JP5938940B2 - Three-dimensional object detection device - Google Patents
Three-dimensional object detection device Download PDFInfo
- Publication number
- JP5938940B2 JP5938940B2 JP2012038787A JP2012038787A JP5938940B2 JP 5938940 B2 JP5938940 B2 JP 5938940B2 JP 2012038787 A JP2012038787 A JP 2012038787A JP 2012038787 A JP2012038787 A JP 2012038787A JP 5938940 B2 JP5938940 B2 JP 5938940B2
- Authority
- JP
- Japan
- Prior art keywords
- dimensional object
- vehicle
- object detection
- difference
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000001514 detection method Methods 0.000 title claims description 116
- 238000003384 imaging method Methods 0.000 claims description 91
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 claims description 67
- 240000004050 Pentaglottis sempervirens Species 0.000 claims description 65
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 238000010586 diagram Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 19
- 239000013256 coordination polymer Substances 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Landscapes
- Image Processing (AREA)
- Image Analysis (AREA)
Description
本発明は、立体物検出装置に関するものである。 The present invention relates to a three-dimensional object detection device.
従来より、タイヤのトレッド溝の状態を検査するために、一定の撮像間隔でタイヤを撮像する技術が知られている(特許文献1参照)。 2. Description of the Related Art Conventionally, a technique for imaging a tire at a constant imaging interval is known in order to inspect the state of a tread groove of a tire (see Patent Document 1).
所定領域を一定の撮像間隔で撮像し、連続して撮像された2枚の撮像画像に基づく画像の位置合わせを行い、位置合わせ後の2枚の画像の差分をとり、差分が生じた部分を立体物として検出する場合に、以下のような問題があった。すなわち、自車両が直線道路を走行している場合には、自車両は車幅方向にほとんど移動しないため、撮像画像を一定間隔で撮像していても、連続して得られた2枚の画像を進行方向に沿ってずらすだけで、これら2枚の画像の位置を合わせることができる。しかし、自車両がカーブを走行している場合には、自車両が車幅方向にも移動するため、撮像画像を一定間隔で撮像している場合には、連続して得られた2枚の画像間の車幅方向へのずれ量が大きくなってしまい、これら2枚の画像を進行方向に沿ってずらすだけでは、これら2枚の画像の位置を適切に合わせることができないという問題があった。 The predetermined area is imaged at a constant imaging interval, the images are aligned based on the two captured images captured in succession, the difference between the two images after alignment is taken, and the portion where the difference has occurred When detecting as a three-dimensional object, there are the following problems. That is, when the host vehicle is traveling on a straight road, the host vehicle hardly moves in the vehicle width direction, so two images obtained continuously even if the captured images are captured at a constant interval. The position of these two images can be aligned by simply shifting the position along the traveling direction. However, when the host vehicle is traveling along a curve, the host vehicle also moves in the vehicle width direction. Therefore, when the captured images are captured at a constant interval, two images obtained in succession are obtained. The amount of displacement in the vehicle width direction between the images becomes large, and there is a problem that the position of these two images cannot be properly aligned only by shifting these two images along the traveling direction. .
本発明が解決しようとする課題は、連続して撮像された撮像画像に基づく画像の位置を適切に合わせることができ、その結果、立体物を適切に検出することができる立体物検出装置を提供することである。 The problem to be solved by the present invention is to provide a three-dimensional object detection device capable of appropriately aligning the positions of images based on continuously captured images and, as a result, appropriately detecting a three-dimensional object. It is to be.
本発明は、連続して得られた撮像画像におけるそれぞれの撮像対象領域の車幅方向におけるずれ量が、撮像画像において所定の画素数以下となる走行距離を算出し、算出した走行距離を撮像間隔として設定することで、上記課題を解決する。 The present invention calculates a travel distance in which a shift amount in the vehicle width direction of each imaging target region in continuously obtained captured images is equal to or less than a predetermined number of pixels in the captured image, and calculates the calculated travel distance as an imaging interval. By setting as , the above problem is solved.
本発明によれば、たとえば自車両がカーブを走行している場合に撮像間隔を短く設定することができるため、カーブ走行中に自車両が車幅方向に移動した場合でも、連続して撮像された撮像画像に基づく画像間における車幅方向のずれ量を小さくすることができ、これにより、連続して撮像された撮像画像に基づく画像を進行方向に沿ってずらすだけで、これら2枚の画像の位置合わせを高い精度で行うことができる。 According to the present invention, for example, when the host vehicle is traveling on a curve, the imaging interval can be set short. Therefore, even when the host vehicle moves in the vehicle width direction during curve traveling, images are continuously captured. The amount of shift in the vehicle width direction between images based on the captured images can be reduced, and by simply shifting the images based on the captured images captured continuously along the traveling direction, these two images Can be aligned with high accuracy.
《第1実施形態》
図1は、第1実施形態に係る立体物検出装置1を搭載した車両の概略構成図である。本実施形態に係る立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車線に存在する他車両(以下、隣接車両V2ともいう)を検出することを目的とする。本実施形態に係る立体物検出装置1は、図1に示すように、カメラ10と、車速センサ20と、計算機30と、ヨーレートセンサ40とを備える。
<< First Embodiment >>
FIG. 1 is a schematic configuration diagram of a vehicle equipped with a three-dimensional
カメラ10は、図1に示すように、自車両V1の後方における高さhの箇所において、光軸が水平から下向きに角度θとなるように車両V1に取り付けられている。カメラ10は、この位置から自車両V1の周囲環境のうちの所定領域を撮像する。車速センサ20は、自車両V1の走行速度を検出するものであって、例えば車輪に回転数を検知する車輪速センサで検出した車輪速から車速度を算出する。計算機30は、自車両後方の隣接車線に存在する隣接車両の検出を行う。ヨーレートセンサ40は、車両の重心を通る鉛直軸周りの回転角(ヨー角)の単位時間当たりの変化量、すなわち、ヨーレート(ヨー角速度)を検出する。
As shown in FIG. 1, the
図2は、図1の自車両V1の走行状態を示す平面図である。同図に示すように、カメラ10は、所定の画角aで車両後方側を撮像する。このとき、カメラ10の画角aは、自車両V1が走行する車線に加えて、その左右の車線(隣接車線)についても撮像可能な画角に設定されている。
FIG. 2 is a plan view showing a traveling state of the host vehicle V1 of FIG. As shown in the figure, the
図3は、図1の計算機30の詳細を示すブロック図である。なお、図3においては、接続関係を明確とするためにカメラ10、車速センサ20、およびヨーレートセンサ40についても図示する。
FIG. 3 is a block diagram showing details of the
図3に示すように、計算機30は、撮像間隔設定部31と、視点変換部32と、位置合わせ部33と、立体物検出部34と、立体物判定部35とを備える。以下に、それぞれの構成について説明する。
As shown in FIG. 3, the
撮像間隔設定部31は、車速センサ20により検出された自車両の車速と、ヨーレートセンサ40により検出されたヨーレートとに基づいて、カメラ10の撮像間隔を設定する。なお、撮像間隔設定部31による撮像間隔の設定方法の詳細については後述する。
The imaging
視点変換部32は、カメラ10により撮像された所定領域の撮像画像データを入力し、入力した撮像画像データを鳥瞰視される状態の鳥瞰画像データに視点変換する。鳥瞰視される状態とは、上空から例えば鉛直下向きに見下ろす仮想カメラの視点から見た状態である。この視点変換は、例えば特開2008−219063号公報に記載されるようにして実行することができる。撮像画像データを鳥瞰視画像データに視点変換するのは、立体物に特有の鉛直エッジは鳥瞰視画像データへの視点変換により特定の定点を通る直線群に変換されるという原理に基づき、これを利用すれば平面物と立体物とを識別できるからである。
The
位置合わせ部33は、視点変換部32の視点変換により得られた鳥瞰視画像データを順次入力し、入力した異なる時刻の鳥瞰視画像データの位置を合わせる。図4は、位置合わせ部33の処理の概要を説明するための図であり、(a)は自車両V1の移動状態を示す平面図、(b)は位置合わせの概要を示す画像である。
The
図4(a)に示すように、現時刻の自車両V1がP1に位置し、一時刻前の自車両V1がP1’に位置していたとする。また、自車両V1の後側方向に隣接車両V2が位置して自車両V1と並走状態にあり、現時刻の隣接車両V2がP2に位置し、一時刻前の隣接車両V2がP2’に位置していたとする。さらに、自車両V1は、一時刻で距離d移動したものとする。なお、一時刻前とは、現時刻から予め定められた時間(例えば1制御周期)だけ過去の時刻であってもよいし、任意の時間だけ過去の時刻であってもよい。 As shown in FIG. 4 (a), the host vehicle V1 of the current time is located in P 1, one unit time before the vehicle V1 is located in the P 1 '. Further, there is a parallel running state with the vehicle V1 is located is adjacent vehicle V2 laterally after the vehicle V1, located in P 2 adjacent vehicle V2 is the current time, one unit time before the adjacent vehicle V2 is P 2 Suppose it is located at '. Furthermore, it is assumed that the host vehicle V1 has moved a distance d at one time. Note that “one hour before” may be a past time for a predetermined time (for example, one control cycle) from the current time, or may be a past time for an arbitrary time.
