JP5935021B2 - Method for producing silicon crystal - Google Patents

Method for producing silicon crystal Download PDF

Info

Publication number
JP5935021B2
JP5935021B2 JP2015046388A JP2015046388A JP5935021B2 JP 5935021 B2 JP5935021 B2 JP 5935021B2 JP 2015046388 A JP2015046388 A JP 2015046388A JP 2015046388 A JP2015046388 A JP 2015046388A JP 5935021 B2 JP5935021 B2 JP 5935021B2
Authority
JP
Japan
Prior art keywords
silicon
crucible
raw material
rod
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015046388A
Other languages
Japanese (ja)
Other versions
JP2015107917A (en
Inventor
山瀬 英夫
英夫 山瀬
蒲池 豊
豊 蒲池
Original Assignee
蒲池 豊
豊 蒲池
山瀬 英夫
英夫 山瀬
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 蒲池 豊, 豊 蒲池, 山瀬 英夫, 英夫 山瀬 filed Critical 蒲池 豊
Priority to JP2015046388A priority Critical patent/JP5935021B2/en
Publication of JP2015107917A publication Critical patent/JP2015107917A/en
Application granted granted Critical
Publication of JP5935021B2 publication Critical patent/JP5935021B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Silicon Compounds (AREA)

Description

本発明は、太陽電池用シリコン結晶の製造方法に関し、さらに詳しくはシリコン結晶のなかでもFZ法単結晶を、太陽電池用として使用する目的に限定して行う太陽電池用FZ単結晶シリコンの製造方法に関する。  The present invention relates to a method for producing a silicon crystal for a solar cell, and more specifically, a method for producing FZ single crystal silicon for a solar cell, which is limited to the purpose of using a FZ method single crystal for a solar cell among silicon crystals. About.

シリコン太陽電池用基盤として使用されるFZ単結晶製造用原料としては通常シーメンス法多結晶シリコン棒が一般的に使用されている。
その為、安価な亜鉛還元法により製造される針状、樹枝状、コーラル状、塊状等の多結晶シリコンによりFZ単結晶製造用原料としてのシリコン棒を、安価に、より大量に、より少ない使用電力量で生産する技術が求められている。
As a raw material for producing an FZ single crystal used as a substrate for a silicon solar cell, a Siemens method polycrystalline silicon rod is generally used.
For this reason, needles, dendritic, coral, and lump-like polycrystalline silicon produced by an inexpensive zinc reduction method can be used as a raw material for FZ single crystal production at low cost, in large quantities, and less There is a demand for technology that produces electricity.

四塩化珪素の亜鉛還元法により、一般に量産されるシリコン多結晶は原料となる四塩化珪素の精製に当たり、特にその精留段数、条件を選定する事により、製品多結晶中のライフタイムキラーとなる微量Fe、Ni系不純物を「−11乗」オーダー以下に、安定して容易に制御することが可能である。  Silicon polychloride, which is generally mass-produced by the zinc reduction method of silicon tetrachloride, becomes a lifetime killer in product polycrystals by selecting the number of rectification stages and conditions in particular when purifying silicon tetrachloride as a raw material. Trace amounts of Fe and Ni-based impurities can be stably and easily controlled to the order of “−11” order or less.

太陽電池用に特化したFZ単結晶シリコンを製造するにあたり、その原料となる棒状多結晶を、針状、樹枝状、コーラル状、塊状等の多結晶シリコンより、如何に短時間に均一な棒状に成型するかの基本技術が必要である。  When manufacturing FZ single crystal silicon specialized for solar cells, the rod-like polycrystal used as the raw material is made into a uniform rod-like shape in a shorter time than polycrystalline silicon such as needle-like, dendritic, coral, and massive. The basic technology of molding into a material is required.

太陽電池用FZ単結晶製造にあたり、四塩化珪素の亜鉛還元法により一般に量産される多結晶シリコンは針状、樹枝状、コーラル状、塊状等の形状をしており、そのままではFZ単結晶製造の原料とはならないため、これを出来るだけ短時間に効率良く且つ量産的に棒状に、緻密に成型しなければならない。又それにより、溶融液接部よりのライフタイムキラーとなる不純物の混入を、現在一般的に用いられているCZ単結晶シリコンの二桁以下にすることが可能となる。  In the production of FZ single crystals for solar cells, polycrystalline silicon generally mass-produced by the zinc reduction method of silicon tetrachloride is in the shape of needles, dendrites, corals, lumps, etc. Since it does not become a raw material, it must be densely molded into a rod-like shape efficiently and in a short time as much as possible. This also makes it possible to reduce the amount of impurities that become a lifetime killer from the melt-contacted portion to two digits or less of CZ single crystal silicon that is generally used at present.

