. The blood processing device 200 includes a container 50 and a plurality of selective separation materials 120 filled in the container 50. Header caps 60 a and 60 b are provided at both ends of the container 50. The header cap 60a serves as an inlet (inlet) for introducing blood into the inside, and the header cap 60b serves as an outlet (outlet) for discharging blood to the outside. The blood flowing into the blood processing device 200 from the direction of the arrow F from the inlet of the header cap 60a comes into contact with the selective separation material 120, so that the components in the blood serving as the antigen of the antibody 40 are adsorbed. Thereby, when it flows out from the outlet of the header cap 60b, the above components are removed from the blood.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to these.

[実施例1]
(A)方法
(1)γ線照射
担体としてポリプロピレンからなる不織布(平均繊維径3.8μm、目付80g/m)0.108mを脱酸素剤とともに酸素低透過性袋に封入し十分に酸素を除いた後、−78℃にて25kGyのγ線を照射した。
[Example 1]
(A) The method (1) non-woven fabric made of polypropylene as γ-irradiation carrier (average fiber diameter 3.8 .mu.m, basis weight 80 g / m 2) and 0.108M 2 encapsulated in low oxygen permeability bag together with a deoxygenating agent sufficiently oxygen After removing γ-rays of 25 kGy at −78 ° C.

(2)グラフト反応
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン(CMB)68.9g、及びグリシジルメタクリレート(GMA)21.1mLを400mLのメタノールに溶解し、40℃にて60分間窒素を通気した。
耐圧ガラス容器に上記の不織布をすばやく入れ、減圧後、上記の溶液を引き込み40℃にて1時間反応させた。反応後、取り出した不織布をジメチルホルムアミド及びメタノールにより洗浄し、40℃にて真空乾燥することでリガンド固定化用不織布(リガンド固定化用基材)を得た。
(2) Grafting reaction 68.9 g of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (CMB) and 21.1 mL of glycidyl methacrylate (GMA) were dissolved in 400 mL of methanol. Nitrogen was bubbled through at 60 ° C. for 60 minutes.
The above-mentioned nonwoven fabric was quickly put into a pressure-resistant glass container, and after reducing the pressure, the above-mentioned solution was drawn and reacted at 40 ° C. for 1 hour. After the reaction, the removed nonwoven fabric was washed with dimethylformamide and methanol, and vacuum dried at 40 ° C. to obtain a ligand-immobilized nonwoven fabric (ligand-immobilized substrate).

(3)細胞吸着フィルター(選択的分離材)の作製
上記で得られたリガンド固定化用不織布を直径0.68cmの円形に切断した(以下、「円形不織布状基材A」という。)。次に、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(105.7mg)を溶解したクエン酸リン酸緩衝液(pH4.0)400μL(以下、「抗CD4溶液」という。)に、得られた円形不織布状基材A4枚を37℃にて16時間浸し、該モノクローナル抗体を円形不織布状基材Aに固定した。その後、このモノクローナル抗体を固定化した円形不織布状基材A(以下、「抗体固定化円形不織布A」という。)をカルシウム及びマグネシウムを含まないリン酸緩衝生理食塩液(以下、「PBS(−)」という。)で洗浄した。次に、0.2%ポリオキシエチレンソルビタンモノラウレート/PBS(−)溶液(以下、「Tween20溶液」という。)に該抗体固定化円形不織布Aを常温で2.5時間浸し、ブロッキングを行った。その後、該抗体固定化円形不織布AをPBS(−)2mlで洗浄することで、細胞吸着フィルターを作製した。
(3) Production of Cell Adsorption Filter (Selective Separation Material) The ligand-immobilized nonwoven fabric obtained above was cut into a circle having a diameter of 0.68 cm (hereinafter referred to as “circular nonwoven fabric substrate A”). Next, the obtained circular shape was added to 400 μL of citrate phosphate buffer (pH 4.0) (hereinafter referred to as “anti-CD4 solution”) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (105.7 mg) were dissolved. Four nonwoven fabric base materials A were soaked at 37 ° C. for 16 hours, and the monoclonal antibody was fixed to the circular nonwoven fabric base material A. Thereafter, the circular non-woven substrate A (hereinafter referred to as “antibody-immobilized circular non-woven fabric A”) on which the monoclonal antibody is immobilized is converted into a phosphate buffered saline solution (hereinafter referred to as “PBS (−)) that does not contain calcium and magnesium. "). Next, the antibody-immobilized circular non-woven fabric A is immersed in a 0.2% polyoxyethylene sorbitan monolaurate / PBS (−) solution (hereinafter referred to as “Tween 20 solution”) at room temperature for 2.5 hours for blocking. It was. Thereafter, the antibody-immobilized circular nonwoven fabric A was washed with 2 ml of PBS (−) to prepare a cell adsorption filter.

(4)細胞吸着フィルターの洗浄
2%ドデシル硫酸ナトリウム/PBS(−)(以下、「SDS溶液」という。)により細胞吸着フィルター4枚を95℃で5分間浸した。これを2回繰り返した後、該細胞吸着フィルターをPBS(−)2mlで洗浄した。
(4) Washing of Cell Adsorption Filter Four cell adsorption filters were soaked at 95 ° C. for 5 minutes with 2% sodium dodecyl sulfate / PBS (−) (hereinafter referred to as “SDS solution”). After repeating this twice, the cell adsorption filter was washed with 2 ml of PBS (−).

(5)細胞吸着器の作製
入口と出口を有する容量1mlの容器に、上記で得られた細胞吸着フィルター4枚と充填液としてPBS(−)溶液とを充填し、細胞吸着器を作成した。
(5) Production of cell adsorber A 1 ml container having an inlet and an outlet was filled with the four cell adsorption filters obtained above and a PBS (-) solution as a filling liquid to produce a cell adsorber.

(6)細胞吸着器の細胞吸着性
上記で得られた細胞吸着器の入口から、ACD−A添加ヒト新鮮血液8ml(血液:ACD−A=8:1)をシリンジポンプにて流速0.2ml/分で送液した。細胞吸着器の出口から回収される細胞吸着後溶液を8mLずつ分取した。その後、細胞吸着器の出口から細胞吸着後の溶液を回収した。
(6) Cell adsorbability of cell adsorber From the inlet of the cell adsorber obtained above, 8 ml of ACD-A-added human fresh blood (blood: ACD-A = 8: 1) was flowed at 0.2 ml with a syringe pump. The solution was fed at / min. 8 mL of the post-cell adsorption solution recovered from the outlet of the cell adsorber was collected. Thereafter, the solution after cell adsorption was recovered from the outlet of the cell adsorber.

