JP5938755B1 - Supercharger for internal combustion engine - Google Patents

Supercharger for internal combustion engine Download PDF

Info

Publication number
JP5938755B1
JP5938755B1 JP2015187619A JP2015187619A JP5938755B1 JP 5938755 B1 JP5938755 B1 JP 5938755B1 JP 2015187619 A JP2015187619 A JP 2015187619A JP 2015187619 A JP2015187619 A JP 2015187619A JP 5938755 B1 JP5938755 B1 JP 5938755B1
Authority
JP
Japan
Prior art keywords
supercharging
flow
fluid
pressure
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015187619A
Other languages
Japanese (ja)
Other versions
JP2017061887A (en
Inventor
正裕 井尻
正裕 井尻
Original Assignee
正裕 井尻
正裕 井尻
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正裕 井尻, 正裕 井尻 filed Critical 正裕 井尻
Priority to JP2015187619A priority Critical patent/JP5938755B1/en
Application granted granted Critical
Publication of JP5938755B1 publication Critical patent/JP5938755B1/en
Publication of JP2017061887A publication Critical patent/JP2017061887A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Abstract

【課題】過給手段の駆動流を加圧貯蔵流体の燃料等の圧力エネルギーを利用する過給装置を提供する。【解決手段】内燃機関1の吸気系統に、過給手段5である駆動流で過給を行う空気流量増幅器6と、過給手段と燃焼室との間に過給の圧力を測定する過給センサ44と、を設け、更に、貯蔵手段に加圧貯蔵された流体の圧力エネルギにより駆動流を流出する流体供給手段9と、駆動流の流量等を内燃機関の運転状況に応じて制御する流体制御手段8と、で構成する流体内圧機構7を設けた内燃機関の過給装置2である。【選択図】図1The present invention provides a supercharging device that uses pressure energy such as fuel of a pressurized storage fluid as a driving flow of a supercharging means. An air flow amplifier that performs supercharging with a driving flow that is a supercharging means, and a supercharging that measures supercharging pressure between the supercharging means and a combustion chamber. And a fluid supply means 9 for flowing out the driving flow by the pressure energy of the fluid pressurized and stored in the storage means, and a fluid for controlling the flow rate of the driving flow in accordance with the operating state of the internal combustion engine. A supercharging device 2 for an internal combustion engine provided with a fluid internal pressure mechanism 7 constituted by a control means 8. [Selection] Figure 1

Description

本願発明は、空気流量増幅器を用いた内燃機関の過給装置に関するものである。   The present invention relates to a supercharging device for an internal combustion engine using an air flow amplifier.

内燃機関の燃料として、常温で比較的低い圧力(約7bar)で液化して体積が約1/250になるLPG(液化石油ガス)、高圧(約200bar)の加圧貯蔵により貯蔵容積効率を向上させることができるCNG(圧縮天然ガス)、更に高圧の加圧貯蔵ができる水素、等の加圧貯蔵する流体燃料がある。
内燃機関とは異なるが、加圧貯蔵した空気を空気エンジンの動力とする圧縮空気推進の圧縮空気車があり、圧縮空気を貯蔵するタンクは300barの圧縮空気を貯蔵できる。
前記加圧貯蔵する流体燃料は、内燃機関に燃料として供給する方法として、略大気圧に減圧して流量制御した燃料をミキサ(混合器)にてベルヌーイの定理による負圧により吸気流に吸引して予混合する方法、加圧貯蔵流体の圧力を利用して吸気系統に燃料噴射する方法、あるいは筒内燃料噴射装置により加圧貯蔵流体の圧力より高い圧力に加圧してインジェクタで燃焼室に燃料噴射する方法等があり、前記略大気圧に減圧して吸気流に予混合する方法では加圧貯蔵する流体燃料の圧力エネルギを回収することができない問題点がある。
前記加圧貯蔵する流体燃料の圧力エネルギ回収の方法として、ガス燃料エンジン(特許文献1)があり、図17の実施例のガス燃料エンジンの全体の構成の系統図に示すように、高圧のガス容器109のCNGを燃料供給装置140に減圧供給する過程で、その圧力エネルギを動力として回収する膨張タービン105を設け、前記膨張タービン105で回転する過給機104で過給運転を行う内燃機関1pが従来技術としてある。
前記膨張タービン105の下流に設けた低圧減圧弁142で大気圧付近に減圧した燃料はガス流量制御弁141を介して吸気装置150のミキサ151に供給され、排気通路に設けられたO2センサ111の入力情報により、空燃比制御装置110のコントローラ112により前記ガス流量制御弁141を制御して吸気への燃料供給量を制御する。
過給機104である機械式過給機やターボ式過給機等は、吸気を直接過給する過給機であるので、吸気系統に大きな容量の前記過給機104を設ける必要があり、前記膨張タービン105のタービン動力で過給機104を駆動するのでターボラグが発生する等の問題点がある。
LPG (liquefied petroleum gas), which is liquefied at a relatively low pressure (about 7 bar) at room temperature and has a volume of about 1/250 as an internal combustion engine fuel, improves storage volume efficiency by high-pressure (about 200 bar) pressurized storage There are fluid fuels for pressurized storage such as CNG (compressed natural gas) that can be stored, hydrogen that can be stored under high pressure.
Although it is different from an internal combustion engine, there is a compressed air propulsion compressed air wheel that uses compressed air as power for the air engine, and a tank for storing the compressed air can store 300 bar of compressed air.
As a method of supplying the fluid fuel to be stored under pressure as a fuel to the internal combustion engine, the fuel whose pressure is controlled by reducing the pressure to approximately atmospheric pressure is sucked into the intake flow by the negative pressure according to Bernoulli's theorem in a mixer (mixer). A pre-mixing method, a method of injecting fuel into the intake system using the pressure of the pressurized storage fluid, or a fuel in the combustion chamber using an injector that is pressurized to a pressure higher than the pressure of the pressurized storage fluid by an in-cylinder fuel injection device. There is a method of injecting, and there is a problem that the pressure energy of the fluid fuel to be stored under pressure cannot be recovered by the method of reducing the pressure to approximately atmospheric pressure and premixing it into the intake air flow.
As a method for recovering the pressure energy of the fluid fuel stored under pressure, there is a gas fuel engine (Patent Document 1). As shown in the system diagram of the overall configuration of the gas fuel engine of the embodiment of FIG. An internal combustion engine 1p that is provided with an expansion turbine 105 that recovers the pressure energy as power in the course of supplying CNG in the container 109 to the fuel supply device 140 under reduced pressure, and that performs supercharging operation with the supercharger 104 that rotates with the expansion turbine 105. There is a conventional technique.
The fuel depressurized to near atmospheric pressure by the low pressure reducing valve 142 provided downstream of the expansion turbine 105 is supplied to the mixer 151 of the intake device 150 via the gas flow rate control valve 141, and is supplied to the O2 sensor 111 provided in the exhaust passage. Based on the input information, the controller 112 of the air-fuel ratio control device 110 controls the gas flow rate control valve 141 to control the amount of fuel supplied to the intake air.
Since the turbocharger 104, such as a mechanical supercharger or a turbocharger, is a supercharger that directly supercharges intake air, it is necessary to provide the supercharger 104 with a large capacity in the intake system, Since the turbocharger 104 is driven by the turbine power of the expansion turbine 105, there is a problem that turbo lag is generated.

内燃機関の出力増大等のために、吸気の圧力を大気圧以上にする内燃機関の過給手段として、吸気を直接加圧する前記機械式過給機やターボ式過給機とは異なり、空気流量増幅器を用いて駆動流で吸気を加速して流量増幅する過給手段(特許文献2および3)が従来技術としてある。
この空気流量増幅器には、流量増幅比が大きい順に、トランスベクタ(登録商標)、フロートランスベクタ(市販品の商品名)、エジェクタ等があり、駆動流による流量増幅気流の推力は概ね流量増幅比に反比例する。
前記過給手段である空気流量増幅器は回転部を持たないので、機械式過給機やターボ式過給機より簡素な構造であり、安価で信頼性が高く、高速運転時に吸気流による慣性は発生するが前記回転部による慣性の問題が発生しないのでウエストゲートバルブを設ける必要がなく、駆動流の制御により応答性の高い過給制御ができる。
駆動流での吸気流加速による過給手段であるので過給装置が小型であり、更に通路抵抗が小さいので、過給装置の故障時を含む過給停止時に自然吸気内燃機関として運転するための過給装置のバイパス通路を設ける必要が無い等の利点があるが、過給運転には動力源である駆動流が必要である。
前記空気流量増幅器の駆動流は、内燃機関により駆動される圧縮機による圧縮空気を利用する圧縮機方式(特許文献2)と、内燃機関の排気ガスを利用するEGR方式(特許文献3)がある。
前記駆動流の圧縮機方式は、内燃機関により駆動される圧縮機が必要であり、この圧縮機の容量(吐出量)は、過給圧がかかった状態の吸気の流量を空気流量増幅器の流量増幅比で除した容量であるので、吸気を直接加圧する前記機械式過給機より容量が小さく小型化となるが、圧縮機を駆動する動力損失が発生する問題点がある。
内燃機関において、NOx(窒素酸化物)等の発生抑制等を目的として、燃焼後の排気ガスの一部を取り出して吸気側へ導き再度吸気させる、EGR(排気再循環)が従来技術としてある。
駆動流のEGR方式は、前記空気流量増幅器により過給を行うと同時に、駆動流である排気再循環ガスが吸気に混合してEGRを行うことができるので、排気の圧力エネルギを回収する駆動流方式であるが、EGRガスの過熱高温時には駆動流として性状不適となり、低負荷時にはEGRガス圧力が不足となる、等の内燃機関の運転状況により、過給運転ができない場合が発生する問題点がある。
Unlike the mechanical supercharger or turbocharger that directly pressurizes the intake air as supercharging means for the internal combustion engine that makes the pressure of the intake air equal to or higher than the atmospheric pressure to increase the output of the internal combustion engine, the air flow rate Conventionally, there is a supercharging means (Patent Documents 2 and 3) that amplifies the flow rate by accelerating intake air with a driving flow using an amplifier.
This air flow amplifier has a transformer vector (registered trademark), a flow transformer vector (commercial product name), an ejector, etc. in descending order of the flow amplification ratio. Inversely proportional to
Since the air flow amplifier as the supercharging means does not have a rotating part, it has a simpler structure than a mechanical supercharger or turbocharger, is inexpensive and reliable, and the inertia due to the intake air flow at high speed operation is Although there is no problem of inertia due to the rotating part, there is no need to provide a wastegate valve, and supercharging control with high responsiveness can be performed by controlling the driving flow.
Since it is a supercharging means by acceleration of intake flow in the driving flow, the supercharging device is small and the passage resistance is small, so that it operates as a naturally aspirated internal combustion engine at the time of supercharging stop including when the supercharging device fails Although there is an advantage that it is not necessary to provide a bypass passage of the supercharging device, a supercharging operation requires a driving flow as a power source.
The driving flow of the air flow amplifier includes a compressor system that uses compressed air from a compressor driven by an internal combustion engine (Patent Document 2) and an EGR system that uses exhaust gas from the internal combustion engine (Patent Document 3). .
The drive flow compressor system requires a compressor driven by an internal combustion engine, and the capacity (discharge amount) of this compressor is the flow rate of the intake air in a state where the supercharging pressure is applied to the flow rate of the air flow amplifier. Since the capacity is divided by the amplification ratio, the capacity is smaller and smaller than the mechanical supercharger that directly pressurizes the intake air, but there is a problem that power loss for driving the compressor occurs.
In the internal combustion engine, EGR (exhaust gas recirculation) is a conventional technique for taking out part of exhaust gas after combustion, leading it to the intake side, and sucking it again for the purpose of suppressing generation of NOx (nitrogen oxide) or the like.
In the EGR method of driving flow, supercharging is performed by the air flow amplifier, and at the same time, exhaust gas recirculation gas as driving flow can be mixed with intake air to perform EGR. However, there is a problem that the supercharging operation may not be possible depending on the operation state of the internal combustion engine, such as an unsuitable property as a driving flow when the EGR gas is superheated at a high temperature and an EGR gas pressure becomes insufficient at a low load. is there.

排気ガスに、二酸化炭素を発生しない燃料として水素や、水の電気分解で生成できる水素と酸素の混合気体である酸水素ガスがある。
更に、水を振動撹拌しながら電気分解することにより生成される水素と酸素からなる水素−酸素ガス(以下、オオマサガスという)があり、前記酸水素ガスより安全で、LPGより大幅にコスト低減できるが、体積当たりの発熱量は都市ガスの約1/5の熱量で、エネルギ密度が小さい問題点がある。
このオオマサガスは、特別な混合手段を必要とすることなく、燃料タンクにオオマサガスとLPGを1:1(容積比)で流入することにより、燃料としてLPG内燃機関に供給して効率よく運転することができる。
Examples of exhaust gas include hydrogen as a fuel that does not generate carbon dioxide, and oxyhydrogen gas that is a mixed gas of hydrogen and oxygen that can be generated by electrolysis of water.
In addition, there is a hydrogen-oxygen gas (hereinafter referred to as Oomasa gas) consisting of hydrogen and oxygen produced by electrolyzing water while vibrating and stirring, which is safer than the oxyhydrogen gas and can greatly reduce costs compared to LPG. However, the calorific value per volume is about 1/5 that of city gas, and the energy density is low.
This Omasa gas is supplied efficiently to the LPG internal combustion engine as fuel by flowing the Omasa gas and LPG into the fuel tank at 1: 1 (volume ratio) without requiring any special mixing means. be able to.

特開平8−193520号公報JP-A-8-193520 実開平3−47431号公報Japanese Utility Model Publication No. 3-47431 特願2015−144号Japanese Patent Application No. 2015-144

内燃機関の燃料として、LPG、CNG、水素等は容積効率を向上するために加圧貯蔵するが、この加圧貯蔵燃料の圧力エネルギの回収が殆んどされない問題点がある。
この圧力エネルギの回収方法として、前記ガス燃料エンジン(特許文献1)の内燃機関があるが、この過給機である機械式過給機やターボ式過給機は、吸気を直接過給する方式のため吸気系統に前記膨張タービンで駆動する容量の大きな過給機を設ける必要があり、前記膨張タービンのターボラグによる応答性が低い等の問題点がある。
前記機械式過給機やターボ式過給機とは異なり、高速回転部を持たない簡素な構造で駆動流により吸気を加速して過給を行う空気流量増幅器を過給手段とする過給装置の駆動流は、前述のように圧縮機が必要で動力損失が発生する圧縮機方式(特許文献2)と、排気ガスの圧力エネルギを回収できるEGR方式(特許文献3)とがあり、このEGR方式は内燃機関の運転状況によりEGRガスの温度、圧力の変動により性状不適、圧力不足等によりEGRガスを駆動流として過給運転することができない場合が発生する問題がある。
内燃機関の過給と予混合を行う場合、従来技術では過給を行う過給機と、予混合を行うためのミキサが必要で、過給と予混合の燃料濃度の制御がそれぞれ別々に必要である。
As fuel for the internal combustion engine, LPG, CNG, hydrogen and the like are stored under pressure in order to improve volumetric efficiency. However, there is a problem that the pressure energy of the pressurized storage fuel is hardly recovered.
As a method for recovering the pressure energy, there is an internal combustion engine of the gas fuel engine (Patent Document 1). A mechanical supercharger or a turbocharger as a supercharger directly supercharges intake air. Therefore, it is necessary to provide a supercharger with a large capacity driven by the expansion turbine in the intake system, and there is a problem that the response of the expansion turbine due to the turbo lag is low.
Unlike the mechanical supercharger or turbocharger, a supercharger having a simple structure that does not have a high-speed rotating part and an air flow rate amplifier that performs supercharging by accelerating intake air by a driving flow to supercharge As described above, there are two types of driving flows: a compressor system that requires a compressor and generates power loss (Patent Document 2), and an EGR system that can recover the pressure energy of exhaust gas (Patent Document 3). There is a problem that the system may not be able to perform supercharging operation using the EGR gas as a driving flow due to variations in the temperature and pressure of the EGR gas due to fluctuations in the temperature and pressure of the internal combustion engine due to inappropriate properties and insufficient pressure.
When supercharging and premixing an internal combustion engine, the conventional technology requires a supercharger that performs supercharging and a mixer for performing premixing, and requires separate control of fuel concentration for supercharging and premixing. It is.

請求項1は、流体供給手段と流体制御手段とで構成する流体内圧機構を備えた内燃機関の過給装置で、過給手段である空気流量増幅器の駆動流を、従来の圧縮機方式やEGR方式ではなく、本願発明は加圧貯蔵流体である燃料等の圧力エネルギを利用することにより、駆動流を前記流体制御手段にて任意に調整でき、応答性の高い過給制御ができる流体内圧方式の駆動流とすることを最も主要な特徴とする。   The first aspect of the present invention is a supercharging device for an internal combustion engine having a fluid internal pressure mechanism composed of a fluid supply means and a fluid control means. The driving flow of an air flow rate amplifier, which is a supercharging means, is applied to a conventional compressor system or EGR. The present invention is not a method but a fluid internal pressure method in which the drive flow can be arbitrarily adjusted by the fluid control means by using pressure energy such as fuel as a pressurized storage fluid, and supercharge control with high responsiveness can be performed. The main feature is that it is a driving flow.

請求項2は、前記過給手段に設けた前記空気流量増幅器と1次空気流量増幅器により2段流量増幅を行うことにより、過給手段の流量増幅比は、前記空気流量増幅器の流量増幅比と1次空気流量増幅器の流量増幅比との積となり、過給手段の流量増幅比を増大でき、駆動流が燃料の場合は燃料濃度を低下できる。   According to a second aspect of the present invention, by performing two-stage flow rate amplification by the air flow rate amplifier and the primary air flow rate amplifier provided in the supercharging unit, the flow rate amplification ratio of the supercharging unit is equal to the flow rate amplification ratio of the air flow rate amplifier. It becomes a product of the flow rate amplification ratio of the primary air flow rate amplifier, the flow rate amplification ratio of the supercharging means can be increased, and the fuel concentration can be lowered when the driving flow is fuel.

請求項3は、前記流体制御手段の駆動流通路等に連通する第2の流体通路を設け、前記第2の流体通路を介して、内燃機関により駆動される圧縮機で発生する圧縮空気、排気還流手段から還流されるEGRガス、または前記駆動流とは異なる流体の流体供給手段から供給される駆動流を前記流体制御手段に供給することにより、駆動流の強化、駆動流が燃料と圧縮空気等の場合は燃料濃度(体積濃度)の低下、異種燃料の場合は、選択した異種燃料あるいは両方の燃料の混合気を供給することができる。   According to a third aspect of the present invention, there is provided a second fluid passage communicating with a drive flow passage or the like of the fluid control means, and compressed air or exhaust generated by a compressor driven by an internal combustion engine through the second fluid passage. The EGR gas recirculated from the recirculation means or the drive flow supplied from the fluid supply means of a fluid different from the drive flow is supplied to the fluid control means, whereby the drive flow is strengthened, and the drive flow is fuel and compressed air. In the case of different fuels, the fuel concentration (volume concentration) can be reduced, and in the case of different fuels, the selected different fuel or a mixture of both fuels can be supplied.

請求項4は、内燃機関の前記過給装置において、過給手段の空気流量増幅器のノズルの上流に吸気の逆流および逆流流量増幅を防止する逆止弁を設け、安定した過給運転と、駆動流が燃料の場合は予混合気が吸気系統から大気に大量流出するのを防止できる。   According to a fourth aspect of the present invention, in the supercharging device for an internal combustion engine, a check valve for preventing backflow of the intake air and backflow flow rate amplification is provided upstream of the nozzle of the air flow amplifier of the supercharging means, and stable supercharging operation and driving When the flow is fuel, it is possible to prevent a large amount of premixed gas from flowing from the intake system to the atmosphere.

前記過給手段である空気流量増幅器は、前記機械式過給機やターボ式過給機を必要とせず、簡素な構造で小型であるので安価で信頼性が高く、通路抵抗が小さいので過給不要時等の過給装置の停止時に自然吸気内燃機関として運転できるので、過給手段のバイパス通路を設ける必要がない等の利点があるが、過給運転には動力源である駆動流が必要であり、駆動流の前記圧縮機方式は、内燃機関により駆動する圧縮機が必要であり、その駆動力により動力損失が発生し、前記EGR方式は、EGRガスの過熱高温時には駆動流として性状不適、低負荷時のEGRガス圧力の不足等の内燃機関の運転状況により過給運転ができない場合が発生する問題点がある。
本願発明の請求項1の内燃機関の過給装置は、前記空気流量増幅器の駆動流を流体供給手段の貯蔵手段に蓄えられた加圧貯蔵流体の圧力エネルギを駆動流の動力源として直接利用する流体内圧方式であるので、加圧貯蔵流体の圧力エネルギの回収ができ、前記流体制御手段により内燃機関(火花点火機関、または圧縮着火機関)の運転状況に適応した過給制御が高い応答性で任意にできる効果がある。
駆動流が燃料の場合は、前記過給手段である空気流量増幅器で過給と同時に燃料の予混合が行われるのでミキサ(混合器)が不要な予混合火花点火機関とすることができ、前記過給手段の流量増幅比の逆数が予混合吸気の燃料濃度となるので安定した燃料濃度の予混合吸気により過給運転ができる効果がある。
更に、後述する筒内燃料噴射装置の併用等により、リーンバーンエンジン、または予混合圧縮着火機関とすることができる。
前記予混合圧縮着火機関は、後述するように従来の圧縮着火機関より燃焼速度が大きいので高速回転時の燃焼速度による出力効率の低下を改善できるので、高速運転領域を大きくできる効果により出力の増大が図れ、過給との相乗効果により圧縮着火機関のダウンサイジングができる。
The air flow amplifier as the supercharging means does not require the mechanical supercharger or the turbocharger, has a simple structure and is small in size, is inexpensive and highly reliable, and has a small passage resistance. Since it can be operated as a naturally aspirated internal combustion engine when the turbocharger is stopped when not required, etc., there is an advantage that it is not necessary to provide a bypass passage for the supercharging means, but a driving flow that is a power source is required for supercharging operation The compressor method for driving flow requires a compressor driven by an internal combustion engine, and power loss occurs due to the driving force. The EGR method is not suitable for driving when the EGR gas is overheated and hot. There is a problem that supercharging operation cannot be performed depending on the operation state of the internal combustion engine, such as insufficient EGR gas pressure at low load.
The supercharging device for an internal combustion engine according to claim 1 of the present invention directly uses the pressure energy of the pressurized storage fluid stored in the storage means of the fluid supply means as the power source of the drive flow. Since it is a fluid internal pressure system, the pressure energy of the pressurized storage fluid can be recovered, and the supercharging control adapted to the operation status of the internal combustion engine (spark ignition engine or compression ignition engine) by the fluid control means is highly responsive. There is an effect that can be made arbitrarily.
When the driving flow is fuel, premixing of fuel is performed simultaneously with supercharging by the air flow amplifier as the supercharging means, so that a premixed spark ignition engine that does not require a mixer (mixer) can be obtained. Since the reciprocal of the flow rate amplification ratio of the supercharging means becomes the fuel concentration of the premixed intake air, there is an effect that the supercharging operation can be performed by the premixed intake air having a stable fuel concentration.
Further, a lean burn engine or a premixed compression ignition engine can be obtained by using a cylinder fuel injection device described later.
Since the premixed compression ignition engine has a higher combustion speed than the conventional compression ignition engine, as will be described later, the reduction in output efficiency due to the combustion speed at high speed rotation can be improved. Therefore, the compression ignition engine can be downsized by a synergistic effect with supercharging.

本願発明の請求項2の内燃機関の過給装置は、過給手段が駆動流により1次空気流量増幅器で1次流量増幅した吸気を前記空気流量増幅器の駆動流とすることにより2段流量増幅を行うので、前記過給手段の流量増幅比は、1次空気流量増幅器の流量増幅比と前記空気流量増幅器の流量増幅比の積となるので、前記過給手段の流量増幅比を増大する効果がある。
駆動流が燃料の場合は、前記予混合吸気の燃料濃度を低下(リーンに移行)できるので、CNGの理論空燃比(9.6容積比)程度の燃料の燃料濃度を爆発限界内(図8)に制御でき、予混合吸気により過給運転ができる内燃機関(予混合火花点火機関、後述するリーンバーンエンジン、または予混合圧縮着火機関)とすることができる効果がある。
According to a second aspect of the present invention, there is provided a supercharging device for an internal combustion engine, wherein the supercharging means uses the intake air whose primary flow rate is amplified by the primary air flow amplifier by the drive flow as the drive flow of the air flow rate amplifier, thereby the two-stage flow rate amplification. Therefore, since the flow rate amplification ratio of the supercharging means is the product of the flow rate amplification ratio of the primary air flow amplifier and the flow rate amplification ratio of the air flow amplifier, the effect of increasing the flow rate amplification ratio of the supercharge means There is.
When the driving flow is fuel, the fuel concentration of the premixed intake air can be lowered (shifted to lean), so that the fuel concentration of the fuel at the CNG theoretical air-fuel ratio (9.6 volume ratio) is within the explosion limit (FIG. 8). And an internal combustion engine (a premixed spark ignition engine, a lean burn engine, which will be described later, or a premixed compression ignition engine) that can be supercharged by premixed intake.

本願発明の請求項3の内燃機関の過給装置は、駆動流を本願発明の流体内圧方式と、更に、圧縮機方式、EGR方式、あるいは前記流体内圧方式と異なる流体の流体内圧方式を第2の駆動流として併用することにより、併用する駆動流により駆動流の強化、駆動流が燃料と圧縮空気等の場合は燃料濃度の低下の効果がある。
併用する駆動流が異種燃料の場合は、異種燃料の混合割合を負荷等の運転状況に対応して過給制御でき、両方の燃料の残量に比例した混合比で供給する、あるいは経済的に有利な方の燃料を供給する、等の駆動流制御による燃料供給方法を選択できる、バイフューエルエンジンとすることができる効果がある。
The supercharging device for an internal combustion engine according to claim 3 of the present invention uses a second fluid internal pressure system as a driving flow, and further a compressor internal system, an EGR system, or a fluid internal pressure system different from the fluid internal pressure system. By using together as the driving flow, there is an effect of strengthening the driving flow by the combined driving flow, and reducing the fuel concentration when the driving flow is fuel and compressed air.
When the driving flow used in combination is different fuel, the mixing ratio of different fuels can be supercharged according to the operating conditions such as load, and it is supplied at a mixing ratio proportional to the remaining amount of both fuels, or economically There is an effect that a bi-fuel engine can be selected in which a fuel supply method by driving flow control such as supplying an advantageous fuel can be selected.

本願発明の請求項4の内燃機関の過給装置は、前記空気流量増幅器のノズルの上流に吸気の逆流および逆流流量増幅を防止する逆止弁を設けた過給手段を備えた内燃機関の過給装置で、吸気の逆流と駆動流による逆流流量増幅現象を防止することにより安定した過給運転ができ、駆動流が燃料の場合は予混合吸気が吸気系統から大気に大量流出するのを防止する効果がある。   According to a fourth aspect of the present invention, there is provided a supercharging device for an internal combustion engine comprising a supercharging means provided with a check valve for preventing backflow of intake air and backflow flow amplification upstream of a nozzle of the air flow amplifier. Prevents the backflow flow rate amplification phenomenon caused by the backflow of the intake air and the backflow by the driving device, which enables stable supercharging operation, and prevents the premixed intake air from flowing out of the intake system to the atmosphere when the drive flow is fuel. There is an effect to.

第1実施形態(請求項1対応)の内燃機関の過給装置の構成概念の説明図である。It is explanatory drawing of the structure concept of the supercharging device of the internal combustion engine of 1st Embodiment (Claim 1 correspondence). 第1実施形態の変形例1の過給装置で、駆動流と同じ流体燃料を燃焼室に噴射する筒内燃料噴射装置を備えた内燃機関の過給装置の構成例の説明図である。It is a supercharging apparatus of the modification 1 of 1st Embodiment, and is explanatory drawing of the structural example of the supercharging apparatus of the internal combustion engine provided with the cylinder fuel injection apparatus which injects the same fluid fuel as a drive flow into a combustion chamber. 第1実施形態の変形例2の過給装置で、流体燃料を燃焼室に噴射する筒内燃料噴射装置を備えた内燃機関の過給装置の制御システムの構成説明図である。It is a supercharging apparatus of the modification 2 of 1st Embodiment, and is a structure explanatory drawing of the control system of the supercharging apparatus of the internal combustion engine provided with the cylinder fuel injection apparatus which injects fluid fuel to a combustion chamber. 第1実施形態の変形例3、4の過給手段の断面図で、上段(F)は、変形例3のフロートランスベクタ型、下段(TT)は、変形例4の内蔵型のトランスベクタである。FIG. 6 is a cross-sectional view of the supercharging means of Modifications 3 and 4 of the first embodiment. The upper stage (F) is a flow transvector type of Modification Example 3 and the lower stage (TT) is a built-in type transvector of Modification Example 4. is there. 第2実施形態(請求項2対応)の2段流量増幅ができる過給手段の構成概念の説明図である。It is explanatory drawing of the structure concept of the supercharging means which can perform two-stage flow volume amplification of 2nd Embodiment (corresponding to Claim 2). 第2実施形態の変形例1の過給手段の2段流量増幅運転中の断面図である。It is sectional drawing in the 2nd stage flow volume amplification operation | movement of the supercharging means of the modification 1 of 2nd Embodiment. 第2実施形態の変形例2の過給装置で、駆動流が水素の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。In the supercharging device of the modification 2 of 2nd Embodiment, it is a general | schematic characteristic view of the flow volume amplification ratio by the trial calculation of each supercharging means in case a drive flow is hydrogen, and a supercharging pressure. 第2実施形態の変形例3の過給装置で、駆動流がCNG(圧縮天然ガス)の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。In the supercharging device of the modification 3 of 2nd Embodiment, it is a general | schematic characteristic figure of the flow volume amplification ratio and the supercharging pressure by the trial calculation of each supercharging means in case a drive flow is CNG (compressed natural gas). 第2実施形態の変形例4の過給装置で、駆動流がLPG(液化石油ガス)の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。In the supercharging device of the modification 4 of 2nd Embodiment, it is a general | schematic characteristic figure of the flow volume amplification ratio and the supercharging pressure by the trial calculation of each supercharging means in case a drive flow is LPG (liquefied petroleum gas). 第3実施形態(請求項3対応)の過給装置で、第2の流体通路を介して駆動流を供給する圧縮空気供給手段を設けた過給装置の構成例の説明図である。It is explanatory drawing of the structural example of the supercharging device which provided the compressed air supply means which supplies a drive flow via a 2nd fluid passage by the supercharging device of 3rd Embodiment (Claim 3 correspondence). 第3実施形態の変形例1の過給装置で、第2の流体通路を介して駆動流を供給するEGRガス供給手段を設けた過給装置の構成例の説明図である。It is a supercharging apparatus of the modification 1 of 3rd Embodiment, and is explanatory drawing of the structural example of the supercharging apparatus provided with the EGR gas supply means which supplies a drive flow via a 2nd fluid channel | path. 第3実施形態の変形例2の過給装置で、第2の流体通路を介して駆動流を供給する第2の流体供給手段を設けた過給装置の構成例の説明図である。FIG. 10 is an explanatory diagram of a configuration example of a supercharging device provided with second fluid supply means for supplying a driving flow through a second fluid passage in the supercharging device according to Modification 2 of the third embodiment. 第3実施形態の変形例3の過給装置で、前記第3実施形態(図10)の過給装置2cにおいて駆動流をLPGとし、圧縮空気を1:1の容積比で混合供給する場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。In the supercharging device of the third modification of the third embodiment, in the supercharging device 2c of the third embodiment (FIG. 10), the driving flow is LPG and the compressed air is mixed and supplied at a volume ratio of 1: 1. It is a general | schematic characteristic figure of the flow volume amplification ratio and the supercharging pressure by the trial calculation of each supercharging means. 第4実施形態(請求項4対応)の過給装置の過給手段で、空気流量増幅器のノズルの上流に逆止弁を設けた場合の過給手段の構成概念の説明図である。It is a supercharging means of the supercharging device of 4th Embodiment (Claim 4 correspondence), It is explanatory drawing of the structure concept of a supercharging means at the time of providing a check valve upstream of the nozzle of an air flow amplifier. 第4実施形態の変形例1の過給装置の過給手段で、第2実施形態(図5)の各空気流量増幅器のノズルの上流に逆止弁を設けた過給手段の構成概念の説明図である。Description of the supercharging means of the supercharging device of the first modification of the fourth embodiment, in which a check valve is provided upstream of the nozzle of each air flow amplifier of the second embodiment (FIG. 5). FIG. 第4実施形態の変形例2の過給装置の過給手段で、前記第4実施形態の変形例1の吸気副通路に制御弁を設けた過給手段の2段流量増幅運転中の断面図である。Sectional drawing in the supercharging means of the supercharging apparatus of the modification 2 of 4th Embodiment in the 2 step | paragraph flow volume amplification driving | operation of the supercharging means which provided the control valve in the intake sub passage of the modification 1 of the said 4th Embodiment It is. 特許文献1のCNGの圧力エネルギを膨張タービンで回収して過給機を回転して吸気を過給する、ガス燃料エンジンの全体の構成を示す系統図である。It is a systematic diagram which shows the structure of the whole gas fuel engine which collect | recovers the pressure energy of CNG of patent document 1 with an expansion turbine, rotates a supercharger, and supercharges intake air.

本願発明の各実施形態(1〜4)の概要を以下に示す。
請求項1対応である実施形態1および変形例を図1〜4に示す。
本願発明の請求項1の過給装置2は、第1実施形態の過給装置2の構成概念の説明図(図1)に示すように、過給手段5は駆動流で吸気を加速して過給を行う空気流量増幅器6から成り、流体供給手段9と、流体制御手段8と、で構成する流体内圧機構7を設けた内燃機関1の過給装置2である。
過給手段5である空気流量増幅器6は、機械式過給機やターボ式過給機より簡素な構造であるので小型で安価で信頼性が高く、通路抵抗が小さいので過給不要時等の過給装置の停止時に自然吸気内燃機関として運転できるので、過給手段のバイパス通路を設ける必要がない等の利点があるが、過給運転には動力源である駆動流が必要である。
過給手段5である空気流量増幅器6の駆動流は、前記圧縮機方式や、EGR方式ではなく、流体供給手段9のタンク91に蓄えられた加圧貯蔵流体の圧力エネルギをエネルギ変換することなく駆動流の動力源として直接利用する流体内圧方式であるので、加圧貯蔵流体の圧力エネルギの回収ができ、流体制御手段8により内燃機関1の運転状況に対応する過給制御が任意にできる過給装置2である。
過給手段5の空気流量増幅器6は、流量増幅比が大きい順に、トランスベクタ、フロートランスベクタ、エジェクタ等が選択できる。
前記流量増幅比は設置方法によっても変化し、図4(TT)に示す内蔵型のトランスベクタのように、吸気通路であるケーシング618の吸気通路の略中心にトランスベクタ61を設けることにより、駆動流と吸気流の接触面がリング状駆動流の内周面と外周面とになるので、接触面積が大きくなることにより空気流量増幅器6tの流量増幅比を大きくできる。
The outline of each embodiment (1 to 4) of the present invention is shown below.
A first embodiment corresponding to claim 1 and a modification are shown in FIGS.
The supercharging device 2 according to claim 1 of the present invention, as shown in the explanatory diagram (FIG. 1) of the structural concept of the supercharging device 2 of the first embodiment, the supercharging means 5 accelerates the intake air by the driving flow. The supercharging device 2 of the internal combustion engine 1 includes an air flow rate amplifier 6 that performs supercharging, and includes a fluid internal pressure mechanism 7 that includes a fluid supply unit 9 and a fluid control unit 8.
The air flow rate amplifier 6 which is the supercharging means 5 has a simpler structure than a mechanical supercharger or a turbocharger, so it is small, inexpensive and highly reliable, and has a small passage resistance so that it is not necessary for supercharging. Since it can be operated as a naturally aspirated internal combustion engine when the supercharging device is stopped, there is an advantage that it is not necessary to provide a bypass passage of the supercharging means. However, the supercharging operation requires a driving flow as a power source.
The driving flow of the air flow rate amplifier 6 that is the supercharging means 5 is not the compressor system or the EGR system, and does not convert the pressure energy of the pressurized storage fluid stored in the tank 91 of the fluid supply means 9 into energy. Since it is a fluid internal pressure system that is directly used as a power source for driving flow, the pressure energy of the pressurized storage fluid can be recovered, and the supercharging control corresponding to the operation status of the internal combustion engine 1 can be arbitrarily performed by the fluid control means 8. This is a feeding device 2.
The air flow amplifier 6 of the supercharging means 5 can select a transformer vector, a flow transformer vector, an ejector, etc. in descending order of the flow rate amplification ratio.
The flow rate amplification ratio also changes depending on the installation method. Like the built-in transformer vector shown in FIG. 4 (TT), the flow vector amplification ratio is driven by providing the transformer vector 61 at the approximate center of the intake passage of the casing 618 that is the intake passage. Since the contact surfaces of the flow and the intake flow become the inner peripheral surface and the outer peripheral surface of the ring-shaped drive flow, the flow rate amplification ratio of the air flow rate amplifier 6t can be increased by increasing the contact area.

図1に示す過給装置2の駆動流が燃料でない場合は、流量増幅比に応じた内燃機関1(燃焼系統は図示せず)の過給ができ、内燃機関1は火花点火機関でも圧縮着火機関でもよい。
前記流体制御手段8で制御された駆動流は、過給手段5である空気流量増幅器6に供給され、前記ノズル(図示せず)から大きな接触面積で吸気流に流出することにより、高速の駆動流が発生するベルヌーイの定理による負圧により吸気を吸引し、この吸引した吸気と駆動流が衝突することにより吸気を加速すると同時に駆動流と吸気流が混合して空気流量増幅が行われる。
内燃機関1が高速機関の場合は、吸気の流速が駆動流の流出速度より大きくなると過給ができないので、ノズル(図示せず)からの駆動流流出部の吸気通路断面積を、前記過給手段の上流と下流の吸気流入通路および吸気流出通路より大きくして、吸気流速を小さくすることにより過給を行うことができる。(図4、6,16参照)
図1に示す過給装置2の駆動流が燃料の場合は、過給と同時に予混合が行われ、過給手段5である空気流量増幅器6の流量増幅比の逆数が燃料濃度(体積濃度)となり、前記予混合された吸気の燃料濃度が爆発限界内の場合は点火プラグ(図示せず)により点火する予混合火花点火機関とする。
前記予混合機関の予混合燃料濃度は前記過給手段の流量増幅比により制御され、前記流量増幅比により理論空気量付近となる過給手段の場合は、巡航速度の一定回転数で運転する前記予混合火花点火機関に適する。
図2は、第1実施形態の変形例1の過給装置2hで、駆動流と同じ流体燃料を燃焼室に噴射する筒内燃料噴射装置15を備えた過給装置2hの構成概念の説明図であり、水素のように燃料濃度の爆発限界領域が広い燃料の場合は過給手段5hにて爆発限界内の吸気による予混合火花点火機関とし、更に、容易にリーンの予混合吸気ができるので、点火プラグ11h付近に高圧燃料ポンプユニット13で加圧された燃料をインジェクタ12より噴射して成層燃焼を行うリーンバーンエンジンとすることができる。
更に、前記筒内燃料噴射装置をコモンレール方式の筒内燃料噴射装置に置き換え、予混合の燃料より発火点の低い軽油等を燃焼室に高圧噴射して予混合圧縮着火機関とすることができる。
図2は、過給装置2hを基本構成にした構成概念の説明図であるが、内燃機関1hが既存の筒内燃料噴射装置15と流体供給手段9hで構成される既存の筒内噴射式内燃機関に後付け対応する場合は、流体制御手段8h、過給手段5h、過給センサ44hを設け、これらの入出力情報等を電子制御装置(以下「ECU」という)にて制御することにより予混合と応答性のよい過給ができる内燃機関にレトロフィットできる。
請求項2対応である実施形態2および変形例を図5〜9に示す。
When the driving flow of the supercharging device 2 shown in FIG. 1 is not fuel, the internal combustion engine 1 (combustion system not shown) can be supercharged according to the flow rate amplification ratio, and the internal combustion engine 1 can be a spark ignition engine or compression ignition. It may be an institution.
The driving flow controlled by the fluid control means 8 is supplied to an air flow rate amplifier 6 which is a supercharging means 5 and flows out into the intake air flow with a large contact area from the nozzle (not shown), thereby driving at high speed. The intake air is sucked by the negative pressure according to Bernoulli's theorem in which the flow is generated, and the suction flow and the driving flow collide to accelerate the intake air. At the same time, the driving flow and the intake flow are mixed to amplify the air flow rate.
When the internal combustion engine 1 is a high-speed engine, supercharging cannot be performed when the flow velocity of the intake air becomes larger than the outflow speed of the driving flow. Therefore, the intake passage cross-sectional area of the driving flow outflow portion from the nozzle (not shown) is Supercharging can be performed by reducing the intake air flow velocity by making it larger than the intake and intake passages upstream and downstream of the means. (See FIGS. 4, 6, and 16)
When the driving flow of the supercharging device 2 shown in FIG. 1 is fuel, premixing is performed simultaneously with supercharging, and the reciprocal of the flow rate amplification ratio of the air flow rate amplifier 6 which is the supercharging means 5 is the fuel concentration (volume concentration). Thus, when the fuel concentration of the premixed intake air is within the explosion limit, the premixed spark ignition engine is ignited by a spark plug (not shown).
The premixed fuel concentration of the premixing engine is controlled by the flow rate amplification ratio of the supercharging means, and in the case of the supercharging means that is close to the theoretical air amount by the flow rate amplification ratio, it operates at a constant cruising speed. Suitable for premixed spark ignition engines.
FIG. 2 is an explanatory diagram of a configuration concept of a supercharging device 2h including a cylinder fuel injection device 15 that injects the same fluid fuel as the driving flow into the combustion chamber in the supercharging device 2h of the first modification of the first embodiment. In the case of a fuel having a wide explosive limit region of fuel concentration such as hydrogen, a premixed spark ignition engine that uses intake air within the explosive limit in the supercharging means 5h can be used, and lean premixed intake can be easily performed. In addition, a lean burn engine that performs stratified combustion by injecting fuel pressurized by the high-pressure fuel pump unit 13 in the vicinity of the spark plug 11h from the injector 12 can be obtained.
Furthermore, the in-cylinder fuel injection device can be replaced with a common rail in-cylinder fuel injection device, and light oil having a lower ignition point than premixed fuel can be injected into the combustion chamber at a high pressure to form a premixed compression ignition engine.
FIG. 2 is an explanatory view of a configuration concept based on the supercharger 2h, but the existing in-cylinder injection internal combustion engine in which the internal combustion engine 1h is composed of the existing in-cylinder fuel injection device 15 and the fluid supply means 9h. When retrofitting to an engine, a fluid control means 8h, a supercharging means 5h, and a supercharging sensor 44h are provided, and pre-mixing is performed by controlling the input / output information and the like with an electronic control unit (hereinafter referred to as "ECU"). It can be retrofitted to an internal combustion engine that can perform supercharging with good response.
Embodiment 2 corresponding to claim 2 and modifications are shown in FIGS.

本願発明の請求項2の過給装置は、第2実施形態(請求項2対応)である2段流量増幅ができる過給手段の構成概念の説明図(図5)に示すように、過給手段5bは、駆動流を1次空気流量増幅器601で1次流量増幅した駆動流を空気流量増幅器6bの駆動流とすることにより2段流量増幅を行うので、前記過給手段5bの流量増幅比は、1次空気流量増幅器601の流量増幅比と空気流量増幅器6bの流量増幅比の積となり、大きな流量増幅比の過給手段5bとなる。
図6は、第2実施形態の変形例1の過給手段5k(F&T)で、1次空気流量増幅器601kを1次フロートランスベクタ621k(F)とし、2次流量増幅を行う空気流量増幅器6kをトランスベクタ61k(T)とする過給手段5kの2段流量増幅運転中の断面図で、流量増幅比は、1次フロートランスベクタ621k(F)とトランスベクタ61k(T)の流量増幅比の積となる。
図6に示す前記過給手段5k(F&T)は、1次空気流量増幅器601kに吸気を供給する吸気副通路28kに制御弁282kを設け、前記制御弁282kの開度調整により1次空気流量増幅器601kの流量増幅作用を制御(0〜100%)することができるので、トランスベクタ61k(T)による1段流量増幅から前記2段流量増幅までの任意の流量増幅比に制御できる。
The supercharging device according to claim 2 of the present invention is a supercharger as shown in an explanatory diagram (FIG. 5) of the configuration concept of the supercharging means capable of two-stage flow rate amplification according to the second embodiment (corresponding to claim 2). The means 5b performs two-stage flow amplification by using the drive flow obtained by amplifying the drive flow with the primary air flow amplifier 601 as the drive flow of the air flow amplifier 6b, so that the flow rate amplification ratio of the supercharging means 5b is increased. Is the product of the flow rate amplification ratio of the primary air flow rate amplifier 601 and the flow rate amplification ratio of the air flow rate amplifier 6b, and the supercharging means 5b has a large flow rate amplification ratio.
FIG. 6 shows the supercharging means 5k (F & T) of the first modification of the second embodiment, wherein the primary air flow amplifier 601k is the primary flow transformer vector 621k (F), and the air flow amplifier 6k performs the secondary flow amplification. Is a cross-sectional view during the two-stage flow rate amplification operation of the supercharging means 5k with the transformer vector 61k (T) as the flow rate amplification ratio, the flow rate amplification ratio between the primary flow trans vector 621k (F) and the trans vector 61k (T). The product of
The supercharging means 5k (F & T) shown in FIG. 6 is provided with a control valve 282k in an intake sub-passage 28k for supplying intake air to the primary air flow amplifier 601k, and the primary air flow amplifier is adjusted by adjusting the opening of the control valve 282k. Since the flow rate amplification action of 601k can be controlled (0 to 100%), it can be controlled to any flow rate amplification ratio from the first-stage flow rate amplification to the second-stage flow rate amplification by the transvector 61k (T).

駆動流が燃料の場合は、燃料の種類により爆発限界の燃料濃度は異なり、駆動流が水素のように理論空気量が小さい(2.4(容積比))燃料による、過給圧が1barの過給を行う場合の試算による概要特性図(図7)に示すように、図4(上段)に示す前記過給手段5jであるトランスベクタ62(F)で理論空気量、図6に示す2段流量増幅ができる前記過給手段5k(F&T)で爆発限界のリーン側の燃料濃度で過給を行うことができる。
駆動流がCNG(メタン(100%)で試算)のように理論空気量が水素より多い(9.6(容積比))燃料では、過給圧が1barの過給を行う場合の試算による概要特性図(図8)に示すように、図4(下段)に示す内蔵型のトランスベクタである前記過給手段5t(TT)で理論空気量、図6に示す前記過給手段5k(F&T)で爆発限界の全域の燃料濃度で過給を行うことができる。
駆動流がLPG(プロパン(100%)で試算)のように理論空気量がCNGより多い(24.3(容積比))燃料では、過給圧が1barの過給を行う場合の試算による概要特性図(図9)に示すように、図6に示す2段流量増幅ができる前記過給手段5k(F&T)で爆発限界のリッチ側の一部の燃料濃度で過給を行うことができるが、LPGの圧力(内圧)が温度により変化(0℃で約4bar、40℃で約13bar)し、常温で約7barであるので図9に示す前記過給手段5k(F&T)の2段流量増幅時の駆動流圧力(約21bar)は得られず、前記爆発限界のリッチ側の一部の燃料濃度で、低い過給圧(約0.3bar程度)の過給しかできない問題点がある。
請求項3対応である実施形態3および変形例を図10〜13に示す。
When the driving flow is fuel, the fuel concentration at the explosive limit differs depending on the type of fuel, and the supercharging pressure is 1 bar with a fuel that has a small theoretical air volume (2.4 (volume ratio)), such as hydrogen. As shown in a schematic characteristic diagram (FIG. 7) based on a trial calculation, the theoretical air amount is shown in the transvector 62 (F), which is the supercharging means 5 j shown in FIG. 4 (upper), and the two-stage flow rate shown in FIG. 6. With the supercharging means 5k (F & T) capable of amplification, supercharging can be performed at the fuel concentration on the lean side of the explosion limit.
For fuel with a theoretical air volume greater than hydrogen (9.6 (volume ratio)), such as CNG (calculated with methane (100%)) as the driving flow, an outline characteristic diagram based on a trial calculation when the supercharging pressure is 1 bar. As shown in FIG. 8, the theoretical amount of air is generated by the supercharging means 5 t (TT), which is a built-in transformer vector shown in FIG. 4 (lower), and the explosion occurs by the supercharging means 5 k (F & T) shown in FIG. 6. Supercharging can be performed with the fuel concentration in the whole limit.
In the case of fuel with a theoretical air volume larger than CNG (24.3 (volume ratio)), such as LPG (calculated with propane (100%)) as the driving flow, an outline characteristic diagram based on a trial calculation when supercharging with a supercharging pressure of 1 bar is performed. As shown in FIG. 9, the supercharging means 5k (F & T) capable of two-stage flow rate amplification shown in FIG. 6 can perform supercharging at a partial fuel concentration on the rich side at the explosion limit. The pressure (internal pressure) varies with temperature (about 4 bar at 0 ° C., about 13 bar at 40 ° C.) and is about 7 bar at room temperature, so the supercharging means 5k (F & T) shown in FIG. A driving flow pressure (about 21 bar) cannot be obtained, and there is a problem that only a supercharging with a low supercharging pressure (about 0.3 bar) can be performed with a partial fuel concentration on the rich side of the explosion limit.
Embodiment 3 corresponding to claim 3 and modifications are shown in FIGS.

本願発明の請求項3の過給装置は、前記流体内圧方式の駆動流に、更に、圧縮機方式、EGR方式、あるいは前記駆動流と異なる流体の流体内圧方式の駆動流を併用することにより、駆動流の強化、駆動流が燃料と圧縮空気等の場合は燃料濃度(体積濃度)の低下、異種燃料の場合は、混合供給または選択した燃料の予混合による供給ができる。
図10は第3実施形態の過給装置2cで、第1実施形態の過給装置2に併用する駆動流として内燃機関1cにより駆動される圧縮機46を備えた圧縮空気供給手段45を設けた過給装置2cの構成概念の説明図である。
駆動流を流体内圧方式と圧縮機方式とし、駆動流の燃料と圧縮空気を流体制御手段にて混合供給することにより燃料濃度を低下させることができるので、燃料がLPGのように爆発限界の燃料濃度が低い場合の過給運転領域を拡大できる。
前記過給装置2cで1barの過給を行う場合の試算による概要特性図(図13)に示すように、前記駆動流がLPGと圧縮空気との混合比(容積比)が1:1の場合、過給手段が前述の2段流量増幅ができる図6に示す前記過給手段5k(F&T)であれば、2段流量増幅と1段流量増幅との間の任意の流量増幅比に制御弁282kで制御することにより燃料濃度が爆発限界内のリーン側からリッチ側までの過給運転ができ、リッチ側では予混合火花点火機関、リーン側では予混合火花点火機関あるいは前記筒内燃料噴射装置を併用してリーンバーンエンジンとすることができる。
図10に示す前記圧縮機46の容量(吐出能力)は、LPGと圧縮空気との混合比(容積比)が1:1の場合は、従来の圧縮機方式の圧縮機の容量(吐出量)の1/2でよい。
図11に示すように、併用する駆動流方式をEGR方式とすることも、図12に示すように異種燃料等の複数の流体内圧方式とすることもできる。
前記異種燃料の流体内圧方式の場合は、予混合による混合供給または選択した燃料の供給ができ、バイフューエルエンジン、前記筒内燃料噴射装置を併用してリーンバーンエンジンとすることができる。
図12に示す異種流体の流体内圧方式の駆動流供給手段を設ける過給装置2eにおいて、各流体が燃料(LPGと水酸素ガス等)の場合、混合比を内燃機関の回転数、負荷等の運転状況に対応して制御することも、各燃料の残量に比例した混合割合で供給して両燃料を均等消費することもできる。
請求項4対応である実施形態4および変形例を図14〜16に示す。
The supercharging device according to claim 3 of the present invention further uses, in addition to the fluid internal pressure type driving flow, a compressor type, EGR type, or a fluid internal pressure type driving flow of a fluid different from the driving flow, In the case where the driving flow is strengthened, when the driving flow is fuel and compressed air, etc., the fuel concentration (volume concentration) can be reduced.
FIG. 10 shows a supercharging device 2c according to the third embodiment, in which a compressed air supply means 45 having a compressor 46 driven by the internal combustion engine 1c is provided as a driving flow used together with the supercharging device 2 according to the first embodiment. It is explanatory drawing of the structural concept of the supercharging apparatus 2c.
The fuel flow can be lowered by using a fluid internal pressure system and a compressor system for the driving flow, and the fuel and compressed air in the driving flow are mixed and supplied by the fluid control means, so that the fuel is an explosion limit fuel such as LPG. The supercharging operation area when the concentration is low can be expanded.
As shown in a schematic characteristic diagram (FIG. 13) based on a trial calculation when supercharging of 1 bar is performed by the supercharging device 2c, when the mixing ratio (volume ratio) of LPG and compressed air is 1: 1 If the supercharging means is the supercharging means 5k (F & T) shown in FIG. 6 capable of performing the above-described two-stage flow rate amplification, the control valve is set to an arbitrary flow rate amplification ratio between the two-stage flow rate amplification and the first-stage flow rate amplification. By controlling at 282k, the superconducting operation can be performed from the lean side to the rich side where the fuel concentration is within the explosion limit, the premixed spark ignition engine on the rich side, the premixed spark ignition engine on the lean side, or the in-cylinder fuel injection device Can be used as a lean burn engine.
The capacity (discharge capacity) of the compressor 46 shown in FIG. 10 is the capacity (discharge amount) of a compressor of a conventional compressor system when the mixing ratio (volume ratio) of LPG and compressed air is 1: 1. 1/2 of this is sufficient.
As shown in FIG. 11, the driving flow system used in combination can be an EGR system, or a plurality of fluid internal pressure systems such as different fuels can be used as shown in FIG.
In the case of the fluid internal pressure system of different types of fuel, mixed supply by premixing or supply of selected fuel can be performed, and a lean burn engine can be formed by using a bi-fuel engine and the in-cylinder fuel injection device in combination.
In the supercharging device 2e provided with the driving flow supply means of the fluid internal pressure type of different fluid shown in FIG. 12, when each fluid is fuel (LPG and water oxygen gas, etc.), the mixing ratio is set to the rotational speed of the internal combustion engine, the load, etc. It can be controlled according to the driving situation, or it can be supplied at a mixing ratio proportional to the remaining amount of each fuel so that both fuels can be evenly consumed.
Embodiment 4 corresponding to claim 4 and modifications are shown in FIGS.

本願発明の請求項4の過給装置は、前記空気流量増幅器のノズルの上流に吸気の逆流および逆流流量増幅を防止する逆止弁を設けた過給手段を備えた過給装置である。
前記逆流流量増幅とは、内燃機関が高速運転から急激に減速する時などに吸気のサージング等により吸気の逆流が発生し、その逆流を空気流量増幅器の駆動流が流量増幅する現象で、駆動流が燃料の場合は大量の予混合吸気が逆流するので、この逆流を防止するために前記逆止弁を設ける。
図14に示す第4実施形態の過給手段5uは、空気流量増幅器6uのノズル(図示せず)の上流である吸気流入通路22uに吸気の逆流を防止する逆止弁57を設けることにより、内燃機関の運転状況の急激な変化によるサージング等による吸気逆流発生時に、空気流量増幅器6uによる逆流流量増幅現象を防止する。
図15に示す第4実施形態の変形例1の過給手段5gは、2段流量増幅ができる前記第2実施形態(図5)の各空気流量増幅器のノズルの上流に逆止弁を設けた場合の過給手段5gの構成概念の説明図で、各空気流量増幅器のノズルの上流である吸気流入通路22gに逆止弁57、吸気副通路28gに逆止弁58を設けることにより、吸気の逆流および逆流流量増幅を防止する。
図16に示す第4実施形態の変形例2の過給手段5mは、2段流量増幅ができる前記第2実施形態の変形例1(図6)の2段流量増幅を行う過給手段5kの空気流量増幅器である1次空気流量増幅器601kと空気流量増幅器6kのノズルの上流に逆止弁を設けた過給手段5mの2段流量増幅運転中の断面図である。
以上が実施形態(1〜4)の概要で、下記に詳細説明を図面番号(1〜16)順に行う。
(第1実施形態(請求項1対応))
The supercharging device according to claim 4 of the present invention is a supercharging device provided with supercharging means provided with a check valve for preventing backflow of intake air and backflow flow rate amplification upstream of the nozzle of the air flow rate amplifier.
The backflow flow rate amplification is a phenomenon in which a backflow of intake air occurs due to intake surging or the like when the internal combustion engine decelerates rapidly from high speed operation, and the backflow is amplified by the drive flow of the air flow amplifier. When the fuel is fuel, a large amount of premixed intake air flows backward, so the check valve is provided to prevent this backflow.
The supercharging means 5u of the fourth embodiment shown in FIG. 14 is provided with a check valve 57 for preventing the backflow of the intake air in the intake air inflow passage 22u upstream of the nozzle (not shown) of the air flow amplifier 6u. When an intake backflow occurs due to surging or the like due to a sudden change in the operating state of the internal combustion engine, a backflow flow rate amplification phenomenon by the air flow rate amplifier 6u is prevented.
The supercharging means 5g of the modification 1 of 4th Embodiment shown in FIG. 15 provided the check valve upstream of the nozzle of each air flow amplifier of the said 2nd Embodiment (FIG. 5) which can carry out 2 step | paragraph flow volume amplification. In this case, a check valve 57 is provided in the intake inflow passage 22g upstream of the nozzles of the air flow amplifiers, and a check valve 58 is provided in the intake sub passage 28g. Prevent backflow and backflow flow amplification.
The supercharging means 5m of the second modification of the fourth embodiment shown in FIG. 16 is a supercharging means 5k for performing the two-stage flow amplification of the first modification of the second embodiment (FIG. 6) capable of two-stage flow amplification. FIG. 6 is a cross-sectional view of the supercharging means 5m provided with a check valve upstream of the nozzles of the primary air flow amplifier 601k and the air flow amplifier 6k, which are air flow amplifiers, during a two-stage flow amplification operation.
The above is the outline of the embodiment (1 to 4), and detailed description will be given below in the order of the drawing numbers (1 to 16).
(First embodiment (corresponding to claim 1))

図1は、第1実施形態(請求項1対応)の内燃機関の過給装置の構成概念の説明図である。
駆動流により過給を行う過給手段5と、前記過給手段5と内燃機関1の燃焼室との間の吸気系統である吸気流出通路23に過給の圧力等を測定する過給センサ44と、を備えた内燃機関1の過給装置2であって、前記過給手段5は、内燃機関1の燃焼室に吸気を供給する吸気系統の通路途中である吸気流入通路22と吸気流出通路23の間に、吸気を加圧して燃焼室に送り込む空気流量増幅器6と、前記空気流量増幅器6に駆動流を供給する駆動流通路41と、を備え、更に、流体供給手段9と、流体制御手段8と、で構成する流体内圧機構7を備え、前記流体供給手段9は、加圧貯蔵流体の貯蔵手段であるタンク91と、緊急時の流体の供給停止手段である緊急遮断弁93と、を有し、前記流体制御手段8は、前記流体供給手段9から流体内圧により流出する駆動流の流量を制御する制御手段である制御弁82を介して前記駆動流通路41に連通し、前記過給センサ44等の入力情報を基にECU(図示せず)の出力により前記流体内圧機構7を制御することにより、内燃機関1の運転状況に対応した過給運転を行うことを特徴とする内燃機関1の過給装置2である。
FIG. 1 is an explanatory diagram of a configuration concept of a supercharging device for an internal combustion engine according to a first embodiment (corresponding to claim 1).
A supercharging unit 5 that performs supercharging by a driving flow, and a supercharging sensor 44 that measures a supercharging pressure or the like in an intake outlet passage 23 that is an intake system between the supercharging unit 5 and the combustion chamber of the internal combustion engine 1. The supercharging device 2 of the internal combustion engine 1 is provided with an intake inflow passage 22 and an intake outflow passage in the middle of a passage of an intake system for supplying intake air to the combustion chamber of the internal combustion engine 1 23, an air flow rate amplifier 6 that pressurizes the intake air and sends it to the combustion chamber, and a drive flow passage 41 that supplies a drive flow to the air flow rate amplifier 6, and further includes a fluid supply means 9, fluid control A fluid internal pressure mechanism 7 comprising: a tank 91 that is a storage means for pressurized storage fluid; an emergency shut-off valve 93 that is a fluid supply stop means in an emergency; And the fluid control means 8 supplies fluid from the fluid supply means 9. An output of an ECU (not shown) is communicated with the drive flow passage 41 via a control valve 82 which is a control means for controlling the flow rate of the drive flow flowing out by pressure, and based on input information of the supercharging sensor 44 and the like. The supercharging device 2 of the internal combustion engine 1 is characterized in that the supercharging operation corresponding to the operation state of the internal combustion engine 1 is performed by controlling the fluid internal pressure mechanism 7 by the above.

過給装置2の作用は、前記流体内圧機構7の構成要素である流体供給手段9の充填口97から加圧充填される流体が逆止弁96を通り、流体充填弁98が開いている場合はタンク91に充填されて流体が加圧貯蔵される。
前記タンク91に加圧貯蔵される流体は、圧縮空気、燃料である水素、常温で比較的低い圧力(約7bar)で液化して体積が1/250になるLPG、あるいは高圧(約200bar)で貯蔵するCNG等でもよい。
前記加圧貯蔵された流体は、内燃機関1の過給装置2の運転前に、取り出し弁92を開き、運転開始により前記ECUの出力により緊急遮断弁93が開弁し、流体の圧力エネルギにより流体通路89を通って流体を流体制御手段8に供給する。
前記流体制御手段8に供給された前記流出流体である駆動流は、前記ECUの出力により制御弁82の開度を調節して流量が調整されることにより駆動流の圧力が制御されて駆動流通路41を通って過給手段5に供給される。
前記駆動流の圧力等の制御は、過給センサ44、排気センサ34、アクセルセンサ(図示せず)等により、内燃機関1の運転制御に必要な入力情報(流速、圧力、温度、酸素濃度、等)が前記ECUに入力され、前記入力情報を基に吸気の流量を通路断面積、流速、圧力の積に温度膨張の補正を行って吸気充填率を求める等の各種演算を行い、内燃機関1の運転状況を分析、判断、および予測し、運転状況に対応する前記ECUの出力により前記流体内圧機構7を制御することにより内燃機関1の過給装置2による過給運転を行う。
前記流体制御手段8から駆動流通路41を通って供給された駆動流は、過給手段5である空気流量増幅器6に供給され、前記空気流量増幅器6のノズル(図示せず)から吸気流の下流方向に流出し、吸気を加速して流量増幅を行うことにより吸気の過給を行う。
The operation of the supercharging device 2 is performed when the fluid pressure-filled from the filling port 97 of the fluid supply means 9 which is a component of the fluid internal pressure mechanism 7 passes through the check valve 96 and the fluid filling valve 98 is open. Is filled in the tank 91 and fluid is stored under pressure.
The fluid pressurized and stored in the tank 91 is compressed air, hydrogen as fuel, LPG liquefied at a relatively low pressure (about 7 bar) at room temperature to become 1/250 in volume, or high pressure (about 200 bar). CNG etc. to store may be sufficient.
Before the operation of the supercharging device 2 of the internal combustion engine 1, the pressure-stored fluid opens the take-off valve 92, and the emergency shut-off valve 93 is opened by the output of the ECU when the operation is started. Fluid is supplied to the fluid control means 8 through the fluid passage 89.
The driving flow which is the outflow fluid supplied to the fluid control means 8 adjusts the flow rate by adjusting the opening of the control valve 82 according to the output of the ECU, thereby controlling the pressure of the driving flow and driving the flow. It is supplied to the supercharging means 5 through the path 41.
Control of the pressure of the driving flow is performed by input information (flow velocity, pressure, temperature, oxygen concentration, etc.) required for operation control of the internal combustion engine 1 by a supercharging sensor 44, an exhaust sensor 34, an accelerator sensor (not shown), or the like. Etc.) is input to the ECU, and the internal combustion engine performs various calculations such as correction of temperature expansion to the product of the passage cross-sectional area, flow velocity and pressure based on the input information to obtain the intake air filling rate. 1 is analyzed, determined, and predicted, and the supercharging device 2 of the internal combustion engine 1 is supercharged by controlling the fluid internal pressure mechanism 7 based on the output of the ECU corresponding to the operating condition.
The driving flow supplied from the fluid control means 8 through the driving flow passage 41 is supplied to an air flow amplifier 6 which is a supercharging means 5, and an intake flow is supplied from a nozzle (not shown) of the air flow amplifier 6. It flows out in the downstream direction, and the intake air is supercharged by accelerating the intake air and performing flow rate amplification.

