JP5936633B2 - Shift control device for belt type continuously variable transmission - Google Patents

Shift control device for belt type continuously variable transmission Download PDF

Info

Publication number
JP5936633B2
JP5936633B2 JP2014006326A JP2014006326A JP5936633B2 JP 5936633 B2 JP5936633 B2 JP 5936633B2 JP 2014006326 A JP2014006326 A JP 2014006326A JP 2014006326 A JP2014006326 A JP 2014006326A JP 5936633 B2 JP5936633 B2 JP 5936633B2
Authority
JP
Japan
Prior art keywords
ratio
hydraulic pressure
shift control
pulley
continuously variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014006326A
Other languages
Japanese (ja)
Other versions
JP2015135141A (en
Inventor
高橋 誠一郎
誠一郎 高橋
隆浩 小林
隆浩 小林
ジュワン キム
ジュワン キム
裕二 大石
裕二 大石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JATCO Ltd
Original Assignee
JATCO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JATCO Ltd filed Critical JATCO Ltd
Priority to JP2014006326A priority Critical patent/JP5936633B2/en
Publication of JP2015135141A publication Critical patent/JP2015135141A/en
Application granted granted Critical
Publication of JP5936633B2 publication Critical patent/JP5936633B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

本発明は、プーリ間の動力をベルトにより伝達する際の変速比を無段階に変更可能なベルト式無段変速機の変速制御装置に関する。   The present invention relates to a transmission control device for a belt-type continuously variable transmission that can change a transmission gear ratio when a power between pulleys is transmitted by a belt continuously.

従来、特許文献1には、ベルト式無段変速機において、登坂路等で一旦停止後、再発進する際に、現在選択されている走行レンジとは逆方向に車両が移動すると、プーリのトルク容量変化によってベルト滑りが発生する問題を解決するために、プーリの逆回転を検知した場合には、ライン圧を上昇させてトルク容量を補正することでベルト滑りを抑制する技術が開示されている。   Conventionally, in Patent Document 1, in a belt-type continuously variable transmission, when a vehicle moves in a direction opposite to the currently selected travel range when the vehicle restarts after temporarily stopping on an uphill road or the like, the torque of the pulley In order to solve the problem of belt slippage due to a change in capacity, a technique for suppressing belt slippage by increasing the line pressure and correcting the torque capacity when reverse rotation of the pulley is detected is disclosed. .

特開2007-263151号公報JP 2007-263151 A

しかしながら、発明者が鋭意検討した結果、逆回転が発生しているときにライン圧を上昇させたとしても、変速比がハイ側にシフトしてしまい、所望の変速比が得られず発進性の悪化を招くという新たな課題が見出された。
本発明は、上記課題に着目してなされたもので、プーリに逆回転が生じた場合であっても安定した変速制御を達成可能なベルト式無段変速機の変速制御装置を提供することを目的とする。
However, as a result of intensive studies by the inventor, even if the line pressure is increased when reverse rotation occurs, the gear ratio shifts to the high side, and the desired gear ratio cannot be obtained and the startability is improved. A new problem has been found that will lead to deterioration.
The present invention has been made paying attention to the above problems, and provides a shift control device for a belt-type continuously variable transmission that can achieve stable shift control even when reverse rotation occurs in a pulley. Objective.

上記目的を達成するため、本発明のベルト式無段変速機の変速制御装置では、ベルト式無段変速機への入力トルクと目標変速比とに基づいて推力比を演算し、該推力比に基づく基準プーリ油圧を演算すると共に、目標変速比と実変速比との差分に応じたフィードバック制御によりフィードバック油圧を演算し、基準プーリ油圧とフィードバック油圧とに基づいて変速制御を行う。このとき、車速が車速センサの検出分解能の関係から精度が十分に確保できない所定値未満のときは、フィードバック制御を中止し、推力比を、最ロー変速比であって、かつ、前記入力トルクに関わらず最ロー変速比を達成可能であって前記入力トルクがゼロのときに設定される推力比よりも低い所定推力比に設定して変速制御を行うこととした。 In order to achieve the above object, the shift control device for a belt-type continuously variable transmission according to the present invention calculates a thrust ratio based on an input torque to the belt-type continuously variable transmission and a target gear ratio, and calculates the thrust ratio. The reference pulley hydraulic pressure is calculated, the feedback hydraulic pressure is calculated by feedback control according to the difference between the target gear ratio and the actual gear ratio, and the shift control is performed based on the reference pulley hydraulic pressure and the feedback hydraulic pressure. At this time, when the vehicle speed is less than a predetermined value where the accuracy cannot be sufficiently secured due to the detection resolution of the vehicle speed sensor , the feedback control is stopped and the thrust ratio is the lowest gear ratio and the input torque Regardless, the lowest speed gear ratio can be achieved, and the speed change control is performed by setting a predetermined thrust ratio lower than the thrust ratio set when the input torque is zero.

