JP5929457B2 - Power supply circuit and LED lighting device using the same - Google Patents

Power supply circuit and LED lighting device using the same Download PDF

Info

Publication number
JP5929457B2
JP5929457B2 JP2012093639A JP2012093639A JP5929457B2 JP 5929457 B2 JP5929457 B2 JP 5929457B2 JP 2012093639 A JP2012093639 A JP 2012093639A JP 2012093639 A JP2012093639 A JP 2012093639A JP 5929457 B2 JP5929457 B2 JP 5929457B2
Authority
JP
Japan
Prior art keywords
capacitor
circuit
power supply
current
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012093639A
Other languages
Japanese (ja)
Other versions
JP2013222607A (en
Inventor
鈴木 信一
信一 鈴木
祐哉 山崎
祐哉 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2012093639A priority Critical patent/JP5929457B2/en
Publication of JP2013222607A publication Critical patent/JP2013222607A/en
Application granted granted Critical
Publication of JP5929457B2 publication Critical patent/JP5929457B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

本発明は電源回路及びそれを備えたLED照明装置に関し、特に、突入電流対策を強化した電源回路及びそれを備えたLED照明装置に関する。   The present invention relates to a power supply circuit and an LED lighting device including the power supply circuit, and more particularly to a power supply circuit with enhanced measures against inrush current and an LED lighting device including the power supply circuit.

図4に従来の電源回路を示す。電源回路は、AC電源電圧を直流電圧に変換してコンデンサ15に充電するAC−DC変換回路1及びコンデンサ15の充電電圧からLED5への電流を制限するための電流制御回路3を備え、AC−DC変換回路1は突入電流防止回路2を含む。突入電流防止回路2は、AC電源投入時にコンデンサ15への充電電流として大電流が流れるのを防止する。そのような大電流が防止されないと、電源回路内においては、コンデンサ15の充電経路上にある整流回路等の部品の故障やヒューズ溶断といった問題が起こる可能性があり、電源回路外においても、電源スイッチ接点の溶着、ブレーカの切断、電源電圧の不安定化及びそれに伴う(電源を共有する)他の機器などへの影響といった問題が起こる可能性がある(例えば、特許文献1及び2参照)。   FIG. 4 shows a conventional power supply circuit. The power supply circuit includes an AC-DC conversion circuit 1 that converts an AC power supply voltage into a DC voltage and charges the capacitor 15, and a current control circuit 3 that limits a current from the charging voltage of the capacitor 15 to the LED 5. The DC conversion circuit 1 includes an inrush current prevention circuit 2. The inrush current prevention circuit 2 prevents a large current from flowing as a charging current to the capacitor 15 when the AC power is turned on. If such a large current is not prevented, problems such as failure of components such as a rectifier circuit on the charging path of the capacitor 15 and blown fuse may occur in the power supply circuit. Problems such as switch contact welding, breaker disconnection, power supply voltage instability, and associated effects on other devices (sharing power supply) may occur (see, for example, Patent Documents 1 and 2).

突入電流防止回路2について、AC電源が投入される時点でトランジスタ22はオフ状態(非導通状態)であり、電流制限抵抗21に入力電流が流れる。従って、突入電流が防止された状態でコンデンサ15が充電されていく。その過程で、トランジスタ22のソース側端子の電位が上昇していくとゲート駆動部23が動作を開始する。ゲート駆動部23は抵抗24とコンデンサ25の時定数に従ってトランジスタ22のゲート電圧を発生させる。そして、ゲート・ソース間電圧が閾値を超えるとトランジスタ22がオン状態(導通状態)となり、電流制限抵抗21がバイパスされる。以降、コンデンサ25で平滑されるゲート・ソース間電圧によってトランジスタ22のオン状態が維持される。これにより、AC電源の初回投入時の突入電流を防止するとともに定常動作時の電流制限抵抗21における損失を防止することができる。   Regarding the inrush current prevention circuit 2, the transistor 22 is in an off state (non-conduction state) when the AC power is turned on, and an input current flows through the current limiting resistor 21. Accordingly, the capacitor 15 is charged while the inrush current is prevented. In the process, when the potential of the source side terminal of the transistor 22 rises, the gate driver 23 starts to operate. The gate driver 23 generates the gate voltage of the transistor 22 according to the time constant of the resistor 24 and the capacitor 25. When the gate-source voltage exceeds the threshold value, the transistor 22 is turned on (conductive state), and the current limiting resistor 21 is bypassed. Thereafter, the ON state of the transistor 22 is maintained by the gate-source voltage smoothed by the capacitor 25. As a result, it is possible to prevent an inrush current when the AC power source is turned on for the first time and to prevent a loss in the current limiting resistor 21 during the steady operation.

特許第4249542号Japanese Patent No. 4249542 特開平11−289657号公報JP-A-11-289657

しかし、上記構成では、AC電源が瞬時停電した場合又はAC電源が一旦オフされた後に短時間でオンされた場合、即ち、AC電源が数ミリ秒〜数秒間遮断された場合でも、コンデンサ15及び25にある程度の電圧が残っていれば電源回路は定常動作を継続する。即ち、AC電源電圧が一時的に遮断されても、コンデンサ25の電圧が抵抗26によって完全には放電されずにトランジスタ22のオン状態が維持される。その一方で、コンデンサ15の電圧は電流制御回路3の動作によってLED5への負荷電流として放電される。その結果、AC電源の遮断期間によっては、コンデンサ25に電圧が残る一方で、コンデンサ15の電圧が大幅に減った状態となる可能性がある。この状態でAC電源が復帰すると、電流制限抵抗21がトランジスタ22によってバイパスされた状態で大電流(即ち、突入電流)がコンデンサ15に流れ込むことになる。   However, in the above configuration, even when the AC power supply is instantaneously interrupted or when the AC power supply is turned off for a short time after being turned off, that is, even when the AC power supply is cut off for several milliseconds to several seconds, the capacitor 15 and If a certain voltage remains at 25, the power supply circuit continues the steady operation. In other words, even if the AC power supply voltage is temporarily interrupted, the voltage of the capacitor 25 is not completely discharged by the resistor 26 and the on state of the transistor 22 is maintained. On the other hand, the voltage of the capacitor 15 is discharged as a load current to the LED 5 by the operation of the current control circuit 3. As a result, depending on the AC power supply cut-off period, the voltage may remain in the capacitor 25 while the voltage of the capacitor 15 may be greatly reduced. When the AC power supply is restored in this state, a large current (that is, an inrush current) flows into the capacitor 15 with the current limiting resistor 21 bypassed by the transistor 22.