太陽電池用FZ単結晶製造の原料となる棒状成型に当たり、出来るだけ可能な限り短時間に針状、樹枝状、コーラル状、塊状等の多結晶シリコンをシリコン棒に成型する為に、[図−1]に示す如く、シリコン融液中に差し込んだ石英チューブ、或いは高純度シリコンを含侵させたSiCチューブ(内径10mmΦ〜30mmΦ)等により真空にて吸い上げ、且つその吸い上げ速度を真空度の調節により制御して、CZ単結晶製造時の百分の一以下の液接時間に短縮する事が出来た。  In order to form polycrystalline silicon such as needles, dendrites, corals, and lumps into silicon rods in as short a time as possible in the rod-shaped molding that is the raw material for producing FZ single crystals for solar cells, [Figure- 1] As shown in FIG. 1, vacuuming is performed with a quartz tube inserted into a silicon melt or a SiC tube impregnated with high-purity silicon (inner diameter 10 mmΦ to 30 mmΦ), and the suction speed is adjusted by adjusting the degree of vacuum. By controlling, it was possible to reduce the liquid contact time to one-hundredth or less during the production of CZ single crystal.

吸い上げ管の液接部上部(≒100mm〜200mm)に熱線(ニクロム線etc)又は高周波コイルを設置し(100kHz〜1MHz)に出力調整をしつつ印加する事により吸い上げ管内での凝固時間を調節することが出来る。それにより緻密でクラック零のシーメンス法と同等のシリコン多結晶棒を生産する事が可能となった。
又、該凝固時間の調節は、経験に依るとその溶融坩堝径、キャスチング棒径により異なるが20〜70秒程度であり、このための吸い上げ管材よりのライフタイムキラーの浸透混入は無視出来た。
Set the heat ray (nichrome wire etc) or high frequency coil on the upper part of liquid contact part of suction pipe (≒ 100mm ~ 200mm) and adjust the coagulation time in the suction pipe by applying the output while adjusting the output (100kHz ~ 1MHz). I can do it. As a result, it became possible to produce a silicon polycrystalline rod equivalent to the Siemens method, which is dense and has no cracks.
The adjustment of the solidification time varies depending on the melting crucible diameter and casting rod diameter according to experience, but is about 20 to 70 seconds, and the penetration of the lifetime killer from the sucked tube material can be ignored.

溶融シリコンを高速(>1mm/Sec)CZ引上げ法で10〜30mmΦの緻密な多結晶棒を製造し、本発明目的のFZ単結晶製造用原料とすることも可能であるが、このための液接時間が本発明の10倍以上を要し、この為にライフタイムキラー不純物の混入のチャンスが増加する。  It is possible to produce a dense polycrystalline rod of 10 to 30 mmΦ from molten silicon by a high speed (> 1 mm / Sec) CZ pulling method and use it as a raw material for FZ single crystal production for the purpose of the present invention. The contact time requires 10 times or more that of the present invention, and this increases the chance of contamination of lifetime killer impurities.

ソーラー用FZ単結晶シリコン製造の原料は、「特願2011−260954」で示した如く内径10〜30mmφを適当とする棒状シリコン多結晶である。
通常の技術線上では、該原料用多結晶棒は、ソーラー用FZ単結晶製造に適した急速CZ単結晶棒(10〜30mmφ)を使用することも出来る。
しかしながら、原子力発電、石油系火力発電と近い将来比肩出来る可能性の高い自然エネルギーの一つは太陽光発電で、しかも量的、コスト的に実現可能な技術を包含しているのはシリコン・バルク太陽電池であることは疑いもない事実である。
The raw material for manufacturing FZ single crystal silicon for solar is a rod-like silicon polycrystal having an appropriate inner diameter of 10 to 30 mm as shown in “Japanese Patent Application No. 2011-260954”.
On the normal technical line, a rapid CZ single crystal rod (10 to 30 mmφ) suitable for manufacturing a solar FZ single crystal can also be used as the raw material polycrystalline rod.
However, one of the natural energies that is likely to be comparable to nuclear power generation and petroleum-based thermal power generation in the near future is solar power generation, and silicon bulk that includes technologies that can be realized quantitatively and cost-effectively. There is no doubt that it is a solar cell.