(7)配向評価用基材の作製
上記リガンド固定化用不織布を直径0.48cmの円形に切断した(以下、「円形不織布状基材B」という。)。次に、ヒトIgG(16μg)及び硫酸アンモニウム(105.7mg)を溶解したクエン酸リン酸緩衝液(pH4.0)400μL(以下、「IgG溶液」という。)に、得られた円形不織布状基材B8枚を37℃にて16時間浸し、該ヒトIgGを円形不織布状基材Bに固定した。その後、このヒトIgGを固定化した円形不織布状基材B(以下、「抗体固定化円形不織布B」という。)をPBS(−)で洗浄した。次に、0.2%Tween20溶液に該抗体固定化円形不織布Bを常温で2.5時間浸し、ブロッキングを行った。その後、該抗体固定化円形不織布BをPBS(−)2mlで洗浄することで、配向評価用基材を作製した。
(7) Production of Orientation Evaluation Base Material The ligand-immobilized nonwoven fabric was cut into a circle having a diameter of 0.48 cm (hereinafter referred to as “circular nonwoven fabric-like substrate B”). Next, 400 μL of citrate phosphate buffer (pH 4.0) in which human IgG (16 μg) and ammonium sulfate (105.7 mg) are dissolved (hereinafter referred to as “IgG solution”) is obtained in a circular nonwoven fabric base material B8 sheets were immersed for 16 hours at 37 ° C., and the human IgG was fixed to the circular nonwoven fabric substrate B. Thereafter, the circular nonwoven fabric substrate B on which human IgG was immobilized (hereinafter referred to as “antibody-immobilized circular nonwoven fabric B”) was washed with PBS (−). Next, the antibody-immobilized circular nonwoven fabric B was immersed in a 0.2% Tween 20 solution at room temperature for 2.5 hours for blocking. Thereafter, the antibody-immobilized circular nonwoven fabric B was washed with 2 ml of PBS (−) to prepare an orientation evaluation base material.

(B)結果
(1)X線光電子分光法(XPS)による表面解析
上記で得られたリガンド固定化用不織布の表面をX線光電子分光法(XPS ESCA)により解析した。XPSより得られる炭素、酸素及び窒素の各相対元素濃度をそれぞれC、C、Cとすると、基材表面に存在するCMB相対モル濃度(X)、GMA相対モル濃度(Y)、担体構成ポリマー相対モル濃度(Z)はそれぞれ下記式(1)から(3)で表される。
X=x/(x+y+z) (1)
Y=y/(x+y+z) (2)
Z=z/(x+y+z) (3)
ただし、x=C、y=(C−4x)/3、z={C−(10x+7y)}/Aであって、Aは担体構成ポリマーの単位炭素組成であり、例えば、ポリエチレンの場合A=2、ポリプロピレンの場合A=3である。
上記で得られる相対モル濃度より共重合ポリマー中のCMBのモル組成比Rは次式(4)で表される。
R=m/(n+m)=X/(X+Y) (4)
これらの計算式に基づき、CMBモル組成比Rを算出した結果、CMBのモル組成比Rは0.48であった。
(B) Results (1) Surface analysis by X-ray photoelectron spectroscopy (XPS) The surface of the non-woven fabric for ligand immobilization obtained above was analyzed by X-ray photoelectron spectroscopy (XPS ESCA). When the relative element concentrations of carbon, oxygen, and nitrogen obtained from XPS are C 1 , C 2 , and C 3 , CMB relative molar concentration (X), GMA relative molar concentration (Y) existing on the substrate surface, carrier The constituent polymer relative molar concentration (Z) is represented by the following formulas (1) to (3), respectively.
X = x / (x + y + z) (1)
Y = y / (x + y + z) (2)
Z = z / (x + y + z) (3)
However, x = C 3, y = (C 2 -4x) / 3, z = - a {C 1 (10x + 7y) } / A, A is a unit carbon composition of the carrier constituent polymers, e.g., polyethylene In the case of A = 2, in the case of polypropylene, A = 3.
From the relative molar concentration obtained above, the molar composition ratio R of CMB in the copolymer is expressed by the following formula (4).
R = m / (n + m) = X / (X + Y) (4)
As a result of calculating the CMB molar composition ratio R based on these calculation formulas, the molar composition ratio R of CMB was 0.48.

(2)比表面積測定
上記で得られたリガンド固定化用不織布の比表面積は自動比表面積/細孔分布測定装置(SHIMADZU社製 MICRIMERITICS TRISTAR 3000)を用いてBET法による多点法比表面積を測定した。その結果、比表面積は0.40m/gであった。
(2) Specific surface area measurement The specific surface area of the non-woven fabric for immobilizing the ligand obtained above is measured by the BET method using the automatic specific surface area / pore distribution measuring device (MICRIMERICS TRISTAR 3000 manufactured by SHIMADZU). did. As a result, the specific surface area was 0.40 m 2 / g.

(3)細胞吸着フィルターの抗体固定化量の定量
上記で得られた細胞吸着フィルターにおける抗ヒトCD4モノクローナル抗体の固定化量はBCAタンパク質定量試薬(PIERCE社製 Micro BCA(登録商標) Protein Assay Reagent Kit 23235)を用い、マイクロプレート分光光度計(Molecular Devices社製 SPECTRA MAX340PC、解析ソフトSOFT max PRO)によって吸光度測定を行い、定量した。その結果、洗浄前の細胞吸着フィルターには1.85mg/m、SDS洗浄後の細胞吸着フィルターには1.65mg/mが固定化されており、化学固定率89.1%であった。
(3) Quantification of antibody immobilization amount of cell adsorption filter The immobilization amount of the anti-human CD4 monoclonal antibody in the cell adsorption filter obtained above is BCA protein assay reagent (Micro BCA (registered trademark) Protein Assay Reagent Kit manufactured by PIERCE). 23235), the absorbance was measured with a microplate spectrophotometer (SPECTRA MAX340PC, analysis software SOFT max PRO manufactured by Molecular Devices) and quantified. As a result, the cell absorption filter before washing the cells adsorption filter after 1.85 mg / m 2, SDS washing and 1.65 mg / m 2 is immobilized, were chemically fixed rate 89.1% .

(4)CD4陽性細胞除去率
フローサイトメーター(BECTON DICKINSON社製 FACSCALIBUR)を用いたフローサイトメトリー法によって、細胞吸着前のACD−A添加ヒト新鮮血液及び細胞吸着後の溶液中のCD4陽性細胞数を測定し、細胞吸着器への細胞の吸着率を計算した。その結果、CD4陽性細胞の吸着率は98.3%であった。また血小板の回収率は94.7%であった。
(4) CD4 positive cell removal rate The number of CD4 positive cells in ACD-A-added human fresh blood before cell adsorption and the solution after cell adsorption by flow cytometry using a flow cytometer (FACSCALIBUR manufactured by BECTON DICKINSON) Was measured, and the adsorption rate of the cells to the cell adsorber was calculated. As a result, the adsorption rate of CD4 positive cells was 98.3%. The platelet recovery rate was 94.7%.