このように、AC電源復帰時の突入電流がトランジスタ22を介してコンデンサ15に流れ込むと、トランジスタ22がその大電流により故障する可能性がある。また、突入電流防止回路2がその機能を果たさない状態となるため、上述した突入電流に起因する種々の問題が発生する可能性がある。   Thus, if the inrush current at the time of AC power recovery flows into the capacitor 15 via the transistor 22, the transistor 22 may be damaged due to the large current. In addition, since the inrush current prevention circuit 2 does not perform its function, various problems due to the above-described inrush current may occur.

そこで、本発明は、AC電源が短時間遮断された後に復帰した場合でも、突入電流を抑制して突入電流防止回路を保護するとともに突入電流に起因する種々の問題を回避することができる電源回路及びそれを用いたLED照明装置を提供することを課題とする。   Accordingly, the present invention provides a power supply circuit that can suppress an inrush current and protect an inrush current prevention circuit and avoid various problems caused by the inrush current even when the AC power supply is restored after being cut off for a short time. It is another object of the present invention to provide an LED lighting device using the same.

本発明の第1の側面の電源回路は、入力電圧を定格出力値に変換して第1のコンデンサに充電する直流変換回路、第1のコンデンサの充電電圧から負荷電流を生成するための電流制御回路、第1のコンデンサの充電経路に挿入された充電抑制回路であって、入力電流を制限する電流制限状態及び制限が解除された電流通過状態を有し、入力電圧遮断後の所定期間は電流通過状態が維持されるように構成された充電抑制回路、及び充電電圧が設定値以下になると電流制御回路に負荷電流を低減させて第1のコンデンサの放電を抑制する放電抑制回路を備える。   A power supply circuit according to a first aspect of the present invention includes a DC conversion circuit that converts an input voltage into a rated output value and charges the first capacitor, and current control for generating a load current from the charging voltage of the first capacitor. A charge suppression circuit inserted in the charging path of the circuit and the first capacitor, having a current limiting state for limiting the input current and a current passing state for which the limitation is released, and during a predetermined period after the input voltage is cut off, A charging suppression circuit configured to maintain the passing state, and a discharge suppression circuit that reduces the load current and suppresses the discharge of the first capacitor when the charging voltage becomes equal to or lower than the set value are provided.

一実施例として、充電抑制回路は抵抗、トランジスタ、トランジスタを駆動する駆動部、及び第2のコンデンサを有する。抵抗が充電経路に挿入され、トランジスタの入力端子及び出力端子が抵抗の両端子にそれぞれ接続され、第2のコンデンサがトランジスタの制御端子と出力端子の間の電圧を保持するように接続され、駆動部が入力電圧を受けて第2のコンデンサを充電し、第2のコンデンサの電圧が閾値以上の場合に入力端子と出力端子が導通するよう構成される。   As an example, the charge suppression circuit includes a resistor, a transistor, a driving unit that drives the transistor, and a second capacitor. A resistor is inserted in the charging path, the input terminal and output terminal of the transistor are connected to both terminals of the resistor, respectively, and the second capacitor is connected to hold the voltage between the control terminal and the output terminal of the transistor, and is driven The unit receives the input voltage and charges the second capacitor, and the input terminal and the output terminal are made conductive when the voltage of the second capacitor is equal to or higher than the threshold value.

ここで、放電抑制回路は、充電電圧が設定値以下になると電流制御回路の動作を停止させるように構成されてもよい。   Here, the discharge suppression circuit may be configured to stop the operation of the current control circuit when the charging voltage becomes a set value or less.

また、上記設定値は、好ましくは定格出力値の80%以上95%以下である。   The set value is preferably 80% or more and 95% or less of the rated output value.

本発明の第2の側面は、上記第1の側面の電源回路、電源回路の電流制御回路の出力端に接続されたLED、及び電源回路を内包するとともにLEDが取り付けられた筐体を備えたLED照明装置である。   According to a second aspect of the present invention, there is provided a power supply circuit according to the first aspect, an LED connected to an output end of a current control circuit of the power supply circuit, and a housing that includes the power supply circuit and has the LED attached thereto. LED lighting device.

本発明の実施例による電源回路の回路構成図である。It is a circuit block diagram of the power supply circuit by the Example of this invention. 本発明の実施例によるLED照明装置の図である。1 is a diagram of an LED lighting device according to an embodiment of the present invention. 本発明の変形例による電源回路の回路構成図である。It is a circuit block diagram of the power supply circuit by the modification of this invention. 従来の電源回路の回路構成図である。It is a circuit block diagram of the conventional power supply circuit.

実施例.
図1に本発明の実施例による電源回路の回路構成図を示す。電源回路は、AC電源電圧を直流変換して平滑用のコンデンサ15に充電するAC−DC変換回路1(直流変換回路)、コンデンサ15の充電電圧からLED5への負荷電流を生成するための電流制御回路3、コンデンサ15の充電経路に挿入された突入電流防止回路2(充電抑制回路)、及び充電電圧が設定値以下になると電流制御回路3を停止させてコンデンサ15の放電を抑制する放電抑制回路4を備える。なお、図1では、負荷として単一の素子からなるLED5を図示しているが、LED5は複数のLED素子が直列接続される構成も含む趣旨で図示されている。
Example.
FIG. 1 shows a circuit configuration diagram of a power supply circuit according to an embodiment of the present invention. The power supply circuit converts an AC power supply voltage into a direct current and charges the smoothing capacitor 15 with an AC-DC conversion circuit 1 (direct current conversion circuit), and current control for generating a load current to the LED 5 from the charged voltage of the capacitor 15 The circuit 3, the inrush current prevention circuit 2 (charge suppression circuit) inserted in the charging path of the capacitor 15, and the discharge suppression circuit that stops the current control circuit 3 and suppresses the discharge of the capacitor 15 when the charging voltage is lower than the set value. 4 is provided. In addition, in FIG. 1, although LED5 which consists of a single element as a load is shown in figure, LED5 is illustrated in the meaning including the structure by which a some LED element is connected in series.