よって、低い推力比に基づいて制御することが可能となり、ハイ側へのシフトを抑制することで安定した変速制御を達成できる。   Therefore, it becomes possible to control based on a low thrust ratio, and stable shift control can be achieved by suppressing the shift to the high side.

実施例1のベルト式無段変速機の変速制御装置を表すシステム図である。1 is a system diagram illustrating a shift control device for a belt-type continuously variable transmission according to a first embodiment. 実施例1の変速制御処理を表す制御ブロック図である。FIG. 3 is a control block diagram illustrating a shift control process according to the first embodiment. 実施例1の要求トルクに対するセカンダリ油圧の特性を表すマップである。3 is a map showing characteristics of a secondary hydraulic pressure with respect to a required torque in the first embodiment. 実施例1のベルト式無段変速機の変速制御に使用されるトルク比−推力比マップである。3 is a torque ratio-thrust ratio map used for shift control of the belt-type continuously variable transmission according to the first embodiment.

図1は実施例1のベルト式無段変速機の変速制御装置を表すシステム図である。実施例1の車両は、内燃機関であるエンジン1と、ベルト式無段変速機とを有し、ディファレンシャルギヤ7を介して駆動輪8に駆動力を伝達する。ベルト式無段変速機は、エンジン1のクランク軸と接続された変速機入力軸2と、変速機入力軸2と一体に回転するプライマリプーリ3と、変速機出力軸6と一体に回転するセカンダリプーリ5と、プライマリプーリ3とセカンダリプーリ5との間に巻回され動力伝達を行うベルト4と、を有する。   FIG. 1 is a system diagram illustrating a shift control device for a belt-type continuously variable transmission according to a first embodiment. The vehicle according to the first embodiment includes an engine 1 that is an internal combustion engine and a belt-type continuously variable transmission, and transmits driving force to driving wheels 8 through a differential gear 7. The belt type continuously variable transmission includes a transmission input shaft 2 connected to the crankshaft of the engine 1, a primary pulley 3 that rotates integrally with the transmission input shaft 2, and a secondary that rotates integrally with the transmission output shaft 6. A pulley 5 and a belt 4 wound between the primary pulley 3 and the secondary pulley 5 to transmit power are included.

プライマリプーリ3には、変速機入力軸2と一体に形成された固定シーブ3aと、変速機入力軸2の軸上を移動可能な可動シーブ3bとを有する。可動シーブ3bには、プライマリ油圧室3b1が設けられ、プライマリ油圧室3b1に供給される油圧によって固定シーブ3aと可動シーブ3bとの間に押圧力を発生させ、ベルト4を狭持する。同様に、セカンダリプーリ5には、変速機出力軸6と一体に形成された固定シーブ5aと、変速機出力軸6の軸上を移動可能な可動シーブ5bとを有する。可動シーブ5bには、セカンダリ油圧室5b1が設けられ、セカンダリ油圧室5b1に供給される油圧によって固定シーブ5aと可動シーブ5bとの間に押圧力を発生させ、ベルト4を挟持する。   The primary pulley 3 has a fixed sheave 3a formed integrally with the transmission input shaft 2 and a movable sheave 3b movable on the transmission input shaft 2. The movable sheave 3b is provided with a primary hydraulic chamber 3b1, and a pressing force is generated between the fixed sheave 3a and the movable sheave 3b by the hydraulic pressure supplied to the primary hydraulic chamber 3b1, thereby pinching the belt 4. Similarly, the secondary pulley 5 includes a fixed sheave 5a formed integrally with the transmission output shaft 6 and a movable sheave 5b movable on the transmission output shaft 6. The movable sheave 5b is provided with a secondary hydraulic chamber 5b1, and a pressing force is generated between the fixed sheave 5a and the movable sheave 5b by the hydraulic pressure supplied to the secondary hydraulic chamber 5b1, thereby sandwiching the belt 4.

