JP5939623B2 - Highly crystalline aLi2MnO3- (1-a) Li (Nix, Coy, Mnz) O2-based nanostructure electrode material and method for producing the same by electrospinning - Google Patents
Highly crystalline aLi2MnO3- (1-a) Li (Nix, Coy, Mnz) O2-based nanostructure electrode material and method for producing the same by electrospinning Download PDFInfo
- Publication number
- JP5939623B2 JP5939623B2 JP2012073836A JP2012073836A JP5939623B2 JP 5939623 B2 JP5939623 B2 JP 5939623B2 JP 2012073836 A JP2012073836 A JP 2012073836A JP 2012073836 A JP2012073836 A JP 2012073836A JP 5939623 B2 JP5939623 B2 JP 5939623B2
- Authority
- JP
- Japan
- Prior art keywords
- solid solution
- electrode material
- positive electrode
- ali2mno3
- mnz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Description
本発明は、リチウムイオン2次電池用の電極材料に関するものである。 The present invention relates to an electrode material for a lithium ion secondary battery.
地球環境問題が盛んに取り上げられ、持続的発展可能な社会を実現するために、クリーンエネルギーデバイスの開発が活発に行われている。その中で、電気自動車やプラグインハイブリッド自動車用の蓄電電池開発において、Liイオン電池の研究が注目され、大容量電極材料の開発が特に注目されている。また、車載用に適した高出力型特性の向上も望まれているのが現状である。
近年、Liイオン電池の高出力化のためにナノ電極材料を合成し、これを電池に用いることで高出力型特性が得られることを示す報告が多数ある(非特許文献1)。電極にナノ材料を用いることにより高出力化が得られるのは、電極を構成する固体活物質の粒子サイズをナノ化することにより、Liイオンが複数のナノ粒子間に存在する間隙を通って電極内を容易に移動することができ、また、固体活物質粒子内を拡散する距離が大きく減少することで、短時間で電極内の拡散が可能なためである。
また、Liの固体活物質への脱挿入により電極の体積変化が大きな活物質では、これが電池特性のサイクル劣化を引き起こす要因となっていたが、固体活物質のサイズがナノ化されることによって、電極の体積変化が緩和され、電池のサイクル特性が向上することが期待される。
また、大容量材料の開発においては、aLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体が、大容量正極特性を示すものとして、近年注目されている(非特許文献2)。
The development of clean energy devices has been actively carried out in order to realize a sustainable society where global environmental issues are actively taken up. Among them, in the development of storage batteries for electric vehicles and plug-in hybrid vehicles, research on Li-ion batteries has attracted attention, and the development of large-capacity electrode materials has attracted particular attention. In addition, the present situation is that improvement of high output characteristics suitable for in-vehicle use is also desired.
In recent years, there have been many reports showing that high-output characteristics can be obtained by synthesizing nanoelectrode materials for increasing the output of Li-ion batteries and using them in batteries (Non-patent Document 1). High output can be obtained by using nanomaterials for the electrodes. By making the particle size of the solid active material constituting the electrodes nano, the electrodes pass through the gap where Li ions exist between multiple nanoparticles. This is because the inside of the electrode can be easily diffused in a short time because the distance within the solid active material particles can be easily moved and the distance for diffusing in the solid active material particles is greatly reduced.
In addition, in the active material in which the volume change of the electrode is large due to the insertion and removal of Li into the solid active material, this was a factor causing cycle deterioration of the battery characteristics, but by the size of the solid active material becoming nano, It is expected that the volume change of the electrode is alleviated and the cycle characteristics of the battery are improved.
In the developing large material, aLi 2 MnO 3 - (1 -a) Li (Ni x, Co y, Mn z) of O 2 solid solution, as an indication of large positive characteristics, recently been noticed (Non-Patent Document 2).
上述のとおり、ナノ材料は、車載用に用いられるような高出力型Liイオン電池用の電極材料として注目を集めている。
しかしながら、多くのナノ粒子は凝集しやすくナノ材料としての特性を発揮しにくいうえ、ハンドリングも困難である。
また、多くのナノ粒子は結晶性が低いことも懸念される。結晶性が低いと、電極材料として用いた場合、安定な充放電電位を示すことが困難である。また、高い結晶性の材料を得るためには、高温での熱処理が通常行われるが、一般にナノ粒子材料を高い温度で熱処理すると、結晶性は向上するが、大きく粒成長もしてしまい、ナノ粒子としての特性が失われる。
本発明者らは、高い結晶性を有するナノ材料として、単結晶ナノワイヤーを電極材料に用いることを研究してきた(特許文献1)が、単結晶ナノワイヤーの電極材料への利用を現実化するためには、単結晶ナノワイヤーを大量に簡易に合成するためのプロセスを開発する必要がある。
また、上述のaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体は、大容量のため、多くのLiの脱挿入が起こり得、電極材料への利用が期待されるが、一方で、多量のLiの脱挿入による体積変化による劣化が懸念されることに加え、初期の充電過程で脱ガスを含む反応が起こり、この反応による活性化が大容量特性の発現に重要であると考えられており、この活性化過程での体積変化もサイクル劣化に繋がる可能性が高い。
したがって、aLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体を電極材料として利用するためには、当該固溶体のサイズをナノ化することで、充放電の際の体積変化を緩和し、サイクル特性の向上を実現することが考えられる。しかしながら、従来の単結晶ナノワイヤーの作製に用いられた水熱法を用いて固溶体のナノワイヤーを作製するのは困難であり、このような固溶体系材料をナノ構造制御する適切な技術は知られていない。
As described above, nanomaterials are attracting attention as electrode materials for high-power Li-ion batteries that are used in vehicles.
However, many nanoparticles tend to aggregate and hardly exhibit properties as a nanomaterial, and are difficult to handle.
There is also a concern that many nanoparticles have low crystallinity. When the crystallinity is low, it is difficult to show a stable charge / discharge potential when used as an electrode material. In order to obtain a highly crystalline material, heat treatment at a high temperature is usually performed. Generally, when a nanoparticle material is heat-treated at a high temperature, the crystallinity is improved, but a large grain growth occurs, and the nanoparticle As a characteristic is lost.
The present inventors have studied the use of single crystal nanowires as electrode materials as nanomaterials having high crystallinity (Patent Document 1), but the use of single crystal nanowires as electrode materials has been realized. Therefore, it is necessary to develop a process for easily synthesizing single crystal nanowires in large quantities.
In addition, the above-described solid solution of aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 has a large capacity, and therefore, a large amount of Li can be inserted and removed, Although it is expected to be used, on the other hand, in addition to concerns about deterioration due to volume change due to the deinsertion of a large amount of Li, a reaction including degassing occurs in the initial charging process, and activation by this reaction has a large capacity It is considered to be important for the development of characteristics, and the volume change during this activation process is likely to lead to cycle deterioration.
Therefore, aLi 2 MnO 3 - in order to use (1-a) Li (Ni x, Co y, Mn z) a solid solution of O 2 as the electrode material, by nano the size of the solid solution, the charge and discharge It is conceivable to reduce the volume change during the process and improve the cycle characteristics. However, it is difficult to produce solid solution nanowires using the hydrothermal method used to produce conventional single crystal nanowires, and appropriate techniques for controlling the nanostructure of such solid solution system materials are known. Not.
そこで、本発明は、aLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体のナノ構造制御を行う方法を見出すこと、そして得られたaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体のナノ粒子を電極材料として利用することにより、サイクル劣化の少ない大容量のリチウムイオン電池を構成することを課題とする。 Therefore, the present invention finds a method for controlling the nanostructure of a solid solution of aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 , and the obtained aLi 2 MnO 3 -(1-a) Li (Ni x , Co y , Mn z ) O 2 solid solution nanoparticles are used as an electrode material to form a large-capacity lithium ion battery with little cycle deterioration. To do.
本発明者らは、エレクトロスピニング法を用いることにより、
aLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体の、高い結晶性を有するナノ粒子が簡単に製造できることを見出し、これを電極材料として用いることで、サイクル劣化の少ない、大容量のリチウムイオン電池を構成できることを見出した。
エレクトロスピニング法は、金属化合物のゾル−ゲル溶液やMOD溶液に高分子を溶かし、電圧を印加することによってファイバー状の前駆体を得る手法であり、これを焼成することでファイバー状の金属酸化物等の材料を得ることができる。
具合的には、本発明のLiイオン電池用電極材料に用いられる固溶体は、
aLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2(ここで、上記化学式において、0<a<1、0≦x、y、z≦1であり、かつ、x+y+z=1である。)の組成を有する。
当該固溶体の組成に対応する金属塩の溶液に高分子成分を加えて、固溶体前駆体の溶液を調製し、当該溶液にエレクトロスピニング法を適用して、固溶体前駆体のファイバーを作製する。
次いで、エレクトロスピニング法によって得た上記固溶体前駆体のファイバーを高温で焼成することにより、高い結晶性を有する上記固溶体のナノ粒子から構成され、壁厚が数十nmから数百nm程度の中空状のチューブ形態の構造を有する材料を作製する。
これを正極材料として用いることにより、高容量電極特性を示すLiイオン電池を作製することができる。
上記方法により得られる固溶体ファイバーは、壁の厚みが薄い中空状であるため、高温での熱処理時において物質の供給がバルクの場合よりも2次元的になり、このため、これを構成するナノ粒子が大きく粒成長をすることが抑制されたものと考えられる。また、当該固溶体ファイバーは、中空状のチューブ形態を構成することによってナノ粒子同士が2次元的に繋がっていることにより、Liイオン電池電極とした場合に、粒子同士の伝導性が向上し、抵抗の増大を避けることができるので、高出力型電池の電極材料に適している。たとえ電極の作成過程等において、当該チューブ状の形態が壊れたとしても、断片的なシートとしてこの2次元的なナノ粒子の繋がりは残ると考えられる。
By using the electrospinning method, the inventors have
We found that a nanoparticle with high crystallinity of a solid solution of aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 can be easily produced, and using this as an electrode material The present inventors have found that a large-capacity lithium ion battery with little cycle deterioration can be constructed.
The electrospinning method is a technique in which a polymer is dissolved in a sol-gel solution or MOD solution of a metal compound, and a fiber-like precursor is obtained by applying a voltage. By firing this, a fiber-like metal oxide is obtained. Etc. can be obtained.
Specifically, the solid solution used for the electrode material for Li-ion batteries of the present invention is:
aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 (where, in the above chemical formula, 0 <a <1, 0 ≦ x, y, z ≦ 1, and X + y + z = 1).
A polymer component is added to a solution of a metal salt corresponding to the composition of the solid solution to prepare a solution of the solid solution precursor, and an electrospinning method is applied to the solution to produce a solid solution precursor fiber.
Next, the solid solution precursor fiber obtained by the electrospinning method is fired at a high temperature, so that the solid solution is composed of nanoparticles of the solid solution having high crystallinity and has a wall thickness of about several tens to several hundreds of nanometers. A material having a tube-shaped structure is prepared.
By using this as a positive electrode material, a Li-ion battery exhibiting high capacity electrode characteristics can be produced.
Since the solid solution fiber obtained by the above method has a hollow shape with a thin wall, the supply of a substance becomes two-dimensional during heat treatment at a high temperature as compared with the case of a bulk. It is thought that large grain growth was suppressed. In addition, the solid solution fiber is formed in a hollow tube form so that the nanoparticles are two-dimensionally connected to each other, thereby improving the conductivity between the particles when the Li-ion battery electrode is formed. Therefore, it is suitable as an electrode material for a high-power battery. Even if the tube-like shape is broken in the electrode production process or the like, it is considered that the connection of the two-dimensional nanoparticles remains as a fragmented sheet.
本発明は、これらの知見に基づいて完成に至ったものであり、具体的には、以下の発明を提供するものである。
〈1〉高い結晶性を有するaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2固溶体のナノ粒子から構成され、壁厚が数十nmから数百nm程度の中空状のチューブ形態の構造を有する1次元構造体からなる、高結晶性のaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2系Liイオン電池用電極材料。
(ここで、上記化学式において、0<a<1、0≦x、y、z≦1であり、かつ、x+y+z=1である。)
〈2〉エレクトロスピニング法によって、固溶体の組成に対応する金属塩と高分子成分を含む前駆体溶液から固溶体前駆体のファイバーを作製し、得られた前駆体ファイバーを高温で焼成することを特徴とする、〈1〉に記載の電極材料の製造方法。
〈3〉〈1〉に記載の電極材料を電極活物質として含有する、Liイオン電池用電極。
〈4〉電極として〈3〉に記載の電極を用いることを特徴とする、リチウムイオン2次電池。
The present invention has been completed based on these findings, and specifically provides the following inventions.
<1> ALi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 solid solution nanoparticles with high crystallinity, wall thickness of about tens to hundreds of nm Highly crystalline aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 Li-ion battery electrode comprising a one-dimensional structure having a hollow tube-like structure material.
(Here, in the above chemical formula, 0 <a <1, 0 ≦ x, y, z ≦ 1, and x + y + z = 1.)
<2> A solid solution precursor fiber is produced from a precursor solution containing a metal salt corresponding to the composition of the solid solution and a polymer component by electrospinning, and the obtained precursor fiber is fired at a high temperature. The manufacturing method of the electrode material as described in <1>.
<3> An electrode for a Li ion battery containing the electrode material according to <1> as an electrode active material.
<4> A lithium ion secondary battery using the electrode according to <3> as an electrode.
本発明により、エレクトロスピニング法を用いることによって、簡易に、高い結晶性を有するaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体系ナノ構造電極材料を作製できる。また、このようにして得られた固溶体系ナノ構造電極材料を正極材料として用いることにより、サイクル劣化の少ない、大容量のリチウムイオン電池を構成できる。 According to the present invention, a solid solution based nanostructured electrode material of aLi 2 MnO 3- (1-a) Li (Ni x , Co y , Mn z ) O 2 having high crystallinity easily by using an electrospinning method Can be produced. In addition, by using the solid solution nanostructure electrode material thus obtained as a positive electrode material, a large-capacity lithium ion battery with little cycle deterioration can be configured.
以下に、本発明を実施するための形態について、詳述する。
本発明の電極材料として用いられるaLi2MnO3-(1-a)Li(Nix,Coy,Mnz)O2の固溶体としては、この組成に該当するものであれば特に制限はないが、例えば、
0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/3O2固溶体、0.5Li2MnO3-0.5LiNi0.5Mn0.5O2固溶体などが挙げられる。
また、本発明において、固溶体の前駆体溶液に加える高分子成分としては、エレクトロスピニング法によりファイバー化される高分子であれば特に制限はないが、例えば、ポリビニルアルコール、ポリアクリルニトリル、ポリアクリル酸、ポリフッ化ビニリデン、ポリエチレンオキシド、ポリエステルなどが用いられる。
Below, the form for implementing this invention is explained in full detail.
ALI 2 MnO 3 used as an electrode material of the present invention - (1-a) Li as the (Ni x, Co y, Mn z) a solid solution of O 2, is not particularly limited as long as it corresponds to the composition For example,
Examples include 0.5Li 2 MnO 3 —0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 solid solution, 0.5Li 2 MnO 3 —0.5LiNi 0.5 Mn 0.5 O 2 solid solution, and the like.
In the present invention, the polymer component added to the precursor solution of the solid solution is not particularly limited as long as it is a polymer that is made into a fiber by an electrospinning method. For example, polyvinyl alcohol, polyacrylonitrile, polyacrylic acid Polyvinylidene fluoride, polyethylene oxide, polyester and the like are used.
以下、本発明を実施例および比較例によって詳細に説明するが、本発明はこれらの実施例の記載に何ら制約されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in detail, this invention is not restrict | limited at all to description of these Examples.
実施例1.
酢酸リチウム(0.400M)、酢酸ニッケル四水和物(0.044M)、酢酸コバルト四水和物(0.044M)、酢酸マンガン四水和物(0.178M)、ポリビニルアルコール(1.5g)、ポリオキシエチレン(10)オクチルフェニルエーテル(0.05g)をイオン交換水(15ml)、エタノール(4ml)、酢酸(1ml)に入れ、90℃にて1時間エージングし、室温で撹拌することで前駆体溶液を得る。
得られた前駆体溶液を用いて、カトーテック株式会社製ナノファイバーエレクトロスピニングユニットにより20kVの電圧を印加し、0.2mm/minのシリンジ速度で溶液を押し出し、アルミホイルコレクターにファイバーを収集する。100℃において1時間、真空乾燥を行った後、ファイバーをアルミホイルコレクターから剥がす。剥がしたファイバーのSEM像を図1に示す。
剥がしたファイバーを電気炉を用いて800℃、3時間の熱処理を行うことで
0.5Li2MnO3-0.5LiNi1/3Co1/3Mn1/3O2固溶体系正極材料を得た。図2に得られた材料のXRDパターンを示す。図2のXRDは、固溶体に起因するパターンを示し、シャープなピークから、その結晶性が高いことが分かる。
また、得られた材料のSEM像およびTEM像を、図3、図4に示す。図3から分かるように、得られた固溶体は、全体として中空状のチューブ形態を有しており、その壁厚は、図4の上および下の像から見て数十nmから数百nm程度であることが分かる。また、図4の中央の像から、当該壁は、相互に2次元的に繋がった粒子から構成され、一つ一つの粒子は数十nmから100nm程度の径のナノ粒子であることが分かる。
Example 1.
Lithium acetate (0.400M), nickel acetate tetrahydrate (0.044M), cobalt acetate tetrahydrate (0.044M), manganese acetate tetrahydrate (0.178M), polyvinyl alcohol (1.5g), polyoxyethylene (10) Put octylphenyl ether (0.05 g) in ion-exchanged water (15 ml), ethanol (4 ml), acetic acid (1 ml), age at 90 ° C. for 1 hour, and stir at room temperature to obtain a precursor solution. .
Using the obtained precursor solution, a voltage of 20 kV is applied by a nanofiber electrospinning unit manufactured by Kato Tech Co., Ltd., the solution is extruded at a syringe speed of 0.2 mm / min, and the fiber is collected in an aluminum foil collector. After vacuum drying at 100 ° C for 1 hour, the fiber is peeled off the aluminum foil collector. An SEM image of the peeled fiber is shown in FIG.
The peeled fiber is heat-treated at 800 ° C for 3 hours using an electric furnace.
A 0.5Li 2 MnO 3 -0.5LiNi 1/3 Co 1/3 Mn 1/3 O 2 solid solution positive electrode material was obtained. FIG. 2 shows an XRD pattern of the obtained material. The XRD in FIG. 2 shows a pattern due to the solid solution, and it can be seen from the sharp peak that the crystallinity is high.
Moreover, the SEM image and TEM image of the obtained material are shown in FIGS. As can be seen from FIG. 3, the obtained solid solution has a hollow tube shape as a whole, and its wall thickness is about several tens to several hundreds of nm as seen from the upper and lower images of FIG. It turns out that it is. Moreover, it can be seen from the central image in FIG. 4 that the wall is composed of particles two-dimensionally connected to each other, and each particle is a nanoparticle having a diameter of several tens to 100 nm.
実施例2.