AC−DC変換回路1は、整流器11、コイル12、トランジスタ13、ダイオード14及びコンデンサ15を備え、昇圧チョッパ回路を構成する。トランジスタ13はゲート駆動部16によってスイッチング制御され、例えば、整流器11の出力の脈流に同期してPWM制御される。これにより、AC電源電圧(100V、200V等)が定格出力値(例えば、400V程度)に昇圧され、コンデンサ15に充電される。   The AC-DC conversion circuit 1 includes a rectifier 11, a coil 12, a transistor 13, a diode 14, and a capacitor 15, and constitutes a boost chopper circuit. The transistor 13 is switching-controlled by the gate driving unit 16 and, for example, PWM-controlled in synchronization with the pulsating flow of the output of the rectifier 11. As a result, the AC power supply voltage (100 V, 200 V, etc.) is boosted to a rated output value (for example, about 400 V), and the capacitor 15 is charged.

なお、本明細書において、「トランジスタ」とは、電界効果トランジスタ(FET)及びいわゆるバイポーラトランジスタを含むものとして記載される。従って、本願において、トランジスタの入力端子とはドレイン端子、コレクタ端子等のことであり、制御端子とはゲート端子、ベース端子等のことであり、出力端子とはソース端子、エミッタ端子等のことである。   In this specification, “transistor” is described as including a field effect transistor (FET) and a so-called bipolar transistor. Therefore, in this application, the input terminal of a transistor is a drain terminal, a collector terminal, etc., the control terminal is a gate terminal, a base terminal, etc., and the output terminal is a source terminal, an emitter terminal, etc. is there.

突入電流防止回路2は、電流制限抵抗21、トランジスタ22、トランジスタ22のゲート駆動部23、抵抗24、コンデンサ25及び抵抗26を備える。AC電源が投入される時点でトランジスタ22はオフ状態(非導通状態)であり、電流制限抵抗21に入力電流が流れる。従って、突入電流が防止された状態でコンデンサ15が充電されていく。その過程で、トランジスタ22のソース側端子の電位が上昇していくとゲート駆動部23が動作を開始する。ゲート駆動部23はトランジスタ22のゲート電圧を発生させ、ゲート・ソース間電圧は抵抗24とコンデンサ25の時定数で上昇していく。そして、ゲート・ソース間電圧がトランジスタ22の閾値を超えるとトランジスタ22がオン状態(導通状態)となり、電流制限抵抗21がバイパスされる。以降、AC電源電圧の脈流にかかわらず、コンデンサ25で平滑されるゲート・ソース間電圧によってトランジスタ22のオン状態が維持される。これにより、AC電源の初回投入時の突入電流を防止するとともに定常動作時の電流制限抵抗21における損失を防止することができる。   The inrush current prevention circuit 2 includes a current limiting resistor 21, a transistor 22, a gate drive unit 23 of the transistor 22, a resistor 24, a capacitor 25, and a resistor 26. When the AC power is turned on, the transistor 22 is in an off state (non-conducting state), and an input current flows through the current limiting resistor 21. Accordingly, the capacitor 15 is charged while the inrush current is prevented. In the process, when the potential of the source side terminal of the transistor 22 rises, the gate driver 23 starts to operate. The gate driver 23 generates the gate voltage of the transistor 22, and the gate-source voltage increases with the time constant of the resistor 24 and the capacitor 25. When the gate-source voltage exceeds the threshold value of the transistor 22, the transistor 22 is turned on (conductive state), and the current limiting resistor 21 is bypassed. Thereafter, the ON state of the transistor 22 is maintained by the gate-source voltage smoothed by the capacitor 25 regardless of the pulsating current of the AC power supply voltage. As a result, it is possible to prevent an inrush current when the AC power source is turned on for the first time and to prevent a loss in the current limiting resistor 21 during the steady operation.

即ち、突入電流防止回路2は、トランジスタ22がオフ状態で入力電流を制限する電流制限状態、及びトランジスタ22がオン状態で電流制限が解除された電流通過状態を有する。そして、入力電圧投入後のコンデンサ25の充電期間内は電流制限状態が維持され、コンデンサ25の充電期間経過後に電流通過状態となる。一方、入力電圧遮断後のコンデンサ25の放電期間内は電流通過状態が維持され、コンデンサ25の放電期間経過後に電流制限状態となる。   In other words, the inrush current prevention circuit 2 has a current limiting state in which the input current is limited when the transistor 22 is off, and a current passing state in which the current limitation is released when the transistor 22 is on. Then, the current limiting state is maintained during the charging period of the capacitor 25 after the input voltage is input, and the current passing state is entered after the charging period of the capacitor 25 elapses. On the other hand, the current passing state is maintained during the discharging period of the capacitor 25 after the input voltage is cut off, and the current limiting state is entered after the discharging period of the capacitor 25 has elapsed.

電流制御回路3は、トランジスタ31、コイル32、ダイオード33及びコンデンサ34を備え、降圧チョッパ回路を構成する。トランジスタ31はゲート駆動部35(例えば、ゲート駆動IC)によってPWM制御され、LED5に流れる負荷電流が所望値となるように制御される。具体的には、トランジスタ31のオン時には、コンデンサ15からトランジスタ31→コイル32→LED5に電流が流れ、トランジスタ31のオフ時には、コイル32に蓄えられたエネルギーを元に、コイル32→LED5→ダイオード33に電流が流れる。ゲート駆動部35はこのトランジスタ31のオン幅を制御する。本実施例では、ゲート駆動部35の動作は、端子Aがハイ(開放状態)の場合にはアクティブ(定常動作)となり、端子Aがロー(グランド接続状態)の場合には停止状態となるものとする。   The current control circuit 3 includes a transistor 31, a coil 32, a diode 33, and a capacitor 34, and constitutes a step-down chopper circuit. The transistor 31 is PWM-controlled by a gate drive unit 35 (for example, a gate drive IC), and is controlled so that the load current flowing through the LED 5 becomes a desired value. Specifically, when the transistor 31 is on, a current flows from the capacitor 15 to the transistor 31 → the coil 32 → the LED 5, and when the transistor 31 is off, the coil 32 → the LED 5 → the diode 33 based on the energy stored in the coil 32. Current flows through The gate driver 35 controls the on width of the transistor 31. In this embodiment, the operation of the gate drive unit 35 is active (steady operation) when the terminal A is high (open state) and is stopped when the terminal A is low (ground connection state). And