エンジンコントローラ10は、エンジン1の運転状態(燃料噴射量や点火タイミング等)を制御することでエンジン回転数及びエンジントルクを制御する。また、エンジンコントローラ10内では、アクセル開度センサ21により検出されたアクセル開度信号APO及び車速センサ22により検出された車速信号VSPに基づいて、運転者の要求トルクTDを演算する要求トルク演算部10aと、変速機入力軸2に伝達されるエンジントルクTENGを演算するエンジントルク演算部10bとを有する。
変速機コントローラ20内では、走行状態に応じたプライマリ油圧及びセカンダリ油圧を算出し、コントロールバルブユニット30に対して制御信号を出力する。変速機コントローラ20内の詳細については後述する。
コントロールバルブユニット30は、変速機入力軸2にチェーン駆動されるオイルポンプ9を油圧源とし、変速機コントローラ20から送信された制御信号に基づいて各油圧を調圧する。そして、プライマリ油圧室3b1及びセカンダリ油圧室5b1にそれぞれプライマリ油圧及びセカンダリ油圧を供給し、変速制御を実行する。
The engine controller 10 controls the engine speed and the engine torque by controlling the operating state (fuel injection amount, ignition timing, etc.) of the engine 1. Further, in the engine controller 10, a required torque calculation unit that calculates the driver's required torque TD based on the accelerator opening signal APO detected by the accelerator opening sensor 21 and the vehicle speed signal VSP detected by the vehicle speed sensor 22. 10a and an engine torque calculation unit 10b for calculating the engine torque TENG transmitted to the transmission input shaft 2.
In the transmission controller 20, the primary hydraulic pressure and the secondary hydraulic pressure corresponding to the traveling state are calculated and a control signal is output to the control valve unit 30. Details of the transmission controller 20 will be described later.
The control valve unit 30 uses the oil pump 9 chain-driven to the transmission input shaft 2 as a hydraulic pressure source, and adjusts each hydraulic pressure based on a control signal transmitted from the transmission controller 20. Then, the primary hydraulic pressure and the secondary hydraulic pressure are respectively supplied to the primary hydraulic chamber 3b1 and the secondary hydraulic chamber 5b1, and the shift control is executed.

図2は実施例1の変速機コントローラ内における変速制御処理を表す制御ブロック図である。目標変速比演算部201では、アクセル開度信号APOと車速信号VSPに基づいて目標変速比Gaを演算する。この目標変速比Gaは、エンジン1が最適燃費を達成するように予め設定された変速特性に基づいて行われる。トルク比演算部202では、要求トルクTDに基づいて設定されるセカンダリ油圧に応じたトルクTmax(図3参照)に対するエンジントルクTENGの比であるトルク比Qtを演算する。   FIG. 2 is a control block diagram showing a shift control process in the transmission controller of the first embodiment. The target gear ratio calculation unit 201 calculates the target gear ratio Ga based on the accelerator opening signal APO and the vehicle speed signal VSP. This target speed ratio Ga is performed based on a speed change characteristic set in advance so that the engine 1 achieves the optimum fuel consumption. The torque ratio calculation unit 202 calculates a torque ratio Qt that is a ratio of the engine torque TENG to the torque Tmax (see FIG. 3) corresponding to the secondary hydraulic pressure set based on the required torque TD.