(5)配向評価用基材の抗体固定化量の定量
上記で得られた配向評価用基材におけるヒトIgGの固定化量の定量を、(3)細胞吸着フィルターの抗体固定化量の定量と同様に行った。その結果、洗浄前の配向評価用基材には1.63mg/m、SDS洗浄後の配向評価用基材には1.57mg/mが固定化されており、化学固定率96.5%であった。
(5) Quantification of antibody immobilization amount of substrate for orientation evaluation The quantification of immobilization amount of human IgG in the substrate for orientation evaluation obtained above is (3) quantification of antibody immobilization amount of cell adsorption filter. The same was done. As a result, 1.63 mg / m 2 was immobilized on the alignment evaluation substrate before washing, and 1.57 mg / m 2 was immobilized on the alignment evaluation substrate after SDS washing, and the chemical fixation rate was 96.5. %Met.

(6)配向評価
上記配向評価用基材1枚にmonoclonal Antibody to IgG (Fab)(PE)conjufgated(Sigma社製)(以下、「抗Fab抗体」という。)0.1mg/ml溶液を、もう1枚にMonoclonal Antibody to Human IgG (Fc)−PE(sigma社製)(以下、「抗Fc抗体」という。)0.1mg/ml溶液を50μlずつ添加し、1時間遮光反応させた。その後、0.2%Tween20溶液にて1回、PBS(−)で3回洗浄した。二次抗体(抗PE抗体)を結合させ、二次抗体結合量を蛍光プレートリーダー(Biosearch社製 CytoFluor II)を用いた蛍光測定により定量した。その結果、配向評価基材へ固定化されたヒトIgGへの抗Fc抗体結合量に対する抗Fab抗体結合量の比率(抗Fab/抗Fc比率)は7.35であった。抗Fab/抗Fc比率が高い程、抗原と結合可能な配向で固定化されたヒトIgGの比率が高いことを意味している。
(6) Orientation Evaluation Monoclonal Antibody to IgG (Fab) (PE) conjugated (manufactured by Sigma) (hereinafter referred to as “anti-Fab antibody”) 0.1 mg / ml solution is already added to one orientation evaluation base material. Monoclonal Antibody to Human IgG (Fc) -PE (manufactured by Sigma) (hereinafter referred to as “anti-Fc antibody”) (50 μl) was added to each sheet, and light-shielded for 1 hour. Then, it was washed once with 0.2% Tween 20 solution and three times with PBS (−). The secondary antibody (anti-PE antibody) was bound, and the amount of secondary antibody binding was quantified by fluorescence measurement using a fluorescence plate reader (Biosearch CytoFluor II). As a result, the ratio of the anti-Fab antibody binding amount to the anti-Fc antibody binding amount to human IgG immobilized on the orientation evaluation substrate (anti-Fab / anti-Fc ratio) was 7.35. A higher anti-Fab / anti-Fc ratio means a higher ratio of human IgG immobilized in an orientation capable of binding to the antigen.

[実施例2]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(52.9mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(52.9mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.21mg/m、SDS洗浄後の細胞吸着フィルターには2.17mg/mが固定化されており、化学固定率98.1%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は96.9%であり、血小板の回収率は96.3%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には2.01mg/m、SDS洗浄後の配向評価用基材には1.82mg/mが固定化されており、化学固定率90.4%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は7.23であった。
[Example 2]
The anti-CD4 solution was replaced with 400 μl of citrate phosphate buffer (pH 3.0) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (52.9 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg). Preparation and evaluation of cell adsorption filter and orientation evaluation substrate in the same manner as in Example 1, except that 400 μl of citrate phosphate buffer (pH 3.0) in which ammonium sulfate (52.9 mg) was dissolved was used. Went.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.21 mg / m 2, SDS washing 2.17 mg / m 2 is immobilized, The chemical fixation rate was 98.1%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 96.9%, and the platelet recovery rate was 96.3%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 2.01 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.82 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 90.4%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 7.23.

[実施例3]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(105.7mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(105.7mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.99mg/m、SDS洗浄後の細胞吸着フィルターには1.64mg/mが固定化されており、化学固定率82.4%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は93.1%であり、血小板の回収率は93.9%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.75mg/m、SDS洗浄後の配向評価用基材には1.56mg/mが固定化されており、化学固定率89.2%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は7.10であった。
[Example 3]
The anti-CD4 solution was replaced with 400 μl of citrate phosphate buffer (pH 3.0) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (105.7 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg). Preparation and evaluation of cell adsorption filter and orientation evaluation substrate in the same manner as in Example 1 except that 400 μl of citrate phosphate buffer (pH 3.0) in which ammonium sulfate (105.7 mg) was dissolved was used. Went.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.99mg / m 2, SDS washing 1.64 mg / m 2 is immobilized, The chemical fixation rate was 82.4%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 93.1%, and the platelet recovery rate was 93.9%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.75 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.56 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 89.2%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 7.10.

[実施例4]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及びリン酸二水素カリウム(54.4mg)を溶解したクエン酸緩衝液(pH3.5)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及びリン酸二水素カリウム(54.4mg)を溶解したクエン酸緩衝液(pH3.5)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.75mg/m、SDS洗浄後の細胞吸着フィルターには1.74mg/mが固定化されており、化学固定率99.5%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は98.5%であり、血小板の回収率は93.7%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.62mg/m、SDS洗浄後の配向評価用基材には1.61mg/mが固定化されており、化学固定率99.2%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は8.21であった。
[Example 4]
The anti-CD4 solution was replaced with 400 μl of citrate buffer (pH 3.5) in which anti-human CD4 monoclonal antibody (16 μg) and potassium dihydrogen phosphate (54.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG ( 16 μg) and a cell adsorption filter and a substrate for orientation evaluation in the same manner as in Example 1 except that 400 μl of citrate buffer (pH 3.5) in which potassium dihydrogen phosphate (54.4 mg) was dissolved was used. Were prepared and evaluated.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.75 mg / m 2, SDS washing 1.74 mg / m 2 is immobilized, The chemical fixation rate was 99.5%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 98.5%, and the platelet recovery rate was 93.7%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.62 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.61 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized and the chemical fixation rate was 99.2%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 8.21.