現在、半導体級高純度シリコンの代表的な製法、並びに製品は世界の約95%を占めるシーメンス法多結晶シリコンである。
現在の純度は一般的には「11−nine」と称され、高品質・量産性について他法の追随を許さぬ程その技術は工業的に確立されている。
しかしながら、前項で示したように近い将来具体的にシリコン・バルク太陽電池が大きく飛躍していくためには、もう一段原料面で幅広な供給の量的可能性と、一段のコスト改善の可能性が求められる。それが生産に拘わる電力原単位の更なる改善と四塩化珪素を原料として使用するという亜鉛還元法によるシリコン多結晶を基として展開されるシリコン・バルク太陽電池である。
At present, the typical manufacturing method and product of semiconductor grade high-purity silicon are Siemens polycrystalline silicon, which accounts for about 95% of the world.
The current purity is generally referred to as “11-nine”, and the technology has been industrially established to the extent that other methods cannot be followed for high quality and mass productivity.
However, as shown in the previous section, in order for the silicon bulk solar cell to make a big leap forward in the near future, there is another possibility of a broader supply in terms of one-stage raw materials and a further cost improvement. Is required. This is a silicon bulk solar cell that is developed based on silicon polycrystals by the zinc reduction method that uses silicon tetrachloride as a raw material for further improvement of the power consumption unit related to production.

これまで数年間世界的にも大きく進展してきた太陽電池の実に90%がシリコン・バルク太陽電池であり、幸いこの間に大きく改善されたシリコン・バルク太陽電池はその光電変換効率(P/Nジュンクション、表面・裏面構造等)の飛躍的な改善により、その原料として遣われる多結晶が、一般的な表現で言えばその原料となるシリコン多結晶の純度が「6−nine」以上であれば充分であるとさえ言われ、ひたすら量の追求に走ってきた。
しかしながら更なる太陽電池による電力供給の期待が高まるにつれ、世界市場の要求は太陽電池そのもののエネルギー変換効率のアップが強く望まれるようになってきた。
例えば、現在のシリコン・バルク太陽電池の太陽光変換効率は商業ベース・モジュール基準で21%が最高であり、今後2〜3年で24%迄到達されようとしている。
この場合の多結晶純度は「6―nine」→「8−nine」と純度を上げるほど変換効率の上昇が技術的、工業的にも有利となるため、最早これまでの様な屑、格外品、再生シリコンと称されるようなロット均質性の欠けた原料の商品価値は著しく低下し、所謂バージンシリコンのみが太陽電池用シリコンとして、通用する時代に突入してきた。
90% of solar cells that have made significant progress worldwide over the past few years are silicon bulk solar cells. Fortunately, silicon bulk solar cells that have been greatly improved during this period have their photoelectric conversion efficiency (P / N junction). In terms of general expression, the purity of the polycrystalline silicon used as the raw material is sufficient if the purity of the polycrystalline silicon used as the raw material is "6-nine" or higher. Even so, I have been continually pursuing the amount.
However, as the expectation of further power supply by solar cells increases, the demand of the global market has been strongly demanded to increase the energy conversion efficiency of the solar cells themselves.
For example, the solar conversion efficiency of current silicon bulk solar cells is the highest at 21% on a commercial basis module basis, and is reaching 24% in the next 2-3 years.
In this case, the polycrystal purity is “6-nine” → “8-nine”. As the purity increases, the conversion efficiency increases in terms of technology and industry. The commercial value of raw materials lacking in lot homogeneity such as reclaimed silicon has been remarkably lowered, and only so-called virgin silicon has entered an era in which it can be used as solar cell silicon.

「0010」で記述した、これまでの世界標準とされてきたシーメンス法に代わり、その生産時の電力原単位、四塩化珪素等のコストが一段と低いとされる亜鉛還元法によるバージン多結晶に焦点を当てたもので、その純度は「8−nine」→「10−nine」→「11−nine」となり大量生産が可能なシリコン多結晶原料である。  Instead of the Siemens method, which has been regarded as the world standard up to now, described in “0010”, the focus is on virgin polycrystals by the zinc reduction method, which is considered to be much lower in the cost of power consumption, silicon tetrachloride, etc. during production. The purity of the silicon polycrystalline material is “8-nine” → “10-nine” → “11-nine” and can be mass-produced.

しかしながら亜鉛還元法のシーメンス法に比べて唯一の欠点は、その製品の形状が針状、樹枝状、コーラル状、塊状等であり、そのままではFZ単結晶製造用原料とはならないことである。
本発明はこの原料をシーメンス法により製造された製品と同等の棒状多結晶シリコンとして、その工程におけるコンタミネーションを極小にし、且つ低コストで大量生産が可能であることを特徴としている。
However, the only drawback compared to the Siemens method of the zinc reduction method is that the shape of the product is needle-like, dendritic, coral-like, lump-like, etc., and as such is not a raw material for producing FZ single crystals.
The present invention is characterized in that this raw material is made into rod-like polycrystalline silicon equivalent to a product manufactured by the Siemens method, and contamination in the process is minimized, and mass production is possible at low cost.

これからの太陽電池は原子力、化石燃料系エネルギーとコスト上も太刀打ち出来るものでなければならず、その展開の道筋は既にシリコン・バルク太陽電池で確立されつつある。
光電変換効率24%→29%→35%→45%→60%→75%の過程は既に世の太陽電池関係の学者、技術者達により着々と進められつつあり、その本命はシリコン・バルクの基盤線上にある。
この場合24%→29%はCZ単結晶基盤線上での初加工並びに技術で達成される可能性が強いが、もし太陽電池用FZ単結晶がCZ単結晶に近いコストで生産可能であれば、今後の太陽電池の光電変換効率の向上に大きく貢献し、恐らく本命となるはずである。
Future solar cells must be able to compete in terms of nuclear power and fossil fuel energy and cost, and the development path has already been established for silicon bulk solar cells.
The process of photoelectric conversion efficiency 24% → 29% → 35% → 45% → 60% → 75% is already being steadily advanced by scholars and engineers related to solar cells in the world. Is on the base line.
In this case, 24% → 29% is likely to be achieved by the initial processing and technology on the CZ single crystal base line, but if the solar cell FZ single crystal can be produced at a cost close to that of the CZ single crystal, This will greatly contribute to the improvement of photoelectric conversion efficiency of solar cells in the future, and will probably become a favorite.

本法で作成されたFZ単結晶製造のチャージング多結晶棒原料は、キャスチング時の徐冷の為に設けられた電気加熱、又は高周波加熱制御に、一つの特徴があり、微妙な徐例制御を可能とし、クラックの無いシリコン・キャステイチング棒の効果的な製造を可能とする。  The charged polycrystalline rod raw material for FZ single crystal production made by this method has one feature in electric heating or high-frequency heating control provided for slow cooling during casting, and subtle gradual control And enables effective production of cracked silicon casting rods.

シリコン棒成型用炉  Silicon rod forming furnace シリコン・キャステイチング炉  Silicon casting furnace

「図−2」に示す。  This is shown in “Figure 2”.

Claims (3)

半導体グレードの透明石英又は不透明石英坩堝に、亜鉛還元法により作成された針状、樹枝状、コーラル状或いは塊状の高純度多結晶シリコンをチャージして、アルゴン又はヘリウム雰囲気中にて1420℃以上にて急速溶解し、その融液中に内径10〜30mmφの坩堝と同材質のチューブを挿入しその先端より真空にて吸い上げることを特徴とするシリコン棒の製造方法。  Semiconductor grade transparent quartz or opaque quartz crucible is charged with acicular, dendritic, coral or massive high-purity polycrystalline silicon prepared by zinc reduction method, and the temperature is increased to 1420 ° C. or higher in an argon or helium atmosphere. A method of producing a silicon rod, which comprises rapidly melting and inserting a tube of the same material as the crucible having an inner diameter of 10 to 30 mmφ into the melt and sucking it up from the tip thereof in a vacuum. 半導体グレードのシリコンカーバイド又は窒化シリコン製坩堝に亜鉛還元法により作成された針状、樹枝状、コーラル状或いは塊状の高純度多結晶シリコンをチャージして、アルゴン又はヘリウム雰囲気中にて1420℃以上にて急速溶解し、その融液中に内径10〜30mmφの坩堝と同材質のチューブを挿入しその先端より真空にて吸い上げることを特徴とするシリコン棒の製造方法。  Charge a semiconductor grade silicon carbide or silicon nitride crucible with acicular, dendritic, coral or lump high purity polycrystalline silicon made by the zinc reduction method to 1420 ° C or higher in an argon or helium atmosphere. A method of producing a silicon rod, which comprises rapidly melting and inserting a tube of the same material as the crucible having an inner diameter of 10 to 30 mmφ into the melt and sucking it up from the tip thereof in a vacuum. 溶融炉は連続チャージ構造として、高純度多結晶シリコン原料のチャージ、溶解及び吸い上げを一貫作業として行うシリコン棒の製造方法。  The melting furnace has a continuous charge structure and is a silicon rod manufacturing method in which high-purity polycrystalline silicon raw material is charged, melted and sucked up as an integrated operation.
JP2015046388A 2015-02-20 2015-02-20 Method for producing silicon crystal Active JP5935021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046388A JP5935021B2 (en) 2015-02-20 2015-02-20 Method for producing silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046388A JP5935021B2 (en) 2015-02-20 2015-02-20 Method for producing silicon crystal

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013028321A Division JP2014148455A (en) 2013-01-30 2013-01-30 Method for manufacturing a silicon crystal

Publications (2)

Publication Number Publication Date
JP2015107917A JP2015107917A (en) 2015-06-11
JP5935021B2 true JP5935021B2 (en) 2016-06-15

Family

ID=53438600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046388A Active JP5935021B2 (en) 2015-02-20 2015-02-20 Method for producing silicon crystal

Country Status (1)

Country Link
JP (1) JP5935021B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2903061A1 (en) * 1979-01-26 1980-08-07 Heliotronic Gmbh METHOD FOR PRODUCING LARGE CRYSTALLINE, PREFERRED ORIENTED SILICON FILMS
JPH0525345U (en) * 1991-03-18 1993-04-02 九州電子金属株式会社 Silicon melt sampling tool
JPH0873297A (en) * 1994-09-05 1996-03-19 Shin Etsu Chem Co Ltd Substrate material for solar cell and solar cell using the same
EP1811064A1 (en) * 2006-01-12 2007-07-25 Vesuvius Crucible Company Crucible for treating molten silicon
JP4791558B2 (en) * 2009-03-30 2011-10-12 コスモ石油株式会社 Method for melting polycrystalline silicon
JP5337641B2 (en) * 2009-09-07 2013-11-06 三菱マテリアルテクノ株式会社 Residual silicon melt removal method, single crystal silicon manufacturing method, single crystal silicon manufacturing apparatus

Also Published As

Publication number Publication date
JP2015107917A (en) 2015-06-11

Similar Documents

Publication Publication Date Title
CN104372408B (en) Large size gallium oxide single crystal Czochralski growing method under normal pressure
CN103215633A (en) Method for casting ingots by polycrystalline silicon
CN102936747B (en) Method for casting ingot of pseudo-single crystal through large-sized crucible
CN103741206B (en) A kind of polycrystalline silicon ingot casting melt and impurities removal technique
CN102345157A (en) Continuous re-feeding production method of solar-grade Czochralski silicon
CN102260900B (en) Device for improving consistency of longitudinal resistivity of single crystal silicon and treatment process thereof
CN103510157A (en) Induced crystal growth technology for efficient ingot casting
CN104328492A (en) Device for moving small insulating plate at bottom of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
Kesavan et al. The influence of multiple-heaters on the reduction of impurities in mc-Si for directional solidification
CN102758244A (en) Compound heating-type Czochralski polycrystalline silicon or monocrystal silicon preparation technology
CN1333115C (en) Technical method for drawing silicon single-crystal
CN104294355A (en) Polysilicon preparation process
CN101220507A (en) Method for manufacturing silicon crystal plate for solar battery
JP5935021B2 (en) Method for producing silicon crystal
US9546436B2 (en) Polycrystalline silicon and method of casting the same
CN102817071A (en) Preparation technology of heat radiation resistant Czochralski polysilicon or monocrystalline silicon
CN104389017A (en) Internal inlet gas gas-cooling device of coagulation enhancing block of polycrystalline silicon ingot furnace and polycrystalline silicon ingot furnace
Forniés et al. Performance of modules and solar cells made of 100% solar silicon purified by direct route
CN102758253A (en) Czochralski polycrystalline silicon or monocrystal silicon preparation technology
CN102828236A (en) Self-controlled heating system for monocrystal furnace
CN108823638A (en) The preparation method of large scale silicon ingot used for solar batteries
Lan et al. Czochralski silicon crystal growth for photovoltaic applications
JP2014148455A (en) Method for manufacturing a silicon crystal
JP2016508479A (en) Production method of solar grade silicon single crystal using Czochralski zone melt method
KR101287874B1 (en) Method for removing impurities in silicon and apparatus thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5935021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150