実変速比演算部203では、プライマリ回転数センサ23により検出されたプライマリ回転数Npriとセカンダリ回転数センサ24により検出されたセカンダリ回転数Nsecとを読み込み、実変速比Gbを演算する。尚、これらプライマリ及びセカンダリ回転数センサ23,24は、外周に凹凸が形成された回転体の回転時における凹凸変化をコイルの磁界変化により検出する回転数センサであり、低コストで回転数を検出できるものの、回転方向については認識できない。また、凹凸の幅によって分解能が決定されていることから極低車速領域では正しい回転数を検出することが困難となる。   The actual speed ratio calculation unit 203 reads the primary speed Npri detected by the primary speed sensor 23 and the secondary speed Nsec detected by the secondary speed sensor 24, and calculates the actual speed ratio Gb. The primary and secondary rotational speed sensors 23 and 24 are rotational speed sensors that detect the unevenness during rotation of a rotating body with unevenness on the outer periphery by changing the magnetic field of the coil, and detect the rotational speed at low cost. Although it is possible, the direction of rotation cannot be recognized. Further, since the resolution is determined by the width of the unevenness, it is difficult to detect the correct rotational speed in the extremely low vehicle speed region.

偏差演算部204では、目標変速比Gaと実変速比Gbとの偏差ΔGを演算する。フィードバック演算部205では、検出された偏差ΔGに基づくフィードバック油圧を演算する。例えば、PI制御やPID制御によってプライマリ油圧及び/又はセカンダリ油圧に加減算する油圧(以下、フィードバック油圧と記載する。)を出力する。   The deviation calculating unit 204 calculates a deviation ΔG between the target speed ratio Ga and the actual speed ratio Gb. The feedback calculation unit 205 calculates the feedback hydraulic pressure based on the detected deviation ΔG. For example, a hydraulic pressure (hereinafter referred to as feedback hydraulic pressure) to be added to or subtracted from the primary hydraulic pressure and / or the secondary hydraulic pressure by PI control or PID control is output.

第1推力演算部206では、目標変速比Gaとトルク比演算部202で演算されたトルク比Qtとに基づいて予め設定されたマップからプーリ推力比を演算する。図4は実施例1のベルト式無段変速機の変速制御に使用されるトルク比−推力比マップである。目標変速比Gaに基づいて特性が選択され、選択された特性とトルク比Qtとから推力比Qfを演算する。次に、図3のセカンダリ油圧特性を表すマップから要求トルクTDに基づいて基準となる油圧である基準セカンダリ油圧Psecを演算し、この基準セカンダリ油圧Psecに推力比Qfを乗算して基準プライマリ油圧Ppriを演算する。以下、基準セカンダリ油圧Psecと基準プライマリ油圧Ppriとを総称して基準プーリ油圧と記載する。   The first thrust calculation unit 206 calculates the pulley thrust ratio from a preset map based on the target gear ratio Ga and the torque ratio Qt calculated by the torque ratio calculation unit 202. FIG. 4 is a torque ratio-thrust ratio map used for shift control of the belt type continuously variable transmission according to the first embodiment. A characteristic is selected based on the target gear ratio Ga, and a thrust ratio Qf is calculated from the selected characteristic and the torque ratio Qt. Next, a reference secondary oil pressure Psec, which is a reference oil pressure, is calculated based on the required torque TD from the map representing the secondary oil pressure characteristics in FIG. 3, and the reference secondary oil pressure Ppri is multiplied by the thrust ratio Qf. Is calculated. Hereinafter, the reference secondary oil pressure Psec and the reference primary oil pressure Ppri are collectively referred to as a reference pulley oil pressure.

乗算部207では、基準プーリ油圧にフィードバック油圧を加算し、通常の変速制御時に使用する第1プライマリ油圧指令値及び第1セカンダリ油圧指令値(以下、総称して第1プーリ油圧指令値と記載する。)を出力する。
第2推力演算部208では、要求トルクTDに基づいて第2セカンダリ油圧指令値を決定し、予め設定された低車速用推力比Qf0に基づいて第2プライマリ油圧指令値(以下、総称して第2プーリ油圧指令値と記載する。)を決定する。
The multiplication unit 207 adds the feedback hydraulic pressure to the reference pulley hydraulic pressure, and describes a first primary hydraulic pressure command value and a first secondary hydraulic pressure command value (hereinafter collectively referred to as a first pulley hydraulic pressure command value) used during normal shift control. .) Is output.
The second thrust calculation unit 208 determines a second secondary hydraulic pressure command value based on the required torque TD, and based on a preset low vehicle speed thrust ratio Qf0, the second primary hydraulic pressure command value (hereinafter collectively referred to as the first 2) Describe the pulley oil pressure command value.