[実施例5]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及びリン酸二水素カリウム(81.7mg)を溶解したクエン酸緩衝液(pH3.5)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及びリン酸二水素カリウム(81.7mg)を溶解したクエン酸緩衝液(pH3.5)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.01mg/m、SDS洗浄後の細胞吸着フィルターには1.90mg/mが固定化されており、化学固定率94.7%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は96.3%であり、血小板の回収率は95.3%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.89mg/m、SDS洗浄後の配向評価用基材には1.80mg/mが固定化されており、化学固定率95.1%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は7.24であった。
[Example 5]
The anti-CD4 solution was replaced with 400 μl of citrate buffer (pH 3.5) in which anti-human CD4 monoclonal antibody (16 μg) and potassium dihydrogen phosphate (81.7 mg) were dissolved, and the anti-IgG solution was replaced with IgG ( 16 μg) and a cell adsorption filter and a substrate for orientation evaluation in the same manner as in Example 1 except that 400 μl of citrate buffer (pH 3.5) in which potassium dihydrogen phosphate (81.7 mg) was dissolved was used. Were prepared and evaluated.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.01mg / m 2, SDS washing 1.90mg / m 2 is immobilized, The chemical fixation rate was 94.7%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 96.3%, and the platelet recovery rate was 95.3%.
As a result of quantifying the antibody immobilization of orientation evaluation substrate, the orientation evaluation substrate before cleaning to 1.89 mg / m 2, the orientation evaluation substrate after SDS washing 1.80 mg / m 2 It was immobilized, and the chemical fixation rate was 95.1%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 7.24.

[実施例6]
グラフト反応を下記方法により行ったこと、XPSによる表面解析を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
スルホベタイン(SB)145.4g、及びグリシジルメタクリレート(GMA)26.3mLをメタノールに溶解し、500mLの反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。
(XPSによる表面解析)
上記で得られたリガンド固定化用不織布の表面をXPS法により解析した。XPSより得られる炭素、酸素及び窒素の各相対元素濃度をそれぞれC、C、Cとすると、基材表面に存在するSB相対モル濃度(X)、GMA相対モル濃度(Y)、担体構成ポリマー相対モル濃度(Z)はそれぞれ下記式(5)から(7)で表される。
X=x/(x+y+z) (5)
Y=y/(x+y+z) (6)
Z=z/(x+y+z) (7)
ただし、x=C、y=(C−5x)/3、z={C−(11x+7y)}/Aであって、Aは担体構成ポリマーの単位炭素組成であり、例えば、ポリエチレンの場合A=2、ポリプロピレンの場合A=3である。
上記で得られる相対モル濃度より共重合ポリマー中のSBのモル組成比Rは次式(8)で表される。
R=m/(n+m)=X/(X+Y) (8)
これらの計算式に基づき、SBモル組成比Rを算出した結果、SBのモル組成比Rは0.40であった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.05mg/m、SDS洗浄後の細胞吸着フィルターには1.95mg/mが固定化されており、化学固定率95.0%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は90.2%であり、血小板の回収率は96.8%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.99mg/m、SDS洗浄後の配向評価用基材には1.90mg/mが固定化されており、化学固定率95.3%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は6.12であった。
[Example 6]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method and the surface analysis by XPS was performed by the following method.
(Graft reaction)
Sulfobetaine (SB) (145.4 g) and glycidyl methacrylate (GMA) (26.3 mL) were dissolved in methanol to obtain 500 mL of a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1.
(Surface analysis by XPS)
The surface of the non-woven fabric for immobilizing a ligand obtained above was analyzed by XPS method. When the relative element concentrations of carbon, oxygen and nitrogen obtained from XPS are C 1 , C 2 and C 3 , respectively, the SB relative molar concentration (X), GMA relative molar concentration (Y) existing on the substrate surface, carrier The constituent polymer relative molar concentration (Z) is represented by the following formulas (5) to (7), respectively.
X = x / (x + y + z) (5)
Y = y / (x + y + z) (6)
Z = z / (x + y + z) (7)
However, x = C 3, y = (C 2 -5x) / 3, z = - a {C 1 (11x + 7y) } / A, A is a unit carbon composition of the carrier constituent polymers, e.g., polyethylene In the case of A = 2, in the case of polypropylene, A = 3.
From the relative molar concentration obtained above, the molar composition ratio R of SB in the copolymer is expressed by the following formula (8).
R = m / (n + m) = X / (X + Y) (8)
As a result of calculating the SB molar composition ratio R based on these calculation formulas, the molar composition ratio R of SB was 0.40.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.05 mg / m 2, SDS washing 1.95 mg / m 2 is immobilized, The chemical fixation rate was 95.0%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 90.2%, and the platelet recovery rate was 96.8%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.99 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.90 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 95.3%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 6.12.

[実施例7]
グラフト反応を下記方法により行ったこと、XPSによる表面解析を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
ポリエチレングリコールモノメタクリレート(PEGMM)152.8g、及びグリシジルメタクリレート(GMA)26.3mLを500mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。
(XPSによる表面解析)
上記で得られたリガンド固定化用不織布の表面をXPS法により解析した。XPS解析では、まず、リガンド固定化用不織布表面のエポキシ基を開環させるため、リガンド固定化用不織布を2規定(2N)硫酸にて、50℃で10時間処理した後、エポキシ基開環前リガンド固定化用不織布とエポキシ基開環後リガンド固定化用不織布の表面を解析した。XPSより得られる炭素及び酸素の各相対元素濃度を測定し、エポキシ基開環前リガンド固定化用不織布の炭素及び酸素の各相対元素濃度をそれぞれC及びC、エポキシ基開環後リガンド固定化用不織布基材の炭素及び酸素の各相対元素濃度をそれぞれC及びCとすると、C+C=1、C+C=1である。また、基材表面に存在するPEGMM相対モル濃度(X)、GMA相対モル濃度(Y)はそれぞれ下記式(9)及び(10)で表される。
X=x/12 (9)
Y=C−C (10)
ただし、x=C−y、y=3(C−C)で表される。上記で得られる相対モル濃度より共重合ポリマー中のPEGMMのモル組成比Rは次式(11)で表される。
R=m/(n+m)=X/(X+Y) (11)
これらの計算式に基づき、PEGMMモル組成比Rを算出した結果、PEGMMのモル組成比Rは0.35であった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.20mg/m、SDS洗浄後の細胞吸着フィルターには2.05mg/mが固定化されており、化学固定率93.3%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は98.7%であり、血小板の回収率は92.1%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.81mg/m、SDS洗浄後の配向評価用基材には1.79mg/mが固定化されており、化学固定率99.0%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は6.53であった。
[Example 7]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method and the surface analysis by XPS was performed by the following method.
(Graft reaction)
Polyethylene glycol monomethacrylate (PEGMM) 152.8 g and glycidyl methacrylate (GMA) 26.3 mL were dissolved in 500 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1.
(Surface analysis by XPS)
The surface of the non-woven fabric for immobilizing a ligand obtained above was analyzed by XPS method. In the XPS analysis, first, in order to open the epoxy group on the surface of the non-woven fabric for ligand immobilization, the non-woven fabric for ligand immobilization was treated with 2N (2N) sulfuric acid at 50 ° C. for 10 hours, and then before the epoxy group was opened. The surface of the non-woven fabric for ligand immobilization and the non-woven fabric for immobilization of ligand after ring opening of epoxy group was analyzed. The relative element concentrations of carbon and oxygen obtained from XPS are measured, and the relative element concentrations of carbon and oxygen of the non-woven fabric for immobilizing the ligand before epoxy group ring opening are C 4 and C 5 , respectively. When the relative element concentrations of carbon and oxygen of the non-woven fabric base material are C 6 and C 7 , respectively, C 4 + C 5 = 1 and C 6 + C 7 = 1. Further, the PEGMM relative molar concentration (X) and the GMA relative molar concentration (Y) existing on the substrate surface are represented by the following formulas (9) and (10), respectively.
X = x / 12 (9)
Y = C 7 -C 5 (10)
However, x = C 5 -y, represented by y = 3 (C 7 -C 5 ). From the relative molar concentration obtained above, the molar composition ratio R of PEGMM in the copolymer is expressed by the following formula (11).
R = m / (n + m) = X / (X + Y) (11)
As a result of calculating the PEGMM molar composition ratio R based on these calculation formulas, the molar composition ratio R of PEGMM was 0.35.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.20 mg / m 2, SDS washing 2.05 mg / m 2 is immobilized, The chemical fixation rate was 93.3%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 98.7%, and the platelet recovery rate was 92.1%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.81 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.79 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 99.0%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 6.53.