このような状態において、現時刻における鳥瞰視画像PBtは図4(b)に示すようになる。この鳥瞰視画像PBtでは、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P2)については倒れ込みが発生する。また、一時刻前における鳥瞰視画像PBt−1についても同様に、路面上に描かれる白線については矩形状となり、比較的正確に平面視された状態となるが、隣接車両V2(位置P2’)については倒れ込みが発生する。既述したとおり、立体物の鉛直エッジ(厳密な意味の鉛直エッジ以外にも路面から三次元空間に立ち上がったエッジを含む)は、鳥瞰視画像データへの視点変換処理によって倒れ込み方向に沿った直線群として現れるのに対し、路面上の平面画像は鉛直エッジを含まないので、視点変換してもそのような倒れ込みが生じないからである。 In this state, the bird's-eye view image PB t at the current time is as shown in Figure 4 (b). In the bird's-eye view image PB t, becomes a rectangular shape for the white line drawn on the road surface, but a relatively accurate is a plan view state, the adjacent vehicle V2 (position P 2) is tilting occurs. Similarly, for the bird's-eye view image PB t-1 one hour before, the white line drawn on the road surface has a rectangular shape and is in a state of being relatively accurately viewed in plan, but the adjacent vehicle V2 (position P 2). ') Will fall down. As described above, the vertical edges of solid objects (including the edges that rise in the three-dimensional space from the road surface in addition to the vertical edges in the strict sense) are straight lines along the collapse direction by the viewpoint conversion processing to bird's-eye view image data. This is because the plane image on the road surface does not include a vertical edge, but such a fall does not occur even when the viewpoint is changed.
位置合わせ部33は、上記のような鳥瞰視画像PBt,PBt−1の位置合わせをデータ上で実行する。この際、位置合わせ部33は、一時刻前における鳥瞰画像PBt−1をオフセットさせ、現時刻における鳥瞰視画像PBtと位置を一致させる。図4(b)の左側の画像と中央の画像は、移動距離d’だけオフセットした状態を示す。このオフセット量d’は、図4(a)に示した自車両V1の実際の移動距離dに対応する鳥瞰視画像データ上の移動量であり、車速センサ20からの信号と一時刻前から現時刻までの時間に基づいて決定される。
The
また、位置合わせ後において位置合わせ部33は、鳥瞰視画像PBt,PBt−1の差分をとり、差分画像PDtのデータを生成する。ここで、本実施形態において、位置合わせ部33は、照度環境の変化に対応するために、鳥瞰視画像PBt,PBt−1の画素値の差を絶対値化し、当該絶対値が所定の閾値th以上であるときに、差分画像PDtの画素値を「1」とし、絶対値が所定の閾値th未満であるときに、差分画像PDtの画素値を「0」とすることで、図4(b)の右側に示すような差分画像PDtのデータを生成することができる。
In addition, after the alignment, the
図3に戻り、立体物検出部34は、図4(b)に示す差分画像PDtのデータに基づいて立体物を検出する。この際、立体物検出部34は、実空間上における立体物の移動距離についても算出する。立体物の検出および移動距離の算出にあたり、立体物検出部34は、まず差分波形を生成する。
Returning to FIG. 3, the three-dimensional
差分波形の生成にあたって立体物検出部34は、差分画像PDtにおいて検出領域を設定する。本例の立体物検出装置1は、自車両V1が車線変更する際に接触の可能性がある隣接車両について移動距離を算出することを目的とするものである。このため、本例では、図2に示すように自車両V1の後側方に矩形状の検出領域A1,A2を設定する。なお、このような検出領域A1,A2は、自車両V1に対する相対位置から設定してもよいし、白線の位置を基準に設定してもよい。白線の位置を基準に設定する場合に、立体物検出装置1は、例えば既存の白線認識技術等を利用するとよい。
In generating the difference waveform, the three-dimensional
また、立体物検出部34は、図2に示すように、設定した検出領域A1,A2の自車両V1側における辺(走行方向に沿う辺)を接地線L1,L2として認識する。一般に接地線は立体物が地面に接触する線を意味するが、本実施形態では地面に接触する線でなく上記の如くに設定される。なおこの場合であっても、経験上、本実施形態に係る接地線と、本来の隣接車両V2の位置から求められる接地線との差は大きくなり過ぎず、実用上は問題が無い。
Further, as shown in FIG. 2, the three-dimensional
図5は、立体物検出部34による差分波形の生成の様子を示す概略図である。図5に示すように、立体物検出部34は、位置合わせ部33で算出した差分画像PDt(図4(b)の右図)のうち検出領域A1,A2に相当する部分から、差分波形DWtを生成する。この際、立体物検出部34は、視点変換により立体物が倒れ込む方向に沿って、差分波形DWtを生成する。なお、図5に示す例では、便宜上検出領域A1のみを用いて説明するが、検出領域A2についても同様の手順で差分波形DWtを生成する。
FIG. 5 is a schematic diagram illustrating how the three-dimensional
具体的に説明すると、まず立体物検出部34は、差分画像PDtのデータ上において立体物が倒れ込む方向上の線Laを定義する。そして、立体物検出部34は、線La上において所定の差分を示す差分画素DPの数をカウントする。本実施形態では、所定の差分を示す差分画素DPは、差分画像PDtの画素値が「0」「1」で表現されており、「1」を示す画素が、差分画素DPとしてカウントされる。
Specifically, the three-dimensional
立体物検出部34は、差分画素DPの数をカウントした後、線Laと接地線L1との交点CPを求める。そして、立体物検出部34は、交点CPとカウント数とを対応付け、交点CPの位置に基づいて横軸位置、すなわち図5右図の上下方向軸における位置を決定するとともに、カウント数から縦軸位置、すなわち図5右図の左右方向軸における位置を決定し、交点CPにおけるカウント数としてプロットする。
The three-dimensional
以下同様に、立体物検出部34は、立体物が倒れ込む方向上の線Lb,Lc…を定義して、差分画素DPの数をカウントし、各交点CPの位置に基づいて横軸位置を決定し、カウント数(差分画素DPの数)から縦軸位置を決定しプロットする。立体物検出部34は、上記を順次繰り返して度数分布化することで、図5右図に示すように差分波形DWtを生成する。
Similarly, the three-dimensional
ここで、差分画像PDtのデータ上における差分画素PDは、異なる時刻の画像において変化があった画素であり、言い換えれば立体物が存在した箇所であるといえる。このため、立体物が存在した箇所において、立体物が倒れ込む方向に沿って画素数をカウントして度数分布化することで差分波形DWtを生成することとなる。特に、立体物が倒れ込む方向に沿って画素数をカウントすることから、立体物に対して高さ方向の情報から差分波形DWtを生成することとなる。 Here, the difference pixel PD on the data of the difference image PD t is a pixel that has changed in the images at different times, in other words, a location where a three-dimensional object exists. For this reason, the difference waveform DW t is generated by counting the number of pixels along the direction in which the three-dimensional object collapses and performing frequency distribution at the location where the three-dimensional object exists. In particular, since the number of pixels is counted along the direction in which the three-dimensional object falls, the differential waveform DW t is generated from the information in the height direction for the three-dimensional object.
なお、図5左図に示すように、立体物が倒れ込む方向上の線Laと線Lbとは検出領域A1と重複する距離が異なっている。このため、検出領域A1が差分画素DPで満たされているとすると、線Lb上よりも線La上の方が差分画素DPの数が多くなる。このため、立体物検出部34は、差分画素DPのカウント数から縦軸位置を決定する場合に、立体物が倒れ込む方向上の線La,Lbと検出領域A1とが重複する距離に基づいて正規化する。具体例を挙げると、図5左図において線La上の差分画素DPは6つあり、線Lb上の差分画素DPは5つである。このため、図5においてカウント数から縦軸位置を決定するにあたり、立体物検出部34は、カウント数を重複距離で除算するなどして正規化する。これにより、差分波形DWtに示すように、立体物が倒れ込む方向上の線La,Lbに対応する差分波形DWtの値はほぼ同じとなっている。
As shown in the left diagram of FIG. 5, the line La and the line Lb in the direction in which the three-dimensional object collapses have different distances overlapping the detection area A1. For this reason, if the detection area A1 is filled with the difference pixels DP, the number of difference pixels DP is larger on the line La than on the line Lb. For this reason, when the three-dimensional
差分波形DWtの生成後、立体物検出部34は、生成した差分波形DWtに基づいて、隣接車線に存在している隣接車両の検出を行う。立体物検出部34は、現時刻における差分波形DWtと一時刻前の差分波形DWt−1との対比により移動距離を算出する。すなわち、立体物検出部34は、差分波形DWt,DWt−1の時間変化から移動距離を算出する。
After the generation of the differential waveform DW t , the three-dimensional
詳細に説明すると、立体物検出部34は、図6に示すように差分波形DWtを複数の小領域DWt1〜DWtn(nは2以上の任意の整数)に分割する。図6は、立体物検出部34によって分割される小領域DWt1〜DWtnを示す図である。小領域DWt1〜DWtnは、例えば図6に示すように、互いに重複するようにして分割される。例えば小領域DWt1と小領域DWt2とは重複し、小領域DWt2と小領域DWt3とは重複する。
More specifically, the three-dimensional
次いで、立体物検出部34は、小領域DWt1〜DWtn毎にオフセット量(差分波形の横軸方向(図6の上下方向)の移動量)を求める。ここで、オフセット量は、一時刻前における差分波形DWt−1と現時刻における差分波形DWtとの差(横軸方向の距離)から求められる。この際、立体物検出部34は、小領域DWt1〜DWtn毎に、一時刻前における差分波形DWt−1を横軸方向に移動させた際に、現時刻における差分波形DWtとの誤差が最小となる位置(横軸方向の位置)を判定し、差分波形DWt−1の元の位置と誤差が最小となる位置との横軸方向の移動量をオフセット量として求める。そして、立体物検出部34は、小領域DWt1〜DWtn毎に求めたオフセット量をカウントしてヒストグラム化する。
Next, the three-dimensional
図7は、立体物検出部34により得られるヒストグラムの一例を示す図である。図7に示すように、各小領域DWt1〜DWtnと一時刻前における差分波形DWt−1との誤差が最小となる移動量であるオフセット量には、多少のバラつきが生じる。このため、立体物検出部34は、バラつきを含んだオフセット量をヒストグラム化し、ヒストグラムから移動距離を算出する。この際、立体物検出部34は、ヒストグラムの極大値から隣接車両の移動距離を算出する。すなわち、図7に示す例において、立体物検出部34は、ヒストグラムの極大値を示すオフセット量を移動距離τ*と算出する。このように、本実施形では、オフセット量にバラつきがあったとしても、その極大値から、より正確性の高い移動距離を算出することが可能となる。なお、移動距離τ*は、自車両に対する隣接車両の相対移動距離である。このため、立体物検出部34は、絶対移動距離を算出する場合には、得られた移動距離τ*と車速センサ20からの信号とに基づいて、絶対移動距離を算出することとなる。
FIG. 7 is a diagram illustrating an example of a histogram obtained by the three-dimensional
このように、本実施形態では、異なる時刻に生成された差分波形DWtの誤差が最小となるときの差分波形DWtのオフセット量から立体物の移動距離を算出することで、波形という1次元の情報のオフセット量から移動距離を算出することとなり、移動距離の算出にあたり計算コストを抑制することができる。また、異なる時刻に生成された差分波形DWtを複数の小領域DWt1〜DWtnに分割することで、立体物のそれぞれの箇所を表わした波形を複数得ることができ、これにより、立体物のそれぞれの箇所毎にオフセット量を求めることができ、複数のオフセット量から移動距離を求めることができるため、移動距離の算出精度を向上させることができる。また、本実施形態では、高さ方向の情報を含む差分波形DWtの時間変化から立体物の移動距離を算出することで、単に1点の移動のみに着目するような場合と比較して、時間変化前の検出箇所と時間変化後の検出箇所とが高さ方向の情報を含んで特定されるため立体物において同じ箇所となり易く、同じ箇所の時間変化から移動距離を算出することとなり、移動距離の算出精度を向上させることができる。 Thus, in the present embodiment, a one-dimensional waveform is obtained by calculating the moving distance of the three-dimensional object from the offset amount of the differential waveform DW t when the error of the differential waveform DW t generated at different times is minimized. Thus, the movement distance is calculated from the offset amount of the information, and the calculation cost can be suppressed in calculating the movement distance. In addition, by dividing the differential waveform DW t generated at different times into a plurality of small regions DW t1 to DW tn , a plurality of waveforms representing the respective locations of the three-dimensional object can be obtained. Since the offset amount can be obtained for each of the positions, and the movement distance can be obtained from a plurality of offset amounts, the calculation accuracy of the movement distance can be improved. Further, in the present embodiment, by calculating the moving distance of the three-dimensional object from the time change of the differential waveform DW t including the information in the height direction, compared with a case where attention is paid only to one point of movement, Since the detection location before the time change and the detection location after the time change are specified including information in the height direction, it is likely to be the same location in the three-dimensional object, and the movement distance is calculated from the time change of the same location, and the movement Distance calculation accuracy can be improved.
なお、ヒストグラム化にあたり立体物検出部34は、複数の小領域DWt1〜DWtn毎に重み付けをし、小領域DWt1〜DWtn毎に求めたオフセット量を重みに応じてカウントしてヒストグラム化してもよい。図8は、立体物検出部34による重み付けを示す図である。
Incidentally, the three-dimensional
図8に示すように、小領域DWm(mは1以上n−1以下の整数)は平坦となっている。すなわち、小領域DWmは所定の差分を示す画素数のカウントの最大値と最小値との差が小さくなっている。立体物検出部34は、このような小領域DWmについて重みを小さくする。平坦な小領域DWmについては、特徴がなくオフセット量の算出にあたり誤差が大きくなる可能性が高いからである。
As shown in FIG. 8, the small region DW m (m is an integer of 1 to n−1) is flat. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is small. Three-dimensional
一方、小領域DWm+k(kはn−m以下の整数)は起伏に富んでいる。すなわち、小領域DWmは所定の差分を示す画素数のカウントの最大値と最小値との差が大きくなっている。立体物検出部34は、このような小領域DWmについて重みを大きくする。起伏に富む小領域DWm+kについては、特徴的でありオフセット量の算出を正確に行える可能性が高いからである。このように重み付けすることにより、移動距離の算出精度を向上することができる。
On the other hand, the small area DW m + k (k is an integer equal to or less than nm) is rich in undulations. That is, in the small area DW m , the difference between the maximum value and the minimum value of the number of pixels indicating a predetermined difference is large. Three-dimensional
なお、移動距離の算出精度を向上するために上記実施形態では差分波形DWtを複数の小領域DWt1〜DWtnに分割したが、移動距離の算出精度がさほど要求されない場合は小領域DWt1〜DWtnに分割しなくてもよい。この場合に、立体物検出部34は、差分波形DWtと差分波形DWt−1との誤差が最小となるときの差分波形DWtのオフセット量から移動距離を算出することとなる。すなわち、一時刻前における差分波形DWt−1と現時刻における差分波形DWtとのオフセット量を求める方法は上記内容に限定されない。
Although dividing the differential waveform DW t into a plurality of small areas DW t1 ~DW tn in the above embodiment in order to improve the calculation accuracy of the moving distance, if the calculation accuracy of the moving distance is not less required small regions DW t1 It is not necessary to divide into ~ DW tn . In this case, the three-dimensional
なお、本実施形態において立体物検出部34は、自車両V1(カメラ10)の移動速度を求め、求めた移動速度から静止物についてのオフセット量を求める。静止物のオフセット量を求めた後、立体物検出部34は、ヒストグラムの極大値のうち静止物に該当するオフセット量を無視したうえで、隣接車両の移動距離を算出する。
In the present embodiment, the three-dimensional
図9は、立体物検出部34により得られるヒストグラムの他の例を示す図である。カメラ10の画角内に隣接車両の他に静止物が存在する場合に、得られるヒストグラムには2つの極大値τ1,τ2が現れる。この場合、2つの極大値τ1,τ2のうち、いずれか一方は静止物のオフセット量である。このため、立体物検出部34は、移動速度から静止物についてのオフセット量を求め、そのオフセット量に該当する極大値について無視し、残り一方の極大値を採用して立体物の移動距離を算出する。これにより、静止物により立体物の移動距離の算出精度が低下してしまう事態を防止することができる。
FIG. 9 is a diagram illustrating another example of a histogram obtained by the three-dimensional
なお、静止物に該当するオフセット量を無視したとしても、極大値が複数存在する場合、カメラ10の画角内に隣接車両が複数台存在すると想定される。しかし、検出領域A1,A2内に複数の隣接車両が存在することは極めて稀である。このため、立体物検出部34は、移動距離の算出を中止する。これにより、本実施形態では、極大値が複数あるような誤った移動距離を算出してしまう事態を防止することができる。
Even if the offset amount corresponding to the stationary object is ignored, when there are a plurality of maximum values, it is assumed that there are a plurality of adjacent vehicles within the angle of view of the
立体物判定部35は、立体物検出部34により検出された立体物が、隣接車線に存在する他車両であるか否かを判定する。なお、立体物判定部35による判定方法の詳細は後述する。
The three-dimensional
次に、第1実施形態に係る隣接車両検出処理について説明する。図10は、第1実施形態の隣接車両検出処理を示すフローチャートである。 Next, the adjacent vehicle detection process according to the first embodiment will be described. FIG. 10 is a flowchart illustrating the adjacent vehicle detection process according to the first embodiment.
図10に示すように、まず、ステップS101では、撮像間隔設定部31により、自車両の車速情報の取得が行われる。具体的には、車速センサ20により自車両の車速が検出され、検出された自車両の車速の情報が、撮像間隔設定部31により取得される。また、ステップS102では、撮像間隔設定部31により、自車両のヨーレート情報の取得が行われる。具体的には、ヨーレートセンサ40により自車両のヨーレートが検出され、検出されたヨーレートの情報が、撮像間隔設定部31により取得される。
As shown in FIG. 10, first, in step S <b> 101, acquisition of vehicle speed information of the host vehicle is performed by the imaging
次いで、ステップS103では、撮像間隔設定部31により、所定時間内における自車両の車幅方向への移動量が算出される。具体的には、撮像間隔設定部31は、ステップS101で取得した自車両の車速情報と、ステップS102で取得した自車両のヨーレート情報とに基づいて、所定時間内における自車両の車幅方向への移動量を、自車両の旋回状態を表す情報として算出する。なお、自車両のヨーレートが大きいほど、自車両の車幅方向への移動速度は大きくなり、所定時間における自車両の車幅方向の移動量が大きくなるため、たとえば、自車両がカーブを走行する場合や、右左折を行う場合、あるいは、車線変更を行う場合に、自車両の車幅方向への移動量が大きくなる傾向にある。
Next, in step S103, the imaging
そして、ステップS104では、撮像間隔設定部31により、カメラ10の撮像間隔の設定が行われる。具体的には、撮像間隔設定部31は、ステップS103で算出した所定時間内における自車両の車幅方向への移動量に基づいて、連続して得られる2枚の鳥瞰視画像のそれぞれの撮像対象領域の車幅方向におけるずれ量が、鳥瞰視画像での解像度において所定の画素数以下となる走行距離を算出し、算出した走行距離をカメラ10の撮像間隔として設定する。なお、所定の画素数とは、予め実験等により設定される画素数であり、連続して得られた異なる時刻の2枚の鳥瞰視画像を位置合わせする際に、この2枚の鳥瞰視画像の撮像対象領域の車幅方向におけるずれ量が、この所定の画素数に対応するずれ量の範囲内であれば、これら2枚の鳥瞰視画像を進行方向にずらして位置合わせをするだけで、これら2枚の鳥瞰視画像の位置を高い精度で合わせることができる画素数をいう。すなわち、連続して得られた2枚の鳥瞰視画像の位置を完全に合わせるためには、これら2枚の鳥瞰視画像を進行方向にずらすだけではなく、これら2枚の鳥瞰視画像を車幅方向にずらすとともに回転させる必要があるが、これら2枚の鳥瞰視画像の撮像対象領域の車幅方向におけるずれ量がこの所定の画素数に対応するずれ量の範囲内であれば、実用上、これら2枚の鳥瞰視画像の位置を進行方向にずららして位置合わせした差分画像に基づいて、立体物を検出することができる。
In step S <b> 104, the imaging
ここで、図11は、撮像間隔設定部31による撮像間隔の設定方法を説明するための図であり、図11(A)は自車両が直線道路を走行している場面を、図11(B),(C)は自車両がカーブを走行している場面をそれぞれ例示している。たとえば、図11(A)に示すように、自車両が直線道路を走行している場合、自車両のヨーレートは小さいため、所定時間内における自車両の車幅方向への移動量も小さい。そのため、撮像間隔設定部31は、図11(A)に示すように、自車両が直線道路を走行している場合には、図11(B)に示す自車両がカーブを走行している場合と比較して、カメラ10の撮像間隔を比較的大きい等距離間隔d1に設定する。具体的には、撮像間隔設定部31は、所定時間内における自車両の車幅方向への移動量と自車両の車速とに基づいて、n番目に得られた鳥瞰視画像の撮像対象領域と、n+1番目に得られる鳥瞰視画像の撮像対象領域との車幅方向におけるずれ量が、鳥瞰視画像の解像度において所定の画素数(たとえば所定距離w1に対応する画素数)以下となる走行距離d1を算出し、カメラ10の撮像間隔を等距離間隔d1に設定する。これにより、図11(A)に示す場面において、カメラ10により撮影間隔d1ごとに撮像画像の撮像が行われることとなる。
Here, FIG. 11 is a diagram for explaining a method of setting the imaging interval by the imaging
また、たとえば、図11(B)に示すように、自車両がカーブを走行している場合には、自車両のヨーレートは大きくなるため、所定時間内における自車両の車幅方向への移動量も大きくなる。そのため、撮像間隔設定部31は、図11(B)に示すように、自車両がカーブを走行している場合には、カメラ10の撮像間隔を等距離間隔d1よりも小さい等距離間隔d2に設定する。具体的には、撮像間隔設定部31は、所定時間内における自車両の車幅方向への移動量に基づいて、n番目に得られた鳥瞰視画像を基準として、n番目に得られた鳥瞰視画像の撮像対象領域と、n+1番目に得られる鳥瞰視画像の撮像対象領域との車幅方向におけるずれ量が、鳥瞰視画像の解像度において所定の画素数(たとえば所定距離w1に対応する画素数)以下となる走行距離d2を算出し、カメラ10の撮像間隔を等距離間隔d1よりも小さい等距離間隔d2に設定する。これにより、図11(B)に示す場面において、カメラ10により撮影間隔d2ごとに撮像画像の撮像が行われることとなる。
Further, for example, as shown in FIG. 11B, when the host vehicle is traveling along a curve, the yaw rate of the host vehicle increases, and thus the amount of movement of the host vehicle in the vehicle width direction within a predetermined time period. Also grows. Therefore, as shown in FIG. 11B, the imaging
次いで、ステップS105では、ステップS104で設定された撮像間隔で、カメラ10により撮像画像が撮像され、撮像された撮像画像のデータが、視点変換部32により取得される。そして、続くステップS106では、視点変換部32により、取得された撮像画像のデータに基づいて、鳥瞰視画像PBtのデータが生成される。
Next, in step S105, the captured image is captured by the
次いで、ステップS107では、位置合わせ部33により、鳥瞰視画像PBtのデータと、一時刻前の鳥瞰視画像PBt−1のデータとの位置合わせが行われ、差分画像PDtのデータが生成される。
Next, in step S107, the
ここで、第1実施形態では、自車両のヨーレートおよび車速に応じて撮像間隔を設定することで、図11(A)に示すように、自車両が直線道路を走行している場合であっても、図11(B)に示すように、自車両がカーブを走行している場合であっても、連続して得られた2枚の鳥瞰視画像の撮像対象領域のずれ量のうち、車幅方向(Y軸方向)のずれ量が、所定の画素数(たとえば所定距離w1に対応する画素数)以下となる。そのため、位置合わせ部33は、連続して得られた2枚の鳥瞰視画像を、撮像間隔に応じた移動量だけ進行方向(X軸方向)に沿ってずらすだけで、連続して得られた2枚の鳥瞰視画像の位置合わせを高い精度で行うことができ、これにより、立体物の検出に適した差分画像PDtを生成することができる。
Here, in the first embodiment, the imaging interval is set according to the yaw rate and the vehicle speed of the host vehicle, so that the host vehicle is traveling on a straight road as shown in FIG. As shown in FIG. 11B, even if the host vehicle is traveling on a curve, the vehicle is out of the shift amount of the imaging target area of two bird's-eye view images obtained continuously. shift amount in the width direction (Y axis direction), a predetermined number of pixels (e.g. the number of pixels corresponding to a predetermined distance w 1) below. Therefore, the
なお、図11(C)には、従来の立体物検出装置を搭載した車両がカーブを走行している場面を例示している。図11(C)に示す場面例では、車両の旋回状態に応じてカメラ10の撮像間隔が設定されないため、図11(B)に示す場面例と比べて、カメラ10の撮像間隔が長くなってしまう場合があり、これにより、連続して得られた鳥瞰視画像を撮像間隔に応じた移動量だけ進行方向(X軸方向)にずらしただけでは、連続して得られた2枚の鳥瞰視画像の位置合わせを高い精度で行うことができない場合があった。すなわち、図11(C)に示す場面においては、連続して得られた2枚の鳥瞰視画像の位置合わせを、立体物を適切に検出できる精度で行うためには、連続して得られた2枚の鳥瞰視画像を回転させたり車幅方向(Y軸方向)にずらしたりすることで、連続して得られた2枚の鳥瞰視画像をマッチングさせて、2枚の鳥瞰視画像の撮像対象領域のずれ量を推定する必要があり、そのため、位置合わせに要する処理負荷が高くなってしまう場合があった。これに対して、本実施形態では、図11(B)に示すように、自車両がカーブを走行する場合など、所定時間における自車両の車幅方向への移動量が大きくなる場合には、カメラ10の撮像間隔を短く設定することができるため、連続して得られた2枚の鳥瞰視画像を撮像間隔d2に応じた移動量だけ進行方向(X軸方向)に沿ってずらすことで、連続して得られた2枚の鳥瞰視画像の位置の位置合わせを、立体物を適切に検出できる精度で行うことができ、その結果、図11(C)に示す場面と比較して、位置合わせに要する処理負荷を軽減することができる。
FIG. 11C illustrates a scene in which a vehicle equipped with a conventional three-dimensional object detection device is traveling on a curve. In the scene example shown in FIG. 11C, since the imaging interval of the
次いで、ステップS108では、立体物検出部34により、ステップS107で生成した差分画像PDtのデータから、画素値が「1」の差分画素DPの数がカウントされ、差分波形DWtが生成される。
Next, in step S108, the three-dimensional
ここで、本実施形態において、立体物検出部34は、差分画像PDtに基づいて差分波形DWtを生成する際に、複数の差分画像PDtに基づいて、差分波形DWtを生成する構成としてもよい。たとえば、立体物検出部34は、複数の差分画像PDt上の差分データを積算し、差分データが積算された差分画像上において画素値が「1」の差分画素DPの数をカウントすることで、差分波形DWtを生成する構成としてもよい。あるいは、立体物検出部34は、複数の差分画像PDtから複数の差分波形DWtをそれぞれ生成し、生成した複数の差分波形DWtを積算することで、複数の差分画像PDtに基づく差分波形DWtを生成することができる。これにより、ステップS104で撮像間隔が短く設定され、差分画像PDt上において立体物に起因する差分が生じ難い場合でも、立体物の検出に適した差分波形DWtを生成することができる。
In the present embodiment, the three-dimensional
ステップS109では、立体物判定部35により、差分波形DWtのピークが所定の閾値α以上であるか否かの判断が行われる。差分波形DWtのピークが閾値α以上でない場合、すなわち差分が殆どない場合には、撮像画像内には立体物が存在しないと考えられる。このため、差分波形DWtのピークが閾値α以上でないと判断した場合には(ステップS109=No)、立体物判定部35は、立体物が存在せず他車両が存在しないと判断する(ステップS117)。
In step S109, the three-dimensional
一方、差分波形DWtのピークが閾値α以上であると判断した場合には(ステップS109=Yes)、立体物判定部35は、隣接車線に立体物が存在すると判断する。そして、ステップS110に進み、立体物検出部34により、差分波形DWtが、複数の小領域DWt1〜DWtnに分割される。次いで、立体物検出部34は、小領域DWt1〜DWtn毎に重み付けを行い(ステップS111)、小領域DWt1〜DWtn毎のオフセット量を算出し(ステップS112)、重みを加味してヒストグラムを生成する(ステップS113)。
On the other hand, when it is determined that the peak of the difference waveform DW t is equal to or greater than the threshold value α (step S109 = Yes), the three-dimensional
そして、立体物検出部34は、ヒストグラムに基づいて自車両に対する立体物の移動距離である相対移動距離を算出し、相対移動距離から立体物の絶対移動速度を算出する(ステップS114)。このとき、立体物検出部34は、相対移動距離を時間微分して相対移動速度を算出するとともに、車速センサ20で検出された自車速を加算して、立体物の絶対移動速度を算出する。
Then, the three-dimensional
その後、立体物判定部35は、立体物の絶対移動速度が10km/h以上、且つ、立体物の自車両に対する相対移動速度が+60km/h以下であるか否かを判断する(ステップS115)。双方を満たす場合には(ステップS115=Yes)、立体物判定部35は、検出した立体物は隣接車線に存在する隣接車両であり、隣接車線に隣接車両が存在すると判断する(ステップS116)。そして、図10に示す処理を終了する。一方、いずれか一方でも満たさない場合には(ステップS115=No)、立体物判定部35は、隣接車線に隣接車両が存在しないと判断する(ステップS117)。そして、図10に示す処理を終了する。
Thereafter, the three-dimensional
なお、本実施形態では自車両の後側方を検出領域A1,A2とし、自車両が車線変更した場合に接触する可能性があるか否かに重点を置いている。このため、ステップS115の処理が実行されている。すなわち、本実施形態にけるシステムを高速道路で作動させることを前提とすると、隣接車両の速度が10km/h未満である場合、たとえ隣接車両が存在したとしても、車線変更する際には自車両の遠く後方に位置するため問題となることが少ない。同様に、隣接車両の自車両に対する相対移動速度が+60km/hを超える場合(すなわち、隣接車両が自車両の速度よりも60km/hより大きな速度で移動している場合)、車線変更する際には自車両の前方に移動しているため問題となることが少ない。このため、ステップS115では車線変更の際に問題となる隣接車両を判断しているともいえる。 In the present embodiment, the rear side of the host vehicle is set as the detection areas A1 and A2, and emphasis is placed on whether or not there is a possibility of contact when the host vehicle changes lanes. For this reason, the process of step S115 is performed. That is, assuming that the system according to the present embodiment is operated on a highway, if the speed of the adjacent vehicle is less than 10 km / h, even if the adjacent vehicle exists, the host vehicle is required to change the lane. Because it is located far behind, there are few problems. Similarly, when the relative moving speed of the adjacent vehicle to the own vehicle exceeds +60 km / h (that is, when the adjacent vehicle is moving at a speed higher than 60 km / h than the speed of the own vehicle), when changing the lane Is less likely to be a problem because it is moving in front of the host vehicle. For this reason, it can be said that the adjacent vehicle which becomes a problem at the time of lane change is judged in step S115.
また、ステップS115において隣接車両の絶対移動速度が10km/h以上、且つ、隣接車両の自車両に対する相対移動速度が+60km/h以下であるかを判断することにより、以下の効果がある。例えば、カメラ10の取り付け誤差によっては、静止物の絶対移動速度を数km/hであると検出してしまう場合があり得る。よって、10km/h以上であるかを判断することにより、静止物を隣接車両であると判断してしまう可能性を低減することができる。また、ノイズによっては隣接車両の自車両に対する相対速度を+60km/hを超える速度に検出してしまうことがあり得る。よって、相対速度が+60km/h以下であるかを判断することにより、ノイズによる誤検出の可能性を低減できる。
In step S115, it is determined whether the absolute moving speed of the adjacent vehicle is 10 km / h or more and the relative moving speed of the adjacent vehicle with respect to the own vehicle is +60 km / h or less. For example, depending on the mounting error of the
さらに、ステップS115の処理に代えて、隣接車両の絶対移動速度がマイナスでないことや、0km/hでないことを判断してもよい。また、本実施形態では自車両が車線変更した場合に接触する可能性がある否かに重点を置いているため、ステップS116において隣接車両が検出された場合に、自車両の運転者に警告音を発したり、所定の表示装置により警告相当の表示を行ったりしてもよい。 Furthermore, instead of the process in step S115, it may be determined that the absolute moving speed of the adjacent vehicle is not negative or not 0 km / h. Further, in this embodiment, since an emphasis is placed on whether or not there is a possibility of contact when the host vehicle changes lanes, a warning sound is sent to the driver of the host vehicle when an adjacent vehicle is detected in step S116. Or a display corresponding to a warning may be performed by a predetermined display device.
以上のように、第1実施形態では、異なる時刻に得られた2枚の画像を鳥瞰視画像に変換し、2枚の鳥瞰視画像の差分に基づいて差分画像PDtを生成し、差分画像PDt上の差分データから立体物を検出する際に、自車両の車速やヨーレートに基づいて、所定時間内に自車両が車幅方向に移動する移動量を算出し、連続して得られる2枚の鳥瞰視画像間において車幅方向の移動量が所定値(鳥瞰視画像の解像度で所定の画素数)以下となるように、カメラ10の撮像間隔を設定する。これにより、本実施形態では、図11(A),(B)に示すように、連続して得られた2枚の鳥瞰視画像を撮像間隔に応じた移動量だけ進行方向(X軸方向)に沿ってずらすだけで、連続して得られた2枚の鳥瞰視画像の位置合わせを立体物の検出に適した高い精度で行うことができ、これにより、立体物の検出に適した差分画像DPtを生成することができる。さらに、本実施形態では、連続して得られた2枚の鳥瞰視画像を撮像間隔に応じた移動量だけ進行方向(X軸方向)に沿ってずらすだけで、これら2枚の鳥瞰視画像の位置を位置合わせすることができるため、位置合わせに要する処理負荷を低減することもできる。
As described above, in the first embodiment, two images obtained at different times are converted into bird's-eye view images, and a difference image PD t is generated based on the difference between the two bird's-eye view images. When a three-dimensional object is detected from the difference data on PD t , the amount of movement of the host vehicle in the vehicle width direction within a predetermined time is calculated based on the vehicle speed and yaw rate of the host vehicle, and continuously obtained 2 The imaging interval of the
《第2実施形態》
続いて、第2実施形態に係る立体物検出装置1aについて説明する。第2実施形態に係る立体物検出装置1aは、図12に示すように、カメラ10と、車速センサ20と、計算機30aと、地図データベース50と、GPSユニット60とを備えている。ここでは重複した説明を避けるため、異なる点を中心に説明する。なお、図12は、第2実施形態に係る立体物検出装置1aを搭載した車両の概略構成図である。
<< Second Embodiment >>
Next, the three-dimensional object detection device 1a according to the second embodiment will be described. As illustrated in FIG. 12, the three-dimensional object detection device 1 a according to the second embodiment includes a
地図データベース50は、道路の曲率などの道路形状を含む地図情報が記憶されている。地図データベース50に記憶されている地図情報は、必要に応じて、計算機30aにより取得される。
The
GPSユニット60は、複数の衛星通信から送信される電波を検出して、自車両の位置情報を周期的に検出する。GPSユニット60により検出された自車両の位置情報は、計算機30aに送信される。
The
図13は、第2実施形態に係る計算機30aの詳細を示すブロック図である。なお、図12においては、接続関係を明確にするためにカメラ10、車速センサ20、地図データベース50、およびGPSユニット60についても図示する。
FIG. 13 is a block diagram showing details of the
第2実施形態にかかる計算機30aは、図13に示すように、撮像間隔設定部31aと、視点変換部32、位置合わせ部33、立体物検出部34、および立体物判定部35から構成されている。ここでも重複した説明を避けるため、異なる点を中心に説明する。
As shown in FIG. 13, the
撮像間隔設定部31aは、地図データベース50から地図情報を取得するとともに、GPSユニット60から自車両の位置情報を取得する。そして、撮像間隔設定部31aは、取得した自車両の位置情報と地図情報とに基づいて、自車両が走行している道路を特定し、自車両が走行している道路の道路形状を特定する。具体的には、撮像間隔設定部31aは、自車両が走行している道路の道路形状として、自車両が走行している道路の曲率を検出する。そして、撮像間隔設定部31aは、自車両が走行している道路の曲率と、車速センサ20から取得した自車両の車速とに基づいて、自車両の車幅方向への移動速度を算出し、これにより、所定時間内における自車両の車幅方向への移動量を算出する。
The imaging
そして、撮像間隔設定部31aは、第1実施形態の撮像間隔設定部31と同様に、所定時間内における自車両の車幅方向への移動量に基づいて、連続して撮像される2枚の撮像画像間において、車幅方向への移動量が所定値以下となる距離間隔を、カメラ10の撮像間隔として設定する。そして、撮像間隔設定部31aは、設定した撮像間隔でカメラ10に撮像を行わせる。なお、視点変換部32、位置合わせ部33、立体物検出部34、および立体物判定部35は、第1実施形態と同様に動作する。
The imaging
次に、第2実施形態に係る隣接車両検出処理について説明する。図14は、第2実施形態の隣接車両検出処理を示すフローチャートである。 Next, the adjacent vehicle detection process according to the second embodiment will be described. FIG. 14 is a flowchart illustrating an adjacent vehicle detection process according to the second embodiment.
図14に示すように、まず、ステップS201では、撮像間隔設定部31aにより、自車両の車速情報の取得が行われる。そして、ステップS202では、撮像間隔設定部31aにより、自車両の位置情報および地図情報の取得が行われる。具体的には、GPSユニット60により、自車両の現在位置が検出され、検出された自車両の位置情報が、撮像間隔設定部31aにより取得される。また、撮像間隔設定部31aは、地図データベース50を参照して、自車両の現在位置周辺の地図情報を取得する。
As shown in FIG. 14, first, in step S201, vehicle speed information of the host vehicle is acquired by the imaging
次いで、ステップS203では、撮像間隔設定部31aにより、所定時間内における自車両の車幅方向への移動量が算出される。具体的には、撮像間隔設定部31aは、ステップS202で取得した地図情報と自車両の位置情報に基づいて、自車両が走行している道路を特定する。そして、撮像間隔設定部31aは、地図情報に基づいて、自車両が走行している道路の曲率を求め、得られた道路の曲率と、自車両の車速とに基づいて、自車両の車幅方向への移動速度を算出する。さらに、撮像間隔設定部31aは、算出した自車両の車幅方向への移動速度に基づいて、所定時間内における自車両の車幅方向への移動量を、自車両の旋回状態を表す情報として算出する。
Next, in step S203, the amount of movement of the host vehicle in the vehicle width direction within a predetermined time is calculated by the imaging
ステップS204では、撮像間隔設定部31aにより、ステップS203で算出された所定時間内における自車両の車幅方向への移動量に基づいて、カメラ10の撮像間隔の設定が行われる。なお、ステップS204における撮像間隔の設定方法は、第1実施形態のステップS104と同様の方法で行うことができる。
In step S204, the imaging
そして、ステップS205〜S217では、第1実施形態のステップS105〜S117と同様の処理が行われる。すなわち、ステップS204で設定された撮像間隔でカメラ10により撮像画像が撮像され、撮像された撮像画像のデータが、計算機30の視点変換部32によって取得される(ステップS205)。そして、撮像画像の画像データに基づいて、鳥瞰視画像PBtのデータが生成され(ステップS206)、鳥瞰視画像PBtのデータと、一時刻前の鳥瞰視画像PBt−1のデータとを位置合わせすることで、差分画像PDtのデータが生成される(ステップS207)。
In steps S205 to S217, the same processing as in steps S105 to S117 of the first embodiment is performed. That is, a captured image is captured by the
その後、差分画像PDtのデータに基づいて、差分波形DWtが生成され(ステップS208)、差分波形DWtのピークが閾値α以上でない場合には(ステップS209=No)、立体物が存在せず他車両が存在しないと判断される(ステップS217)。 Thereafter, a differential waveform DW t is generated based on the data of the differential image PD t (step S208). If the peak of the differential waveform DW t is not equal to or greater than the threshold value α (step S209 = No), there is no solid object. It is determined that there is no other vehicle (step S217).
一方、差分波形DWtのピークが閾値α以上であると判断した場合には(ステップS209=Yes)、差分波形DWtを複数の小領域DWt1〜DWtnに分割し(ステップS210)、小領域DWt1〜DWtn毎に重み付けを行い(ステップS211)、小領域DWt1〜DWtn毎のオフセット量を算出し(ステップS212)、重みを加味してヒストグラムを生成する(ステップS213)。そして、ヒストグラムに基づいて、自車両に対する隣接車両の移動距離である相対移動距離を算出し、相対移動距離から隣接車両の絶対移動速度と絶対移動速度を算出する(ステップS214)。立体物判定部35は、隣接車両の絶対移動速度が10km/h以上、且つ、隣接車両の自車両に対する相対移動速度が+60km/h以下である場合には(ステップS215=Yes)、隣接車線に隣接車両が存在すると判断し(ステップS216)、一方、いずれか一方でも満たさない場合には(ステップS215=No)、立体物判定部35は、隣接車線に隣接車両が存在しないと判断する(ステップS217)。そして、図14に示す処理を終了する。
On the other hand, if it is determined that the peak of the difference waveform DW t is equal to or greater than the threshold value α (step S209 = Yes), the difference waveform DW t is divided into a plurality of small regions DW t1 to DW tn (step S210). Weighting is performed for each of the areas DW t1 to DW tn (step S211), an offset amount for each of the small areas DW t1 to DW tn is calculated (step S212), and a histogram is generated with the weights added (step S213). Then, based on the histogram, a relative moving distance that is a moving distance of the adjacent vehicle with respect to the own vehicle is calculated, and an absolute moving speed and an absolute moving speed of the adjacent vehicle are calculated from the relative moving distance (step S214). When the absolute moving speed of the adjacent vehicle is 10 km / h or more and the relative moving speed of the adjacent vehicle with respect to the own vehicle is +60 km / h or less (step S215 = Yes), the three-dimensional
以上のように、第2実施形態では、連続して得られた異なる時刻の2枚の撮像画像を鳥瞰視画像に変換し、これら2枚の鳥瞰視画像を位置合わせすることで差分画像PDtを生成し、差分画像PDt上の差分データから立体物を検出する際に、自車両の位置情報や地図情報に基づいて、所定時間内に自車両が車幅方向に移動する移動量を算出し、連続して得られる2枚の鳥瞰視画像間において車幅方向の移動量が所定値(鳥瞰視画像の解像度で所定の画素数)以下となるように、カメラ10の撮像間隔を設定する。これにより、第2実施形態では、第1実施形態の効果に加えて、ヨーレートセンサを備えない立体物検出装置1aにおいても、連続して得られる2枚の鳥瞰視画像の位置合わせを、立体物の検出に適した高い精度で行うことができ、その結果、立体物の検出に適切した差分画像PDtを生成することができる。
As described above, in the second embodiment, two captured images obtained at different times that are successively obtained are converted into bird's-eye view images, and the two bird's-eye view images are aligned to obtain the difference image PD t. generate, when detecting the three-dimensional object from the difference data in the difference image PD t, based on the position information and the map information of the vehicle, calculates the movement amount of the vehicle is moved in the vehicle width direction within a predetermined time Then, the imaging interval of the
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
なお、上述した実施形態のカメラ10は本発明の撮像手段に相当し、撮像間隔設定部31は本発明の旋回状態取得手段および制御手段に相当し、視点変換部32は本発明の画像変換手段に相当し、位置合わせ部33は本発明の差分画像生成手段に相当し、立体物検出部34は本発明の立体物検出手段に相当し、立体物判定部35は本発明の立体物判定手段に相当する。
Note that the
1,1a…立体物検出装置
10…カメラ
20…車速センサ
30,30a…計算機
31,31a…撮像間隔設定部
32…視点変換部
33…位置合わせ部
34…立体物検出部
35…立体物判定部
40…ヨーレートセンサ
50…地図データベース
60…GPSユニット
a…画角
A1,A2…検出領域
CP…交点
DP…差分画素
DWt,DWt’…差分波形
DWt1〜DWm,DWm+k〜DWtn…小領域
L1,L2…接地線
La,Lb…立体物が倒れ込む方向上の線
PBt…鳥瞰視画像
PDt…差分画像
V1…自車両
V2…隣接車両
DESCRIPTION OF
Claims (7)
車両の車速を検出する車速検出手段と、
車両の旋回状態を検出する旋回状態検出手段と、
前記撮像手段の撮像間隔を、前記車両の旋回状態および車速に応じた所定の等距離間隔に設定し、設定した前記撮像間隔で、前記撮像手段に撮像画像を撮像させる制御手段と、
前記撮像間隔で連続して得られた前記撮像画像に基づく画像の位置を進行方向に沿って位置合わせすることで、差分画像を生成する差分画像生成手段と、
前記差分画像上において所定の差分を示す画素数をカウントする画素数カウント手段と、
前記画素数をカウントして度数分布化することで差分波形情報を生成し、当該差分波形情報に基づいて立体物を検出する立体物検出手段と、を備え、
前記制御手段は、連続して得られた前記撮像画像におけるそれぞれの撮像対象領域の車幅方向におけるずれ量が、前記撮像画像において所定の画素数以下となる走行距離を算出し、前記算出した走行距離を前記撮像間隔として設定することを特徴とする立体物検出装置。 Imaging means for imaging a predetermined area;
Vehicle speed detecting means for detecting the vehicle speed of the vehicle;
A turning state detecting means for detecting a turning state of the vehicle;
A control unit that sets an imaging interval of the imaging unit to a predetermined equidistance interval according to a turning state and a vehicle speed of the vehicle, and causes the imaging unit to capture a captured image at the set imaging interval;
Differential image generation means for generating a differential image by aligning the position of the image based on the captured image obtained continuously at the imaging interval along the traveling direction ;
Pixel number counting means for counting the number of pixels showing a predetermined difference on the difference image;
It generates a difference waveform information by the frequency distribution of counts the number of the pixels, and a three-dimensional object detection means for detecting a three-dimensional object on the basis of the differential waveform information,
The control means calculates a travel distance in which a shift amount in a vehicle width direction of each imaging target region in the captured images obtained continuously is equal to or less than a predetermined number of pixels in the captured image, and the calculated travel A three-dimensional object detection apparatus , wherein a distance is set as the imaging interval .
前記旋回状態検出手段は、車両のヨーレートに基づいて、所定時間内における車両の車幅方向への移動量を算出し、算出した前記車幅方向の移動量を、前記車両の旋回状態として検出することを特徴とする立体物検出装置。 The three-dimensional object detection device according to claim 1,
The turning state detection means calculates a movement amount of the vehicle in the vehicle width direction within a predetermined time based on the yaw rate of the vehicle, and detects the calculated movement amount in the vehicle width direction as the turning state of the vehicle. The three-dimensional object detection apparatus characterized by the above-mentioned.
車両の位置情報を取得する位置情報取得手段と、
地図情報を取得する地図情報取得手段と、をさらに備え、
前記旋回状態検出手段は、前記車両の位置情報および前記地図情報に基づいて、車両が走行する道路形状を予測し、予測した前記道路形状に基づいて、所定時間内における車両の車幅方向への移動量を算出し、算出した前記車幅方向の移動量を、前記車両の旋回状態として検出することを特徴とする立体物検出装置。 The three-dimensional object detection device according to claim 1,
Position information acquisition means for acquiring vehicle position information;
Map information acquisition means for acquiring map information,
The turning state detecting means predicts a road shape on which the vehicle travels based on the position information of the vehicle and the map information, and in the vehicle width direction within a predetermined time based on the predicted road shape. A three-dimensional object detection device that calculates a movement amount and detects the calculated movement amount in the vehicle width direction as a turning state of the vehicle.
前記制御手段は、前記所定時間内における車両の車幅方向への移動量が大きいほど、前記撮像間隔を短く設定することを特徴とする立体物検出装置。 The three-dimensional object detection device according to claim 2, wherein
The three-dimensional object detection device, wherein the control unit sets the imaging interval to be shorter as the movement amount of the vehicle in the vehicle width direction within the predetermined time is larger.
前記差分画像生成手段は、前記撮像間隔に基づいて、連続して得られた前記撮像画像におけるそれぞれの撮像対象領域のずれ量を特定し、特定した前記ずれ量に応じて、連続して得られた前記撮像画像に基づく画像をずらすことで、連続して得られた前記撮像画像に基づく画像の位置を位置合わせすることを特徴とする立体物検出装置。 The three-dimensional object detection device according to any one of claims 1 to 4,
The difference image generation means specifies the amount of deviation of each imaging target region in the captured image obtained continuously based on the imaging interval, and is obtained continuously according to the identified amount of deviation. A three-dimensional object detection apparatus characterized by aligning the positions of images based on the continuously obtained captured images by shifting images based on the captured images.
前記撮像間隔で連続して得られた前記撮像画像を鳥瞰視画像に視点変換する画像変換手段をさらに備え、
前記差分画像生成手段は、前記画像変換手段により連続して得られた前記鳥瞰視画像の位置を鳥瞰視上で位置合わせすることで、前記差分画像を生成することを特徴とする立体物検出装置。 The three-dimensional object detection device according to any one of claims 1 to 5,
Image conversion means for converting the captured image obtained continuously at the imaging interval into a bird's-eye view image;
The three-dimensional object detection device, wherein the difference image generation means generates the difference image by aligning the positions of the bird's eye view images continuously obtained by the image conversion means on the bird's eye view. .
前記立体物検出手段は、所定時間内に生成された複数の前記差分画像に基づいて、前記差分波形情報を生成し、生成した前記差分波形情報に基づいて前記立体物を検出することを特徴とする立体物検出装置。
The three-dimensional object detection device according to any one of claims 1 to 6,
The three-dimensional object detection means generates the difference waveform information based on the plurality of difference images generated within a predetermined time, and detects the three-dimensional object based on the generated difference waveform information. 3D object detection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038787A JP5938940B2 (en) | 2012-02-24 | 2012-02-24 | Three-dimensional object detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012038787A JP5938940B2 (en) | 2012-02-24 | 2012-02-24 | Three-dimensional object detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013173427A JP2013173427A (en) | 2013-09-05 |
JP5938940B2 true JP5938940B2 (en) | 2016-06-22 |
Family
ID=49266793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012038787A Expired - Fee Related JP5938940B2 (en) | 2012-02-24 | 2012-02-24 | Three-dimensional object detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5938940B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6861599B2 (en) * | 2017-08-31 | 2021-04-21 | フォルシアクラリオン・エレクトロニクス株式会社 | Peripheral monitoring device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007331580A (en) * | 2006-06-15 | 2007-12-27 | Xanavi Informatics Corp | Vehicle speed control system |
JP2009099033A (en) * | 2007-10-18 | 2009-05-07 | Denso Corp | Vehicle peripheral image photographing controller and program used therefor |
JP2010250503A (en) * | 2009-04-14 | 2010-11-04 | Toyota Motor Corp | Vehicle controller and in-vehicle imaging apparatus |
JP5251927B2 (en) * | 2010-06-21 | 2013-07-31 | 日産自動車株式会社 | Moving distance detection device and moving distance detection method |
-
2012
- 2012-02-24 JP JP2012038787A patent/JP5938940B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013173427A (en) | 2013-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5251927B2 (en) | Moving distance detection device and moving distance detection method | |
CN107272021B (en) | Object detection using radar and visually defined image detection areas | |
EP2819090B1 (en) | Three-dimensional object detection device | |
JP4801821B2 (en) | Road shape estimation device | |
JP5188452B2 (en) | Road shape recognition device | |
JP5468426B2 (en) | Stereo camera device | |
JP5761349B2 (en) | Three-dimensional object detection apparatus and three-dimensional object detection method | |
JP5776795B2 (en) | Three-dimensional object detection device | |
EP2372304A2 (en) | Vehicle position recognition system | |
EP2803944A2 (en) | Image Processing Apparatus, Distance Measurement Apparatus, Vehicle-Device Control System, Vehicle, and Image Processing Program | |
EP2767927A2 (en) | Face information detection apparatus, vehicle device control system employing face information detection apparatus, and carrier medium of face information detection program | |
US20180197299A1 (en) | Information processing device, information processing method, and computer program product | |
JP5682735B2 (en) | Three-dimensional object detection device | |
JP2014130429A (en) | Photographing device and three-dimensional object area detection program | |
JP6480504B2 (en) | Target recognition system, target recognition method, and program | |
KR20190134303A (en) | Apparatus and method for image recognition | |
JP5938940B2 (en) | Three-dimensional object detection device | |
US20230245323A1 (en) | Object tracking device, object tracking method, and storage medium | |
JP5783319B2 (en) | Three-dimensional object detection apparatus and three-dimensional object detection method | |
JP5950193B2 (en) | Disparity value calculation device, disparity value calculation system including the same, moving surface area recognition system, disparity value calculation method, and disparity value calculation program | |
WO2022133986A1 (en) | Accuracy estimation method and system | |
JP5724570B2 (en) | Driving support device and driving support method | |
JP6020568B2 (en) | Three-dimensional object detection apparatus and three-dimensional object detection method | |
US20240262386A1 (en) | Iterative depth estimation | |
JP5732890B2 (en) | Parallel body detection device and parallel body detection method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150915 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160502 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5938940 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
LAPS | Cancellation because of no payment of annual fees |