制御切り換え部209では、車速VSPに基づいて車速センサ22の検出分解能の関係から精度が十分に確保できない車速VSP1未満か否かを判断し、VSP1未満の場合は第2プーリ油圧指令値に切り替え、VSP1以上の場合は第1プーリ油圧指令値に切り替える。言い換えると、車速がVSP1以上の場合はフィードバック制御によって所望の変速比を達成するように変速制御を行い、VSP1未満の場合はフィードバック制御を禁止し、低車速用推力比Qf0に基づいて最ロー変速比を達成する。   Based on the vehicle speed VSP, the control switching unit 209 determines whether or not the vehicle speed VSP1 is less than the vehicle speed VSP1 where the accuracy cannot be sufficiently secured from the relationship of the detection resolution of the vehicle speed sensor 22, and if it is less than VSP1, switches to the second pulley hydraulic pressure command value. If VSP1 or higher, switch to the first pulley oil pressure command value. In other words, when the vehicle speed is VSP1 or higher, the speed change control is performed to achieve the desired speed ratio by feedback control, and when it is less than VSP1, the feedback control is prohibited, and the lowest speed shift based on the low vehicle speed thrust ratio Qf0. To achieve the ratio.

ここで、制御切り替え部209を設けた理由について説明する。通常は、図4に示すマップに基づいてトルク比Qtから推力比Qfを演算し、この推力比Qfに基づいて第1プーリ油圧指令値を算出する。しかし、車両停止状態を含む低車速領域では、プライマリ回転数センサ23やセカンダリ回転数センサ24の検出精度が確保できず、フィードバック制御による補償が十分に行えない。また、登坂路等で車両停止から再発進する場合、例えば運転者はDレンジを選択して前進を意図していたとしても、勾配によっては後ろにずり下がる場面が生じうる。このとき、プライマリプーリ3も前進側とは反対側に回るため、入力トルクTinが負値となる。このとき、図4のマップに示すように、トルク比Qtが負の所定値(-Qt1:プライマリ回転数が逆回転している状態)のときは、設定すべき推力比が小さくなる特性を持つ。   Here, the reason why the control switching unit 209 is provided will be described. Normally, the thrust ratio Qf is calculated from the torque ratio Qt based on the map shown in FIG. 4, and the first pulley hydraulic pressure command value is calculated based on the thrust ratio Qf. However, in the low vehicle speed region including the vehicle stop state, the detection accuracy of the primary rotational speed sensor 23 and the secondary rotational speed sensor 24 cannot be ensured, and compensation by feedback control cannot be performed sufficiently. Further, when the vehicle restarts from a vehicle stop on an uphill road or the like, for example, even if the driver selects the D range and intends to move forward, there may be a scene of sliding backward depending on the slope. At this time, since the primary pulley 3 also turns to the opposite side to the forward side, the input torque Tin becomes a negative value. At this time, as shown in the map of FIG. 4, when the torque ratio Qt is a negative predetermined value (-Qt1: a state where the primary rotational speed is reversely rotated), the thrust ratio to be set has a characteristic to be reduced. .