[実施例8]
グラフト反応を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン28.3g、及びグリシジルメタクリレート26.3mLを500mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0.30であった。また比表面積を測定したところ0.47m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.20mg/m、SDS洗浄後の細胞吸着フィルターには2.16mg/mが固定化されており、化学固定率98.0%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は98.1%であり、血小板の回収率は93.2%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には2.13mg/m、SDS洗浄後の配向評価用基材には1.84mg/mが固定化されており、化学固定率86.3%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は6.51であった。
[Example 8]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method.
(Graft reaction)
28.3 g of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine and 26.3 mL of glycidyl methacrylate were dissolved in 500 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of surface analysis by XPS, the molar composition ratio R of CMB was 0.30. Moreover, it was 0.47 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.20 mg / m 2, SDS washing 2.16 mg / m 2 is immobilized, The chemical fixation rate was 98.0%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 98.1%, and the platelet recovery rate was 93.2%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 2.13 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.84 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 86.3%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 6.51.

[実施例9]
グラフト反応を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン43.1g、及びグリシジルメタクリレート26.3mLを500mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0.33であった。また比表面積を測定したところ0.53m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.22mg/m、SDS洗浄後の細胞吸着フィルターには2.14mg/mが固定化されており、化学固定率96.2%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は99.5%であり、血小板の回収率は98.3%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には2.07mg/m、SDS洗浄後の配向評価用基材には1.84mg/mが固定化されており、化学固定率88.8%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は7.92であった。
[Example 9]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method.
(Graft reaction)
43.1 g of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine and 26.3 mL of glycidyl methacrylate were dissolved in 500 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of the surface analysis by XPS, the molar composition ratio R of CMB was 0.33. Moreover, it was 0.53 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.22mg / m 2, SDS washing 2.14 mg / m 2 is immobilized, The chemical fixation rate was 96.2%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 99.5%, and the platelet recovery rate was 98.3%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 2.07 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.84 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 88.8%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 7.92.

[実施例10]
グラフト反応を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン103.3g、及びグリシジルメタクリレート15.8mLを350mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0.56であった。また比表面積を測定したところ0.36m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.50mg/m、SDS洗浄後の細胞吸着フィルターには1.21mg/mが固定化されており、化学固定率80.4%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は99.3%であり、血小板の回収率は92.6%であった。
配向評価用基材の抗体固定化量を測定した結果、洗浄前の配向評価用基材には1.52mg/m、SDS洗浄後の配向評価用基材には1.25mg/mが固定化されており、化学固定率82.3%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は8.37であった。
[Example 10]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method.
(Graft reaction)
N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (103.3 g) and glycidyl methacrylate (15.8 mL) were dissolved in 350 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of the surface analysis by XPS, the molar composition ratio R of CMB was 0.56. Moreover, it was 0.36 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.50 mg / m 2, SDS washing 1.21 mg / m 2 is immobilized, The chemical fixation rate was 80.4%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 99.3%, and the platelet recovery rate was 92.6%.
Results of measurement of the antibody-immobilized amount of alignment evaluation substrates, the orientation evaluation substrate before cleaning to 1.52 mg / m 2, the orientation evaluation substrate after SDS washing 1.25 mg / m 2 The immobilization rate was 82.3%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 8.37.

[比較例1]
グラフト反応を下記方法により行ったこと、抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
グリシジルメタクリレート26.3mLを500mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0であった。また比表面積を測定したところ0.51m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.32mg/m、SDS洗浄後の細胞吸着フィルターには2.24mg/mが固定化されており、化学固定率96.4%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は69.7%であり、血小板の回収率は8.7%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には2.01mg/m、SDS洗浄後の配向評価用基材には1.85mg/mが固定化されており、化学固定率92.0%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は3.17であった。
[Comparative Example 1]
The graft reaction was carried out by the following method, the anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and The cell adsorption filter and orientation evaluation were performed in the same manner as in Example 1 except that the IgG solution was replaced with 400 μl of PBS (−) (pH 7.4) in which IgG (16 μg) and ammonium sulfate (26.4 mg) were dissolved. Substrate preparation and evaluation were performed.
(Graft reaction)
26.3 mL of glycidyl methacrylate was dissolved in 500 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of surface analysis by XPS, the molar composition ratio R of CMB was 0. Moreover, it was 0.51 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.32 mg / m 2, SDS washing 2.24mg / m 2 is immobilized, The chemical fixation rate was 96.4%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 69.7%, and the platelet recovery rate was 8.7%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 2.01 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.85 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 92.0%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 3.17.

[比較例2]
グラフト反応を下記方法により行ったこと以外は比較例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン21.5g、及びグリシジルメタクリレート26.3mLを500mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0.26であった。また比表面積を測定したところ0.50m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.43mg/m、SDS洗浄後の細胞吸着フィルターには1.26mg/mが固定化されており、化学固定率87.6%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は78.2%であり、血小板の回収率は50.5%であった。
配向評価用基材の抗体固定化量を測定した結果、洗浄前の配向評価用基材には2.03mg/m、SDS洗浄後の配向評価用基材には1.72mg/mが固定化されており、化学固定率84.6%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は3.15であった。
[Comparative Example 2]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Comparative Example 1 except that the graft reaction was performed by the following method.
(Graft reaction)
21.5 g of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine and 26.3 mL of glycidyl methacrylate were dissolved in 500 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of the surface analysis by XPS, the molar composition ratio R of CMB was 0.26. Moreover, it was 0.50 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.43 mg / m 2, SDS washing 1.26 mg / m 2 is immobilized, The chemical fixation rate was 87.6%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 78.2%, and the platelet recovery rate was 50.5%.
As a result of measuring the amount of antibody immobilized on the alignment evaluation substrate, 2.03 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.72 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 84.6%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 3.15.