前記内燃機関1は、火花点火機関であっても、圧縮着火機関であってもよく、前記駆動流が燃料で火花点火機関の場合は、前記吸気に駆動流である燃料を均一な予混合吸気とすることができる予混合内燃機関とすることができ、予混合の燃料濃度(Vol%)は過給手段5の流量増幅比の逆数となる。
更に、前記予混合吸気の燃料濃度がリーンの場合は、筒内燃料噴射装置(図示せず)により、加圧された燃料を燃焼室にインジェクタ(図示せず)にて筒内噴射して点火プラグ周辺に着火性のよい混合気層を形成することにより成層燃焼を行うリーンバーンエンジンとすることができ、インジェクタにて筒内噴射る燃料は駆動流と同じ燃料でも、ガソリン等の他の燃料でもよい。
前記駆動流が燃料で圧縮着火機関の場合は、予混合燃料を水素、LPG等の発火点が高い燃料とする、あるいは予混合の燃料濃度を爆発限界の下限以下にするすることにより、前記筒内燃料噴射装置より高い圧力のコモンレール方式の筒内燃料噴射装置を設けて発火点の低い軽油等を燃焼室に噴射して燃焼を開始する予混合圧縮着火機関とすることができる。
(第1実施形態の変形例1)
The internal combustion engine 1 may be a spark ignition engine or a compression ignition engine. When the driving flow is a fuel and a spark ignition engine, the fuel that is the driving flow is uniformly mixed with the intake air. The premixed fuel concentration (Vol%) is the reciprocal of the flow rate amplification ratio of the supercharging means 5.
Further, when the fuel concentration of the premixed intake air is lean, an in-cylinder fuel injection device (not shown) injects pressurized fuel into the combustion chamber with an injector (not shown) and ignites it. A lean burn engine that performs stratified combustion by forming an air-fuel mixture layer with good ignitability around the plug can be a fuel that is injected into the cylinder by the injector, even if it is the same fuel as the driving flow, or other fuel such as gasoline But you can.
When the driving flow is a fuel and a compression ignition engine, the premixed fuel is a fuel having a high ignition point such as hydrogen or LPG, or the premixed fuel concentration is set to be lower than the lower limit of the explosion limit. It is possible to provide a premixed compression ignition engine in which a common rail type in-cylinder fuel injection device having a pressure higher than that of the internal fuel injection device is provided and light oil having a low ignition point is injected into the combustion chamber to start combustion.
(Modification 1 of the first embodiment)

図2は、第1実施形態の変形例1の過給装置で、駆動流と同じ流体燃料を燃焼室に噴射する筒内燃料噴射装置を備えた内燃機関の過給装置の構成例の説明図である。
内燃機関1hは、燃焼室に燃料噴射を行うインジェクタ12を備えた筒内燃料噴射装置15と、点火プラグ11とを設けた火花点火機関である。
前記筒内燃料噴射装置15は、流体供給手段9hから流体制御手段8hに駆動流である燃料を供給する流体通路89hに連通する燃料通路94を備え、前記燃料通路94を通って供給される燃料を高圧ポンプユニット13にて加圧してフュエルレール14を通って前記インジェクタ12より燃焼室に適時に適量の燃料を噴射する。
流体内圧機構7hを設けた過給装置2hは、前記第1実施形態の過給装置2(図1)の吸気流入通路22hに吸気センサ24、吸気流出通路23hに充填率を高めるためのインタークーラ25、流体制御手段8hの流体通路89hの前記制御弁82hの上流に減圧弁83、下流に制御弁81、および駆動流通路41hに駆動流センサ43を設けている。
前記制御弁81は、吸気流出通路23hに連通するパイロット導管51からのパイロット圧により作動するシーケンス弁であり、過給圧が設定値以上になると閉弁して駆動流通路を閉鎖する安全装置でもあるが、内燃機関1hの運転方法によっては、前記制御弁82hまたは制御弁81のどちらか一方を省略することもできる。
FIG. 2 is an explanatory view of a configuration example of a supercharging device for an internal combustion engine that includes a cylinder fuel injection device that injects the same fluid fuel as a driving flow into a combustion chamber in a supercharging device according to Modification 1 of the first embodiment. It is.
The internal combustion engine 1 h is a spark ignition engine provided with an in-cylinder fuel injection device 15 including an injector 12 that injects fuel into a combustion chamber, and an ignition plug 11.
The in-cylinder fuel injection device 15 includes a fuel passage 94 communicating with a fluid passage 89h for supplying fuel as a driving flow from the fluid supply means 9h to the fluid control means 8h, and the fuel supplied through the fuel passage 94 The high pressure pump unit 13 pressurizes the fuel and passes through the fuel rail 14 to inject an appropriate amount of fuel into the combustion chamber from the injector 12 in a timely manner.
The supercharging device 2h provided with the fluid internal pressure mechanism 7h is an intercooler for increasing the filling rate in the intake air inflow passage 22h and the intake air outflow passage 23h of the supercharging device 2 (FIG. 1) of the first embodiment. 25, a pressure reducing valve 83 is provided upstream of the control valve 82h of the fluid passage 89h of the fluid control means 8h, a control valve 81 is provided downstream, and a drive flow sensor 43 is provided in the drive flow passage 41h.
The control valve 81 is a sequence valve that is operated by the pilot pressure from the pilot conduit 51 that communicates with the intake / outflow passage 23h, and is a safety device that closes and closes the drive flow passage when the supercharging pressure exceeds a set value. However, depending on the operation method of the internal combustion engine 1h, either the control valve 82h or the control valve 81 can be omitted.

過給装置2hの作用は、流体制御手段8hに設けた前記減圧弁83により駆動流を減圧し、前記制御弁82hの開度を調節して流量が調整されることにより駆動流の圧力が制御されて駆動流通路41hを通って過給手段5hに供給される。
前記制御弁82hの制御を前記吸気センサ24と駆動流センサ43の入力情報により安定させることを除けば、前記第1実施形態の過給装置2(図1)と作用は同じである。
前記減圧弁83は、加圧貯蔵圧力からの減圧幅が大きい場合、減圧圧力の精度を向上させる場合等は、直列に複数の減圧弁を設けて多段減圧を行う。
前記筒内燃料噴射装置15は、前記燃料通路94を通って供給される燃料を高圧ポンプユニット13にて加圧し、圧力リミッタ(図示せず)により圧力規制を行い蓄圧手段であるフュエルレール14に供給し、ECU(図示せず)の出力により制御されるインジェクタ12より適時に適量の燃料を燃焼室に噴射する。
噴射する燃料は、前記ECUにて吸気充填率や予混合による燃料供給量等を考慮して噴射量を算出し、前記インジェクタ12より燃焼室に噴射して点火プラグ11の周辺に着火性のよい混合気層を形成することにより成層燃焼を行うリーンバーンエンジンとすることができる。
過給装置2hを停止して過給と予混合を行わず、前記筒内燃料噴射装置15のみによる燃料供給による自然吸気火花点火機関とすることも、前記筒内燃料噴射装置15を停止して過給を行う予混合火花点火機関とすることも、前記リーンバーンエンジンとすることも前記ECUの運転制御により切り替えることができる。
図2の前記筒内燃料噴射装置15の燃料通路94hを流体内圧機構7hに連通するのではなく、ガソリン等の異なる燃料系統(図示せず)に接続することによりバイフューエルエンジンとすることも、前記筒内燃料噴射装置15を設けず、巡航速度で運転する予混合火花点火機関とすることも、前記筒内燃料噴射装置15をコモンレール方式の筒内燃料噴射装置に置き換えることにより内燃機関1hを圧縮着火機関とし、過給装置2hの燃料よりも発火点の低い軽油等を燃焼室に高圧噴射して予混合圧縮着火機関とすることもできる。
前記予混合圧縮着火機関とすることにより、予混合による燃料と酸素の混合性の向上と、従来の圧縮着火機関と同様に着火遅れは発生するが、高圧噴射燃料の燃焼波等による膨張と火炎伝播により大きな燃焼速度が得られることにより高速回転できる予混合圧縮着火機関となるので、過給との相乗効果による出力の増大により圧縮着火機関のダウンサイジングができる。
前記予混合圧縮着火機関の予混合の燃料濃度を爆発限界の下限以下にすることにより、圧縮着火機関と燃料濃度が爆発限界内の前記予混合圧縮着火機関との中間の燃焼速度とすることができ、ディーゼルノックと燃料消費量を抑制できる予混合圧縮着火機関にできる。
(第1実施形態の変形例2)
The operation of the supercharging device 2h is to reduce the driving flow by the pressure reducing valve 83 provided in the fluid control means 8h, and to adjust the flow rate by adjusting the opening of the control valve 82h, thereby controlling the pressure of the driving flow. Then, it is supplied to the supercharging means 5h through the drive flow passage 41h.
Except that the control of the control valve 82h is stabilized by the input information of the intake sensor 24 and the drive flow sensor 43, the operation is the same as that of the supercharging device 2 (FIG. 1) of the first embodiment.
The pressure reducing valve 83 performs a multistage pressure reduction by providing a plurality of pressure reducing valves in series when the pressure reducing width from the pressurized storage pressure is large or when the accuracy of the pressure reducing pressure is improved.
The in-cylinder fuel injection device 15 pressurizes the fuel supplied through the fuel passage 94 by the high-pressure pump unit 13 and regulates the pressure by a pressure limiter (not shown) to the fuel rail 14 which is a pressure accumulating means. A suitable amount of fuel is injected into the combustion chamber in a timely manner from an injector 12 that is supplied and controlled by the output of an ECU (not shown).
The amount of fuel to be injected is calculated by the ECU in consideration of the intake filling rate, the amount of fuel supplied by premixing, and the like, injected from the injector 12 into the combustion chamber, and has good ignitability around the spark plug 11. By forming the air-fuel mixture layer, a lean burn engine that performs stratified combustion can be obtained.
Alternatively, the supercharging device 2h may be stopped so that supercharging and premixing are not performed, and a naturally aspirated spark ignition engine that uses only the in-cylinder fuel injection device 15 to supply fuel may be used. Whether the engine is a premixed spark ignition engine that performs supercharging or the lean burn engine can be switched by operation control of the ECU.
Instead of communicating the fuel passage 94h of the in-cylinder fuel injection device 15 of FIG. 2 with the fluid internal pressure mechanism 7h, a bi-fuel engine can be obtained by connecting to a different fuel system (not shown) such as gasoline. The in-cylinder fuel injection device 15 is not provided, and a premixed spark ignition engine that operates at a cruising speed can be used. Alternatively, the in-cylinder fuel injection device 15 can be replaced with a common rail in-cylinder fuel injection device. A compression ignition engine can be used, and light oil or the like having a lower ignition point than the fuel of the supercharging device 2h can be injected into the combustion chamber at a high pressure to provide a premixed compression ignition engine.
By using the premixed compression ignition engine, fuel and oxygen mixing characteristics are improved by premixing, and an ignition delay occurs as in the case of a conventional compression ignition engine. Since a premixed compression ignition engine capable of high speed rotation is obtained by obtaining a large combustion speed by propagation, downsizing of the compression ignition engine can be performed by an increase in output due to a synergistic effect with supercharging.
By setting the premixed fuel concentration of the premixed compression ignition engine below the lower limit of the explosion limit, the combustion speed between the compression ignition engine and the premixed compression ignition engine whose fuel concentration is within the explosion limit may be set. And a premixed compression ignition engine capable of suppressing diesel knock and fuel consumption.
(Modification 2 of the first embodiment)

図3は、第1実施形態の変形例2の過給装置で、流体燃料を燃焼室に噴射する筒内燃料噴射装置を備えた内燃機関の過給装置の制御システムの構成説明図である。
図3は、筒内燃料噴射装置の高圧燃料ポンプユニット等を図示省略してインジェクタ12yのみを図示しており、内燃機関1yおよび過給装置2yは、前記第1実施形態の変形例1(図2)の内燃機関1hの過給装置2hと同じ構成であるので、前記内燃機関1yおよび過給装置2yの構成、作用等の説明は省略する。
内燃機関の過給装置の電子制御装置であるECU16は、CPU(中央演算処理装置)、RAMとROMからなる記憶素子、入力ポート、出力ポート、およびDC電源で構成され、図3では前記入出力ポートの接続中継機器(コントローラ、アンプ、コンバータ等)は図示省略している。
前記入力ポートに、過給装置2yの吸気センサ24y、過給センサ44yおよび駆動流センサ43y、内燃機関1yのカム角センサ74、ノックセンサ75、水温センサ76、排気センサ34y、浄化前センサ78、浄化後センサ79、および運転装置であるアクセルセンサ17、ブレーキセンサ18等の入力情報を入力し、前記入力情報を基に各種演算等を行って内燃機関1yの運転状況を分析、判断して予測をし、出力ポートからの出力により、過給装置2yの制御弁82y、緊急遮断弁93y、内燃機関1yの点火プラグ11y、インジェクタ12y等のアクチェータ等の関連機器を制御する。
過給運転制御は、前記運転制御機器のアクセルセンサ17、過給センサ44y等の入力情報より過給運転の必要性を含む内燃機関1yの運転状況を分析、判断、および予測し、制御弁82yの開度等を出力ポートからの出力により制御して過給運転制御を行う。
燃料供給制御は、吸気センサ24y、駆動流センサ43y、および過給センサ44y等により、吸気の充填率と予混合による燃料供給量を予測し、負荷状況を含む内燃機関1yの運転状況を分析、判断して予測をし、前記インジェクタ12yからの燃料の噴射量等を出力ポートからの出力により制御して燃料供給制御を行う。
内燃機関1yは、前記過給装置2yを停止して筒内燃料直噴型火花点火機関とすることも、流体内圧機構7yの予混合のみによる予混合火花点火機関とすることも、前記リーンバーンエンジンとすることも、ECU16の制御により運転の切り替え選択ができる。
その他の制御は、従来の内燃機関の制御と同様であるので、説明を省略する。
内燃機関1yは火花点火機関として説明したが、前記筒内燃料噴射装置をコモンレール方式の筒内燃料噴射装置に置き換え、燃料を予混合の燃料より発火点の低い軽油等とすることにより前記予混合圧縮着火機関とすることもできる。
(第1実施形態の変形例3および4)
FIG. 3 is a configuration explanatory diagram of a control system of a supercharging device for an internal combustion engine that is a supercharging device according to Modification 2 of the first embodiment and includes an in-cylinder fuel injection device that injects fluid fuel into a combustion chamber.
FIG. 3 does not show the high-pressure fuel pump unit or the like of the in-cylinder fuel injection device, and shows only the injector 12y. The internal combustion engine 1y and the supercharging device 2y are modified example 1 of the first embodiment (FIG. Since the configuration is the same as that of the supercharging device 2h of the internal combustion engine 1h of 2), description of the configuration, operation, etc. of the internal combustion engine 1y and the supercharging device 2y will be omitted.
The ECU 16, which is an electronic control unit of the supercharging device for the internal combustion engine, includes a CPU (Central Processing Unit), a storage element composed of a RAM and a ROM, an input port, an output port, and a DC power source. Port connection relay devices (controller, amplifier, converter, etc.) are not shown.
The input port includes an intake sensor 24y of the supercharging device 2y, a supercharging sensor 44y and a driving flow sensor 43y, a cam angle sensor 74 of the internal combustion engine 1y, a knock sensor 75, a water temperature sensor 76, an exhaust sensor 34y, a pre-purification sensor 78, Input information from the post-purification sensor 79, the accelerator sensor 17 and the brake sensor 18 which are driving devices, etc. are input, and various calculations are performed based on the input information to analyze, judge and predict the operating status of the internal combustion engine 1y. The control device 82y of the supercharging device 2y, the emergency shut-off valve 93y, the ignition plug 11y of the internal combustion engine 1y, the actuator such as the injector 12y, and the like are controlled by the output from the output port.
The supercharging operation control is performed by analyzing, judging, and predicting the operating state of the internal combustion engine 1y including the necessity of supercharging operation from input information of the accelerator sensor 17 and the supercharging sensor 44y of the operation control device, and the control valve 82y. Is controlled by the output from the output port to perform supercharging operation control.
In the fuel supply control, the intake sensor 24y, the drive flow sensor 43y, the supercharge sensor 44y, etc. are used to predict the intake charge rate and the amount of fuel supplied by premixing, and analyze the operating status of the internal combustion engine 1y including the load status. Judgment and prediction are made, and fuel supply control is performed by controlling the amount of fuel injection from the injector 12y by the output from the output port.
The internal combustion engine 1y can be an in-cylinder direct fuel injection type spark ignition engine with the supercharger 2y stopped, or a premixed spark ignition engine only by premixing of the fluid internal pressure mechanism 7y. An engine can also be selected for operation switching under the control of the ECU 16.
The other control is the same as the control of the conventional internal combustion engine, and the description is omitted.
Although the internal combustion engine 1y has been described as a spark ignition engine, the in-cylinder fuel injection device is replaced with a common rail in-cylinder fuel injection device, and the premixing is performed by using light oil having a lower ignition point than the premixed fuel. It can also be a compression ignition engine.
(Modifications 3 and 4 of the first embodiment)

図4は、第1実施形態の変形例3、4の過給手段の断面図で、上段(F)は、変形例3のフロートランスベクタ型、下段(TT)は、変形例4の内蔵型のトランスベクタである。
図4の上段(F)に示すフロートランスベクタ型の過給手段5jは、吸気流入通路22jと吸気流出通路23jの間に、ケーシング628の略中心にノズル管626の開口部を吸気流の下流方向に設け、前記ノズル管626の開口部にノズル本体625とノズルガイド624で構成するフロートランスベクタ62を螺合し、前記ケーシング628の吸気通路の正味断面積(前記フロートランスベクタ62等の断面積を除いた通路部の面積)を前記ケーシング628に連通する吸気流入通路22jおよび吸気流出通路23jの断面積より大きくする。
過給手段5jの作用は、前記ケーシング628の吸気通路に設けたフロートランスベクタ62のノズル本体625とノズルガイド624のリング状隙間から吸気流に流出する駆動流が、ベルヌーイの定理による負圧により周囲の吸気を吸引し衝突することにより、吸気流を駆動流が加速し、過給が行われる。
前記フロートランスベクタ62のリング状の駆動流は、従来のエジェクタの円柱状の駆動流と異なり同じ駆動流流量でも吸気との接触面積が大きく、大量の吸気を流量増幅することができるので従来のエジェクタより大きな流量増幅比が得られる。
駆動流である流出流体が燃料の場合は、燃料濃度を低くでき、吸気への混合が前述の広い接触面で行われるので均一な予混合気となる効果がある。
前記ケーシング628の吸気通路の正味断面積を前記ケーシング628に連通する吸気流入通路22j、吸気流出通路23jの断面積より大きくすることにより、過給停止時の空気流量増幅器6jの通路抵抗の増大を防止して自然吸気運転時の支障とならないようにでき、更に前記正味断面積を大きくしてケーシング628をチャンバとすることにより吸気流を減速して駆動流と吸気流の速度差を確保することにより高速回転域の内燃機関の過給運転対応ができる。
FIG. 4 is a cross-sectional view of the supercharging means of Modifications 3 and 4 of the first embodiment. The upper stage (F) is a flow transformer vector type of Modification Example 3, and the lower stage (TT) is a built-in type of Modification Example 4. This is a transvector.
The flow transformer vector-type supercharging means 5j shown in the upper part (F) of FIG. 4 has an opening of the nozzle pipe 626 at the approximate center of the casing 628 between the intake inflow passage 22j and the intake outflow passage 23j. The flow transformer vector 62 composed of the nozzle body 625 and the nozzle guide 624 is screwed into the opening of the nozzle pipe 626, and the net cross-sectional area of the intake passage of the casing 628 (the flow transformer vector 62 and the like are cut off). The area of the passage portion excluding the area) is made larger than the cross-sectional areas of the intake inflow passage 22j and the intake outflow passage 23j communicating with the casing 628.
The operation of the supercharging means 5j is that the driving flow that flows into the intake flow from the ring-shaped gap between the nozzle body 625 and the nozzle guide 624 of the flow transformer vector 62 provided in the intake passage of the casing 628 is caused by the negative pressure according to Bernoulli's theorem. By sucking and colliding the surrounding intake air, the driving flow is accelerated in the intake air flow, and supercharging is performed.
Unlike the conventional cylindrical drive flow of an ejector, the ring-shaped drive flow of the flow transformer vector 62 has a large contact area with the intake air even at the same drive flow flow rate, and a large amount of intake air can be amplified. A larger flow rate amplification ratio than the ejector can be obtained.
When the outflow fluid that is the driving flow is fuel, the fuel concentration can be lowered, and mixing into the intake air is performed on the aforementioned wide contact surface, so that there is an effect that uniform premixed gas is obtained.
By making the net cross-sectional area of the intake passage of the casing 628 larger than the cross-sectional areas of the intake inflow passage 22j and the intake outflow passage 23j communicating with the casing 628, an increase in the passage resistance of the air flow rate amplifier 6j when supercharging is stopped is increased. It can be prevented so as not to hinder natural intake operation, and the net cross-sectional area is increased and the casing 628 is used as a chamber to reduce the intake flow and secure a speed difference between the drive flow and the intake flow. Thus, it is possible to cope with the supercharging operation of the internal combustion engine in the high speed rotation range.

図4の下段(TT)に示す過給手段5tは、吸気流入通路22tと吸気流出通路23tの間のケーシング618の略中心にブッシング419を介して駆動流通路41tに支持されたトランスベクタ61を設けた、内蔵型のトランスベクタである。
前記トランスベクタ61は、ハウジング613とフランジ612の間の環状空間である環状チャンバ614に駆動流通路41tが連通し、前記環状チャンバ614から吸気流の下流方向に駆動流を流出するリング状の隙間であるノズル615を有する。
前述の過給手段5jと同様に、前記ケーシング618の吸気通路の正味断面積を吸気流入通路22tおよび吸気流出通路23tの断面積より大きくする。
過給手段5tの作用は、駆動流通路41tから供給される駆動流が前記環状チャンバ614に流入し、リング状のノズル615から吸気流の下流方向に流出して吸気を加速して流量増幅し、前記駆動流により加速した吸気流が吸気流出通路23tに流出することにより、ベルヌーイの定理による負圧が発生し、トランスベクタ61とケーシング618との間の環状空間の吸気が前記吸気流に吸引されて流量増幅することにより、リング状駆動流の内側と外側の両面の境界接触面で流量増幅が行われるので、前記(F)に示すフロートランスベクタ62より大きい流量増幅比となる。
駆動流である流出流体が燃料の場合は、燃料濃度を低くでき、吸気への混合が前述の広い接触面で行われ、駆動流が下流の吸気流出通路23tの内壁に直接接触しないので混合が促進され均一な予混合気となる効果がある。
前記ケーシング618の吸気通路の正味断面積を前記ケーシング618に連通する吸気流入通路22t、吸気流出通路23tの断面積より大きくすることにより、過給停止時の空気流量増幅器6tの通路抵抗の増大を防止して自然吸気運転時の支障とならないようにでき、更に前記正味断面積を大きくしてケーシング618をチャンバとすることにより吸気流を減速して駆動流と吸気流の速度差を確保することにより高速回転域の内燃機関の過給運転対応ができる。
(第2実施形態(請求項2対応))
The supercharging means 5t shown in the lower part (TT) of FIG. 4 includes a transvector 61 supported by the drive flow passage 41t via a bushing 419 at the approximate center of the casing 618 between the intake inflow passage 22t and the intake outflow passage 23t. This is a built-in transvector.
In the transformer vector 61, a driving flow passage 41t communicates with an annular chamber 614 that is an annular space between the housing 613 and the flange 612, and a ring-shaped gap through which the driving flow flows out from the annular chamber 614 in the downstream direction of the intake air flow. It has a nozzle 615 that is.
Similarly to the supercharging means 5j described above, the net sectional area of the intake passage of the casing 618 is made larger than the sectional areas of the intake inflow passage 22t and the intake outflow passage 23t.
The operation of the supercharging means 5t is that the driving flow supplied from the driving flow passage 41t flows into the annular chamber 614 and flows out from the ring-shaped nozzle 615 in the downstream direction of the intake flow to accelerate the intake air to amplify the flow rate. The intake flow accelerated by the drive flow flows into the intake outflow passage 23t, thereby generating a negative pressure according to Bernoulli's theorem, and the intake air in the annular space between the transformer vector 61 and the casing 618 is sucked into the intake flow. By amplifying the flow rate, the flow rate amplification is performed at the boundary contact surfaces on both the inner and outer sides of the ring-shaped drive flow, so that the flow rate amplification ratio is larger than that of the flow transformer vector 62 shown in (F).
When the outflow fluid that is the driving flow is fuel, the fuel concentration can be lowered, mixing to the intake air is performed on the aforementioned wide contact surface, and the driving flow does not directly contact the inner wall of the downstream intake outflow passage 23t, so mixing is performed. It has the effect of promoting a uniform premixed gas.
By making the net cross-sectional area of the intake passage of the casing 618 larger than the cross-sectional areas of the intake inflow passage 22t and the intake outflow passage 23t communicating with the casing 618, the passage resistance of the air flow amplifier 6t at the time of supercharging stop is increased. It can be prevented so as not to hinder natural intake operation, and the net cross-sectional area is increased to make the casing 618 a chamber so that the intake flow is decelerated to ensure a speed difference between the drive flow and the intake flow. Thus, it is possible to cope with the supercharging operation of the internal combustion engine in the high speed rotation range.
(Second embodiment (corresponding to claim 2))

図5は、第2実施形態(請求項2対応)の2段流量増幅ができる過給手段の構成概念の説明図である。
図5は、前記過給手段5bの駆動流通路途中である駆動流通路41bと駆動流通路411の間に1次空気流量増幅器601を備え、大気圧の吸気系統である吸気流入通路22bと前記1次空気流量増幅器601の流入口とに連通する吸気副通路28を設けたことを特徴とする請求項1に記載の内燃機関の過給装置である。
FIG. 5 is an explanatory diagram of a configuration concept of a supercharging unit capable of performing two-stage flow rate amplification according to the second embodiment (corresponding to claim 2).
FIG. 5 includes a primary air flow rate amplifier 601 between a drive flow passage 41b and a drive flow passage 411 in the middle of the drive flow passage of the supercharging means 5b, and an intake air intake passage 22b which is an atmospheric pressure intake system and the above-mentioned The supercharging device for an internal combustion engine according to claim 1, wherein an intake sub-passage (28) communicating with the inlet of the primary air flow amplifier (601) is provided.

前記過給手段5bの作用は、吸気副通路28と駆動流通路411の間に設けた1次空気流量増幅器601のノズル(図示せず)より、駆動流通路41bから供給される駆動流を流出し、吸気副通路28から供給される吸気を流量増幅して駆動流通路411に流出して1次流量増幅を行う。
吸気流入通路22bと吸気流出通路23bの間に設けた空気流量増幅器6bのノズル(図示せず)から駆動流通路411から供給される吸気を1次流量増幅した前記駆動流を流出し、吸気流入通路22bから吸気流出通路23bに流れる吸気を流量増幅して2次流量増幅を行うことにより2段流量増幅を行う。
従って、過給手段5bの流量増幅比は、前記1次空気流量増幅器601の流量増幅比と前記空気流量増幅器6bの空気流量増幅比の積となり大きな流量増幅比となり、前記燃料濃度を低下させることができる。
1次空気流量増幅器601と空気流量増幅器6bは、流量増幅比が大きい順に、トランスベクタ、フロートランスベクタ、エジェクタ等を任意に選ぶことができるが、空気流量増幅器の駆動流としての圧力が必要であるので、1次空気流量増幅器601は流量増幅が小さい空気流量増幅器であるフロートランスベクタ、エジェクタ等がよい。
(第2実施形態の変形例1)
The operation of the supercharging means 5b flows out the driving flow supplied from the driving flow passage 41b from the nozzle (not shown) of the primary air flow amplifier 601 provided between the intake sub passage 28 and the driving flow passage 411. Then, the intake air supplied from the intake sub-passage 28 is amplified in flow rate and flows out to the drive flow passage 411 to perform primary flow rate amplification.
The drive flow obtained by amplifying the primary flow of the intake air supplied from the drive flow passage 411 is discharged from the nozzle (not shown) of the air flow amplifier 6b provided between the intake inflow passage 22b and the intake outflow passage 23b. A two-stage flow rate amplification is performed by amplifying the flow rate of the intake air flowing from the passage 22b to the intake / outflow passage 23b and amplifying the secondary flow rate.
Accordingly, the flow rate amplification ratio of the supercharging means 5b is a product of the flow rate amplification ratio of the primary air flow rate amplifier 601 and the air flow rate amplification ratio of the air flow rate amplifier 6b, resulting in a large flow rate amplification ratio, thereby reducing the fuel concentration. Can do.
For the primary air flow amplifier 601 and the air flow amplifier 6b, a transformer vector, a flow transformer vector, an ejector, and the like can be arbitrarily selected in descending order of the flow rate amplification ratio, but pressure as a driving flow of the air flow amplifier is required. Therefore, the primary air flow amplifier 601 is preferably a flow transvector, an ejector or the like, which is an air flow amplifier with a small flow amplification.
(Modification 1 of 2nd Embodiment)

図6は、第2実施形態の変形例1の過給手段の2段流量増幅運転中の断面図である。
図6は、前記過給手段5kの駆動流通路途中である駆動流通路41kと駆動流通路411kの間に1次空気流量増幅器601kである1次フロートランスベクタ621kを備え、大気圧の吸気系統である吸気流入通路22kと前記1次空気流量増幅器601kである1次フロートランスベクタ621kの流入口とに連通する吸気副通路28kを設けたことを特徴とする請求項1に記載の内燃機関の過給装置の過給手段5kの2段流量増幅運転中の断面図である。
前記過給手段5kの構成は、吸気副通路28kに設けた制御弁282k以外ば、第2実施形態の構成概念の説明図(図5)と同じである。
前記制御弁282kはバタフライバルブで、ECUの出力により制御されたアクチェータ(図示せず)により弁体(ディスク)を回転して弁の開度制御を行い、吸気副通路28kの流路面積を調整して流入する吸気の流量を制御することにより、1次フロートランスベクタ621の流量増幅比を制御することができる。
前記1次フロートランスベクタ621kと前記トランスベクタ61kは、前記第1実施形態の変形例3である図4の上図(F)のフロートランスベクタ62、および前記第1実施形態の変形例4の図4の下図(TT)の内蔵型であるトランスベクタ61と流量増幅の原理は同じであるが、前記トランスベクタ61kは駆動流を流出するノズル615kの吸気通路内径は、吸気流入通路22kおよび吸気流出通路23kより大きくしている。
FIG. 6 is a cross-sectional view of the supercharging means according to the first modification of the second embodiment during a two-stage flow rate amplification operation.
FIG. 6 shows an atmospheric pressure intake system including a primary flow transvector 621k as a primary air flow amplifier 601k between a drive flow passage 41k and a drive flow passage 411k in the middle of the drive flow passage of the supercharging means 5k. 2. An internal combustion engine according to claim 1, further comprising: an intake sub-passage 28 k that communicates with an intake inflow passage 22 k that is the primary air flow amplifier 601 k and an inlet of the primary flow transvector 621 k that is the primary air flow amplifier 601 k. It is sectional drawing in the 2 stage flow volume amplification operation | movement of the supercharging means 5k of a supercharging device.
The configuration of the supercharging means 5k is the same as the explanatory diagram (FIG. 5) of the configuration concept of the second embodiment except for the control valve 282k provided in the intake sub passage 28k.
The control valve 282k is a butterfly valve, and a valve body (disk) is rotated by an actuator (not shown) controlled by the output of the ECU to control the opening of the valve, thereby adjusting the flow passage area of the intake sub-passage 28k. Thus, the flow rate amplification ratio of the primary flow transvector 621 can be controlled by controlling the flow rate of the intake air flowing in.
The primary flow trans vector 621k and the trans vector 61k are the same as those of the flow trans vector 62 in the upper diagram (F) of FIG. 4 which is the third modification of the first embodiment and the fourth modification of the first embodiment. Although the principle of flow rate amplification is the same as that of the built-in transformer vector 61 in the lower diagram (TT) of FIG. 4, the transformer vector 61k has the intake passage inner diameter of the nozzle 615k that flows out the drive flow, the intake inflow passage 22k and the intake air passage. It is larger than the outflow passage 23k.

過給手段5k(F&T)の作用は、1次空気流量増幅器601kである1次フロートランスベクタ621k(F)で流量増幅した吸気副通路28からの吸気を、前記トランスベクタ61k(T)の駆動流として供給して2段流量増幅を行うので、前記1次フロートランスベクタ621k(F)の流量増幅を、吸気副通路28kに設けた前記制御弁282kで流量制御(0〜100%)することにより、1段流量増幅から2段流量増幅への流量増幅作用を切り替えることができる。
過給手段5k(F&T)の流量増幅比は、前記制御弁282kを開弁して2段流量増幅を行う場合は前記1次フロートランスベクタ621k(F)の流量増幅比と前記トランスベクタ61k(T)の流量増幅比の積となり、前記制御弁282kを閉弁して1段流量増幅を行う場合は前記トランスベクタ61k(T)の流量増幅比となり、前記制御弁282kを開弁と閉弁の中間の任意の流路面積に調整することにより過給手段5k(F&T)の流量増幅比を前記2段流量増幅と1段流量増幅との間の任意の流量増幅比に制御することができる。
従って、駆動流が燃料の場合は、流量増幅比の逆数である燃料濃度を1段流量増幅の燃料濃度と、2段流量増幅の低い燃料濃度とに切り替えることができ、前記制御弁282kにより燃料濃度を前記2段流量増幅と1段流量増幅との間の任意の燃料濃度に制御することにより、内燃機関の運転状況に対応する任意の予混合燃料濃度に制御できる。
前記2段流量増幅による低い燃料濃度に切り替えることは、後述する爆発限界等の燃焼特性による制約解消に効果がある。
(第2実施形態の変形例2)
The operation of the supercharging means 5k (F & T) is to drive the transformer vector 61k (T) by using the intake air from the intake sub-passage 28 whose flow rate is amplified by the primary flow transformer vector 621k (F) which is the primary air flow amplifier 601k. Since the two-stage flow rate amplification is performed by supplying the flow rate, the flow rate amplification of the primary flow transformer vector 621k (F) is controlled by the control valve 282k provided in the intake sub passage 28k (0 to 100%). Thus, it is possible to switch the flow rate amplification action from the first-stage flow rate amplification to the second-stage flow rate amplification.
The flow rate amplification ratio of the supercharging means 5k (F & T) is equal to the flow rate amplification ratio of the primary flow transvector 621k (F) and the transvector 61k (F) when the control valve 282k is opened to perform two-stage flow rate amplification. T), when the control valve 282k is closed to perform one-stage flow amplification, the flow vector amplification ratio of the transvector 61k (T) is obtained, and the control valve 282k is opened and closed. The flow rate amplification ratio of the supercharging means 5k (F & T) can be controlled to an arbitrary flow rate amplification ratio between the two-stage flow rate amplification and the first-stage flow rate amplification. .
Therefore, when the driving flow is fuel, the fuel concentration that is the reciprocal of the flow rate amplification ratio can be switched between the fuel concentration of the first-stage flow rate amplification and the low fuel concentration of the second-stage flow rate amplification, and the fuel is controlled by the control valve 282k. By controlling the concentration to an arbitrary fuel concentration between the two-stage flow rate amplification and the first-stage flow rate amplification, it is possible to control the concentration to an arbitrary premixed fuel concentration corresponding to the operating state of the internal combustion engine.
Switching to a lower fuel concentration by amplification of the two-stage flow rate is effective in eliminating restrictions due to combustion characteristics such as an explosion limit described later.
(Modification 2 of the second embodiment)

図7は、第2実施形態の変形例2の過給装置で、駆動流が水素の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。
図7は前記過給装置の駆動流が水素の場合の前記過給手段による過給の概要特性図で、縦軸は流量増幅比(倍)、横軸は過給圧(bar)である。
図7は前記過給手段の駆動流が水素(100%で試算)であるので、水素の理論空気量2.4、および爆発限界(上限75%、下限4%)を、流量増幅比から逆算して図示している
図7に示す概要特性図は、過給圧が1barの過給を前記過給手段にて行う場合の試算値で、各過給手段の流量増幅比は説明のための目安値であり、実際の値は各過給手段の個々の条件(構造、形状、設置方法等)により異なる。
過給圧が1bar以下で爆発限界内の矩形(ハッチング)領域は、火花点火機関の予混合機関として過給運転できる領域と仮設定し、前記領域は前記理論空気量を境界として予混合吸気の燃料濃度のリーン側(上部)とリッチ側(下部)に分かれる。
図7に示すように、前記第2実施形態の変形例1(図6)の過給手段5kの前記制御弁282kの開弁(全開)による1次フロートランスベクタ621k(F)とトランスベクタ61k(T)による2段流量増幅時の“F&T”と、前記制御弁282kの閉弁によるトランスベクタ61k(T)による1段流量増幅時の“T”、および前記制御弁282kの開弁と閉弁の中間の開度制御による前記1段流量増幅の“T”と前記2段流量増幅の“F&T”の中間の流量増幅(比)ができる。
図7には、参考として流量増幅比の小さい順に、エジェクタの“E”、フロートランスベクタ型である過給手段5j(第1実施形態の変形例3(図4の上図))の “F”、内蔵型のトランスベクタである過給手段5t(第1実施形態の変形例4(図4の下図))の“TT”を図示している。
各過給手段から右下に伸びる補助線は、前記過給手段にて行う流量増幅比と過給圧の積を一定とした試算による目安値であり、前記補助線とX軸との交点の値(過給圧力(bar))が、前記過給手段による過給圧が1barの過給を行う場合に必要な駆動流圧力となる。
FIG. 7 is a schematic characteristic diagram of the flow rate amplification ratio and the supercharging pressure calculated by each supercharging means when the driving flow is hydrogen in the supercharging device of Modification 2 of the second embodiment.
FIG. 7 is a schematic characteristic diagram of supercharging by the supercharging means when the driving flow of the supercharging device is hydrogen. The vertical axis represents the flow rate amplification ratio (times), and the horizontal axis represents the supercharging pressure (bar).
In FIG. 7, since the driving flow of the supercharging means is hydrogen (estimated at 100%), the theoretical air amount of hydrogen 2.4 and the explosion limit (upper limit 75%, lower limit 4%) are calculated back from the flow rate amplification ratio. The schematic characteristic diagram shown in FIG. 7 is a trial calculation value when supercharging with a supercharging pressure of 1 bar is performed by the supercharging means, and the flow rate amplification ratio of each supercharging means is for explanation. It is a guide value, and the actual value depends on the individual conditions (structure, shape, installation method, etc.) of each supercharging means.
A rectangular area (hatch) within the explosion limit with a supercharging pressure of 1 bar or less is provisionally set as an area that can be supercharged as a premixing engine of a spark ignition engine, and the area is premixed intake air with the theoretical air amount as a boundary. The fuel concentration is divided into the lean side (upper part) and the rich side (lower part).
As shown in FIG. 7, the primary flow transvector 621k (F) and the transvector 61k by opening (fully opening) the control valve 282k of the supercharging means 5k of the modification 1 (FIG. 6) of the second embodiment. “F & T” at the time of two-stage flow rate amplification by (T), “T” at the time of one-stage flow rate amplification by the transvector 61k (T) by closing the control valve 282k, and opening and closing of the control valve 282k A flow rate amplification (ratio) between the “T” of the first-stage flow rate amplification and the “F & T” of the second-stage flow rate amplification can be performed by controlling the opening of the valve in the middle.
In FIG. 7, for reference, “E” of the ejector and “F” of the supercharging means 5j of the flow transvector type (modified example 3 of the first embodiment (upper view of FIG. 4)) in ascending order of the flow rate amplification ratio. “,” “TT” of supercharging means 5t (modified example 4 of the first embodiment (lower diagram in FIG. 4)), which is a built-in transformer vector, is illustrated.
The auxiliary line extending to the lower right from each supercharging means is a guideline value based on a trial calculation in which the product of the flow rate amplification ratio and supercharging pressure performed by the supercharging means is constant, and is the intersection of the auxiliary line and the X axis. The value (supercharging pressure (bar)) is the driving flow pressure required when the supercharging pressure by the supercharging means is 1 bar.

前記過給手段5kで、前述のように過給圧が1barの過給を行うと、2段流量増幅時の“F&T”の駆動流の圧力(約21bar)と、1段流量増幅時の“T”の駆動流の圧力(約6bar)が異なり、駆動流の圧力の制御が必要であることが分かる。
この駆動流の圧力の制御は、過給装置が前記過給装置2(図1)の場合は、過給センサ44による過給圧の入力情報をECU(図示せず)に入力し、前記ECUの出力により前記流体制御手段8の制御弁82の開度を調整することにより前記駆動流の圧力が制御される。
この駆動流の圧力の制御比率に応じて、前記補助線がX軸方向に移動し、前記過給手段5kの制御弁282kにより1段流量増幅と2段流量増幅の間の任意の流量増幅比に調整することにより図7のY軸方向に移動できるので、前記調整範囲の任意の過給圧で任意の燃料濃度の予混合ができる。
従って、制御弁282k(図6)により流量増幅比の調整を小さく(約6(倍))し、制御弁82(図1)により過給圧を高く(約21(bar))調整することにより、過給圧が約4barとなり、制御の誤動作により内燃機関の許容範囲を超える過給圧となるのを防止する必要がある場合は、安全装置となる前記制御弁81(図2)を設けるのが望ましい。
また、前記過給手段の駆動流の圧力が過給圧に比例するので、過給圧が0.5barの過給を行う場合は前記駆動流圧力の1/2の圧力に、過給圧が2barの過給を行う場合は前記駆動流圧力の2倍の圧力となる。
図7は前記過給手段の駆動流が水素(100%)であるので、水素の理論空気量2.4、および爆発限界(上限75%、下限4%)を、流量増幅比から逆算して図示している。
本検討では過給圧が1bar以下で前記爆発限界内の矩形(ハッチング)領域を、火花点火機関の予混合機関として過給運転できる領域とし、前記理論空気量を境界として予混合吸気の燃料濃度のリーン側(上部)とリッチ側(下部)に分かれる。
前記矩形(ハッチング)領域の過給圧規制値(1bar)は、概要特性の説明のための仮の規制値であり、個々の内燃機関の過給圧の規制値は、圧縮比等により個々に異なる。
図7から分かるように、第2実施形態の変形例1(図6)の過給手段5kは、2段流量増幅時の“F&T”から1段流量増幅時の“T”までリーン側の予混合となるので、リーン側の予混合機関、あるいは筒内燃料噴射装置を併用することにより点火装置付近に着火性のよい混合気層を形成して、成層燃焼によるリーンバーンエンジンとすることができる。
When the supercharging means 5k performs supercharging with a supercharging pressure of 1 bar as described above, the drive flow pressure (about 21 bar) at the time of two-stage flow rate amplification and “ It can be seen that the drive flow pressure of T ″ is different (approximately 6 bar) and that the drive flow pressure needs to be controlled.
When the supercharging device is the supercharging device 2 (FIG. 1), the driving flow pressure is controlled by inputting supercharging pressure input information from the supercharging sensor 44 to an ECU (not shown). The pressure of the drive flow is controlled by adjusting the opening of the control valve 82 of the fluid control means 8 based on the output of.
The auxiliary line moves in the X-axis direction according to the control ratio of the pressure of the driving flow, and an arbitrary flow rate amplification ratio between the first-stage flow rate amplification and the second-stage flow rate amplification by the control valve 282k of the supercharging means 5k. 7 can be moved in the Y-axis direction of FIG. 7, so that an arbitrary fuel concentration can be premixed at an arbitrary supercharging pressure within the adjustment range.
Accordingly, the adjustment of the flow rate amplification ratio is reduced (about 6 (times)) by the control valve 282k (FIG. 6), and the boost pressure is increased (about 21 (bar)) by the control valve 82 (FIG. 1). When the supercharging pressure is about 4 bar and it is necessary to prevent the supercharging pressure exceeding the allowable range of the internal combustion engine due to a malfunction of the control, the control valve 81 (FIG. 2) serving as a safety device is provided. Is desirable.
Further, since the pressure of the driving flow of the supercharging means is proportional to the supercharging pressure, when supercharging with a supercharging pressure of 0.5 bar is performed, the supercharging pressure is reduced to 1/2 of the driving flow pressure. When supercharging at 2 bar is performed, the pressure becomes twice the driving flow pressure.
In FIG. 7, since the driving flow of the supercharging means is hydrogen (100%), the theoretical air amount of hydrogen 2.4 and the explosion limit (upper limit 75%, lower limit 4%) are calculated back from the flow rate amplification ratio. It is shown.
In this study, the rectangular area (hatching) within the explosion limit when the supercharging pressure is 1 bar or less is set as the area that can be supercharged as a premixing engine of a spark ignition engine, and the fuel concentration of the premixed intake air with the theoretical air amount as the boundary It is divided into the lean side (upper part) and the rich side (lower part).
The supercharging pressure regulation value (1 bar) in the rectangular (hatching) region is a provisional regulation value for explaining the outline characteristics, and the supercharging pressure regulation value of each internal combustion engine is individually determined by the compression ratio or the like. Different.
As can be seen from FIG. 7, the supercharging means 5k of the first modification (FIG. 6) of the second embodiment is preliminarily determined on the lean side from “F & T” at the time of two-stage flow rate amplification to “T” at the time of first-stage flow rate amplification. Since it is mixed, a lean burn engine by stratified combustion can be formed by using a lean side premixing engine or an in-cylinder fuel injection device to form a mixture layer with good ignitability in the vicinity of the ignition device. .

前記過給手段5tの“TT”も、前記過給手段5k(F&T)と同様のリーン側の予混合となる。
前記過給手段5jの“F”は、理論空気量付近の燃料濃度であるので、船舶等の巡航速度で運転する予混合機関等に適している。
前記エジェクタの“E”は、リッチの予混合による過給運転となるので、負荷の大きい巡航速度で運転する予混合機関等に適している。
以上、火花点火機関についての概要特性を検証したが、本願発明の前記過給装置は圧縮着火機関にも利用できるので、圧縮着火機関の場合は、前記過給手段5k(F&T)等のリーンの予混合制御と、インジェクタ(図示せず)より燃焼室中央付近に予混合の燃料より発火点の低い軽油等を燃焼室に高圧噴射することにより予混合圧縮着火機関とすることができる。
図7は駆動流が水素の場合の概要特性図の説明であり、後述する駆動流が水素と異なる燃料の概要特性図(図8、図9、図13)も作図方法は同じであるので各図の説明では、前記作図方法等の説明は省略する。
(第2実施形態の変形例3)
“TT” of the supercharging means 5t is also lean side premixing similar to the supercharging means 5k (F & T).
Since “F” of the supercharging means 5j is a fuel concentration near the theoretical air amount, it is suitable for a premixing engine or the like that operates at a cruising speed such as a ship.
Since “E” of the ejector is a supercharging operation by rich premixing, it is suitable for a premixing engine or the like that operates at a cruise speed with a large load.
As described above, the outline characteristics of the spark ignition engine have been verified. However, since the supercharging device of the present invention can also be used for a compression ignition engine, in the case of a compression ignition engine, the leaning of the supercharging means 5k (F & T) or the like. A premixed compression ignition engine can be obtained by premixing control and high-pressure injection of light oil or the like having a lower ignition point than the premixed fuel into the combustion chamber near the center of the combustion chamber from an injector (not shown).
FIG. 7 is an explanation of an outline characteristic diagram in the case where the driving flow is hydrogen, and an outline characteristic diagram (FIGS. 8, 9, and 13) of a fuel whose driving flow is different from hydrogen, which will be described later, has the same drawing method. In the description of the drawings, description of the drawing method and the like will be omitted.
(Modification 3 of 2nd Embodiment)

図8は、第2実施形態の変形例3の過給装置で、駆動流がCNG(圧縮天然ガス)の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。
図8は前記過給手段の駆動流がCNG(メタン(100%)で試算)であるので、CNGの理論空気量9.6、および爆発限界(上限15%、下限5.5%)を、流量増幅比から逆算して図示している。
図8から分かるように、第2実施形態の変形例1(図6)の過給手段5kは、2段流量増幅時の“F&T”から1段流量増幅時の“T”の過給運転領域にて、CNGの爆発限界全域の対応ができるので予混合機関として運転ができ、更に予混合のリーン側制御と筒内燃料噴射装置を併用することにより点火装置付近に着火性のよい混合気層を形成して、成層燃焼によるリーンバーンエンジンとすることもできる。
前記過給手段5kで、前述のように過給圧が1barの過給を行うと、2段流量増幅時の“F&T”の駆動流の圧力(約21bar)と、1段流量増幅時の“T”の駆動流の圧力(約6bar)が異なり、駆動流圧力の制御が必要である。
この制御は、例えば過給装置が前記過給装置2(図1)の場合は、過給センサ44による過給圧の入力情報をECU(図示せず)に入力し、前記ECUの出力により前記流体制御手段8の制御弁82の開度を制御することにより前記駆動流の流量調整により駆動流圧力が制御される。
また、前記過給手段の駆動流の圧力が過給圧に比例するので、過給圧が0.5barの過給を行う場合は前記駆動流圧力の1/2の圧力に、過給圧が2barの過給を行う場合は前記駆動流圧力の2倍の圧力となる。
FIG. 8 is a schematic characteristic diagram of the flow rate amplification ratio and the supercharging pressure calculated by each supercharging means when the driving flow is CNG (compressed natural gas) in the supercharging device of the third modification of the second embodiment. .
In FIG. 8, since the driving flow of the supercharging means is CNG (estimated by methane (100%)), CNG theoretical air volume 9.6 and explosion limit (upper limit 15%, lower limit 5.5%) It is shown by calculating back from the flow rate amplification ratio.
As can be seen from FIG. 8, the supercharging means 5k of the modification 1 (FIG. 6) of the second embodiment is a supercharging operation region from “F & T” at the time of two-stage flow rate amplification to “T” at the time of first-stage flow rate amplification. Therefore, it is possible to operate as a premixed engine because it can cope with the entire explosion limit of CNG, and furthermore, a mixture layer having good ignitability in the vicinity of the igniter by using the lean side control of premixing and the in-cylinder fuel injector To form a lean burn engine by stratified combustion.
When the supercharging means 5k performs supercharging with a supercharging pressure of 1 bar as described above, the drive flow pressure (about 21 bar) at the time of two-stage flow rate amplification and “ The drive flow pressure at T ″ (approximately 6 bar) is different and control of the drive flow pressure is required.
For example, when the supercharging device is the supercharging device 2 (FIG. 1), this control is performed by inputting supercharging pressure input information from the supercharging sensor 44 to an ECU (not shown) and outputting the ECU according to the output of the ECU. By controlling the opening degree of the control valve 82 of the fluid control means 8, the driving flow pressure is controlled by adjusting the flow rate of the driving flow.
Further, since the pressure of the driving flow of the supercharging means is proportional to the supercharging pressure, when supercharging with a supercharging pressure of 0.5 bar is performed, the supercharging pressure is reduced to 1/2 of the driving flow pressure. When supercharging at 2 bar is performed, the pressure becomes twice the driving flow pressure.

前記過給手段5tの“TT”は、理論空気量付近のリッチ側の燃料濃度であるので、負荷の大きい巡航速度で運転する予混合機関等に適している。
前記エジェクタの“E”、あるいは前記過給手段5jの “F”は、燃料濃度がCNGの爆発限界から(リッチ側に)外れているので内燃機関の過給には不適である。
以上、火花点火機関についての概要特性を検証したが、本願発明の前記過給装置は圧縮着火機関にも利用できるので、圧縮着火機関の場合は、前記過給手段5k(F&T)等のリーン側あるいは爆発限界の下限以下の予混合燃料濃度の制御と、インジェクタ(図示せず)より燃焼室中央付近に予混合の燃料より発火点の低い軽油等を燃焼室に高圧噴射することにより予混合圧縮着火機関とすることができる。
(第2実施形態の変形例4)
Since “TT” of the supercharging means 5t is a rich fuel concentration in the vicinity of the theoretical air amount, it is suitable for a premixing engine or the like that operates at a cruise speed with a large load.
“E” of the ejector or “F” of the supercharging means 5j is not suitable for supercharging of the internal combustion engine because the fuel concentration is out of the explosion limit of CNG (to the rich side).
As described above, the outline characteristics of the spark ignition engine have been verified. However, since the supercharging device of the present invention can also be used for a compression ignition engine, in the case of a compression ignition engine, the lean side of the supercharging means 5k (F & T) or the like. Alternatively, premix compression is performed by controlling the concentration of premixed fuel below the lower limit of the explosion limit and by injecting light oil having a lower ignition point than the premixed fuel into the combustion chamber near the center of the combustion chamber from an injector (not shown). It can be an ignition engine.
(Modification 4 of the second embodiment)

図9は、第2実施形態の変形例4の過給装置で、駆動流がLPG(液化石油ガス)の場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。
図9は前記過給手段の駆動流がLPG(プロパン(100%)で試算)であるので、LPGの理論空気量24.3、および爆発限界(上限9.5%、下限2.2%)を、流量増幅比から逆算して図示している。
図9から分かるように、前記第2実施形態の変形例1(図6)の過給手段5kは、2段流量増幅と1段流量増幅との中間領域から2段流量増幅の“F&T”までが、LPGの燃料濃度のリッチ側の爆発限界であるので負荷の大きい巡航速度で運転する予混合機関等に適するが、燃料濃度のリーン側の爆発限界にはできないので、前記リーンバーンエンジンとすることはできない。
前記過給手段5kで、前述のように過給圧が1barの過給を行うと、2段流量増幅時の“F&T”の駆動流の圧力(約21bar)と、1段流量増幅時の“T”の駆動流の圧力(約6bar)が異なり、駆動流圧力の制御が必要である。
前記過給手段5kの2段流量増幅時の“F&T”の駆動流の圧力(約21bar)は、LPGが温度により内圧が変化し、常温で約7bar、40℃で約13barと流体内圧式の駆動流圧力が不足するので、後述するベーパライザ(蒸発器)にて駆動流を加熱して駆動流圧力をある程度は昇圧することができる。
FIG. 9 is a schematic characteristic diagram of the flow rate amplification ratio and the supercharging pressure calculated by each supercharging means when the driving flow is LPG (liquefied petroleum gas) in the supercharging device of Modification 4 of the second embodiment. .
In FIG. 9, since the driving flow of the supercharging means is LPG (calculated with propane (100%)), the theoretical air amount of LPG is 24.3, and the explosion limit (upper limit 9.5%, lower limit 2.2%) Is calculated back from the flow rate amplification ratio.
As can be seen from FIG. 9, the supercharging means 5k of the first modification of the second embodiment (FIG. 6) is from the intermediate region between the two-stage flow rate amplification and the first-stage flow rate amplification to the “F & T” of the two-stage flow rate amplification. However, since it is the explosion limit on the rich side of the fuel concentration of LPG, it is suitable for a premixed engine or the like that operates at a cruise speed with a heavy load. It is not possible.
When the supercharging means 5k performs supercharging with a supercharging pressure of 1 bar as described above, the drive flow pressure (about 21 bar) at the time of two-stage flow rate amplification and “ The drive flow pressure at T ″ (approximately 6 bar) is different and control of the drive flow pressure is required.
The pressure of the driving flow of “F & T” (about 21 bar) at the time of the two-stage flow rate amplification of the supercharging means 5k is about 7 bar at normal temperature and about 13 bar at 40 ° C. Since the driving flow pressure is insufficient, the driving flow pressure can be increased to some extent by heating the driving flow with a vaporizer (evaporator) described later.

この駆動流の制御は、例えば過給装置が前記過給装置2(図1)の場合は、過給センサ44による過給圧の入力情報をECU(図示せず)に入力し、前記ECUの出力により前記流体制御手段8の制御弁82の開度を制御することにより前記駆動流の圧力が制御されるが、前記駆動流圧力が不足する問題点は解消できない。
前記過給手段の駆動流の圧力が過給圧に比例するので、過給圧が0.5barの過給を行う場合は前記駆動流圧力の1/2の圧力に、過給圧が2barの過給を行う場合は前記駆動流圧力の2倍の圧力となる。
駆動流の圧力が6barの内圧の場合は、図9に示すように“T”から左上に前記補助線を延長した“(F&T)”となり、2段流量増幅時の過給圧は1barではなく、約0.3barとなり、2段流量増幅時の過給圧を駆動流の圧力により制御できる。
図9に示すように、前記過給手段5tの “TT”、および、更に流量増幅比が小さい前記エジェクタの“E”、あるいは前記過給手段5jの “F”は、LPGの爆発限界から燃料濃度が外れているので内燃機関の過給には不適である。
(第3実施形態(請求項3対応))
For example, when the supercharging device is the supercharging device 2 (FIG. 1), the driving flow is controlled by inputting supercharging pressure input information from the supercharging sensor 44 to an ECU (not shown). The pressure of the driving flow is controlled by controlling the opening of the control valve 82 of the fluid control means 8 by the output, but the problem that the driving flow pressure is insufficient cannot be solved.
Since the pressure of the driving flow of the supercharging means is proportional to the supercharging pressure, when supercharging with a supercharging pressure of 0.5 bar, the supercharging pressure is 2 bar and the supercharging pressure is 2 bar. When supercharging is performed, the pressure becomes twice the driving flow pressure.
When the pressure of the driving flow is 6 bar, as shown in FIG. 9, the auxiliary line is extended to “(F & T)” from “T” to the upper left, and the supercharging pressure at the time of two-stage flow amplification is not 1 bar. Therefore, the supercharging pressure when the two-stage flow rate is amplified can be controlled by the pressure of the driving flow.
As shown in FIG. 9, “TT” of the supercharging means 5t and “E” of the ejector having a smaller flow rate amplification ratio, or “F” of the supercharging means 5j are fuel from the explosion limit of LPG. Since the concentration is off, it is unsuitable for supercharging an internal combustion engine.
(Third embodiment (corresponding to claim 3))

図10は、第3実施形態(請求項3対応)の過給装置で、第2の流体通路を介して駆動流を供給する圧縮空気供給手段を設けた過給装置の構成例の説明図である。
前記流体制御手段8cにおいて、連通する駆動流通路41cと流体通路89cに、更に前記駆動流通路41cに連通する第2の流体通路89c2を設け、前記第2の流体通路89c2は通路途中にECU(図示せず)の出力により流量を制御する第2の制御手段である制御弁82c2を備え、前記流体制御手段8cに前記第2の流体通路89c2を介して駆動流を供給する圧縮空気供給手段45を設けたことを特徴とする請求項1または2に記載の内燃機関1cの過給装置2cである。
前記圧縮空気供給手段45の圧縮機46は、前記ECUの出力により制御されたクラッチ465を介して内燃機関1cの回転力により駆動し、前記圧縮機46で発生する圧縮空気の圧力が設定値以上になるのを防止するリリーフ弁47を前記圧縮機46と並列に設けている。
前記圧縮機46の容量(吐出量)は、内燃機関1cの吸気量に過給時の絶対圧を乗じて過給手段5cの流量増幅比で除した容量に、圧縮空気の駆動流に対する占有率を乗じた容量となる。
流体供給手段9cは、タンク91cに加圧貯蔵流体としてLPGを貯蔵し、運転時は緊急遮断弁93cを前記ECUの出力により開弁して液化したLPGを、前記流体制御手段8cと筒内燃料噴射装置15cに供給する。
前記流体制御手段8cにおいて、流体通路89cには上流より制御弁82c、ベーパライザ88、流体センサ84c、および逆流防止の逆止弁86cを設け、下流端はベンチュリ87のベンチュリ部に連通し、第2の流体通路89c2には上流より制御弁82c2、冷却器85c、流体センサ84c2、および逆流防止の逆止弁86c2を設け、下流端は前記ベンチュリ87を設けた駆動流通路41cに連通する。
FIG. 10 is an explanatory diagram of a configuration example of a supercharging device according to the third embodiment (corresponding to claim 3), which is provided with compressed air supply means for supplying a driving flow through a second fluid passage. is there.
In the fluid control means 8c, a driving fluid passage 41c and a fluid passage 89c that communicate with each other are further provided with a second fluid passage 89c2 that communicates with the driving fluid passage 41c. Compressed air supply means 45 provided with a control valve 82c2 which is a second control means for controlling the flow rate by the output of (not shown), and for supplying a driving flow to the fluid control means 8c via the second fluid passage 89c2. The supercharging device 2c for the internal combustion engine 1c according to claim 1 or 2, wherein the supercharging device 2c is provided.
The compressor 46 of the compressed air supply means 45 is driven by the rotational force of the internal combustion engine 1c via the clutch 465 controlled by the output of the ECU, and the pressure of the compressed air generated by the compressor 46 is equal to or higher than a set value. A relief valve 47 is provided in parallel with the compressor 46 to prevent this.
The capacity (discharge amount) of the compressor 46 is obtained by multiplying the intake air amount of the internal combustion engine 1c by the absolute pressure at the time of supercharging and dividing it by the flow rate amplification ratio of the supercharging means 5c, and the occupation ratio of the compressed air to the driving flow The capacity is multiplied by.
The fluid supply means 9c stores LPG as a pressurized storage fluid in the tank 91c. During operation, the fluid supply means 9c opens the emergency shut-off valve 93c according to the output of the ECU, and liquefies LPG into the fluid control means 8c and in-cylinder fuel. It supplies to the injection apparatus 15c.
In the fluid control means 8c, a control valve 82c, a vaporizer 88, a fluid sensor 84c, and a check valve 86c for preventing backflow are provided in the fluid passage 89c from the upstream, and the downstream end communicates with the venturi portion of the venturi 87, The fluid passage 89c2 is provided with a control valve 82c2, a cooler 85c, a fluid sensor 84c2, and a check valve 86c2 for preventing backflow from the upstream, and the downstream end communicates with the drive flow passage 41c provided with the venturi 87.

過給装置2cの作用は、前記流体制御手段8cに供給される前記流体供給手段9cから供給される液化したLPGを、制御弁82cにより流量を制御し、ベーパライザ88によりLPGを加熱して気化し、駆動流通路41cに設けたベンチュリ87に供給する。
他方の駆動流である圧縮空気供給手段45は、前記圧縮機46で発生する圧縮空気を、前記流体通路892cを介して前記流体制御手段8cに供給し、制御弁82c2により流量を制御し、冷却器85cで断熱圧縮された圧縮空気を冷却し、前記駆動流通路41cに供給する。
供給された前記駆動流である圧縮空気は、ベンチュリ87を通って過給手段5cに供給され、圧縮空気が前記ベンチュリ87を通過するときに、ベンチュリ効果により前記流体通路89cから供給される前記流体内圧方式からのLPGを吸引し、前記圧縮機方式の圧縮空気と任意の混合比で混合した駆動流を過給手段5cに供給する。
前記LPGと圧縮空気の混合比は、制御弁82cと制御弁82c2を制御することにより、任意の混合比と駆動流流量に調整できる。
前記駆動流の流量により制御される駆動流圧力により過給圧を、過給手段5cの流量増幅比と前記任意の混合比で混合される駆動流の燃料濃度により予混合吸気の燃料濃度を制御する。
前記流体制御手段8cから供給された駆動流が過給手段5cの空気流量増幅器6cにより吸気流を駆動流で加速することにより過給と同時に予混合を行い、過給センサ44c、駆動流センサ43c、および流体センサ(84c、84c2)等の入力情報をECU(図示せず)に入力し、前記ECUの出力により制御弁(82c、82c2)、クラッチ465等を制御することにより、過給圧、予混合の燃料濃度を制御する。
内燃機関1cは運転制御により、前記過給装置2cによる過給と予混合による予混合火花点火機関とする、燃料濃度をリーンにして筒内燃料噴射装置15cのインジェクタ12cからの燃料噴射により点火プラグ11c周辺に着火性のよい混合気層を形成して成層燃焼とするリーンバーンエンジンとする、あるいは前記過給装置2cを停止して前記筒内燃料噴射装置15cのインジェクタ12cのみによる燃料供給による自然吸気火花点火機関とすることも運転状況に対応して選択することができる。
図10のタンク91cに加圧貯蔵流体としてLPGを貯蔵する場合について説明したが、高圧で加圧貯蔵するLNG等の燃料の場合は、前記ベンチュリ87を省略し、ベーパライザ88の替わりに減圧弁を設け、更に、前記筒内燃料噴射装置15cをコモンレール方式の筒内燃料噴射装置に置き換え、供給する燃料を前記流体供給手段9cからの燃料より発火点の低い軽油等とすることにより、予混合圧縮着火機関とすることができる。
(第3実施形態の変形例1)
The operation of the supercharging device 2c is to vaporize the liquefied LPG supplied from the fluid supply means 9c supplied to the fluid control means 8c by controlling the flow rate by the control valve 82c and heating the LPG by the vaporizer 88. Then, it is supplied to the venturi 87 provided in the drive flow passage 41c.
The compressed air supply means 45, which is the other driving flow, supplies the compressed air generated by the compressor 46 to the fluid control means 8c via the fluid passage 892c, controls the flow rate by the control valve 82c2, and cools it. The compressed air adiabatically compressed by the vessel 85c is cooled and supplied to the drive flow passage 41c.
The supplied compressed air, which is the driving flow, is supplied to the supercharging means 5c through the venturi 87, and when the compressed air passes through the venturi 87, the fluid supplied from the fluid passage 89c by the venturi effect. LPG from the internal pressure system is sucked and a driving flow mixed with the compressed air of the compressor system at an arbitrary mixing ratio is supplied to the supercharging means 5c.
The mixing ratio of the LPG and the compressed air can be adjusted to an arbitrary mixing ratio and driving flow rate by controlling the control valve 82c and the control valve 82c2.
The supercharging pressure is controlled by the driving flow pressure controlled by the flow rate of the driving flow, and the fuel concentration of the premixed intake air is controlled by the fuel concentration of the driving flow mixed at the flow rate amplification ratio of the supercharging means 5c and the arbitrary mixing ratio. To do.
The driving flow supplied from the fluid control means 8c is premixed at the same time as supercharging by accelerating the intake air flow with the driving flow by the air flow amplifier 6c of the supercharging means 5c, so that the supercharging sensor 44c and the driving flow sensor 43c , And input information such as fluid sensors (84c, 84c2) to an ECU (not shown) and controlling the control valves (82c, 82c2), the clutch 465, etc. by the output of the ECU, Control premix fuel concentration.
The internal combustion engine 1c is a premixed spark ignition engine by supercharging and premixing by the supercharging device 2c by operation control, and the spark plug is made by fuel injection from the injector 12c of the in-cylinder fuel injection device 15c with lean fuel concentration. A lean burn engine in which an air-fuel mixture layer with good ignitability is formed around 11c to perform stratified combustion, or the supercharger 2c is stopped and natural fuel is supplied by only the injector 12c of the in-cylinder fuel injector 15c. An intake spark ignition engine can also be selected according to the driving situation.
Although the case where LPG is stored as a pressurized storage fluid in the tank 91c of FIG. 10 has been described, in the case of a fuel such as LNG that is stored under pressure at a high pressure, the venturi 87 is omitted, and a pressure reducing valve is provided instead of the vaporizer 88. In addition, the in-cylinder fuel injection device 15c is replaced with a common rail in-cylinder fuel injection device, and the fuel to be supplied is light oil having a lower ignition point than the fuel from the fluid supply means 9c. It can be an ignition engine.
(Modification 1 of 3rd Embodiment)

図11は、第3実施形態の変形例1の過給装置で、第2の流体通路を介して駆動流を供給するEGRガス供給手段を設けた過給装置の構成例の説明図である。
前記流体制御手段8dにおいて、連通する駆動流通路41dと流体通路89dに、更に前記駆動流通路41dおよび流体通路89dに連通する第2の流体通路89d2を設け、前記第2の流体通路89d2は通路途中にECU(図示せず)の出力により流量を制御する第2の制御手段である制御弁82d2を備え、前記流体制御手段8dに前記第2の流体通路89d2を介して駆動流を供給するEGRガス供給手段35を設けたことを特徴とする請求項1または2に記載の内燃機関1dの過給装置2dである。
流体制御手段8dにおいて、一方の前記流体供給手段9dから供給される駆動流の通路である流体通路89dの最上流には減圧弁83dを設け、駆動流内圧が高圧の場合や減圧精度を向上させる場合等は複数の減圧弁を直列に設け多段減圧を行い、流体の内圧が高くないLPGの場合は前記減圧弁83dを設ける必要はない。
他方の前記EGRガス供給手段35の前記排気還流通路37から供給される駆動流の通路である流体通路89d2の最上流には冷却器85を設ける。
前記EGRガス供給手段35は、排気還流通路37の途中にフィルタ36と、前記フィルタ36と排気通路31dに連通するドレン通路365とを設ける。
各々の流体通路(89d、89d2)の途中には流体センサ(84d、84d2)、下流には逆流を防止する逆止弁(86d、86d2)を設ける。
FIG. 11 is an explanatory diagram of a configuration example of a supercharging device provided with EGR gas supply means for supplying a driving flow through a second fluid passage in the supercharging device according to Modification 1 of the third embodiment.
In the fluid control means 8d, the driving flow passage 41d and the fluid passage 89d communicating with each other are further provided with a second fluid passage 89d2 communicating with the driving flow passage 41d and the fluid passage 89d, and the second fluid passage 89d2 is a passage. EGR is provided with a control valve 82d2, which is a second control means for controlling the flow rate according to the output of an ECU (not shown), and supplies a drive flow to the fluid control means 8d via the second fluid passage 89d2. 3. A supercharging device 2d for an internal combustion engine 1d according to claim 1 or 2, wherein a gas supply means 35 is provided.
In the fluid control means 8d, a pressure reducing valve 83d is provided in the uppermost stream of the fluid passage 89d, which is the passage of the driving flow supplied from one of the fluid supply means 9d, to improve the pressure reduction accuracy when the driving flow internal pressure is high. In some cases, a plurality of pressure reducing valves are provided in series to perform multistage pressure reduction, and in the case of LPG where the internal pressure of the fluid is not high, it is not necessary to provide the pressure reducing valve 83d.
A cooler 85 is provided in the uppermost stream of the fluid passage 89d2 that is the passage of the drive flow supplied from the exhaust gas recirculation passage 37 of the other EGR gas supply means 35.
The EGR gas supply means 35 is provided with a filter 36 in the middle of the exhaust gas recirculation passage 37 and a drain passage 365 communicating with the filter 36 and the exhaust passage 31d.
A fluid sensor (84d, 84d2) is provided in the middle of each fluid passage (89d, 89d2), and a check valve (86d, 86d2) for preventing backflow is provided downstream.

過給装置2dの作用は、流体供給手段9dから供給される駆動流を、前記減圧弁83dにて駆動流制御に適する圧力に減圧し、制御弁82dにより流量を制御して逆止弁86dを通って駆動流通路41dに供給し、他方の駆動流である排気還流通路37から供給されるEGRガスを前記フィルタ36により遠心分離等により異物等を分離して濾過し、前記冷却器85にて駆動流に適する温度に冷却し、制御弁82d2により流量を制御して逆止弁86d2を通って駆動流通路41dに供給する。
内燃機関1dは、コモンレール方式(図示せず)の筒内燃料噴射装置のインジェクタ72より発火点の低い軽油等を燃焼室に噴射する圧縮着火機関で、過給装置2dにより過給と同時に予混合と外部EGRを行う予混合圧縮着火機関である。
爆発限界の濃度の予混合吸気に、前記インジェクタ72より噴射する軽油等の発火点の低い燃料により圧縮着火させるので、着火後の燃焼速度が速く従来の圧縮着火機関より高速回転ができる。
流体供給手段9dから供給する流体は、軽油より発火点の高い水素、CNG、あるいはLPG等とし、流体制御手段8dの逆止弁(86d、86d2)の作用および、過給センサ44d、駆動流センサ43d、および流体センサ(84d、84d2)等の情報をECU(図示せず)に入力し、前記ECUの出力により制御弁(82d、82d2)等を制御することにより、過給圧、予混合の燃料濃度、およびEGR還流量を制御する。
図11の内燃機関1dが圧縮着火機関である場合の過給装置2dを説明したが、前述の第3実施形態の内燃機関1c(図10)と同様に点火プラグ11cと筒内燃料噴射装置15cを備えた火花点火機関に置き換えた場合は、運転制御により、予混合による予混合火花点火機関とする、成層燃焼によるリーンバーンエンジンとする、あるいは過給装置2dを停止して過給、予混合、およびEGRを行わず、前記筒内燃料噴射装置のみによる燃料供給による自然吸気火花点火機関とすることが運転状況に対応して選択することができる。
(第3実施形態の変形例2)
The operation of the supercharging device 2d is to reduce the driving flow supplied from the fluid supply means 9d to a pressure suitable for driving flow control by the pressure reducing valve 83d, and to control the flow rate by the control valve 82d to control the check valve 86d. Then, the EGR gas supplied from the exhaust gas recirculation passage 37 which is the other driving flow is filtered through the filter 36 by separating foreign matters and the like by centrifugal separation or the like. After cooling to a temperature suitable for the drive flow, the flow rate is controlled by the control valve 82d2, and the flow is supplied to the drive flow passage 41d through the check valve 86d2.
The internal combustion engine 1d is a compression ignition engine that injects light oil or the like having a lower ignition point than the injector 72 of a common rail type (not shown) in-cylinder fuel injection device into a combustion chamber, and is premixed simultaneously with supercharging by the supercharging device 2d. And a premixed compression ignition engine that performs external EGR.
Since the premixed intake air having an explosion limit concentration is compressed and ignited by a fuel having a low ignition point such as light oil injected from the injector 72, the combustion speed after ignition is high, and the conventional compression ignition engine can be rotated at a higher speed.
The fluid supplied from the fluid supply means 9d is hydrogen, CNG, LPG or the like whose ignition point is higher than that of light oil, the action of the check valves (86d, 86d2) of the fluid control means 8d, the supercharging sensor 44d, the driving flow sensor 43d and fluid sensors (84d, 84d2) and the like are input to an ECU (not shown), and the control valves (82d, 82d2) are controlled by the output of the ECU, so that the supercharging pressure and premixing are controlled. The fuel concentration and the EGR recirculation amount are controlled.
The supercharging device 2d in the case where the internal combustion engine 1d of FIG. 11 is a compression ignition engine has been described, but the spark plug 11c and the in-cylinder fuel injection device 15c are similar to the internal combustion engine 1c (FIG. 10) of the third embodiment described above. Is replaced with a spark ignition engine by premixing, a lean burn engine by stratified combustion, or by supercharging and premixing by stopping the supercharging device 2d. It is possible to select the natural intake spark ignition engine by supplying the fuel only by the in-cylinder fuel injection device without performing EGR in accordance with the operating condition.
(Modification 2 of 3rd Embodiment)

図12は、第3実施形態の変形例2の過給装置で、第2の流体通路を介して駆動流を供給する第2の流体供給手段を設けた過給装置の構成例の説明図である。
前記流体制御手段8eにおいて、連通する駆動流通路41eと流体通路89eに、更に前記駆動流通路41eおよび流体通路89eに連通する第2の流体通路89e2を設け、前記第2の流体通路89e2は通路途中にECU(図示せず)の出力により流量を制御する第2の制御手段である制御弁82e2を備え、前記流体制御手段8eに前記第2の流体通路89e2を介して駆動流を供給する第2の流体供給手段9e2を設けたことを特徴とする請求項1または2に記載の内燃機関1eの過給装置2eである。
内燃機関1eは、点火プラグ11eと筒内燃料噴射装置15eのインジェクタ12eを備えた火花点火機関で、過給装置2eの流体供給手段9eには空気、水素、あるいは水酸素等が、第2の流体供給手段9e2のタンク91e2にはLPGが、それぞれのタンク(91e、91e2)に加圧貯蔵されており、前記タンク91e2のLPGは、燃料通路94eを通って前記筒内燃料噴射装置15eにも供給される。
FIG. 12 is an explanatory diagram of a configuration example of a supercharging device according to a second modification of the third embodiment, in which a second fluid supply unit that supplies a driving flow through a second fluid passage is provided. is there.
In the fluid control means 8e, the driving flow passage 41e and the fluid passage 89e that communicate with each other are further provided with a second fluid passage 89e2 that communicates with the driving flow passage 41e and the fluid passage 89e, and the second fluid passage 89e2 is a passage. A control valve 82e2, which is a second control means for controlling the flow rate by the output of an ECU (not shown), is provided on the way, and a driving flow is supplied to the fluid control means 8e via the second fluid passage 89e2. 3. A supercharging device 2e for an internal combustion engine 1e according to claim 1 or 2, wherein two fluid supply means 9e2 are provided.
The internal combustion engine 1e is a spark ignition engine having an ignition plug 11e and an injector 12e of the in-cylinder fuel injection device 15e. The fluid supply means 9e of the supercharging device 2e is supplied with air, hydrogen, water oxygen, or the like. LPG is pressurized and stored in each tank (91e, 91e2) in the tank 91e2 of the fluid supply means 9e2, and the LPG in the tank 91e2 also passes through the fuel passage 94e to the in-cylinder fuel injection device 15e. Supplied.

過給装置2eの作用は、流体供給手段9eから供給される前記流体と、第2の流体供給手段9e2から供給される流体であるLPGは、流体制御手段8eにて各々の流量を制御弁(82e、82e2)により制御され、駆動流として過給手段5eに供給され、空気流量増幅器6eにより吸気を駆動流で加速することにより過給と同時に予混合を行い、過給センサ44e、駆動流センサ43e、および流体センサ(84e、84e2)等の入力情報をECU(図示せず)に入力し、前記ECUの出力あるいはパイロット圧により前記制御弁(82e、82e2)等を制御することにより、過給圧と予混合の燃料濃度等を制御する。
流体供給手段9eから供給される前記流体が圧縮空気の場合は、第2の流体供給手段9e2から供給されるLPGとの供給比率を前記制御弁(82e、82e2)で制御することにより、過給された予混合吸気のLPGの燃料濃度を低下することができる。
流体供給手段9eから供給される前記流体が水−酸素ガスである前記オオマサガスの場合は、内燃機関1eが高負荷時にはLPGの混合比率上げ、通常時は混合比を1:1(容積比)とする等の運転条件によりLPGとオオマサガスの混合比を調整する、両方の燃料の残量に比例した混合比で燃料供給する、あるいは経済的に有利な方の燃料を優先的に供給する等の燃料供給方法を選択できるバイフューエルエンジンである。
更に両方の燃料と異なる異種燃料の第3の流体供給手段を設けることにより、マルチフューエルエンジンとすることもできる。
(第3実施形態の変形例3)
The supercharger 2e functions as follows: the fluid supplied from the fluid supply means 9e and the LPG, which is the fluid supplied from the second fluid supply means 9e2, are controlled by the fluid control means 8e. 82e, 82e2) and supplied as a driving flow to the supercharging means 5e, and the air flow amplifier 6e accelerates the intake air with the driving flow to perform premixing simultaneously with the supercharging, whereby the supercharging sensor 44e, the driving flow sensor 43e and fluid sensor (84e, 84e2) input information is input to an ECU (not shown), and the control valve (82e, 82e2) is controlled by the output of the ECU or the pilot pressure. Control pressure and premix fuel concentration.
When the fluid supplied from the fluid supply means 9e is compressed air, supercharging is performed by controlling the supply ratio with the LPG supplied from the second fluid supply means 9e2 by the control valves (82e, 82e2). The fuel concentration of the LPG in the premixed intake air can be reduced.
When the fluid supplied from the fluid supply means 9e is the Omasa gas, which is water-oxygen gas, the LPG mixing ratio is increased when the internal combustion engine 1e is under a high load, and the mixing ratio is 1: 1 (volume ratio) during normal operation. Adjust the mixing ratio of LPG and Omasa gas according to the operating conditions, supply fuel at a mixing ratio proportional to the remaining amount of both fuels, or supply the fuel that is economically advantageous with priority This is a bi-fuel engine that can select the fuel supply method.
Furthermore, by providing a third fluid supply means for different types of fuel different from both fuels, a multi-fuel engine can be obtained.
(Modification 3 of 3rd Embodiment)

図13は、第3実施形態の変形例3の過給装置で、前記第3実施形態(図10)の過給装置2cにおいて駆動流をLPGとし、圧縮空気を1:1の容積比で混合供給する場合の各過給手段の試算による流量増幅比と過給圧の概要特性図である。
図13は、LPGと圧縮空気の駆動流にて過給圧が1barの過給を行う場合の各過給手段の試算による流量増幅比と過給圧の概要特性である。
前述の図9の前記特性図にて、駆動流がLPG(プロパン(100%)で試算)の場合の各過給手段にて過給圧が1barの過給を行う場合の試算による流量増幅比と過給圧の概要特性を説明したが、図13は、駆動流の構成がLPG(プロパン)50%、空気50%であるので、縦軸の流量増幅比から逆算する燃料濃度(右目盛り)は、図9の燃料濃度の1/2(50%)の値となる。
図13から分かるように、過給手段が前記第2実施形態の変形例1(図6)の過給手段5kの場合は、前記制御弁282kを制御することにより1段流量増幅の“T”と2段流量増幅の“F&T”によりLPGの爆発限界のほぼ全域を制御できるので予混合内燃機関、あるいは前記リーンバーンエンジンとすることもできる。
前記過給手段5t(図4の下図)の“TT”は、爆発限界のリッチ側の予混合による過給運転となるので、負荷の大きい巡航速度で運転する予混合機関等に適している。
前記過給手段5kで、前述のように過給圧が1barの過給を行うと、2段流量増幅時の“F&T”の駆動流の圧力(約21bar)と、1段流量増幅時の“T”の駆動流の圧力(約6bar)が異なり、駆動流圧力の制御が必要である。
駆動流の圧力が6barの内圧の場合は、図13に示すように“T”から左上に前記補助線を延長した“(F&T)”となり、2段流量増幅時の過給圧は1barではなく、約0.3barとなり、過給圧は駆動流の圧力により制御できる。
LPGの内圧が常温で約7bar、40℃で約13barと温度により変化し、前記過給手段5kの2段流量増幅時“F&T”の駆動流の圧力(約21bar)には、駆動流圧力として不足するので、前記第3実施形態(図10)のベーパライザ88にて加熱して駆動流圧力を上昇させ、圧縮空気が前記ベンチュリ87を通過するのでベンチュリ効果によりLPGを負圧吸引し、駆動流として前記圧縮空気に混合することができる。
前記エジェクタの“E”、あるいは前記過給手段5jの “F”は、LPGの爆発限界から燃料濃度が(リッチ側に)外れているが、駆動流であるLPGと圧縮空気の混合比を1:1(容積比)ではなく、混合比をリーン側に調整することにより爆発限界に近づけることができる。
(第4実施形態(請求項4対応))
FIG. 13 is a supercharging device according to Modification 3 of the third embodiment. In the supercharging device 2c of the third embodiment (FIG. 10), the driving flow is LPG and the compressed air is mixed at a volume ratio of 1: 1. It is a general | schematic characteristic figure of the flow volume amplification ratio by the trial calculation of each supercharging means in the case of supplying, and a supercharging pressure.
FIG. 13 is a schematic characteristic of the flow rate amplification ratio and the supercharging pressure calculated by each supercharging means when the supercharging pressure is 1 bar with the driving flow of LPG and compressed air.
In the characteristic diagram of FIG. 9 described above, the flow rate amplification ratio by trial calculation when the supercharging pressure is 1 bar in each supercharging means when the driving flow is LPG (trial calculation with propane (100%)). In FIG. 13, since the drive flow configuration is LPG (propane) 50% and air 50%, the fuel concentration (right scale) calculated backward from the flow rate amplification ratio on the vertical axis is shown in FIG. Is a value of 1/2 (50%) of the fuel concentration in FIG.
As can be seen from FIG. 13, when the supercharging means is the supercharging means 5k of the first modification of the second embodiment (FIG. 6), the control valve 282k is controlled so that “T” of the first stage flow rate amplification. Since the entire range of the explosion limit of the LPG can be controlled by “F & T” with two-stage flow rate amplification, a premixed internal combustion engine or the lean burn engine can be used.
Since “TT” of the supercharging means 5t (the lower diagram in FIG. 4) is a supercharging operation by premixing on the rich side of the explosion limit, it is suitable for a premixing engine or the like that operates at a cruise speed with a large load.
When the supercharging means 5k performs supercharging with a supercharging pressure of 1 bar as described above, the drive flow pressure (about 21 bar) at the time of two-stage flow rate amplification and “ The drive flow pressure at T ″ (approximately 6 bar) is different and control of the drive flow pressure is required.
When the pressure of the driving flow is 6 bar, as shown in FIG. 13, the auxiliary line is extended to “(F & T)” from “T” to the upper left, and the supercharging pressure at the time of two-stage flow rate amplification is not 1 bar. About 0.3 bar, and the supercharging pressure can be controlled by the pressure of the driving flow.
The internal pressure of the LPG varies with temperature, about 7 bar at room temperature and about 13 bar at 40 ° C. The pressure of the driving flow of “F & T” (about 21 bar) during the two-stage flow rate amplification of the supercharging means 5k (about 21 bar) is the driving flow pressure. Therefore, the driving flow pressure is increased by heating with the vaporizer 88 of the third embodiment (FIG. 10), and the compressed air passes through the venturi 87. Can be mixed with the compressed air.
“E” of the ejector or “F” of the supercharging means 5j has a fuel concentration deviating from the explosion limit of LPG (to the rich side), but the mixing ratio of LPG as a driving flow and compressed air is 1 It is possible to approach the explosion limit by adjusting the mixing ratio to the lean side instead of 1 (volume ratio).
(Fourth embodiment (corresponding to claim 4))

図14は、第4実施形態(請求項4対応)の過給装置の過給手段で、空気流量増幅器のノズルの上流に逆止弁を設けた場合の過給手段の構成概念の説明図である。
前記過給手段5uの空気流量増幅器6uのノズル(図示せず)の上流である吸気流入通路22uの通路途中に吸気の逆流および逆流流量増幅を防止する逆止弁57を設けたことを特徴とする、請求項1または3に記載の内燃機関の過給装置である。
過給手段5uの作用は、逆止弁57により、内燃機関の運転状況の急激な変化によるサージング等による吸気の逆流発生時に、空気流量増幅器6uのノズル上流の吸気通路22uを遮断して空気流量増幅器6uによる逆流流量増幅現象の発生を防止し、逆止弁57の下流の圧力が上流より低くなると逆止弁57を開弁して吸気を前記吸気通路22uから空気流量増幅器6uに供給する。
従って、過給手段5uは、運転状況の変化に対応した駆動流圧力にて内燃機関の過給を行い、逆止弁57により吸気の逆流発生時に空気流量増幅器6uによる逆流流量増幅現象を防止するので安定した内燃機関の過給運転ができ、駆動流が燃料の場合は、予混合吸気が大気に大量流出するのを防止する。
FIG. 14 is an explanatory view of the supercharging means of the supercharging device of the fourth embodiment (corresponding to claim 4) when a check valve is provided upstream of the nozzle of the air flow amplifier. is there.
A check valve 57 is provided in the middle of the intake inflow passage 22u upstream of a nozzle (not shown) of the air flow amplifier 6u of the supercharging means 5u to prevent intake backflow and backflow flow rate amplification. The supercharging device for an internal combustion engine according to claim 1 or 3.
The supercharging means 5u functions as an air flow rate by blocking the intake passage 22u upstream of the nozzle of the air flow rate amplifier 6u when a check valve 57 causes a backflow of intake air due to surging or the like due to a sudden change in the operating state of the internal combustion engine. The occurrence of the backflow flow rate amplification phenomenon by the amplifier 6u is prevented, and when the pressure downstream of the check valve 57 becomes lower than upstream, the check valve 57 is opened and the intake air is supplied from the intake passage 22u to the air flow rate amplifier 6u.
Therefore, the supercharging means 5u supercharges the internal combustion engine with the driving flow pressure corresponding to the change in the operating condition, and prevents the reverse flow rate amplification phenomenon by the air flow rate amplifier 6u when the reverse flow of the intake air is generated by the check valve 57. Therefore, a stable supercharging operation of the internal combustion engine can be performed, and when the driving flow is fuel, the premixed intake air is prevented from flowing out to the atmosphere.

図15は、第4実施形態の変形例1の過給装置の過給手段で、第2実施形態(図5)の各空気流量増幅器のノズルの上流に逆止弁を設けた過給手段の構成概念の説明図である。
前記過給手段5gの空気流量増幅器である1次空気流量増幅器601gと空気流量増幅器6gの各々のノズル(図示せず)の上流である吸気副通路28gと吸気流入通路22gに吸気の逆流および逆流流量増幅を防止する逆止弁58と逆止弁57gを設けたことを特徴とする、請求項2または3に記載の内燃機関の過給装置である。
過給手段5gの作用は、駆動流通路41gから供給される駆動流により1次空気流量増幅器601gで流量増幅した吸気副通路28gからの吸気を空気流量増幅器6gの駆動流として供給して2段流量増幅を行う。
逆止弁57gにより、内燃機関の運転状況の急激な変化によるサージング等による吸気流入通路22gの逆流発生時に、空気流量増幅器6gのノズルの上流の吸気通路22gを遮断して空気流量増幅器6gによる逆流流量増幅現象の発生を防止し、逆止弁57gの下流の圧力が上流より低くなると前記吸気通路22gを連通して吸気を駆動流通路411gに流出する。
逆止弁58により、内燃機関の運転状況の急激な変化によるサージング等による吸気副通路28gの逆流発生時に、1次空気流量増幅器601gのノズルの上流の吸気副通路28gを遮断して前記1次空気流量増幅器601gによる逆流流量増幅現象の発生を防止し、逆止弁58の下流の圧力が上流より低くなると前記吸気副通路28gを連通して吸気を駆動流通路411gに流出する。
このように、逆流流量増幅現象を防止することにより、吸気流入通路22gから供給される吸気を駆動流通路41gから供給される駆動流により、過給手段5gで2段流量増幅して安定した過給を、駆動流が燃料の場合は過給と予混合を行う。
(第4実施形態の変形例1)
FIG. 15 is a supercharging device of the supercharging device according to Modification 1 of the fourth embodiment, and is a supercharging device provided with a check valve upstream of the nozzle of each air flow amplifier of the second embodiment (FIG. 5). It is explanatory drawing of a structure concept.
Backflow and backflow of the intake air into the intake sub-passage 28g and the intake inflow passage 22g upstream of the respective nozzles (not shown) of the primary air flow amplifier 601g and the air flow amplifier 6g as the air flow amplifier of the supercharging means 5g. The supercharging device for an internal combustion engine according to claim 2 or 3, wherein a check valve 58 and a check valve 57g for preventing flow rate amplification are provided.
The supercharging means 5g operates in two stages by supplying the intake air from the intake sub-passage 28g, the flow of which is amplified by the primary air flow amplifier 601g by the drive flow supplied from the drive flow passage 41g, as the drive flow of the air flow amplifier 6g. Perform flow rate amplification.
The check valve 57g shuts off the intake passage 22g upstream of the nozzle of the air flow amplifier 6g and generates a reverse flow by the air flow amplifier 6g when a reverse flow occurs in the intake flow passage 22g due to surging or the like due to a sudden change in the operating condition of the internal combustion engine. When the flow rate amplification phenomenon is prevented and the downstream pressure of the check valve 57g becomes lower than the upstream pressure, the intake passage 22g is communicated and the intake air flows out to the drive flow passage 411g.
The check valve 58 shuts off the intake sub-passage 28g upstream of the nozzle of the primary air flow amplifier 601g when a reverse flow occurs in the intake sub-passage 28g due to surging or the like due to a sudden change in the operating state of the internal combustion engine. When the downstream flow rate amplification phenomenon by the air flow rate amplifier 601g is prevented, and the pressure downstream of the check valve 58 becomes lower than the upstream side, the intake sub-passage 28g communicates and the intake air flows out to the drive flow passage 411g.
In this way, by preventing the backflow flow rate amplification phenomenon, the intake air supplied from the intake air inflow passage 22g is amplified by the two-stage flow rate by the supercharging means 5g by the drive flow supplied from the drive flow passage 41g, and the stable overflow is stabilized. When the driving flow is fuel, supercharging and premixing are performed.
(Modification 1 of 4th Embodiment)

図16は、第4実施形態の変形例2の過給装置の過給手段で、前記第4実施形態の変形例1の吸気副通路に制御弁を設けた過給手段の2段流量増幅運転中の断面図である。
内燃機関の前記過給装置において、過給手段5mの空気流量増幅器6mであるトランスベクタ61mと、1次空気流量増幅器601mである1次フロートランスベクタ621mの各々のノズルの上流に吸気の逆流および逆流流量増幅を防止する逆止弁57mであるリードバルブ570と、逆止弁58mであるリフトチェック弁580を設けた過給手段5mを備えたことを特徴とする、請求項2に記載の内燃機関の過給装置である。
1次空気流量増幅器601mの上流の吸気副通路28mには、流量を制御するアクチェータ(図示せず)により制御されるバタフライバルブである制御弁282mが設けられ、過給手段5mの1段流量増幅、2段流量増幅、あるいはその中間の流量増幅比の制御ができる。
前記逆止弁57mであるリードバルブ570は、リード571、ストッパ572、および前記リード571の弁座を設けたフランジ573で構成され、逆止弁58mであるリフトチェック弁580は、ディスク581、スプリング582、および吸気流入通路22mに設けた連通口285mに連通する座面を有するシリンダ部で構成される従来技術の逆止弁である。
過給手段5mの作用は、前記吸気副通路28gに設けた制御弁282mによる1段流量増幅、2段流量増幅、あるいはその中間の流量増幅比の制御ができることを除けば、前述の過給手段5g(図15)と同じであるので作用の説明は省略する。
FIG. 16 shows the supercharging device of the supercharging device of the second modification of the fourth embodiment, and the two-stage flow rate amplification operation of the supercharging device provided with a control valve in the intake sub-passage of the first modification of the fourth embodiment. FIG.
In the supercharging device of the internal combustion engine, the backflow of the intake air flows upstream of the nozzles of the transformer vector 61m, which is the air flow amplifier 6m of the supercharging means 5m, and the primary flow transformer vector 621m, which is the primary air flow amplifier 601m. The internal combustion engine according to claim 2, further comprising a recharging valve (570) which is a check valve (57m) for preventing backflow flow rate amplification and a supercharging means (5m) provided with a lift check valve (580) which is a check valve (58m). It is an engine supercharger.
The intake sub-passage 28m upstream of the primary air flow amplifier 601m is provided with a control valve 282m that is a butterfly valve controlled by an actuator (not shown) for controlling the flow rate, and a one-stage flow amplification of the supercharging means 5m. Two-stage flow rate amplification or intermediate flow rate amplification ratio can be controlled.
The reed valve 570, which is the check valve 57m, includes a lead 571, a stopper 572, and a flange 573 provided with a valve seat for the lead 571. The lift check valve 580, which is the check valve 58m, includes a disk 581, a spring. 582 and a check valve of the prior art composed of a cylinder portion having a seat surface communicating with a communication port 285m provided in the intake air inflow passage 22m.
The supercharging means 5m operates as described above except that the control valve 282m provided in the intake sub-passage 28g can control the first stage flow amplification, the second stage flow amplification, or the intermediate flow amplification ratio. Since it is the same as 5g (FIG. 15), description of an effect | action is abbreviate | omitted.

第1〜4実施形態は、本願発明の一例を示して説明をしているが、内燃機関は制約のない限り火花点火機関でも圧縮着火機関でも、往復動機関でもロータリエンジン等でもよく、過給装置に設けられている機器や補助機器(センサ、フィルタ、冷却器、等)は、内燃機関の運転条件等により追加削除ができるので、前記第1〜4実施形態は、本願発明の一例を示すもので本願発明を制約するものではなく、当業者により変更および改良ができる。   In the first to fourth embodiments, an example of the present invention has been described. However, the internal combustion engine may be a spark ignition engine, a compression ignition engine, a reciprocating engine, a rotary engine, or the like unless there is a restriction. Since devices and auxiliary devices (sensors, filters, coolers, etc.) provided in the apparatus can be added and deleted depending on the operating conditions of the internal combustion engine, the first to fourth embodiments show an example of the present invention. However, the present invention is not limited by the present invention and can be changed and improved by those skilled in the art.

過給手段に空気流量増幅器を用いる本願発明の過給装置は、駆動流を加圧貯蔵流体の圧力エネルギを利用することにより駆動流圧力は内燃機関の運転状況に影響されず、流体制御手段にて駆動流を制御することにより応答性の高い過給運転を行えるので、運転状況の変動が激しい自動車の内燃機関の過給装置として使用することができる。   The supercharging device of the present invention using an air flow rate amplifier for the supercharging means uses the pressure energy of the pressurized storage fluid for the driving flow, so that the driving flow pressure is not affected by the operating condition of the internal combustion engine, and the fluid control means Therefore, by controlling the driving flow, a highly responsive supercharging operation can be performed, and therefore, it can be used as a supercharging device for an internal combustion engine of an automobile in which fluctuations in driving conditions are severe.

1 内燃機関
2 過給装置
5 過給手段
6 空気流量増幅器
7 流体内圧機構
8 流体制御手段
9 流体供給手段
11 点火プラグ
12 インジェクタ
13 高圧燃料ポンプユニット
14 フュエルレール
15 筒内燃料噴射装置
16 ECU(電子制御装置)
17 アクセルセンサ
18 ブレーキセンサ
20 吸気
21 エアクリーナ
22 吸気流入通路
23 吸気流出通路
24 吸気センサ
25 インタークーラ
28 吸気副通路
31 排気通路
32 排気浄化装置
33 消音器
34 排気センサ
35 EGRガス供給手段
36 フィルタ
37 排気還流通路
40 駆動流
41 駆動流通路
43 駆動流センサ
44 過給センサ
45 圧縮空気供給手段
46 圧縮機
47 リリーフ弁
51 パイロット導管
57 逆止弁
58 逆止弁(1次流量増幅器用)
61 トランスベクタ
62 フロートランスベクタ
72 インジェクタ(高圧噴射ノズル)
74 カム角センサ
75 ノックセンサ
76 水温センサ
77 クランクセンサ
78 浄化前センサ
79 浄化後センサ
81 制御弁(シーケンス弁)
82 制御弁(駆動流用)
83 減圧弁
84 流体センサ
85 冷却器
86 逆止弁(流体通路用)
87 ベンチュリ
88 ベーパライザ
89 流体通路
91 タンク
92 取り出し弁
93 緊急遮断弁
94 燃料通路
96 逆止弁(充填用)
97 充填口
98 流体充填弁
99 逆止弁付継手
104 過給機
105 膨張タービン
105a 膨張タービン軸
107 燃料遮断弁
109 ガス容器
110 空燃比制御装置
111 O2センサ
112 コントローラ
140 燃料供給装置
141 ガス流量制御弁
142 低圧減圧弁
150 吸気装置
151 ミキサ
155 吸気管
282 制御弁(吸気副通路用)
285 連通口
365 ドレン通路
411 駆動流通路
419 ブッシング
465 クラッチ
570 リードバルブ
571 リード
572 ストッパ
573 フランジ
580 リフトチェック弁
581 ディスク
582 スプリング
601 1次空気流量増幅器
612 フランジ
613 ハウジング
614 環状チャンバ
615 ノズル
618 ケーシング
619 アダプタ
621 1次フロートランスベクタ
624 ノズルガイド
625 ノズル本体
626 ノズル管
628 ケーシング
629 ブッシング
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Supercharging device 5 Supercharging means 6 Air flow amplifier 7 Fluid internal pressure mechanism 8 Fluid control means 9 Fluid supply means 11 Spark plug 12 Injector 13 High pressure fuel pump unit 14 Fuel rail 15 In-cylinder fuel injection device 16 ECU (electronic Control device)
DESCRIPTION OF SYMBOLS 17 Acceleration sensor 18 Brake sensor 20 Intake 21 Air cleaner 22 Intake inflow passage 23 Intake outflow passage 24 Intake sensor 25 Intercooler 28 Intake sub-passage 31 Exhaust passage 32 Exhaust purification device 33 Silencer 34 Exhaust sensor 35 EGR gas supply means 36 Filter 37 Exhaust Reflux passage 40 Drive flow 41 Drive flow passage 43 Drive flow sensor 44 Supercharge sensor 45 Compressed air supply means 46 Compressor 47 Relief valve 51 Pilot conduit 57 Check valve 58 Check valve (for primary flow amplifier)
61 transformer vector 62 flow transformer vector 72 injector (high pressure injection nozzle)
74 Cam angle sensor 75 Knock sensor 76 Water temperature sensor 77 Crank sensor 78 Sensor before purification 79 Sensor after purification 81 Control valve (sequence valve)
82 Control valve (for driving flow)
83 Pressure reducing valve 84 Fluid sensor 85 Cooler 86 Check valve (for fluid passage)
87 Venturi 88 Vaporizer 89 Fluid passage 91 Tank 92 Take-off valve 93 Emergency shut-off valve 94 Fuel passage 96 Check valve (for filling)
97 Filling port 98 Fluid filling valve 99 Joint with check valve 104 Supercharger 105 Expansion turbine 105a Expansion turbine shaft 107 Fuel shutoff valve 109 Gas container 110 Air-fuel ratio control device 111 O2 sensor 112 Controller 140 Fuel supply device 141 Gas flow rate control valve 142 Low-pressure reducing valve 150 Intake device 151 Mixer 155 Intake pipe 282 Control valve (for intake sub-passage)
285 Communication port 365 Drain passage 411 Drive flow passage 419 Bushing 465 Clutch 570 Reed valve 571 Lead 572 Stopper 573 Flange 580 Lift check valve 581 Disc 582 Spring 601 Primary air flow amplifier 612 Flange 613 Housing 614 Annular chamber 18 621 Primary flow transformer vector 624 Nozzle guide 625 Nozzle body 626 Nozzle tube 628 Casing 629 Bushing

Claims (4)

駆動流により過給を行う過給手段と、前記過給手段と内燃機関の燃焼室との間の吸気系統に過給の圧力を測定する過給センサと、を備えた内燃機関の過給装置であって、
前記過給手段は、
内燃機関の燃焼室に吸気を供給する吸気系統のエアクリーナまたは通路途中に、吸気を加圧して燃焼室に送り込む空気流量増幅器と、前記空気流量増幅器に駆動流を供給する駆動流通路と、を備え、
更に流体供給手段と、流体制御手段と、で構成する流体内圧機構を備え、
前記流体供給手段は、
燃料である加圧貯蔵流体の貯蔵手段と、緊急時の流体の供給停止手段と、
前記貯蔵手段と前記駆動流通路に連通する流体通路と、を有し、
前記流体制御手段は、
前記流体供給手段から流体内圧により流出する駆動流の圧力および/または流量を制御する制御手段を前記流体通路に設け
前記過給センサと内燃機関の各センサの入力情報を基に電子制御装置の出力あるいはパイロット圧により前記流体内圧機構を制御することにより、内燃機関の運転状況に対応した過給予混合運転を行うことを特徴とする内燃機関の過給装置。
A supercharging device for an internal combustion engine, comprising: a supercharging unit that performs supercharging by a driving flow; and a supercharging sensor that measures supercharging pressure in an intake system between the supercharging unit and a combustion chamber of the internal combustion engine. Because
The supercharging means is
In the middle of the air cleaner or passage of the intake system for supplying intake air to the combustion chamber of the internal combustion engine, an air flow amplifier that pressurizes the intake air and sends it to the combustion chamber, and a drive flow passage that supplies a drive flow to the air flow amplifier ,
Furthermore, a fluid internal pressure mechanism comprising fluid supply means and fluid control means is provided,
The fluid supply means includes
Means for storing pressurized storage fluid as fuel; means for stopping supply of fluid in case of emergency;
A fluid passage communicating with the storage means and the drive flow passage ,
The fluid control means includes
Control means for controlling the pressure and / or flow rate of the driving flow flowing out from the fluid supply means by the fluid internal pressure is provided in the fluid passage ,
A supercharging premixing operation corresponding to the operating condition of the internal combustion engine is performed by controlling the fluid internal pressure mechanism by an output of an electronic control unit or a pilot pressure based on input information of each of the supercharging sensor and each sensor of the internal combustion engine. A supercharging device for an internal combustion engine.
前記過給手段の駆動流通路途中に1次空気流量増幅器を備え、大気圧の吸気系統と前記1次空気流量増幅器の流入口とに連通する吸気副通路を設け
前記1次空気流量増幅器を設けて2段流量増幅することにより流量増幅比を増大できることを特徴とする請求項1に記載の内燃機関の過給装置。
A primary air flow amplifier provided in the middle of the drive flow passage of the supercharging means, and an intake sub-passage communicating with an intake system of atmospheric pressure and an inlet of the primary air flow amplifier ;
2. The supercharging device for an internal combustion engine according to claim 1, wherein a flow rate amplification ratio can be increased by providing the primary air flow rate amplifier and performing two-stage flow rate amplification . 3.
前記流体制御手段において、連通する前記駆動流通路と前記流体通路に、更に前記駆動流通路および/または前記流体通路に連通する第2の流体通路を設け、
前記第2の流体通路は、
前記第2の流体通路途中に前記電子制御装置の出力により圧力および/または流量を制御する第2の制御手段を備え、
前記第2の流体通路の上流は、第2の駆動流を供給する圧縮空気供給手段、EGRガス供給手段、または第2の流体供給手段に連通することを特徴とする請求項1または2に記載の内燃機関の過給装置。
In the fluid control means, said fluid passage and said drive flow path communicating the second fluid passage further communicating with the drive passage and / or the fluid passage is provided,
The second fluid passage includes
A second control means for controlling the pressure and / or flow rate according to the output of the electronic control unit in the middle of the second fluid passage;
The upstream of the second fluid passage communicates with compressed air supply means for supplying a second driving flow, EGR gas supply means, or second fluid supply means. Supercharger for internal combustion engine.
前記過給手段の空気流量増幅器のノズルの上流に予混合気の逆流および逆流流量増幅を防止する逆止弁を設けたことを特徴とする、請求項1から3のいずれかの一項に記載の内燃機関の過給装置。 4. The check valve according to claim 1, further comprising a check valve for preventing backflow of the premixed gas and backflow flow rate amplification upstream of the nozzle of the air flow rate amplifier of the supercharging means. 5. Supercharger for internal combustion engine.
JP2015187619A 2015-09-25 2015-09-25 Supercharger for internal combustion engine Active JP5938755B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015187619A JP5938755B1 (en) 2015-09-25 2015-09-25 Supercharger for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015187619A JP5938755B1 (en) 2015-09-25 2015-09-25 Supercharger for internal combustion engine

Publications (2)

Publication Number Publication Date
JP5938755B1 true JP5938755B1 (en) 2016-06-22
JP2017061887A JP2017061887A (en) 2017-03-30

Family

ID=56184783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015187619A Active JP5938755B1 (en) 2015-09-25 2015-09-25 Supercharger for internal combustion engine

Country Status (1)

Country Link
JP (1) JP5938755B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052699B1 (en) * 2016-06-29 2016-12-27 正裕 井尻 Supercharger for internal combustion engine
WO2017149803A1 (en) * 2016-02-29 2017-09-08 正裕 井尻 Internal-combustion engine supercharging device
WO2017195260A1 (en) * 2016-05-10 2017-11-16 正裕 井尻 Supercharging device for internal combustion engine
WO2018092257A1 (en) * 2016-11-18 2018-05-24 正裕 井尻 Turbocharger for internal combustion engine
CN109844296A (en) * 2016-08-05 2019-06-04 杰托普特拉股份有限公司 Internal combustion engine introduces dynamic supercharging system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022162492A (en) * 2021-04-12 2022-10-24 株式会社空気圧工学研究所 Air floating type seismic isolation device and air supply unit of air floating type seismic isolation device
GB2602364B (en) * 2021-06-10 2024-01-03 Ogab Ltd A forced induction system and method of forced induction for an internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999029A (en) * 1982-11-27 1984-06-07 Hino Motors Ltd Air supercharging apparatus for engine with turbocharger
JPH08193520A (en) * 1995-01-13 1996-07-30 Tokyo Gas Co Ltd Gas fuel engine
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
US20060144046A1 (en) * 2005-01-02 2006-07-06 Jan Vetrovec Supercharged internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5999029A (en) * 1982-11-27 1984-06-07 Hino Motors Ltd Air supercharging apparatus for engine with turbocharger
JPH08193520A (en) * 1995-01-13 1996-07-30 Tokyo Gas Co Ltd Gas fuel engine
JP2000230460A (en) * 1999-02-08 2000-08-22 Hitachi Ltd Egr system for supercharged engine
US20060144046A1 (en) * 2005-01-02 2006-07-06 Jan Vetrovec Supercharged internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149803A1 (en) * 2016-02-29 2017-09-08 正裕 井尻 Internal-combustion engine supercharging device
WO2017195260A1 (en) * 2016-05-10 2017-11-16 正裕 井尻 Supercharging device for internal combustion engine
JP6052699B1 (en) * 2016-06-29 2016-12-27 正裕 井尻 Supercharger for internal combustion engine
CN109844296A (en) * 2016-08-05 2019-06-04 杰托普特拉股份有限公司 Internal combustion engine introduces dynamic supercharging system
JP2019527792A (en) * 2016-08-05 2019-10-03 ジェトプテラ、インコーポレイテッド Internal combustion engine intake power booster system
WO2018092257A1 (en) * 2016-11-18 2018-05-24 正裕 井尻 Turbocharger for internal combustion engine

Also Published As

Publication number Publication date
JP2017061887A (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP5938755B1 (en) Supercharger for internal combustion engine
US10094339B2 (en) Direct exhaust gas recirculation system
JP5678835B2 (en) Gas supply device for internal combustion engine
US20150267650A1 (en) Venturi egr pump
JP2020172928A (en) Internal combustion engine
US20180163616A1 (en) Engine system
US20180163612A1 (en) Method for operating an internal combustion engine
WO2014114846A1 (en) Method for operating piston engine and piston engine
CN109404120B (en) Compression ignition type zero-nitrogen-emission pure oxygen rotor engine and control method thereof
US10677175B2 (en) Ventilation controls for dual-fuel engines
US20180135571A1 (en) Internal combustion engine and method for starting an internal combustion engine
KR101526388B1 (en) Engine system
WO2017195260A1 (en) Supercharging device for internal combustion engine
KR101246899B1 (en) Engine unit and operating method of engine unit
JP7432754B2 (en) System and method for managing multiple exhaust gas recirculation coolers
JP2009108693A (en) Control device for internal combustion engine
US10767602B2 (en) Engine system
KR101526390B1 (en) Engine system
JP2001355453A (en) Intake air cooling device for internal combustion engine with supercharger
CN205618263U (en) Adjustable two stage supercharging system is rateed to full operating mode EGR of internal -combustion engine
JP2024006957A (en) Large turbocharged two-stroke single-flow crosshead dual-fuel internal combustion engine
KR101865719B1 (en) Device and method for detecting surface defects of shaft
JPH03202668A (en) Oxygen concentration control device for engine with auxiliary chamber
JP2012255380A (en) Supercharging assist method for internal combustion engine and the internal combustion engine
KR20180035532A (en) An intake air control device for engine having dual loop EGR system and electric supercharger

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160421

R150 Certificate of patent or registration of utility model

Ref document number: 5938755

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250