放電抑制回路4は、抵抗41、抵抗42及びツェナーダイオード43からなる検出部、並びにトランジスタ44、抵抗45、抵抗46及びトランジスタ47からなる切替え部を備える。検出部はコンデンサ15の充電電圧を検出し、検出充電電圧に応じて切替え部の動作状態が切り替わる。例えば、定常動作時にコンデンサ15の充電電圧が定格値(400V)である場合には、トランジスタ44はオン状態となり、これにより、トランジスタ47がオフ状態となる。トランジスタ47がオフ状態の場合には、上述したようにゲート駆動部35(即ち、電流制御回路3)は定常動作を継続する。一方、AC電源電圧の低下によりコンデンサ15の充電電圧が設定値(本例では360V)以下となった場合には、トランジスタ44がオフ状態となり、これにより、トランジスタ47がオン状態となる。トランジスタ47がオン状態の場合には、上述したようにゲート駆動部35は動作を停止し、トランジスタ31がオフ状態となり電流制御回路3の出力が停止される。   The discharge suppression circuit 4 includes a detection unit including a resistor 41, a resistor 42, and a Zener diode 43, and a switching unit including a transistor 44, a resistor 45, a resistor 46, and a transistor 47. The detection unit detects the charging voltage of the capacitor 15, and the operation state of the switching unit is switched according to the detected charging voltage. For example, when the charging voltage of the capacitor 15 is the rated value (400 V) during steady operation, the transistor 44 is turned on, and thereby the transistor 47 is turned off. When the transistor 47 is off, the gate driving unit 35 (that is, the current control circuit 3) continues the steady operation as described above. On the other hand, when the charging voltage of the capacitor 15 becomes equal to or lower than the set value (360 V in this example) due to the decrease in the AC power supply voltage, the transistor 44 is turned off, and thereby the transistor 47 is turned on. When the transistor 47 is on, the gate drive unit 35 stops operating as described above, the transistor 31 is turned off, and the output of the current control circuit 3 is stopped.

即ち、AC電源が瞬時停電等により一時的に遮断された場合、それまでは400Vであったコンデンサ15の充電電圧は、電流制御回路3によるLED5への通電により放電されて360Vまで低下するが、充電電圧が360V以下となった時点でゲート駆動部35の動作が停止される。従って、電流制御回路3が停止し、コンデンサ15の充電電圧は約360Vで維持される。   That is, when the AC power supply is temporarily cut off due to an instantaneous power failure or the like, the charging voltage of the capacitor 15 which was 400 V until then is discharged by the energization of the LED 5 by the current control circuit 3 and decreases to 360 V. When the charging voltage becomes 360 V or less, the operation of the gate driving unit 35 is stopped. Therefore, the current control circuit 3 is stopped and the charging voltage of the capacitor 15 is maintained at about 360V.

一方、突入電流防止回路2のコンデンサ25の電圧が維持されていればトランジスタ22はオン状態が継続され得る。ここで、AC電源復帰時にAC−DC変換回路1の昇圧動作が継続しているものとすると、AC−DC変換回路1は設定値付近の約360Vから定格出力値の400Vまでの約40Vを回復する動作を行うだけであるので、コンデンサ15に流れ込む電流は従来技術におけるような突入電流に比べれば格段に小さい。   On the other hand, if the voltage of the capacitor 25 of the inrush current prevention circuit 2 is maintained, the transistor 22 can be kept on. Here, assuming that the boost operation of the AC-DC conversion circuit 1 continues when the AC power is restored, the AC-DC conversion circuit 1 recovers about 40 V from about 360 V near the set value to 400 V of the rated output value. Therefore, the current flowing into the capacitor 15 is much smaller than the inrush current as in the prior art.

設定値はAC−DC変換回路1の昇圧能力やコンデンサ15の容量を考慮して決定される。設定値は、AC−DC変換回路1の出力誤差の下限値以下とすることが望ましく、これにより放電抑制回路4の不要な動作を防止することができる。この出力誤差はゲート駆動部16に用いるゲート駆動ICの仕様によって決まることから、例えば、設定値は定格出力値の約95%以下であることが好ましい。また、本発明の効果をより発揮するために、設定値は定格出力値の約80%以上であることが好ましい。従って、設定値は定格出力値の80%以上95%以下程度であることが好ましく、90%程度が最も好ましい。なお、AC電源遮断時にコンデンサ15の電圧がLED5の順電圧(Vf)以下となれば負荷電流がなくなるのでコンデンサ15の電圧はそれ以上放電されないが、LED5のVfが定格出力値よりも大幅に低い場合はAC電源復帰時に突入電流が発生し得る。従って、設定値はLED5のVfより高い方が望ましい。   The set value is determined in consideration of the boosting capability of the AC-DC conversion circuit 1 and the capacitance of the capacitor 15. The set value is preferably set to be equal to or lower than the lower limit value of the output error of the AC-DC conversion circuit 1, thereby preventing unnecessary operation of the discharge suppression circuit 4. Since this output error is determined by the specification of the gate drive IC used for the gate drive unit 16, for example, the set value is preferably about 95% or less of the rated output value. In order to further demonstrate the effects of the present invention, the set value is preferably about 80% or more of the rated output value. Accordingly, the set value is preferably about 80% to 95% of the rated output value, and most preferably about 90%. Note that if the voltage of the capacitor 15 becomes equal to or lower than the forward voltage (Vf) of the LED 5 when the AC power is cut off, the load current disappears, so the voltage of the capacitor 15 is not discharged any more, but the Vf of the LED 5 is significantly lower than the rated output value. In such a case, an inrush current may occur when the AC power is restored. Accordingly, it is desirable that the set value is higher than Vf of the LED 5.

なお、AC電源復帰時にAC−DC変換回路1が非動作状態であれば、コンデンサ15の電圧(360V)はAC電源電圧のピーク電圧(141V又は282V)よりも高くダイオード14がオフ状態となるので、入力電流がコンデンサ15に流れ込むことはない。   If the AC-DC conversion circuit 1 is in an inoperative state when AC power is restored, the voltage (360 V) of the capacitor 15 is higher than the peak voltage (141 V or 282 V) of the AC power voltage, and the diode 14 is turned off. The input current does not flow into the capacitor 15.

また、AC電源が遮断後に充分に時間が経ってから復帰する場合(例えば、遮断期間が数秒以上の場合)には、突入電流防止回路2のコンデンサ25の電圧が抵抗26によって放電されているのでトランジスタ22はオフ状態となる。従って、AC−DC変換回路1、電流制御回路3及び放電抑制回路4の動作にかかわらず、突入電流防止回路2によって突入電流が防止される。   In addition, when the AC power supply returns after a sufficient time has elapsed after being shut off (for example, when the shutoff period is several seconds or more), the voltage of the capacitor 25 of the inrush current prevention circuit 2 is discharged by the resistor 26. The transistor 22 is turned off. Therefore, the inrush current is prevented by the inrush current prevention circuit 2 regardless of the operations of the AC-DC conversion circuit 1, the current control circuit 3, and the discharge suppression circuit 4.

また、さらに長い遮断期間(例えば、数分以上)においては、長時間にわたる高電圧の充電状態を防止するため、コンデンサ15の電圧は抵抗41及び42並びに抵抗45及び46により放電されることが望ましい。このように、検出部を構成する抵抗41及び42の直列抵抗回路や切替え部の動作電圧を生成するための抵抗45及び46の直列抵抗回路は、長時間的な視点におけるコンデンサ15の残電圧の放電回路としても機能する。但し、少なくともコンデンサ25の放電期間よりも長い期間にわたってコンデンサ15の電圧が設定値付近に留まる程度に抵抗41、42、45及び46を選定する必要がある。   Further, in a longer interruption period (for example, several minutes or more), the voltage of the capacitor 15 is preferably discharged by the resistors 41 and 42 and the resistors 45 and 46 in order to prevent a high voltage charged state for a long time. . As described above, the series resistance circuit of the resistors 41 and 42 constituting the detection unit and the series resistance circuit of the resistors 45 and 46 for generating the operating voltage of the switching unit have the remaining voltage of the capacitor 15 from a long-term viewpoint. It also functions as a discharge circuit. However, it is necessary to select the resistors 41, 42, 45, and 46 so that the voltage of the capacitor 15 stays in the vicinity of the set value for at least a period longer than the discharge period of the capacitor 25.

また、放電抑制回路4は、抵抗、ツェナーダイオード及びトランジスタからなるアナログ回路の代わりにマイコンで構成することもできる。例えば、抵抗41及び42によって検出された電圧をマイコンの入力ポートに入力し、検出電圧が所定値以下となった場合に出力ポートからゲート駆動部35に停止信号を出力するようにしてもよい。   Moreover, the discharge suppression circuit 4 can also be comprised with a microcomputer instead of the analog circuit which consists of resistance, a Zener diode, and a transistor. For example, a voltage detected by the resistors 41 and 42 may be input to the input port of the microcomputer, and a stop signal may be output from the output port to the gate driving unit 35 when the detected voltage becomes a predetermined value or less.

上記構成においては、検出充電電圧が設定値以下となったときに電流制御回路3の動作を停止させる構成を示したが、電流制御回路3の動作を完全に停止させない構成としてもよい。例えば、AC電源遮断中に、放電抑制回路4が電流制御回路3を間欠的に動作させたり、電流制御回路3を低出力状態(好ましくは最小出力状態)で動作させたりするようにしてもよい。例えば、負荷がLEDの場合、上記の間欠動作状態ではLEDが点滅され、低出力状態では調光点灯される。また、負荷が放電灯の場合、放電灯の寿命等の観点から点滅は好ましくないため、間欠動作ではなく低出力動作により調光点灯されるようにすればよい。これにより、コンデンサ15の電圧は設定値の上限値から下限値に向けて徐々に低下していく。   In the above configuration, the configuration in which the operation of the current control circuit 3 is stopped when the detected charging voltage becomes equal to or lower than the set value is shown. However, the configuration in which the operation of the current control circuit 3 is not completely stopped may be employed. For example, the discharge suppression circuit 4 may operate the current control circuit 3 intermittently or operate the current control circuit 3 in a low output state (preferably the minimum output state) while the AC power supply is shut off. . For example, when the load is an LED, the LED blinks in the intermittent operation state and is dimmed in the low output state. In addition, when the load is a discharge lamp, blinking is not preferable from the viewpoint of the life of the discharge lamp and the like, and it is only necessary to perform dimming lighting by a low output operation instead of an intermittent operation. Thereby, the voltage of the capacitor 15 gradually decreases from the upper limit value of the set value toward the lower limit value.

以上のように、本実施例の電源回路によると、AC電源が短時間遮断された場合でも放電抑制回路4がコンデンサ15からの放電を抑制することにより、AC電源復帰時のコンデンサ15への充電電流を軽減して突入電流防止回路2を保護することができる。また、突入電流防止回路2の保護だけでなく、コンデンサ15の充電経路上にある整流器11、ダイオード14等の回路部品も保護することができ、その他上述した突入電流に起因する種々の問題を回避することができる。   As described above, according to the power supply circuit of the present embodiment, even when the AC power supply is interrupted for a short time, the discharge suppression circuit 4 suppresses the discharge from the capacitor 15, thereby charging the capacitor 15 when the AC power supply is restored. The current can be reduced and the inrush current prevention circuit 2 can be protected. In addition to protecting the inrush current prevention circuit 2, circuit components such as the rectifier 11 and the diode 14 on the charging path of the capacitor 15 can be protected, and other various problems caused by the inrush current described above are avoided. can do.

ここで、AC電源遮断時に電流制御回路3が停止することによりLED5は消灯するが、LEDは高圧放電灯等と異なり、再点灯における特別なシーケンス(高電圧印加、立ち上がり制御等)は不要であるので、AC電源復帰時には単に電流制御回路3の動作を再開するだけでよい。また、AC電源が瞬時停電した場合にLED5が瞬停期間とほぼ同じ時間だけ消灯しても、使用者において視覚的な支障はほとんどない。従って、AC電源の瞬停期間にLED5を消灯することに問題はなく、言い換えると、本発明の電源回路の構成はLED照明装置に特に適したものといえる。   Here, the LED 5 is turned off by stopping the current control circuit 3 when the AC power supply is cut off. However, unlike the high pressure discharge lamp or the like, the LED does not require a special sequence (high voltage application, rise control, etc.) in relighting. Therefore, it is only necessary to restart the operation of the current control circuit 3 when the AC power is restored. Moreover, even if the LED 5 is turned off for almost the same time as the momentary power failure when the AC power supply is momentarily interrupted, there is almost no visual hindrance for the user. Therefore, there is no problem in turning off the LED 5 during the momentary power interruption of the AC power supply. In other words, the configuration of the power supply circuit of the present invention is particularly suitable for the LED lighting device.

図2に上記の電源回路を搭載したLED照明装置の概略構成を示す。LED照明装置は、AC電源から配線L1及びL2を介して給電される電源回路6、電源回路6の出力端に接続されたLED5、及び電源回路6を内包する筐体7を備える。なお、図2では電源回路6とLED5が一体化されたものを示しているが、LED5がケーブルを介して電源回路6及び筐体7から別置されるものであってもよい。   FIG. 2 shows a schematic configuration of an LED lighting device equipped with the above power supply circuit. The LED lighting device includes a power supply circuit 6 that is fed with power from an AC power supply via wirings L1 and L2, an LED 5 connected to an output end of the power supply circuit 6, and a housing 7 that encloses the power supply circuit 6. In FIG. 2, the power supply circuit 6 and the LED 5 are integrated, but the LED 5 may be separately provided from the power supply circuit 6 and the housing 7 via a cable.

このように、AC電源が瞬時停電した場合又はAC電源が一旦オフされた後に短時間でオンされた場合でも、AC電源復帰時にLED照明装置に大電流が流れるのが防止される。従って、AC電源復帰時の大電流による電源回路内の問題、即ち、回路部品故障、ヒューズ溶断だけでなく、電源回路外の問題、即ち、電源スイッチ接点の溶着、ブレーカの切断、電源電圧の不安定化及びそれに伴う(電源を共有する)他の機器などへの影響が防止される。   In this way, even when the AC power supply is momentarily interrupted or when the AC power supply is turned off for a short time after being turned off, a large current is prevented from flowing through the LED lighting device when the AC power supply is restored. Therefore, not only problems in the power supply circuit due to a large current when AC power is restored, that is, circuit component failure, fuse blown, but also problems outside the power supply circuit, that is, power switch contact welding, breaker disconnection, power supply voltage failure, etc. Stabilization and the accompanying influence on other devices (sharing power supply) are prevented.

変形例.
上記実施例では、突入電流防止回路として電流制限抵抗とそれに並列接続されたバイパス用トランジスタからなる構成を示したが、本変形例では他の突入電流防止回路としてサーミスタを用いる例を示す。図3に本変形例の回路構成図を示す。図1に示す実施例との相違は、突入電流防止回路2´がサーミスタ27からなる点である。なお、突入電流防止回路2´以外の構成は上記実施例と同様であるのでその説明を省略する。
Modified example.
In the above embodiment, a configuration including a current limiting resistor and a bypass transistor connected in parallel to the current limiting resistor is shown as the inrush current prevention circuit. FIG. 3 shows a circuit configuration diagram of this modification. The difference from the embodiment shown in FIG. 1 is that the inrush current prevention circuit 2 ′ is composed of a thermistor 27. Since the configuration other than the inrush current prevention circuit 2 'is the same as that of the above embodiment, the description thereof is omitted.

サーミスタ27は、温度の上昇に対して抵抗値が単調減少するNTCサーミスタからなる。従って、サーミスタ27はAC電源投入直後の低温状態では高抵抗であるのでコンデンサ15への入力電流を制限し、その後電流が流れることにより自己発熱して低抵抗となり、サーミスタ27の損失は小さくなる。ここで、AC電源が短時間停電した場合、その停電期間はサーミスタ27に電流が流れなくなるが、高温状態は維持されるので、サーミスタ27の抵抗値は大きくは上昇しない。   The thermistor 27 is an NTC thermistor whose resistance value monotonously decreases with increasing temperature. Therefore, the thermistor 27 has a high resistance in a low temperature state immediately after the AC power supply is turned on, so that the input current to the capacitor 15 is limited. Here, when the AC power supply fails for a short time, the current does not flow to the thermistor 27 during the power failure, but the high temperature state is maintained, so that the resistance value of the thermistor 27 does not increase greatly.

即ち、突入電流防止回路2´も突入電流防止回路2と同様に、サーミスタ27が低温状態で入力電流を制限する電流制限状態、及びサーミスタ27が高温状態で電流制限が解除された電流通過状態を有する。そして、入力電圧投入後のサーミスタ27の温度上昇期間内は電流制限状態が維持され、サーミスタ27の温度上昇期間経過後に電流通過状態となる。一方、入力電圧遮断後のサーミスタ27の温度低下期間内は電流通過状態が維持され、サーミスタ27の温度低下期間経過後に電流制限状態となる。従って、放電抑制回路4がないと仮定すると、図4に示す従来技術の場合と同様にAC電源復帰時にコンデンサ15への突入電流が発生してしまうことになる。   That is, the inrush current prevention circuit 2 ′, similarly to the inrush current prevention circuit 2, has a current limiting state in which the thermistor 27 limits the input current in a low temperature state and a current passing state in which the current limit is released in a high temperature state. Have. The current limit state is maintained during the temperature rise period of the thermistor 27 after the input voltage is turned on, and the current passing state is entered after the temperature rise period of the thermistor 27 has elapsed. On the other hand, the current passing state is maintained during the temperature drop period of the thermistor 27 after the input voltage is cut off, and the current limit state is entered after the temperature drop period of the thermistor 27 elapses. Therefore, assuming that the discharge suppression circuit 4 is not provided, an inrush current to the capacitor 15 occurs when the AC power is restored, as in the case of the prior art shown in FIG.

そこで、本変形例の電源回路も、AC電源の短時間停止時に上記実施例と同様に動作する放電抑制回路4を備える。なお、サーミスタ27の温度が低下して抵抗値が充分に高くなるのに要する時間は、実施例におけるコンデンサ25の電圧が抵抗26によって放電される時間(時定数)よりも長い。従って、突入電流防止回路2´が機能を回復するまで放電抑制回路4を機能させてコンデンサ15の放電を遅らせることが望ましい。AC電源停止時にコンデンサ15の放電をより遅らせるためには、抵抗41、42、45及び46の抵抗値を実施例の場合よりも高くし、又は設定値を高めに設定すればよい。但し、少なくともサーミスタ27の温度低下期間よりも長い期間にわたってコンデンサ15の電圧が設定値付近に留まる程度に抵抗41、42、45及び46を選定する必要がある。   Therefore, the power supply circuit of this modification also includes a discharge suppression circuit 4 that operates in the same manner as in the above embodiment when the AC power supply is stopped for a short time. The time required for the temperature of the thermistor 27 to decrease and the resistance value to be sufficiently high is longer than the time (time constant) in which the voltage of the capacitor 25 is discharged by the resistor 26 in the embodiment. Therefore, it is desirable to delay the discharge of the capacitor 15 by causing the discharge suppression circuit 4 to function until the inrush current prevention circuit 2 ′ recovers its function. In order to further delay the discharging of the capacitor 15 when the AC power supply is stopped, the resistance values of the resistors 41, 42, 45 and 46 may be set higher than those in the embodiment or set to a higher value. However, it is necessary to select the resistors 41, 42, 45, and 46 so that the voltage of the capacitor 15 stays near the set value for at least a period longer than the temperature decrease period of the thermistor 27.

このように、本変形例の電源回路によると、AC電源が短時間遮断された場合でも放電抑制回路4がコンデンサ15からの放電を抑制することにより、AC電源復帰時のコンデンサ15への充電電流を軽減できる。これにより、コンデンサ15の充電経路上にある整流器11、ダイオード14等の回路部品を保護することができ、その他上述した突入電流に起因する種々の問題を回避することができる。   As described above, according to the power supply circuit of this modification, even when the AC power supply is interrupted for a short time, the discharge suppression circuit 4 suppresses the discharge from the capacitor 15, thereby charging the capacitor 15 when the AC power supply is restored. Can be reduced. Thereby, circuit components such as the rectifier 11 and the diode 14 on the charging path of the capacitor 15 can be protected, and various problems caused by the inrush current described above can be avoided.

なお、上記実施例及び変形例においては本発明の最も好適な例を示したが、本発明は以下のように変形可能である。
例えば、上記実施例及び変形例では、入力電源をAC電源としたが、DC電源の場合にも本発明を適用できる。この場合、AC−DC変換回路1は周知の構成のDC−DC変換回路に置き換えられる。
In the above-described embodiments and modifications, the most preferred examples of the present invention have been shown. However, the present invention can be modified as follows.
For example, in the above-described embodiments and modifications, the input power supply is an AC power supply, but the present invention can also be applied to a DC power supply. In this case, the AC-DC conversion circuit 1 is replaced with a DC-DC conversion circuit having a known configuration.

また、上記実施例及び変形例では、突入電流制御回路2及び2´の電流制限抵抗21及びサーミスタ27が充電経路の高電位側に挿入される構成を示したが、電流制限抵抗21又はサーミスタ27が充電経路の低電位側(グランドライン側)に挿入される構成としてもよい。即ち、突入電流抑制回路は、実施例又は変形例で示した構成に限られず、AC電源投入時に平滑用コンデンサ15への電流の流入を制限した後に所定の時定数をもってその制限を解除するような充電抑制回路であればよい。また、上記実施例では、突入電流抑制回路2をN型のトランジスタ22を用いて構成したが、P型のトランジスタを用いて構成してもよい。   Moreover, in the said Example and modification, although the current limiting resistance 21 and the thermistor 27 of the inrush current control circuits 2 and 2 'were shown inserted into the high potential side of the charging path, the current limiting resistance 21 or the thermistor 27 is shown. May be inserted on the low potential side (ground line side) of the charging path. In other words, the inrush current suppressing circuit is not limited to the configuration shown in the embodiment or the modified example, and after the current flowing into the smoothing capacitor 15 is restricted when the AC power is turned on, the restriction is released with a predetermined time constant. Any charging suppression circuit may be used. In the above embodiment, the inrush current suppression circuit 2 is configured using the N-type transistor 22, but may be configured using a P-type transistor.

また、上記実施例及び変形例では、電流制御回路3を降圧チョッパ回路としたが、フライバックコンバータ等の他の回路形式のものであってもよい。また、電流制御回路3として、負荷に応じて降圧回路、昇圧回路、交流変換回路等を適用することができる。例えば、負荷が蛍光灯等の交流点灯用の放電灯である場合には、電流制御回路3はブリッジ回路等のDC−AC変換回路となる。即ち、本発明における電流制御回路3は、動作することにより、平滑用コンデンサ15の充電電圧を負荷側に放電するものであればよい。   Moreover, in the said Example and modification, although the current control circuit 3 was made into the step-down chopper circuit, the thing of other circuit formats, such as a flyback converter, may be sufficient. As the current control circuit 3, a step-down circuit, a step-up circuit, an AC conversion circuit, or the like can be applied depending on the load. For example, when the load is a discharge lamp for AC lighting such as a fluorescent lamp, the current control circuit 3 is a DC-AC conversion circuit such as a bridge circuit. That is, the current control circuit 3 according to the present invention only needs to discharge the charging voltage of the smoothing capacitor 15 to the load side by operating.

1.AC−DC変換回路(直流変換回路)
2、2´.突入電流防止回路(充電抑制回路)
3.電流制御回路
4.放電抑制回路
5.LED(負荷)
6.電源回路
7.筐体
15.コンデンサ
21.電流制限抵抗
22.トランジスタ
23.ゲート駆動部
24、26.抵抗
25.コンデンサ
27.サーミスタ
41、42、45、46.抵抗
43.ツェナーダイオード
44、47.トランジスタ
1. AC-DC conversion circuit (DC conversion circuit)
2, 2 '. Inrush current prevention circuit (charge suppression circuit)
3. 3. Current control circuit 4. Discharge suppression circuit LED (load)
6). 6. Power supply circuit Housing 15. Capacitor 21. Current limiting resistor 22. Transistor 23. Gate driver 24, 26. Resistance 25. Capacitor 27. Thermistors 41, 42, 45, 46. Resistance 43. Zener diodes 44, 47. Transistor

Claims (5)