[比較例3]
グラフト反応を下記方法により行ったこと以外は実施例3と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
(グラフト反応)
N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン207.14g、及びグリシジルメタクリレート15.8mLを300mLのメタノールに溶解し、反応液を得た。この反応液を用いて実施例1と同様の方法により、リガンド固定化用不織布(リガンド固定化用基材)を得た。XPSによる表面解析の結果、CMBのモル組成比Rは0.63であった。また比表面積を測定したところ0.32m/gであった。
(細胞吸着フィルター及び配向評価用基材の作製及び評価)
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.25mg/m、SDS洗浄後の細胞吸着フィルターには0.85mg/mが固定化されており、化学固定率68.0%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は75.8%であり、血小板の回収率は99.8%であった。
配向評価用基材の抗体固定化量を測定した結果、洗浄前の配向評価用基材には1.37mg/m、SDS洗浄後の配向評価用基材には0.79mg/mが固定化されており、化学固定率57.7%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は8.52であった。
[Comparative Example 3]
A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 3 except that the graft reaction was performed by the following method.
(Graft reaction)
N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine (207.14 g) and glycidyl methacrylate (15.8 mL) were dissolved in 300 mL of methanol to obtain a reaction solution. Using this reaction solution, a ligand-immobilizing nonwoven fabric (ligand-immobilizing substrate) was obtained in the same manner as in Example 1. As a result of the surface analysis by XPS, the molar composition ratio R of CMB was 0.63. Moreover, it was 0.32 m < 2 > / g when the specific surface area was measured.
(Production and evaluation of cell adsorption filter and orientation evaluation substrate)
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.25 mg / m 2, SDS washing 0.85 mg / m 2 is immobilized, The chemical fixation rate was 68.0%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 75.8%, and the platelet recovery rate was 99.8%.
As a result of measuring the amount of antibody immobilized on the alignment evaluation substrate, 1.37 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.79 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 57.7%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 8.52.

[比較例4]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには0.95mg/m、SDS洗浄後の細胞吸着フィルターには0.66mg/mが固定化されており、化学固定率69.5%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は49.5%であり、血小板の回収率は95.4%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には0.87mg/m、SDS洗浄後の配向評価用基材には0.63mg/mが固定化されており、化学固定率72.4%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は4.01であった。
[Comparative Example 4]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 1 except that 400 μl of PBS (−) (pH 7.4) in which (26.4 mg) was dissolved was used.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 0.95 mg / m 2, SDS washing 0.66 mg / m 2 is immobilized, The chemical fixation rate was 69.5%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 49.5%, and the platelet recovery rate was 95.4%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 0.87 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.63 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 72.4%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 4.01.

[比較例5]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.33mg/m、SDS洗浄後の細胞吸着フィルターには0.52mg/mが固定化されており、化学固定率38.8%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は50.1%であり、血小板の回収率は100.0%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.15mg/m、SDS洗浄後の配向評価用基材には6.58mg/mが固定化されており、化学固定率57.2%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は5.03であった。
[Comparative Example 5]
The anti-CD4 solution was replaced with 400 μl of citrate phosphate buffer (pH 3.0) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg). Preparation and evaluation of cell adsorption filter and orientation evaluation substrate in the same manner as in Example 1 except that 400 μl of citrate phosphate buffer (pH 3.0) in which ammonium sulfate (26.4 mg) was dissolved was used. Went.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.33 mg / m 2, SDS washing 0.52 mg / m 2 is immobilized, The chemical fixation rate was 38.8%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 50.1%, and the platelet recovery rate was 100.0%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.15 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 6.58 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 57.2%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 5.03.

[比較例6]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(105.7mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(105.7mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.05mg/m、SDS洗浄後の細胞吸着フィルターには0.83mg/mが固定化されており、化学固定率79.0%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は64.2%であり、血小板の回収率は100.0%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には0.93mg/m、SDS洗浄後の配向評価用基材には0.85mg/mが固定化されており、化学固定率91.4%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は4.92であった。
[Comparative Example 6]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (105.7 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 1 except that 400 μl of PBS (−) (pH 7.4) in which (105.7 mg) was dissolved was used.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.05 mg / m 2, SDS washing 0.83 mg / m 2 is immobilized, The chemical fixation rate was 79.0%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 64.2%, and the platelet recovery rate was 100.0%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 0.93 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.85 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 91.4%.
As a result of the alignment evaluation of the substrate for alignment evaluation, the anti-Fab / anti-Fc ratio was 4.92.

[比較例7]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例9と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.13mg/m、SDS洗浄後の細胞吸着フィルターには0.81mg/mが固定化されており、化学固定率71.7%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は72.0%であり、血小板の回収率は76.5%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.05mg/m、SDS洗浄後の配向評価用基材には0.94mg/mが固定化されており、化学固定率89.5%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は2.81であった。
[Comparative Example 7]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 9, except that 400 μl of PBS (−) (pH 7.4) in which (26.4 mg) was dissolved was used.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.13 mg / m 2, SDS washing 0.81 mg / m 2 is immobilized, The chemical fixation rate was 71.7%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 72.0%, and the platelet recovery rate was 76.5%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.05 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.94 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 89.5%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 2.81.

[比較例8]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例8と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには1.25mg/m、SDS洗浄後の細胞吸着フィルターには0.98mg/mが固定化されており、化学固定率78.4%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は78.2%であり、血小板の回収率は68.4%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には1.13mg/m、SDS洗浄後の配向評価用基材には0.92mg/mが固定化されており、化学固定率81.4%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は2.20であった。
[Comparative Example 8]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 8, except that 400 μl of PBS (−) (pH 7.4) in which (26.4 mg) was dissolved was used.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 1.25 mg / m 2, SDS washing 0.98 mg / m 2 is immobilized, The chemical fixation rate was 78.4%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 78.2%, and the platelet recovery rate was 68.4%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 1.13 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.92 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 81.4%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 2.20.

[比較例9]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例6と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには0.72mg/m、SDS洗浄後の細胞吸着フィルターには0.62mg/mが固定化されており、化学固定率86.0%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は15.0%であり、血小板の回収率は85.2%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には0.35mg/m、SDS洗浄後の配向評価用基材には0.14mg/mが固定化されており、化学固定率39.5%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は3.15であった。
[Comparative Example 9]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 6 except that the solution was replaced with 400 μl of PBS (−) (pH 7.4) in which (26.4 mg) was dissolved.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 0.72 mg / m 2, SDS washing 0.62 mg / m 2 is immobilized, The chemical fixation rate was 86.0%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 15.0%, and the platelet recovery rate was 85.2%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, the alignment evaluation substrate before washing was 0.35 mg / m 2 , and the alignment evaluation substrate after SDS washing was 0.14 mg / m 2. It was immobilized, and the chemical fixation rate was 39.5%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 3.15.

[比較例10]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び硫酸アンモニウム(26.4mg)を溶解したPBS(−)(pH7.4)400μlに代えたこと以外は実施例7と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには0.28mg/m、SDS洗浄後の細胞吸着フィルターには0.28mg/mが固定化されており、化学固定率99.1%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は75.5%であり、血小板の回収率は98.4%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には0.50mg/m、SDS洗浄後の配向評価用基材には0.30mg/mが固定化されており、化学固定率60.4%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は3.68であった。
[Comparative Example 10]
The anti-CD4 solution was replaced with 400 μl of PBS (−) (pH 7.4) in which anti-human CD4 monoclonal antibody (16 μg) and ammonium sulfate (26.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg) and ammonium sulfate. A cell adsorption filter and a substrate for orientation evaluation were prepared and evaluated in the same manner as in Example 7, except that 400 μl of PBS (−) (pH 7.4) in which (26.4 mg) was dissolved was used.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 0.28 mg / m 2, SDS washing 0.28 mg / m 2 is immobilized, The chemical fixation rate was 99.1%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 75.5%, and the platelet recovery rate was 98.4%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 0.50 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 0.30 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 60.4%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 3.68.

[比較例11]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び塩化ナトリウム(23.4mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び塩化ナトリウム(23.4mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.11mg/m、SDS洗浄後の細胞吸着フィルターには1.51mg/mが固定化されており、化学固定率71.3%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は95.1%であり、血小板の回収率は94.9%であった。
配向評価用基材の抗体固定化量を定量した結果、洗浄前の配向評価用基材には2.06mg/m、SDS洗浄後の配向評価用基材には1.35mg/mが固定化されており、化学固定率65.3%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は5.61であった。
[Comparative Example 11]
The anti-CD4 solution was replaced with 400 μl of citrate phosphate buffer (pH 3.0) in which anti-human CD4 monoclonal antibody (16 μg) and sodium chloride (23.4 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg ) And sodium citrate phosphate solution (23.4 mg) dissolved in citrate phosphate buffer (pH 3.0) 400 μl, except that the cell adsorption filter and orientation evaluation substrate were prepared in the same manner as in Example 1. And evaluated.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.11 mg / m 2, SDS washing 1.51 mg / m 2 is immobilized, The chemical fixation rate was 71.3%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 95.1%, and the platelet recovery rate was 94.9%.
As a result of quantifying the amount of antibody immobilized on the alignment evaluation substrate, 2.06 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.35 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 65.3%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 5.61.

[比較例12]
抗CD4溶液を、抗ヒトCD4モノクローナル抗体(16μg)及び塩化ナトリウム(46.7mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと、及び抗IgG溶液を、IgG(16μg)及び塩化ナトリウム(46.7mg)を溶解したクエン酸リン酸緩衝液(pH3.0)400μlに代えたこと以外は実施例1と同様の方法で、細胞吸着フィルター及び配向評価用基材の作製及び評価を行った。
細胞吸着フィルターの抗体固定化量を定量した結果、洗浄前の細胞吸着フィルターには2.15mg/m、SDS洗浄後の細胞吸着フィルターには1.42mg/mが固定化されており、化学固定率66.1%であった。
細胞吸着器への細胞の吸着率を測定した結果、CD4陽性細胞の吸着率は98.4%であり、血小板の回収率は95.9%であった。
配向評価用基材の抗体固定化量を測定した結果、洗浄前の配向評価用基材には1.94mg/m、SDS洗浄後の配向評価用基材には1.13mg/mが固定化されており、化学固定率58.2%であった。
配向評価用基材の配向評価の結果、抗Fab/抗Fc比率は5.79であった。
[Comparative Example 12]
The anti-CD4 solution was replaced with 400 μl of citrate phosphate buffer (pH 3.0) in which anti-human CD4 monoclonal antibody (16 μg) and sodium chloride (46.7 mg) were dissolved, and the anti-IgG solution was replaced with IgG (16 μg ) And sodium citrate (46.7 mg) dissolved in citrate phosphate buffer (pH 3.0) 400 μl, the same method as in Example 1 was used to prepare a cell adsorption filter and orientation evaluation substrate. And evaluated.
As a result of quantifying the antibody immobilization of cells absorption filter, the cells absorption filter before washing the cells adsorption filter after 2.15 mg / m 2, SDS washing 1.42 mg / m 2 is immobilized, The chemical fixation rate was 66.1%.
As a result of measuring the cell adsorption rate to the cell adsorber, the CD4 positive cell adsorption rate was 98.4%, and the platelet recovery rate was 95.9%.
As a result of measuring the amount of antibody immobilized on the alignment evaluation substrate, 1.94 mg / m 2 was obtained for the alignment evaluation substrate before washing, and 1.13 mg / m 2 was obtained for the alignment evaluation substrate after SDS washing. It was immobilized, and the chemical fixation rate was 58.2%.
As a result of the orientation evaluation of the substrate for orientation evaluation, the anti-Fab / anti-Fc ratio was 5.79.

実施例1〜10及び比較例1〜12の評価結果を下記表1にまとめた。

Figure 0005940788
The evaluation results of Examples 1 to 10 and Comparative Examples 1 to 12 are summarized in Table 1 below.
Figure 0005940788

1…水不溶性担体、2…ポリマー(共重合体)、10…ポリマー主鎖、20…親水性基、30…求電子官能基、40…抗体、50…容器、60a、60b…ヘッダーキャップ、F…血液の流れ方向、100,110…特異的分離材、200…血液処理器。   DESCRIPTION OF SYMBOLS 1 ... Water-insoluble carrier, 2 ... Polymer (copolymer), 10 ... Polymer main chain, 20 ... Hydrophilic group, 30 ... Electrophilic functional group, 40 ... Antibody, 50 ... Container, 60a, 60b ... Header cap, F ... blood flow direction, 100, 110 ... specific separating material, 200 ... blood processing device.