実施例1により得られた固溶体系正極材料(75%)と導電助剤であるアセチレンブラック(20wt%)および結着剤のテフロン(登録商標)(5wt%)を混合し、ペースト化を行った。このペーストをAlメッシュ集電体にプレスし、これを電極とした。対極に金属Li、セパレーターにポリプロピレン膜、1MのLiPF6をエチレンカーボネートとジメチルカーボネートの混合溶媒に溶解した有機電解液を用い、2032型コインセルを不活性ガスであるアルゴンを充填したグローブボックス内で作製した。充放電特性は電流密度10mA/gおよび30mA/gで評価した。
それぞれの電流密度で充放電を行ったときの充放電曲線とサイクル特性を、図5、6に示す。図5中、(a)、(b)は、電流密度10mA/gで充放電を行ったときの充放電曲線とサイクル特性であり、図6中、(c)、(d)は、電流密度30mA/gで充放電を行ったときの充放電曲線とサイクル特性である。
いずれの電流密度においても、最初の充電において、固溶体系の最初の充電に特徴的な4.5V付近のプラトーを有する充電曲線を示している((a)、(c))。また、放電時には、3V付近にショルダーを有し((a)、(c))、200mAhg-1を超える安定した放電容量を示している((b)、(d))。これに対し、従来のLiCoO2やLiMn2O4を電極材料とするLiイオン電池の放電容量は、150mAhg-1程度であることが知られており、本発明の電極材料を用いることにより、大容量のLiイオン電池が得られたことが示される。
Example 2
The solid solution positive electrode material (75%) obtained in Example 1 was mixed with acetylene black (20 wt%) as a conductive auxiliary agent and Teflon (registered trademark) (5 wt%) as a binder to form a paste. . This paste was pressed onto an Al mesh current collector, which was used as an electrode. Using a metal Li as the counter electrode, a polypropylene film as the separator, and an organic electrolyte containing 1M LiPF 6 dissolved in a mixed solvent of ethylene carbonate and dimethyl carbonate, a 2032 type coin cell is made in a glove box filled with argon, an inert gas. did. The charge / discharge characteristics were evaluated at current densities of 10 mA / g and 30 mA / g.
FIGS. 5 and 6 show charge / discharge curves and cycle characteristics when charge / discharge is performed at each current density. 5, (a) and (b) are charge / discharge curves and cycle characteristics when charging / discharging is performed at a current density of 10 mA / g. In FIG. 6, (c) and (d) are current densities. It is a charging / discharging curve and cycle characteristic when charging / discharging at 30 mA / g.
At any current density, a charging curve having a plateau near 4.5 V, which is characteristic of the first charging of the solid solution system, is shown in the first charging ((a), (c)). Further, during discharge, a shoulder is present in the vicinity of 3V ((a), (c)), and a stable discharge capacity exceeding 200 mAhg −1 is shown ((b), (d)). On the other hand, it is known that the discharge capacity of a conventional Li-ion battery using LiCoO 2 or LiMn 2 O 4 as an electrode material is about 150 mAhg −1. It is shown that a Li-ion battery with a capacity was obtained.
本発明の大容量正極材料は、モバイル機器、定置型電源、自動車用電池等様々な用途で利用される電池の正極材料として利用される。 The large-capacity positive electrode material of the present invention is used as a positive electrode material for batteries used in various applications such as mobile devices, stationary power sources, and automobile batteries.
Claims (3)
A lithium ion secondary battery using the positive electrode according to claim 1 as a positive electrode.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012073836A JP5939623B2 (en) | 2012-03-28 | 2012-03-28 | Highly crystalline aLi2MnO3- (1-a) Li (Nix, Coy, Mnz) O2-based nanostructure electrode material and method for producing the same by electrospinning |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012073836A JP5939623B2 (en) | 2012-03-28 | 2012-03-28 | Highly crystalline aLi2MnO3- (1-a) Li (Nix, Coy, Mnz) O2-based nanostructure electrode material and method for producing the same by electrospinning |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013206685A JP2013206685A (en) | 2013-10-07 |
JP5939623B2 true JP5939623B2 (en) | 2016-06-22 |
Family
ID=49525574
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012073836A Expired - Fee Related JP5939623B2 (en) | 2012-03-28 | 2012-03-28 | Highly crystalline aLi2MnO3- (1-a) Li (Nix, Coy, Mnz) O2-based nanostructure electrode material and method for producing the same by electrospinning |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5939623B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103943848B (en) * | 2014-04-23 | 2016-05-11 | 合肥工业大学 | The preparation method of the bar-shaped structure cobalt-base anode material for lithium-ion batteries of a kind of porous |
CN105977462B (en) * | 2016-06-01 | 2018-08-17 | 中物院成都科学技术发展中心 | A kind of preparation method of the lithium-rich manganese-based anode material with hollow-core construction |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3977354B2 (en) * | 1995-03-17 | 2007-09-19 | キヤノン株式会社 | Method for producing positive electrode active material, method for producing negative electrode active material, and method for producing secondary battery using lithium |