LEDを負荷とする電源回路であって、
入力電圧を定格出力値に変換して第1のコンデンサに充電する直流変換回路、
前記第1のコンデンサの充電電圧から前記LEDへの負荷電流を生成するための電流制御回路、
前記第1のコンデンサの充電経路に挿入された充電抑制回路であって、入力電流を制限する電流制限状態及び該制限が解除された電流通過状態を有し、入力電圧遮断後の所定期間は該電流通過状態が維持されるように構成された充電抑制回路、及び
前記充電電圧が、前記LEDの順電圧Vfよりも高く設定された設定値以下になると前記電流制御回路の動作を停止させて前記第1のコンデンサの放電を抑制する放電抑制回路
を備えた電源回路。
The LED A power circuit to a load,
A DC conversion circuit that converts the input voltage into a rated output value and charges the first capacitor;
Current control circuit for generating a load current to the charging voltage or al the LED of the first capacitor,
A charge suppression circuit inserted in a charging path of the first capacitor, having a current limiting state for limiting an input current and a current passing state for releasing the limitation; charging inhibition circuit current passing state is configured to be maintained, and the charging voltage, stops the operation of the current control circuits to become less high set setpoint than the forward voltage Vf of the LED A power supply circuit comprising a discharge suppression circuit that suppresses discharge of the first capacitor.
請求項1に記載の電源回路において、前記充電抑制回路が抵抗、トランジスタ、該トランジスタを駆動する駆動部、及び第2のコンデンサを有し、該抵抗が前記充電経路に挿入され、該トランジスタの入力端子及び出力端子が該抵抗の両端子にそれぞれ接続され、該第2のコンデンサが該トランジスタの制御端子と該出力端子の間の電圧を保持するように接続され、該駆動部が前記入力電圧を受けて該第2のコンデンサを充電し、該第2のコンデンサの電圧が閾値以上の場合に該入力端子と該出力端子が導通するよう構成された電源回路。   2. The power supply circuit according to claim 1, wherein the charge suppression circuit includes a resistor, a transistor, a driving unit that drives the transistor, and a second capacitor, and the resistor is inserted into the charging path, and the input of the transistor A terminal and an output terminal are respectively connected to both terminals of the resistor, the second capacitor is connected to hold a voltage between the control terminal of the transistor and the output terminal, and the drive unit supplies the input voltage A power supply circuit configured to receive and charge the second capacitor and to conduct the input terminal and the output terminal when the voltage of the second capacitor is equal to or higher than a threshold value; 請求項1に記載の電源回路において、前記設定値が前記定格出力値の80%以上95%以下である電源回路。   The power supply circuit according to claim 1, wherein the set value is 80% or more and 95% or less of the rated output value. 請求項1から3いずれか一項に記載の電源回路、該電源回路の前記電流制御回路の出力端に接続された前記LED、及び該電源回路を内包するとともに該LEDが取り付けられた筐体を備えたLED照明装置。 A power supply circuit according to claim 1 or al 3 have shifted or claim, wherein the LED is mounted with enclosing said L ED connected to the output terminal of the current control circuit of the power supply circuit, and a power supply circuit LED lighting device provided with a housing. 放電灯を負荷とする電源回路であって、A power supply circuit having a discharge lamp as a load,
入力電圧を定格出力値に変換して第1のコンデンサに充電する直流変換回路、A DC conversion circuit that converts the input voltage into a rated output value and charges the first capacitor;
前記第1のコンデンサの充電電圧から前記放電灯への負荷電流を生成するための電流制御回路、A current control circuit for generating a load current to the discharge lamp from a charging voltage of the first capacitor;
前記第1のコンデンサの充電経路に挿入された充電抑制回路であって、入力電流を制限する電流制限状態及び該制限が解除された電流通過状態を有し、入力電圧遮断後の所定期間は該電流通過状態が維持されるように構成された充電抑制回路、及びA charge suppression circuit inserted in a charging path of the first capacitor, having a current limiting state for limiting an input current and a current passing state for releasing the limitation; A charge suppression circuit configured to maintain a current passing state; and
前記充電電圧が設定値以下になると前記電流制御回路に負荷電流を低減させて前記放電灯を調光点灯するとともに前記第1のコンデンサの放電を抑制する放電抑制回路A discharge suppression circuit that reduces the load current in the current control circuit when the charge voltage becomes a set value or less to dimm the discharge lamp and suppress the discharge of the first capacitor.
を備えた電源回路。Power supply circuit with
JP2012093639A 2012-04-17 2012-04-17 Power supply circuit and LED lighting device using the same Active JP5929457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012093639A JP5929457B2 (en) 2012-04-17 2012-04-17 Power supply circuit and LED lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012093639A JP5929457B2 (en) 2012-04-17 2012-04-17 Power supply circuit and LED lighting device using the same

Publications (2)

Publication Number Publication Date
JP2013222607A JP2013222607A (en) 2013-10-28
JP5929457B2 true JP5929457B2 (en) 2016-06-08

Family

ID=49593443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012093639A Active JP5929457B2 (en) 2012-04-17 2012-04-17 Power supply circuit and LED lighting device using the same

Country Status (1)

Country Link
JP (1) JP5929457B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015088402A (en) * 2013-11-01 2015-05-07 エヌ・ティ・ティ・アドバンステクノロジ株式会社 Lighting apparatus
JP6273642B2 (en) * 2013-12-16 2018-02-07 パナソニックIpマネジメント株式会社 LED lighting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316640A (en) * 1992-05-11 1993-11-26 Sanyo Electric Co Ltd Power converter
JP3564694B2 (en) * 1998-04-03 2004-09-15 横河電機株式会社 Inrush current suppressor
JP2003158877A (en) * 2001-11-19 2003-05-30 Origin Electric Co Ltd Dc power unit
JP2004362942A (en) * 2003-06-04 2004-12-24 Toshiba Lighting & Technology Corp Discharge lamp lighting device and lighting system
JP5300337B2 (en) * 2008-06-11 2013-09-25 三菱電機株式会社 Power supply device and lighting fixture
JP5279796B2 (en) * 2010-10-29 2013-09-04 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP2013222607A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
JP5052590B2 (en) Power supply circuit and lighting device
JP6106890B2 (en) Switching power supply for LED lighting
TWM513378U (en) Input dropping and output holding circuit
JP6171724B2 (en) LED power supply device and LED lighting device
TW201108856A (en) Driving circuit and controller for controlling the same
JP6332629B2 (en) LED power supply and LED lighting device
JP5929457B2 (en) Power supply circuit and LED lighting device using the same
JP6491414B2 (en) Vehicular lamp driving device and vehicular lamp driving method
US9439262B2 (en) LED drive device
JP5578323B2 (en) LED lighting device and LED lighting device
JP2018088789A (en) Led power supply device
JP2018073742A (en) Power supply device for lighting and lighting device
JP6171754B2 (en) LED lighting device and LED lighting device
US9276492B2 (en) Circuit to keep electronic transformers working while under-loaded
JP2017016979A (en) Hot-swap protection circuit, and constant current power supply device
JP5632732B2 (en) Light emitting diode lighting device and lighting device using the light emitting diode lighting device
JP6900830B2 (en) LED lighting circuit and LED lighting device
JP6528605B2 (en) Power supply circuit, lighting device
JP5393277B2 (en) Power supply device and lighting device
JP2017216086A (en) Lighting device and light fitting
JP5483419B2 (en) Inrush current prevention circuit for switch circuit
JP7380174B2 (en) Lighting devices and luminaires
JP6804993B2 (en) Power supply device and lighting device equipped with this power supply device
JP7444009B2 (en) Lighting devices and luminaires
TWI666969B (en) Power supply device and lighting device provided with the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130801

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929457

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350