Claims (9)

水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーと、該ポリマーに結合した抗体とを有し、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60であり、
前記抗体の単位表面積あたりの固定量が1.50mg/m以上であり、かつ抗体配向性を示す抗Fab/抗Fc比率の値が6以上であり、
前記ポリマーと前記抗体とが、前記疎水性モノマーに由来する構造単位中の求電子官能基と前記抗体との間の共有結合により結合している、特異的分離材。
A water-insoluble carrier, a polymer bound to at least the surface of the water-insoluble carrier, and an antibody bound to the polymer,
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all the structural units. ,
The fixed amount per unit surface area of the antibody is at 1.50 mg / m 2 or more, and Ri der value 6 or more anti-Fab / anti-Fc ratios showing antibody orientation,
Said said polymer antibody, you are bound by covalent bond between the electrophilic functional groups in the structural unit derived from the hydrophobic monomer and said antibody, specific separation materials.
前記抗体の化学固定率が80%以上である、請求項1に記載の特異的分離材。   The specific separation material according to claim 1, wherein the chemical immobilization ratio of the antibody is 80% or more. 前記親水性モノマーが、N−メタクリロイルオキシエチル−N,N−ジメチルアンモニウム−α−N−メチルカルボキシベタイン、スルホベタイン及びポリエチレングリコールモノメタクリレートからなる群より選択される1種以上である、請求項1又は2に記載の特異的分離材。   The hydrophilic monomer is one or more selected from the group consisting of N-methacryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, sulfobetaine and polyethylene glycol monomethacrylate. Or the specific separation material of 2. 前記疎水性モノマーが、下記一般式(1)で表される重合性モノマーである、請求項1〜3のいずれか一項に記載の特異的分離材。
Figure 0005940788

[一般式(1)中、RはH又はCH、Rは求電子官能基を有する有機基を示す。]
The specific separation material according to any one of claims 1 to 3, wherein the hydrophobic monomer is a polymerizable monomer represented by the following general formula (1).
Figure 0005940788

[In General Formula (1), R 1 represents H or CH 3 , and R 2 represents an organic group having an electrophilic functional group. ]
前記求電子官能基がエポキシ基である、請求項4に記載の特異的分離材。   The specific separating material according to claim 4, wherein the electrophilic functional group is an epoxy group. 前記水不溶性担体が、多孔膜又は粒子である、請求項1〜5のいずれか一項に記載の特異的分離材。   The specific separation material according to claim 1, wherein the water-insoluble carrier is a porous membrane or particles. 血液の導入口及び導出口を有する容器と、
該容器の内部に充填された請求項1〜6のいずれか一項に記載の特異的分離材と、を備える、血液処理器。
A container having a blood inlet and outlet, and
A blood treatment device comprising: the specific separation material according to any one of claims 1 to 6 filled in the container.
請求項1〜6のいずれか一項に記載の特異的分離材の製造における抗体固定化用基材の使用であって、
前記抗体固定化用基材が、水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーと、を有し、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60である、前記使用。
Use of a substrate for immobilizing an antibody in the production of the specific separation material according to any one of claims 1 to 6,
The antibody immobilization substrate comprises a water-insoluble carrier and a polymer bound to at least the surface of the water-insoluble carrier;
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all structural units. , Said use.
水不溶性担体と、該水不溶性担体の少なくとも表面に結合したポリマーとを有する抗体固定化用基材に対し、濃度が0.6M以上のアンチカオトロピックイオンの存在下、酸性pHの条件下で抗体を結合させる工程を備え、
前記ポリマーが、親水性モノマー及び疎水性モノマーの共重合体であり、かつ前記親水性モノマーに由来する構造単位のモル組成比が、全構造単位に対して、0.30〜0.60である、請求項1〜6のいずれか一項に記載の特異的分離材を製造する製造方法。
An antibody is immobilized on an antibody immobilization substrate comprising a water-insoluble carrier and a polymer bound to at least the surface of the water-insoluble carrier in the presence of an antichaotropic ion having a concentration of 0.6 M or more under acidic pH conditions. Comprising the step of combining,
The polymer is a copolymer of a hydrophilic monomer and a hydrophobic monomer, and the molar composition ratio of structural units derived from the hydrophilic monomer is 0.30 to 0.60 with respect to all structural units. The manufacturing method which manufactures the specific separation material as described in any one of Claims 1-6.
JP2011212918A 2011-09-28 2011-09-28 Selective separation material, method for producing the same, and blood treatment device Active JP5940788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011212918A JP5940788B2 (en) 2011-09-28 2011-09-28 Selective separation material, method for producing the same, and blood treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011212918A JP5940788B2 (en) 2011-09-28 2011-09-28 Selective separation material, method for producing the same, and blood treatment device

Publications (2)

Publication Number Publication Date
JP2013071074A JP2013071074A (en) 2013-04-22
JP5940788B2 true JP5940788B2 (en) 2016-06-29

Family

ID=48476008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011212918A Active JP5940788B2 (en) 2011-09-28 2011-09-28 Selective separation material, method for producing the same, and blood treatment device

Country Status (1)

Country Link
JP (1) JP5940788B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024029556A1 (en) * 2022-08-02 2024-02-08 テルモ株式会社 Filter and method for manufacturing same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016036A (en) * 2007-11-26 2011-01-27 Asahi Kasei Chemicals Corp Protein-adsorbent and method for producing the same
KR101420036B1 (en) * 2010-03-31 2014-07-15 아사히 가세이 메디컬 가부시키가이샤 Substrate for ligand immobilization and method for producing same

Also Published As

Publication number Publication date
JP2013071074A (en) 2013-04-22

Similar Documents

Publication Publication Date Title
JP4992120B2 (en) Virus and leukocyte selective removal material and use thereof
JPH07289891A (en) Hiv and material for removing its related substance
JP5784008B2 (en) Ligand immobilization substrate and method for producing the same
JP4942015B2 (en) Ligand immobilization substrate and cell selective adsorbent
JPH0949830A (en) Stimulus responding type separating material and separating and refining method
JP5784132B2 (en) Ligand immobilization substrate and production method thereof, specific cell separation material, and blood treatment device
CN109963600B (en) Polymer for capturing or separating leukocytes, device, method for producing same, and use thereof
JP5940788B2 (en) Selective separation material, method for producing the same, and blood treatment device
JP3748927B2 (en) Glycolipid antibody adsorbent
JPH0114791B2 (en)
JPH0424065B2 (en)
JP2003190276A (en) Virus and white blood cell selective removal method, removal material and remover
JP2665526B2 (en) β2-microglobulin adsorbent
JP3084437B2 (en) Anti-lipid antibody removal device
CN106512749A (en) Double-side modified separation membrane for blood purification as well as preparation and use methods of double-side modified separation membrane
JP4443309B2 (en) Fibrinogen adsorbent III
JPS6361025B2 (en)
JPH08173528A (en) Blood processing system
JPH05285382A (en) Low-specific gravity lipoprotein adsorptive material
JPH10179732A (en) Whole blood treating device and whole blood treatment
JPS62244442A (en) Low specific gravity lipoprotein adsorbing material and its preparation
JPH06296864A (en) Bradykinin adsorbent
JPH1176398A (en) Removing device for anti-dna antibody
JPH043987B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160519

R150 Certificate of patent or registration of utility model

Ref document number: 5940788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350