しかしながら、プライマリ回転数センサ23やセカンダリ回転数センサ24は回転方向を認識できないことから、逆回転しているかどうかが判別できず、トルク比Qtが正の所定値(Qt1:プライマリ回転数が正回転している状態)と誤認識して制御する場合がある。すると、実際のトルク比は-Qtであることから、このトルク比Qtに見合った変速比は図4中のG3(G1よりもハイ側の変速比)となり、ベルト式無段変速機は最ロー変速比からハイ側にアップシフトしてしまう。そうすると、エンジン1側からトルクを出力したとしても十分な減速比が得られず、発進性が悪化するという問題があった。
そこで、実施例1では、所定車速VSP1未満の場合は、フィードバック制御を禁止すると共に、最ロー変速比であって、かつ、トルク比Qtがゼロのときに設定される推力比Qf1よりも低い所定推力比Qf0に設定することとした。これにより、トルク比Qtの値に係らず最ロー変速比を確保することができ、安定した変速制御を達成できる。
However, since the primary rotation speed sensor 23 and the secondary rotation speed sensor 24 cannot recognize the rotation direction, it is impossible to determine whether the rotation is reverse, and the torque ratio Qt is a predetermined positive value (Qt1: primary rotation speed is normal rotation). May be misrecognized and controlled. Then, since the actual torque ratio is -Qt, the gear ratio commensurate with this torque ratio Qt is G3 in FIG. 4 (the gear ratio higher than G1), and the belt type continuously variable transmission is the lowest. Upshift from gear ratio to high side. Then, even if torque is output from the engine 1 side, a sufficient reduction ratio cannot be obtained, and there is a problem that startability deteriorates.
Therefore, in the first embodiment, when the vehicle speed is lower than the predetermined vehicle speed VSP1, the feedback control is prohibited, and the predetermined speed lower than the thrust ratio Qf1 set when the torque ratio Qt is zero and the lowest gear ratio is set. The thrust ratio is set to Qf0. As a result, the lowest speed ratio can be ensured regardless of the value of the torque ratio Qt, and stable shift control can be achieved.

以上説明したように、実施例1にあっては下記に列挙する作用効果が得られる。
(1)プライマリプーリ3と、セカンダリプーリ5と、両プーリに巻回されたベルト4とを備えたベルト式無段変速機と、エンジントルクTENG(ベルト式無段変速機への入力トルク)と目標変速比Gaとに基づいて各プーリの油圧室に供給するプーリ油圧の比である推力比を演算し、該推力比に基づく基準プーリ油圧を演算すると共に、目標変速比Gaと実変速比Gbとの差分に応じたフィードバック制御によりフィードバック油圧を演算し、基準プーリ油圧とフィードバック油圧とに基づいて変速制御を行う変速機コントローラ20(変速制御手段)と、を備えたベルト式無段変速機の変速制御装置において、変速機コントローラ20は、所定の運転条件が成立したときは、フィードバック制御を中止し、推力比を、最ロー変速比であって、かつ、トルク比Qt(入力トルク)がゼロのときに設定される推力比Qf1よりも低い低車速用推力比Qf0(所定推力比)に設定して変速制御を行うこととした。
よって、低い推力比に基づいて変速制御することが可能となり、ハイ側へのシフトを抑制することで安定した変速制御を達成できる。
As described above, the effects listed below are obtained in the first embodiment.
(1) A belt-type continuously variable transmission including a primary pulley 3, a secondary pulley 5, and a belt 4 wound around both pulleys, and an engine torque TENG (input torque to the belt-type continuously variable transmission) Based on the target gear ratio Ga, a thrust ratio, which is a ratio of pulley hydraulic pressure supplied to the hydraulic chamber of each pulley, is calculated, a reference pulley hydraulic pressure is calculated based on the thrust ratio, and the target gear ratio Ga and the actual gear ratio Gb are calculated. Of a belt-type continuously variable transmission including a transmission controller 20 (transmission control means) that calculates a feedback hydraulic pressure by feedback control according to a difference between the reference pulley hydraulic pressure and the reference pulley hydraulic pressure and the feedback hydraulic pressure. In the speed change control device, the transmission controller 20 stops the feedback control when the predetermined operating condition is satisfied, and the thrust ratio is the lowest speed ratio and the torque ratio Qt ( The shift control is performed by setting a low vehicle speed thrust ratio Qf0 (predetermined thrust ratio) lower than the thrust ratio Qf1 set when the input torque) is zero.
Therefore, it is possible to perform shift control based on a low thrust ratio, and stable shift control can be achieved by suppressing the shift to the high side.

(2)低車速用推力比Qf0は、トルク比Qtに係らず最ロー変速比を達成可能な推力比である。よって、入力トルクに係らず常に最ロー変速比を確保できる。
(3)所定の運転条件は、車速が所定車速VSP1未満である。よって、低車速領域のように回転数センサの分解能が低下する領域では、フィードバック制御を行わず固定した推力比に基づいて制御することで、安定した変速制御を実現できる。
(2) The low vehicle speed thrust ratio Qf0 is a thrust ratio that can achieve the lowest gear ratio regardless of the torque ratio Qt. Therefore, the lowest speed ratio can always be ensured regardless of the input torque.
(3) The predetermined driving condition is that the vehicle speed is less than the predetermined vehicle speed VSP1. Therefore, in a region where the resolution of the rotational speed sensor is reduced, such as a low vehicle speed region, stable shift control can be realized by performing control based on a fixed thrust ratio without performing feedback control.

(他の実施例)
以上、実施例1に基づいて説明したが、上記実施例に限らず、他の構成であっても本発明に含まれる。実施例1では所定推力比Qf0を固定値として設定したが、例えば、Qf1より小さい範囲でトルク比Qtに応じた推力比を可変に設定してもよい。また、所定の運転条件として車速VSPが所定車速VSP1未満か否かに基づいて制御切り換え部209を作動させたが、車速に限らず、トルク比に応じて制御切り換えを行ってもよい。
(Other examples)
As described above, the description is based on the first embodiment. However, the present invention is not limited to the above-described embodiment, and other configurations are also included in the present invention. In the first embodiment, the predetermined thrust ratio Qf0 is set as a fixed value. However, for example, the thrust ratio corresponding to the torque ratio Qt may be variably set within a range smaller than Qf1. Further, although the control switching unit 209 is operated based on whether the vehicle speed VSP is less than the predetermined vehicle speed VSP1 as a predetermined driving condition, the control switching may be performed according to the torque ratio without being limited to the vehicle speed.

1 エンジン
2 変速機入力軸
3 プライマリプーリ
3a 固定シーブ
3b 可動シーブ
3b1 プライマリ油圧室
4 ベルト
5 セカンダリプーリ
5a 固定シーブ
5b 可動シーブ
5b1 セカンダリ油圧室
10 エンジンコントローラ
10a 要求トルク演算部
10b 実エンジントルク演算部
20 変速機コントローラ
30 コントロールバルブユニット
201 目標変速比演算部
1 engine
2 Transmission input shaft
3 Primary pulley
3a Fixed sheave
3b Movable sheave
3b1 Primary hydraulic chamber
4 belt
5 Secondary pulley
5a Fixed sheave
5b Movable sheave
5b1 Secondary hydraulic chamber
10 Engine controller
10a Required torque calculator
10b Actual engine torque calculator
20 Transmission controller
30 Control valve unit
201 Target gear ratio calculator

Claims (1)

プライマリプーリと、セカンダリプーリと、両プーリに巻回されたベルトとを備えたベルト式無段変速機と、
車速を検出する車速センサと、
前記ベルト式無段変速機への入力トルクと目標変速比とに基づいて前記各プーリの油圧室に供給するプーリ油圧の比である推力比を演算し、該推力比に基づく基準プーリ油圧を演算すると共に、前記目標変速比と実変速比との差分に応じたフィードバック制御によりフィードバック油圧を演算し、前記基準プーリ油圧と前記フィードバック油圧とに基づいて変速制御を行う変速制御手段と、
を備えたベルト式無段変速機の変速制御装置において、
前記変速制御手段は、車速が前記車速センサの検出分解能の関係から精度が十分に確保できない所定値未満のときは、前記フィードバック制御を中止し、前記推力比を、最ロー変速比であって、かつ、前記入力トルクに関わらず最ロー変速比を達成可能であって前記入力トルクがゼロのときに設定される推力比よりも低い所定推力比に設定して変速制御を行うことを特徴とするベルト式無段変速機の変速制御装置。
A belt-type continuously variable transmission comprising a primary pulley, a secondary pulley, and a belt wound around both pulleys;
A vehicle speed sensor for detecting the vehicle speed;
Based on the input torque to the belt type continuously variable transmission and the target gear ratio, a thrust ratio that is a ratio of pulley hydraulic pressure supplied to the hydraulic chamber of each pulley is calculated, and a reference pulley hydraulic pressure is calculated based on the thrust ratio And a shift control means for calculating a feedback hydraulic pressure by feedback control according to a difference between the target gear ratio and the actual gear ratio, and performing a shift control based on the reference pulley hydraulic pressure and the feedback hydraulic pressure;
In a shift control device for a belt-type continuously variable transmission comprising:
The shift control means stops the feedback control when the vehicle speed is less than a predetermined value that cannot sufficiently ensure the accuracy due to the detection resolution of the vehicle speed sensor, and the thrust ratio is the lowest gear ratio, In addition, the lowest speed ratio can be achieved regardless of the input torque, and the shift control is performed by setting a predetermined thrust ratio lower than the thrust ratio set when the input torque is zero. Shift control device for belt type continuously variable transmission.
JP2014006326A 2014-01-17 2014-01-17 Shift control device for belt type continuously variable transmission Expired - Fee Related JP5936633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014006326A JP5936633B2 (en) 2014-01-17 2014-01-17 Shift control device for belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014006326A JP5936633B2 (en) 2014-01-17 2014-01-17 Shift control device for belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2015135141A JP2015135141A (en) 2015-07-27
JP5936633B2 true JP5936633B2 (en) 2016-06-22

Family

ID=53767095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014006326A Expired - Fee Related JP5936633B2 (en) 2014-01-17 2014-01-17 Shift control device for belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5936633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6638320B2 (en) * 2015-10-27 2020-01-29 トヨタ自動車株式会社 Power transmission control device
CN110230692B (en) * 2018-03-05 2020-08-28 上海汽车集团股份有限公司 Method and device for updating relation graph of thrust ratio and speed ratio of driving cylinder and driven cylinder
JP7241124B2 (en) 2021-04-21 2023-03-16 本田技研工業株式会社 Control device and control method for continuously variable transmission for vehicle

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5273107B2 (en) * 2010-08-23 2013-08-28 トヨタ自動車株式会社 Control device for continuously variable transmission
JP2013152008A (en) * 2012-01-26 2013-08-08 Toyota Motor Corp Control device of belt type continuously variable transmission
JP5745687B2 (en) * 2012-04-02 2015-07-08 ジヤトコ株式会社 Control device for continuously variable transmission

Also Published As

Publication number Publication date
JP2015135141A (en) 2015-07-27

Similar Documents

Publication Publication Date Title
KR101682712B1 (en) Belt type continuously variable transmission and method for controlling said transmission
JP4762875B2 (en) Shift control device for belt type continuously variable transmission
JP4414972B2 (en) Vehicle control device
JP2005273850A (en) Shift control device of belt type continuously variable transmission
CN109973607B (en) Control device for vehicle power transmission device
JP5936633B2 (en) Shift control device for belt type continuously variable transmission
US20190249774A1 (en) Control device for continuously variable transmission
US8924110B2 (en) Control device for stepless transmission
US7192372B2 (en) Hydraulic pressure sensor failure control system for belt-type continuously variable transmission
US9995389B2 (en) Continuously variable transmission control device and control method
KR101584475B1 (en) Continuously variable transmission and hydraulic pressure control method therefor
KR20180014849A (en) Oil pressure control device for belt-type continuously variable transmission
JP4446911B2 (en) Gear ratio control device for CVT
WO2018047559A1 (en) Continuously variable transmission and continuously variable transmission control method
US20180142783A1 (en) Control device for continuously variable transmission
US10086817B2 (en) Control device and control method for vehicle
JP4923999B2 (en) Shift control device
JP6375527B2 (en) Control device for variable displacement oil pump
JP4141377B2 (en) Belt type continuously variable transmission
JP6990968B2 (en) Continuously variable transmission and continuously variable transmission control method
US10907731B2 (en) Control device for power transmission mechanism
WO2019146475A1 (en) Lock-up disengagement control device for automatic transmission
JP5937628B2 (en) Continuously variable transmission and its safety factor correction method
JP2008039154A (en) Hydraulic control device for belt type continuously variable transmission
JP2013160278A (en) Vehicle control unit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160510

R150 Certificate of patent or registration of utility model

Ref document number: 5936633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees