JP5937476B2 - Oxygen supply equipment - Google Patents

Oxygen supply equipment Download PDF

Info

Publication number
JP5937476B2
JP5937476B2 JP2012216606A JP2012216606A JP5937476B2 JP 5937476 B2 JP5937476 B2 JP 5937476B2 JP 2012216606 A JP2012216606 A JP 2012216606A JP 2012216606 A JP2012216606 A JP 2012216606A JP 5937476 B2 JP5937476 B2 JP 5937476B2
Authority
JP
Japan
Prior art keywords
oxygen
pressure sensor
differential pressure
diaphragm
breath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012216606A
Other languages
Japanese (ja)
Other versions
JP2014068782A (en
Inventor
秀男 縄田
秀男 縄田
建嘉 玉井
建嘉 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Pharma Ltd
Original Assignee
Teijin Pharma Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Pharma Ltd filed Critical Teijin Pharma Ltd
Priority to JP2012216606A priority Critical patent/JP5937476B2/en
Publication of JP2014068782A publication Critical patent/JP2014068782A/en
Application granted granted Critical
Publication of JP5937476B2 publication Critical patent/JP5937476B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

本発明は圧力変動吸着型酸素濃縮装置などの酸素供給装置に関するものであり、使用者の吸気時にのみ酸素を供給する呼吸同調式の酸素供給装置に関する。   The present invention relates to an oxygen supply device such as a pressure fluctuation adsorption oxygen concentrator, and more particularly to a breath-synchronized oxygen supply device that supplies oxygen only when a user inhales.

肺気腫、慢性気管支炎等の呼吸器系疾患の治療法として最も効果的なものの1つに酸素吸入療法があり、近年この療法のために空気中の酸素を分離し製品ガスとして供給する圧力変動吸着型(PSA)酸素濃縮装置が実用化され、医療用酸素濃縮装置として慢性呼吸器疾患患者の治療に使用されている。最近では、外出時の携帯用酸素ボンベの持ち運びに代り、携帯式酸素濃縮装置が開発され用途が拡大している。携帯式酸素濃縮装置はバッテリで駆動することから、電池消耗を防ぎ長時間駆動を可能とする為に、装置内に呼吸センサと自動開閉弁を備えたデマンドレギュレータ機能を備え、酸素を常時、連続流として供給するのではなく、患者の吸気時のみ酸素を供給し、呼気時には酸素供給を停止することで酸素生成量の節減、消費電力の削減を図っている。   One of the most effective treatments for respiratory diseases such as emphysema and chronic bronchitis is oxygen inhalation therapy. Recently, pressure fluctuation adsorption that separates oxygen in the air and supplies it as product gas for this therapy. A type (PSA) oxygen concentrator has been put into practical use and is used as a medical oxygen concentrator for the treatment of patients with chronic respiratory diseases. Recently, a portable oxygen concentrator has been developed to expand the application in place of carrying a portable oxygen cylinder when going out. Since the portable oxygen concentrator is driven by a battery, the device is equipped with a demand regulator function with a breath sensor and automatic open / close valve in order to prevent battery consumption and enable long-term operation. Instead of supplying it as a flow, oxygen is supplied only when the patient inhales, and oxygen supply is stopped during exhalation, thereby reducing the amount of oxygen produced and reducing power consumption.

特開昭64−21330号公報JP-A 64-21330 特開平5−92038号公報JP-A-5-92038 特開2004−242906号公報JP 2004-242906 A

通常、かかるデマンドレギュレータは、酸素供給流路途中に設けた自動開閉弁、呼吸位相検知手段を具備し、使用者の吸気時間にのみ自動開閉弁を開き、呼気時間中は閉じることにより酸素消費量を約1/3に節約することが可能となっている。かかる節約は酸素ボンベ等を携帯して患者が外出するような場合に特に有効であり、その移動時間を3倍に延長することが可能となる。   Usually, such a demand regulator is equipped with an automatic opening / closing valve and breathing phase detection means provided in the middle of the oxygen supply flow path, and opens the automatic opening / closing valve only during the inspiratory time of the user and closes it during the expiration time. Can be saved to about 1/3. Such saving is particularly effective when the patient goes out with an oxygen cylinder or the like, and the travel time can be extended three times.

酸素供給量は患者の重症度に応じて医師が処方するものであり、デマンドレギュレータは、使用者の吸気時間を正確に検出し、その時間に必要な量の酸素を供給しなければならない。そのための呼吸位相検知手段としては、使用者の呼吸に伴う圧力変化を検知する圧力センサや、鼻孔近くに配置して呼吸位相を温度変化で検知する熱電対などがあり、呼吸位相などの微圧変動の検知にはダイアフラム式の圧力センサが多く使用されている(特許文献1、特許文献2)。   The oxygen supply amount is prescribed by the doctor according to the severity of the patient, and the demand regulator must accurately detect the inspiratory time of the user and supply the necessary amount of oxygen at that time. Respiratory phase detection means for this purpose include pressure sensors that detect pressure changes associated with the user's breathing, and thermocouples that are placed near the nostril to detect the respiratory phase based on temperature changes. Many diaphragm type pressure sensors are used to detect fluctuations (Patent Documents 1 and 2).

従来は、圧力センサを用いて吸気開始時点のみを検出して、酸素を供給する方法をとっていた。しかし、より正確に酸素を供給するためには、吸気時間を正確に検出する必要がある。そのため、吸気開始時点のみでなく、呼気開始時点も検出する必要がある。一方、酸素供給のため、自動開閉弁を開くことにより、酸素供給源から供給される酸素の圧力が圧力センサのダイアフラムに印加され、次に自動開閉弁を閉じたときに、圧力センサが即座に呼吸圧力波形をトレースできる必要がある。たとえば、特許文献3に記載の微圧センサではセンサの応答速度の改善を行っている。   Conventionally, only oxygen intake is detected using a pressure sensor and oxygen is supplied. However, in order to supply oxygen more accurately, it is necessary to accurately detect the intake time. Therefore, it is necessary to detect not only the inspiration start time but also the expiration start time. On the other hand, for oxygen supply, the pressure of oxygen supplied from the oxygen supply source is applied to the diaphragm of the pressure sensor by opening the automatic open / close valve, and when the automatic open / close valve is next closed, the pressure sensor immediately It is necessary to be able to trace the respiratory pressure waveform. For example, in the fine pressure sensor described in Patent Document 3, the response speed of the sensor is improved.

酸素ボンベに接続して外気環境下でデマンドレギュレータを使用する場合と違い、酸素濃縮装置の筐体内にデマンドレギュレータを設置した場合、圧力変動吸着法に基づく吸着工程、脱着工程の切り換え、冷却風の流れなどにより筐体内は大気圧よりも高い圧力、または低い圧力となり圧変動も生じている。ダイアフラム式の圧力センサで呼吸位相検知をするためには、大気圧をゼロ点として参照することが必須となるが、装置内は圧変動があること、外気に直接開放すると外気流の影響や水、塵埃の侵入を招くなど問題が生じる。   Unlike the case where a demand regulator is used in an outdoor environment connected to an oxygen cylinder, when a demand regulator is installed inside the oxygen concentrator housing, switching between the adsorption process based on the pressure fluctuation adsorption method, the desorption process, and cooling air Due to the flow or the like, the inside of the housing is at a pressure higher or lower than the atmospheric pressure, and pressure fluctuations also occur. In order to detect the respiratory phase with a diaphragm-type pressure sensor, it is essential to refer to the atmospheric pressure as the zero point. Problems such as intrusion of dust occur.

かかる課題を解決する手段として、以下の酸素供給装置を見出した。
[1]空気中の酸素を分離し使用者の呼吸に同調して供給する呼吸同調酸素供給装置において、使用者の呼吸を検知するダイアフラム式の差圧センサ、該差圧センサの呼吸検知結果に基づいて酸素を供給する自動開閉弁を備え、該差圧センサがダイアフラム及びそれを挟む基板からなり、該基板の大気開放ポートと酸素濃縮装置の筐体に一体化された小室と連通すると共に、該小室の筐体壁に外気に通じる複数の小孔を備えることを特徴とする酸素供給装置。
[2]該小室の筐体壁に直径0.3mm〜2mmの通気孔を複数設けている、上記1記載の酸素供給装置。
[3]該小室が、筐体壁と一体成形された4方壁を有する直方体と、気密材を介して接続するその差圧センサの大気開放ポートと接続する接続ノズルを備えた蓋部からなる、上記2記載の酸素供給装置。
[4]空気中の酸素を分離し使用者の呼吸に同調して供給する呼吸同調酸素供給装置において、使用者の呼吸を検知するダイアフラム式の差圧センサ、該差圧センサの呼吸検知結果に基づいて酸素を供給する自動開閉弁を備え、該差圧センサがダイアフラム及びそれを挟む基板からなり、該基板の大気開放ポートが酸素濃縮装置の筐体に設けた通気孔に導管接続すると共に、筐体通気孔にフィルタを備える、酸素供給装置。
As means for solving this problem, the following oxygen supply apparatus has been found.
[1] In a breath-synchronized oxygen supply device that separates oxygen in the air and supplies it in synchronism with the breathing of the user, a diaphragm-type differential pressure sensor that detects the breathing of the user, and a breath detection result of the differential pressure sensor An automatic on-off valve for supplying oxygen based on the differential pressure sensor comprising a diaphragm and a substrate sandwiching the diaphragm, and communicating with an air release port of the substrate and a small chamber integrated with the casing of the oxygen concentrator, An oxygen supply apparatus comprising a plurality of small holes communicating with outside air in a casing wall of the small chamber.
[2] The oxygen supply device according to 1 above, wherein a plurality of air holes having a diameter of 0.3 mm to 2 mm are provided in a housing wall of the small chamber.
[3] The small chamber comprises a rectangular parallelepiped having a four-sided wall integrally formed with the housing wall, and a lid provided with a connection nozzle connected to the air release port of the differential pressure sensor connected via an airtight material. The oxygen supply device according to 2 above.
[4] In a breath-synchronized oxygen supply device that separates oxygen in the air and supplies it in synchronism with the breathing of the user, a diaphragm-type differential pressure sensor for detecting the breathing of the user, and a breath detection result of the differential pressure sensor An automatic on-off valve for supplying oxygen based on the differential pressure sensor comprising a diaphragm and a substrate sandwiching the diaphragm, and an air release port of the substrate is connected to a vent hole provided in a casing of the oxygen concentrator, An oxygen supply device comprising a filter in a housing vent.

本発明により、酸素濃縮装置内での呼吸センサであるダイアフラム式差圧センサの呼吸位相検知精度が改善され、呼吸波形を忠実にトレースできるようになった。これにより、吸気時間を正確に検知可能となり、吸気時間に酸素を所定量供給する精度を向上させることができた。   According to the present invention, the breathing phase detection accuracy of the diaphragm type differential pressure sensor which is a breathing sensor in the oxygen concentrator is improved, and the breathing waveform can be traced faithfully. As a result, the intake time can be accurately detected, and the accuracy of supplying a predetermined amount of oxygen during the intake time can be improved.

酸素供給装置の概略構成図。The schematic block diagram of an oxygen supply apparatus. 小室の構造。The structure of the chamber.

本発明の酸素供給装置の実施態様例を、図面を用いて説明する。
図1は、本発明の一実施形態である圧力変動吸着型の酸素濃縮装置を例示した概略装置構成図である。かかる酸素濃縮装置は、加圧空気を供給するコンプレッサ、酸素よりも窒素を選択的に吸着する吸着剤を充填した吸着筒A,B、吸着工程、脱着工程や均圧工程等のシーケンスを切り換える流路切換手段である供給弁A,B、排気弁A,B、均圧弁を備える。加圧空気から分離生成された酸素濃縮ガスは、ON/OFF弁で所定流量に調整後、カニューラを用いて使用者に供給される。
Embodiment examples of the oxygen supply apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic apparatus configuration diagram illustrating a pressure fluctuation adsorption type oxygen concentrating apparatus according to an embodiment of the present invention. Such an oxygen concentrator has a compressor for supplying pressurized air, adsorption cylinders A and B filled with an adsorbent that selectively adsorbs nitrogen over oxygen, a flow for switching sequences such as an adsorption process, a desorption process, and a pressure equalization process. Supply valves A and B, exhaust valves A and B, and pressure equalization valves, which are path switching means, are provided. The oxygen-enriched gas separated and generated from the pressurized air is adjusted to a predetermined flow rate by an ON / OFF valve and then supplied to the user using a cannula.

先ず、外部から取り込まれる原料空気は、塵埃などの異物を取り除くための外部空気取り込みフィルタ等などを備えた空気取り込み口から装置内に取り込まれる。このとき、通常の空気中には、約21%の酸素ガス、約77%の窒素ガス、0.8%のアルゴンガス、二酸化炭素ほかのガスが1.2%含まれている。かかる装置では、呼吸用ガスとして必要な酸素ガスのみを濃縮して取り出す。   First, raw material air taken in from the outside is taken into the apparatus through an air intake port provided with an external air intake filter or the like for removing foreign matters such as dust. At this time, the normal air contains 1.2% of about 21% oxygen gas, about 77% nitrogen gas, 0.8% argon gas, carbon dioxide and other gases. In such an apparatus, only oxygen gas necessary as a breathing gas is concentrated and extracted.

酸素濃縮ガスの取り出しは、酸素分子よりも窒素分子を選択的に吸着するゼオライトなどからなる吸着剤が充填された吸着筒に対して、供給弁A,B、排気弁A,Bによって対象とする吸着筒A,Bを順次切り換えながら、原料空気をコンプレッサにより加圧して供給し、吸着筒内で原料空気中に含まれる約77%の窒素ガスを選択的に吸着除去することにより行われる。かかる吸着剤としては、5A型、13X型、Li−X型等のモレキュラーシーブゼオライト等が用いることができる。
前記の吸着筒は、吸着剤を充填した円筒状容器で形成され、通常、1筒式、2筒式の他に3筒以上の多筒式が用いられるが、連続的かつ効率的に原料空気から酸素濃縮ガスを製造するためには、2筒式や多筒式の吸着筒を使用することが好ましい。
Extraction of the oxygen-enriched gas is targeted by supply valves A and B and exhaust valves A and B with respect to an adsorption cylinder filled with an adsorbent made of zeolite or the like that selectively adsorbs nitrogen molecules rather than oxygen molecules. While the adsorption cylinders A and B are sequentially switched, the raw material air is pressurized and supplied by a compressor, and approximately 77% nitrogen gas contained in the raw material air is selectively adsorbed and removed in the adsorption cylinder. As such an adsorbent, molecular sieve zeolite such as 5A type, 13X type, and Li-X type can be used.
The adsorption cylinder is formed of a cylindrical container filled with an adsorbent. Usually, a multi-cylinder type of three or more cylinders is used in addition to the one-cylinder type and the two-cylinder type. In order to produce oxygen-enriched gas from the above, it is preferable to use a two-cylinder or multi-cylinder type adsorption cylinder.

また、前記のコンプレッサとしては、圧縮機能のみ、或いは圧縮、真空機能を有するコンプレッサとして2ヘッドのタイプの揺動型空気圧縮機が用いられるほか、スクリュー式、ロータリー式、スクロール式などの回転型空気圧縮機が用いられる場合もある。また、このコンプレッサを駆動する電動機の電源は、交流であっても直流であってもよい。
加圧状態の吸着筒内で空気中の窒素ガスを吸着剤に吸着させ、吸着されなかった酸素を主成分とする酸素濃縮ガスが吸着筒の製品端から取り出され、吸着筒へ逆流しないように設けられた逆止弁を介して、製品タンクに流入する。
As the compressor, a two-head type oscillating air compressor is used as a compressor having only a compression function or a compression / vacuum function, and a rotary air such as a screw type, a rotary type, a scroll type or the like. A compressor may be used. Further, the power source of the electric motor that drives the compressor may be alternating current or direct current.
In the pressurized adsorption cylinder, nitrogen gas in the air is adsorbed by the adsorbent, and oxygen-enriched gas mainly composed of oxygen that has not been adsorbed is taken out from the end of the adsorption cylinder so that it does not flow back to the adsorption cylinder. It flows into the product tank through a check valve provided.

一方、吸着筒内に充填された吸着剤に吸着された窒素ガスは、新たに導入される原料空気から再度窒素ガスを吸着するために、吸着剤から脱着させパージする必要がある。このために、吸着筒を排気弁を介して排気ラインに接続し、加圧状態から大気開放状態に切り換え、加圧状態で吸着されていた窒素ガスを脱着させて大気中に排気し吸着剤を再生させる。さらにこの脱着工程において、窒素の脱着効率を高めるため、均圧弁を介して吸着工程中の吸着筒の製品端側から生成された酸素濃縮ガスの一部をパージガスとして脱着工程中の吸着筒に逆流させるパージ工程を行う。   On the other hand, the nitrogen gas adsorbed by the adsorbent filled in the adsorption cylinder needs to be desorbed and purged from the adsorbent in order to adsorb the nitrogen gas again from the newly introduced raw material air. For this purpose, the adsorption cylinder is connected to the exhaust line via the exhaust valve, switched from the pressurized state to the atmospheric release state, the nitrogen gas adsorbed in the pressurized state is desorbed and exhausted to the atmosphere, and the adsorbent is removed. Let it play. Furthermore, in this desorption process, in order to increase the nitrogen desorption efficiency, a part of the oxygen-enriched gas generated from the product end side of the adsorption cylinder in the adsorption process is returned to the adsorption cylinder in the desorption process through the pressure equalizing valve as a purge gas. A purge process is performed.

製品タンクに蓄えられた酸素濃縮ガスは、例えば95%といった高濃度の酸素ガスを含んでおり、医師の処方によって必要とされる酸素流量を患者自身が設定する。調圧弁、ON/OFF弁によってその圧力と供給流量とが制御され、処方量の酸素濃縮ガスが患者に供給される。一方、患者に供給される酸素濃縮ガスの流量及び酸素濃度は酸素濃度センサ、流量センサで検知され、検知結果に基づいてコンプレッサの回転数や流路切換弁の開閉時間をCPU等の演算手段で制御し、酸素生成をコントロールすることが出来る。   The oxygen-enriched gas stored in the product tank contains high-concentration oxygen gas, for example, 95%, and the patient himself sets the oxygen flow rate required by the doctor's prescription. The pressure and supply flow rate are controlled by the pressure regulating valve and ON / OFF valve, and a prescribed amount of oxygen-enriched gas is supplied to the patient. On the other hand, the flow rate and oxygen concentration of the oxygen-enriched gas supplied to the patient are detected by an oxygen concentration sensor and a flow rate sensor. Control and control oxygen production.

本発明の酸素濃縮装置は、デマンドレギュレータ機能を搭載しており、呼吸センサが開放型の酸素供給インターフェースであるカニューラを通して使用者の呼吸位相を検知し、吸気相に合わせてON/OFF弁を開け、酸素供給を行う。酸素供給量は、流量設定部で設定された設定流量および使用者の呼吸頻度に応じたON/OFF弁の開時間によって調節され供給される。ただし、使用者の呼吸頻度によらず、設定流量のみによってON/OFF弁の開時間を調整し、酸素供給を行うことも可能である。   The oxygen concentrator of the present invention is equipped with a demand regulator function, the respiration sensor detects the respiration phase of the user through the cannula which is an open type oxygen supply interface, and opens the ON / OFF valve in accordance with the inspiration phase. Supply oxygen. The oxygen supply amount is adjusted and supplied according to the set flow rate set by the flow rate setting unit and the open time of the ON / OFF valve according to the breathing frequency of the user. However, it is also possible to supply oxygen by adjusting the open time of the ON / OFF valve only by the set flow rate regardless of the breathing frequency of the user.

使用者の呼吸位相検知手段である呼吸センサには、圧力センサ、流量センサ、温度センサ(熱電対)等を用いることが可能であり、圧力センサを用いる場合は絶対圧センサ、差圧センサを用いることができる。ただし、温度センサ(熱電対)はその熱容量により応答速度が遅く、流量センサは呼吸によってカニューラ内に生じる圧力変化を流量に変換するためにカニューラの他端も開放する必要が生じ、また、絶対圧センサでは大気圧変動の影響を受けるというデメリットがある。よって、図1の実施例では、呼吸センサとして応答速度および呼吸位相検知精度に優れる差圧センサを用いている。   A pressure sensor, a flow sensor, a temperature sensor (thermocouple), or the like can be used as a breathing sensor that is a user's breathing phase detection means. When a pressure sensor is used, an absolute pressure sensor or a differential pressure sensor is used. be able to. However, the response speed of the temperature sensor (thermocouple) is slow due to its heat capacity, and the flow rate sensor needs to open the other end of the cannula in order to convert the pressure change generated in the cannula by respiration into a flow rate. Sensors have the disadvantage of being affected by atmospheric pressure fluctuations. Therefore, in the embodiment of FIG. 1, a differential pressure sensor having excellent response speed and respiratory phase detection accuracy is used as the respiratory sensor.

差圧センサは、例えば特開2004−242906に公開されている構造の差圧センサを用いることができる。図1の差圧センサを例に説明すると、ダイアフラムの片方の面が被測定気体1に連通し、もう一方の面が被測定気体2に連通しており、被測定気体1、2の間に生じる差圧によりダイアフラムが変形する。例えば、ダイアフラムの上に抵抗回路を形成しておくか、または、ダイアフラム表面に導電性を持たせてコンデンサを形成することで、それぞれダイアフラムの変形量に応じた抵抗変化、または静電容量変化を発生させることができ、差圧に応じたダイアフラムの変形量を電気信号としてとりだすことが可能となる。   As the differential pressure sensor, for example, a differential pressure sensor having a structure disclosed in JP-A-2004-242906 can be used. The differential pressure sensor of FIG. 1 will be described as an example. One side of the diaphragm communicates with the gas 1 to be measured, and the other surface communicates with the gas 2 to be measured. The diaphragm is deformed by the generated differential pressure. For example, by forming a resistance circuit on the diaphragm, or by forming a capacitor with conductivity on the diaphragm surface, resistance change or capacitance change according to the amount of deformation of the diaphragm, respectively. The amount of deformation of the diaphragm according to the differential pressure can be taken out as an electric signal.

上述したとおり、呼吸の監視は、開放型酸素供給インターフェースであるカニューラの一端に生じる、呼吸による圧力変化を測定することで行われる。呼吸による圧力変化は、局所的に外乱が生じる場合を除き、常に大気圧を基準とした圧力変化として生じるため、差圧センサで測定するためには、差圧センサの一端である大気開放ポートを大気圧に保つ必要がある。一方、差圧センサは酸素濃縮装置の筐体の内部に設置されているが、筐体の内部は冷却ファンによって圧力が変動しているため、大気開放ポートをこの圧力変動の影響を受けずに、呼吸監視の基準となる大気圧を参照できる場所に導く必要がある。図1の例では、差圧センサの大気開放ポートを、大気に連通する通気孔を持った小室と接続することでそれを実現している。   As described above, respiration is monitored by measuring a pressure change caused by respiration that occurs at one end of a cannula, which is an open oxygen supply interface. The pressure change due to breathing always occurs as a pressure change based on the atmospheric pressure, except when a local disturbance occurs. It is necessary to keep it at atmospheric pressure. On the other hand, the differential pressure sensor is installed inside the casing of the oxygen concentrator, but the pressure inside the casing fluctuates due to the cooling fan, so the air release port is not affected by this pressure fluctuation. It is necessary to lead to a place where the atmospheric pressure that is the standard for respiratory monitoring can be referred to. In the example of FIG. 1, this is realized by connecting the atmospheric pressure release port of the differential pressure sensor to a small chamber having a vent hole communicating with the atmosphere.

図2に大気開放ポートを大気圧参照できる場所に導くための具体的な実施例を示す。筐体となる成形品の一部分に、筐体の外壁面を共有して構成される箱型の小室を作り、箱型の小室の上面にはチューブ接続ポートが設けられた蓋が設置され、筐体内部の圧力変動の影響を受けない密閉された空間が構成できるようになっている。蓋には小室の密閉度を上げるために、ガスケットまたは気密材を用いている。蓋の固定にはネジ留めまたは、樹脂部品に勘合構造を設ける固定方法が採用可能である。また、蓋自体を弾性のあるゴム材質またはエラストマーで成形することで、上記ガスケットや気密材を用いずに小室の密閉度を上げることも可能である。また、蓋を箱型の小室の上面に接着することで、密閉度を上げながら固定することも可能となる。   FIG. 2 shows a specific embodiment for guiding the atmospheric release port to a place where atmospheric pressure can be referred to. A box-shaped chamber configured by sharing the outer wall surface of the casing is formed in a part of the molded product that becomes the casing, and a lid provided with a tube connection port is installed on the upper surface of the box-shaped chamber. A sealed space that is not affected by pressure fluctuations inside the body can be configured. In order to increase the sealing degree of the small chamber, a gasket or an airtight material is used for the lid. For fixing the lid, screwing or a fixing method in which a fitting structure is provided on the resin part can be employed. Further, by forming the lid itself from an elastic rubber material or elastomer, it is possible to increase the degree of sealing of the small chamber without using the gasket or the airtight material. In addition, by adhering the lid to the upper surface of the box-shaped chamber, it is possible to fix the lid while increasing the sealing degree.

図2の実施例では、さらには小室を構成する壁面の一部となっている筐体外壁面に通気孔を設けて、大気圧力と小室の圧力が同一になるようにしている。筐体外壁面の穴部分に風が当たるなどして基準となる大気圧力が変動することがありうるため、この変動を受けにくくするために、できるだけ小さく、かつ、小室が大気と同圧力を保つのに十分な大きさの通気孔(直径0.3mm)を4個設けている。通気孔の径は、筐体の加工性・成形性を考慮するとφ0.3mm以上が望ましく、風などの局所的な影響を受けないためにはφ2mm以下のサイズが望ましい。出来るだけ小さい通気孔を複数設置することで、風などの局所的な影響を受けにくくしながらも、小室が大気と同圧力を保つのに十分な孔面積を確保している。かつ、複数の通気孔とすることで、粉塵などで通気孔が塞がることのリスクを低減している。また、風などの変動を受けにくくするには通気孔の外部または内部にフィルタを設置する方法や、小室に多孔質フォームを充填する方法を取ることも可能である。   In the embodiment shown in FIG. 2, a vent is provided in the outer wall surface of the housing, which is a part of the wall surface constituting the small chamber, so that the atmospheric pressure and the pressure in the small chamber are the same. Since the standard atmospheric pressure may fluctuate due to wind hitting the hole on the outer wall of the housing, the small chamber should be kept as small as possible and maintain the same pressure as the atmosphere in order to make it less susceptible to this fluctuation. Four vent holes (diameter 0.3 mm) that are sufficiently large are provided. The diameter of the air hole is preferably φ0.3 mm or more in consideration of the processability and moldability of the casing, and the size of φ2 mm or less is desirable so as not to be affected by local influences such as wind. By installing a plurality of vents that are as small as possible, the chamber has a sufficient hole area to maintain the same pressure as the atmosphere while being less susceptible to local effects such as wind. In addition, by using a plurality of air holes, the risk of the air holes being blocked by dust or the like is reduced. Further, in order to make it less susceptible to fluctuations such as wind, it is possible to adopt a method of installing a filter outside or inside the ventilation hole or a method of filling a small chamber with a porous foam.

このようにして構成された小室の蓋に設けられたポートと、差圧センサの大気開放ポートをチューブ接続することで、差圧センサの測定基準となる大気開放ポートを大気圧に保つことが可能となる。   By connecting the port provided on the lid of the small chamber configured in this way to the atmospheric pressure release port of the differential pressure sensor, it is possible to keep the atmospheric pressure release port, which is the measurement standard of the differential pressure sensor, at atmospheric pressure. It becomes.

Claims (4)

空気中の酸素を分離し使用者の呼吸に同調して供給する呼吸同調酸素供給装置において、使用者の呼吸を検知するダイアフラム式の差圧センサ、該差圧センサの呼吸検知結果に基づいて酸素を供給する自動開閉弁を備え、該差圧センサがダイアフラム及びそれを挟む基板からなり、該基板の大気開放ポートと酸素濃縮装置の筐体に一体化された小室と連通すると共に、該小室の筐体壁に外気に通じる複数の通気孔を備えることを特徴とする酸素供給装置。   In a breath-synchronized oxygen supply device that separates oxygen in the air and supplies it in synchronism with a user's breath, a diaphragm-type differential pressure sensor that detects the breath of the user, and oxygen based on a breath detection result of the differential pressure sensor An automatic on-off valve for supplying the gas, and the differential pressure sensor is composed of a diaphragm and a substrate sandwiching the diaphragm, and communicates with an air release port of the substrate and a small chamber integrated with the casing of the oxygen concentrator. An oxygen supply device comprising a plurality of ventilation holes communicating with outside air in a housing wall. 該小室の筐体壁に直径0.3mm〜2mmの通気孔を複数設けている、請求項1記載の酸素供給装置。   The oxygen supply apparatus according to claim 1, wherein a plurality of air holes having a diameter of 0.3 mm to 2 mm are provided in a housing wall of the small chamber. 該小室が、筐体壁と一体成形された4方壁を有する直方体と、気密材を介して接続するその差圧センサの大気開放ポートと接続する接続ノズルを備えた蓋部からなる、請求項1または2記載の酸素供給装置。   The small chamber comprises a rectangular parallelepiped having a four-sided wall integrally formed with a housing wall, and a lid portion having a connection nozzle connected to an air release port of the differential pressure sensor connected via an airtight material. 3. The oxygen supply device according to 1 or 2. 空気中の酸素を分離し使用者の呼吸に同調して供給する呼吸同調酸素供給装置において、使用者の呼吸を検知するダイアフラム式の差圧センサ、該差圧センサの呼吸検知結果に基づいて酸素を供給する自動開閉弁を備え、該差圧センサがダイアフラム及びそれを挟む基板からなり、該基板の大気開放ポートが酸素濃縮装置の筐体に設けた通気孔に導管接続すると共に、筐体通気孔にフィルタを備える、酸素供給装置。   In a breath-synchronized oxygen supply device that separates oxygen in the air and supplies it in synchronism with a user's breath, a diaphragm-type differential pressure sensor that detects the breath of the user, and oxygen based on a breath detection result of the differential pressure sensor An automatic on-off valve for supplying a pressure sensor, the differential pressure sensor comprising a diaphragm and a substrate sandwiching the diaphragm, and an air release port of the substrate is connected to a vent hole provided in a housing of the oxygen concentrator and connected to the housing. An oxygen supply device comprising a filter in a pore.
JP2012216606A 2012-09-28 2012-09-28 Oxygen supply equipment Active JP5937476B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012216606A JP5937476B2 (en) 2012-09-28 2012-09-28 Oxygen supply equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012216606A JP5937476B2 (en) 2012-09-28 2012-09-28 Oxygen supply equipment

Publications (2)

Publication Number Publication Date
JP2014068782A JP2014068782A (en) 2014-04-21
JP5937476B2 true JP5937476B2 (en) 2016-06-22

Family

ID=50744601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012216606A Active JP5937476B2 (en) 2012-09-28 2012-09-28 Oxygen supply equipment

Country Status (1)

Country Link
JP (1) JP5937476B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102541674B1 (en) * 2018-09-25 2023-06-13 데이진 화-마 가부시키가이샤 Respiratory information acquisition device
ES2980627T3 (en) * 2018-09-28 2024-10-02 Teijin Pharma Ltd Respiratory rate measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0972806A (en) * 1995-09-07 1997-03-18 Tokin Corp Pressure sensor
JP4246365B2 (en) * 2000-09-21 2009-04-02 日本特殊陶業株式会社 Oxygen concentrator, its control device, and recording medium
US7066175B2 (en) * 2001-05-07 2006-06-27 Emergent Respiratory Products, Inc. Portable gas powered positive pressure breathing apparatus and method
JP4369138B2 (en) * 2003-02-14 2009-11-18 帝人株式会社 Breathing synchronized gas supply device
JP2004313498A (en) * 2003-04-17 2004-11-11 Teijin Ltd Respiration detector

Also Published As

Publication number Publication date
JP2014068782A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
EP2500055B1 (en) Oxygen concentrator
JP5571697B2 (en) Oxygen concentrator
US20230112963A1 (en) Power management in portable oxygen concentrators
WO2017146271A1 (en) Oxygen concentrator
JPWO2014046297A1 (en) Oxygen concentrator
US20180369532A1 (en) Water removal system for an oxygen concentrator system
JP5937476B2 (en) Oxygen supply equipment
JP2012228415A (en) Oxygen concentrator
JP4904127B2 (en) Pressure fluctuation adsorption type oxygen concentrator
JP5214885B2 (en) Oxygen concentrator and abnormality monitoring method thereof
JP5390641B2 (en) Humidifier and oxygen concentrator using the same
JP5508439B2 (en) Oxygen concentrator and humidifier
JP4922739B2 (en) Oxygen concentrator
US20230112985A1 (en) Breath detection with movement compensation
US20220134035A1 (en) Methods and apparatus for operating an oxygen concentrator
US20230201512A1 (en) Methods and apparatus for controlling operations in an oxygen concentrator
EP4132620A1 (en) Methods and apparatus for providing concentrated therapy gas for a respiratory disorder
JP2569147B2 (en) Respiratory gas supply device
WO2021091496A1 (en) Methods and apparatus for control of an oxygen concentrator
JP5350994B2 (en) Oxygen concentrator
JP2006263047A (en) Oxygen concentrator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150615

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160512

R150 Certificate of patent or registration of utility model

Ref document number: 5937476

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350