US8389160B2 (en) * | 2008-10-07 | 2013-03-05 | Envia Systems, Inc. | Positive electrode materials for lithium ion batteries having a high specific discharge capacity and processes for the synthesis of these materials |
KR101265093B1 (en) * | 2008-12-26 | 2013-05-16 | 한국과학기술연구원 | Nano powder, nano ink and micro rod, and the fabrication method thereof |
-
2012
- 2012-03-28 JP JP2012073836A patent/JP5939623B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013206685A (en) | 2013-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Recent advances in electrospun electrode materials for sodium-ion batteries | |
US10700347B2 (en) | Lithium-ion battery anodes and lithium-ion batteries using the same | |
JP6098878B2 (en) | Non-aqueous electrolyte secondary battery | |
JP5811427B2 (en) | Carbon-silicon composite, method for producing the same, negative electrode active material including the same, negative electrode, and secondary battery | |
JP6236006B2 (en) | Electrode material for lithium ion secondary battery, method for producing the electrode material, and lithium ion secondary battery | |
Dong et al. | In situ electrochemical transformation reaction of ammonium-anchored heptavanadate cathode for long-life aqueous zinc-ion batteries | |
Armer et al. | Electrospun vanadium-based oxides as electrode materials | |
JP6583404B2 (en) | Anode material for lithium ion battery, negative electrode including the anode material, and lithium ion battery | |
US10263253B2 (en) | Method of preparing a vanadium oxide compound and use thereof in electrochemical cells | |
JP5686441B2 (en) | Silicon-based positive electrode active material and secondary battery including the same | |
Bai et al. | Hierarchical 3D micro-/nano-V2O5 (vanadium pentoxide) spheres as cathode materials for high-energy and high-power lithium ion-batteries | |
JP2014038846A (en) | Composite negative electrode active material, negative electrode including the same, lithium battery, and manufacturing method of composite negative electrode active material | |
JP5756781B2 (en) | Silicon composite, method for producing the same, negative electrode active material, and non-aqueous secondary battery | |
JP2013105744A (en) | Composite, method of manufacturing the same, negative electrode active material including the same, negative electrode including the same, and lithium secondary battery employing the same | |
WO2021070564A1 (en) | Negative-electrode active material for lithium-ion secondary battery, production method for same, electrode structure, and secondary battery | |
JP6197454B2 (en) | METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION, LITHIUM ION SECONDARY BATTERY AND LITHIUM ION CAPACITOR USING THE SAME, AND METHOD FOR PRODUCING METAL OXIDE NANOPARTICLE-CONDUCTIVE AGENT COMPOSITION | |
JP2013201120A (en) | Method of preparing carbon nanotube-olivine type lithium manganese phosphate composites and lithium secondary battery using the same | |
JP5904373B2 (en) | Nonaqueous electrolyte secondary battery | |
TW201813170A (en) | Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material | |
KR102201338B1 (en) | All solid battery unit cell, bipolar all solid battery comprising the same, and method for preparing the same | |
US9972839B2 (en) | Negative active material, method of preparing the same, negative electrode including the same, and lithium secondary battery including the negative electrode | |
JP2020047572A (en) | Zinc secondary battery electrode active material and secondary battery including the same | |
JP2020068081A (en) | Lithium ion conductive solid electrolyte, and electrochemical device including the same | |
US20180309115A1 (en) | Method for making lithium-ion battery anodes | |
JP6650871B2 (en) | Positive electrode material, secondary battery, method of manufacturing positive electrode material, and method of manufacturing secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140911 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150527 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150630 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150806 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160209 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160406 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160510 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160512 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5939623 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |