JP5929003B2 - Method for estimating cleaning effect of cooling water line in refrigeration system - Google Patents

Method for estimating cleaning effect of cooling water line in refrigeration system Download PDF

Info

Publication number
JP5929003B2
JP5929003B2 JP2011072524A JP2011072524A JP5929003B2 JP 5929003 B2 JP5929003 B2 JP 5929003B2 JP 2011072524 A JP2011072524 A JP 2011072524A JP 2011072524 A JP2011072524 A JP 2011072524A JP 5929003 B2 JP5929003 B2 JP 5929003B2
Authority
JP
Japan
Prior art keywords
cleaning
cooling water
energy consumption
refrigeration system
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011072524A
Other languages
Japanese (ja)
Other versions
JP2012207833A (en
Inventor
義尚 岸根
義尚 岸根
福江 晋
晋 福江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2011072524A priority Critical patent/JP5929003B2/en
Publication of JP2012207833A publication Critical patent/JP2012207833A/en
Application granted granted Critical
Publication of JP5929003B2 publication Critical patent/JP5929003B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、圧縮式冷凍機又は吸収式冷凍機を備えた冷凍システムにおける冷却水ラインの洗浄効果を推定する方法に関するものである。   The present invention relates to a method for estimating a cleaning effect of a cooling water line in a refrigeration system including a compression refrigerator or an absorption refrigerator.

各種工場、ビル等では、冷凍機等の各種の熱交換器を含む水系が設けられ、冷却水と被冷却体とを熱交換器を介して接触させて、被冷却体を冷却(場合により潜熱を奪うのみのものも含む)している。例えば、ビル等に設けられた冷凍機では被冷却体としてフロンや水等の冷媒が用いられ、また、冷凍機以外でも、例えばコンビナート等では各種熱交換器が使用され、被冷却体として、空気、油性物質、各種有機物が用いられている。   In various factories, buildings, etc., water systems including various heat exchangers such as refrigerators are provided, and cooling water and the object to be cooled are brought into contact with each other through the heat exchanger to cool the object to be cooled (in some cases, latent heat is used). Including those that only take away). For example, in a refrigerator provided in a building or the like, a refrigerant such as chlorofluorocarbon or water is used as an object to be cooled, and in addition to the refrigerator, for example, various heat exchangers are used in a complex or the like. Oily substances and various organic substances are used.

冷凍機等の熱交換器を含む系のうち、これら被冷却体の凝縮を伴うものは凝縮器と称され、被冷却体の凝縮を伴わないものは冷却器と称される。   Among the systems including a heat exchanger such as a refrigerator, those which are accompanied by condensation of the object to be cooled are called condensers, and those which are not accompanied by condensation of the object to be cooled are called coolers.

以下においては、主に凝縮を伴う圧縮式冷凍機を例示して説明を行うが、本発明は圧縮式冷凍機に限らず、熱交換器全般に適用可能である。   In the following, a description will be given mainly by illustrating a compression type refrigerator with condensation, but the present invention is not limited to the compression type refrigerator and can be applied to general heat exchangers.

近年、冷却水系においては、節水を図るために、冷却水がより高濃縮、低流速で運転されるようになってきているが、このような運転条件下では、冷却水の蒸発に伴うイオン成分が濃縮し、スケールが析出して冷凍機内に付着することがある。また、微生物が冷却水中で繁殖し、スライムが冷凍機内に付着することもある。   In recent years, in cooling water systems, in order to save water, cooling water has been operated at a higher concentration and lower flow rate. Under such operating conditions, ionic components accompanying evaporation of cooling water Concentrates and scale may deposit and adhere to the refrigerator. In addition, microorganisms may propagate in the cooling water and slime may adhere to the refrigerator.

このようなスケールやスライム等の汚れの付着により、被冷却体から冷却水への伝熱が阻害される。これにより、凝縮器においては、被冷却体凝縮量が減少する、圧力が上昇する、被冷却体温度が上昇し、圧縮機の負荷が上昇し、高圧カット(一定以上で圧縮機が停止する。)に到る、等の事態が生じることがある。また、冷凍能力が低下し、消費電力量が増加するため、エネルギー効率が低下する。   Due to the adhesion of dirt such as scale and slime, heat transfer from the cooled object to the cooling water is hindered. As a result, in the condenser, the amount of the object to be cooled decreases, the pressure rises, the temperature of the object to be cooled rises, the load on the compressor rises, and the high pressure cut (the compressor stops at a certain level or more). ) May occur. Moreover, since the refrigerating capacity is reduced and the power consumption is increased, the energy efficiency is lowered.

このため、冷凍機においては、汚れの付着状況を正確に推定し、その状況に応じて、冷却水にスケール洗浄剤やスライム洗浄剤を適切に添加して、洗浄を行なう必要がある。   For this reason, in the refrigerator, it is necessary to accurately estimate the state of adhesion of dirt and perform cleaning by appropriately adding a scale cleaner or a slime cleaner to the cooling water according to the situation.

特許文献1の通り、冷凍機の熱交換効率を知る指標として、U値(総括伝熱係数)や汚れ係数があるが、計算が煩雑である。また、単位が[℃]ではなく、これらの値のみから、直ちに高圧カットに到るか否かを判断することは難しい。更に、この判断を行うためには、汚れが付着していない正常な状態での計測値が必要となる。   As disclosed in Patent Document 1, as an index for knowing the heat exchange efficiency of a refrigerator, there are a U value (overall heat transfer coefficient) and a fouling coefficient, but the calculation is complicated. Further, it is difficult to determine whether or not the high pressure cut is reached immediately from only these values, not the unit [° C.]. Further, in order to make this determination, a measurement value in a normal state where dirt is not attached is necessary.

このため、特許文献2に記載の通り、実際には、下記式で求められるLTD(Leaving Temperature Difference)やATD(Approach Temperature Difference)が用いられている。   For this reason, as described in Patent Document 2, an LTD (Leaving Temperature Difference) or ATD (Approach Temperature Difference) obtained by the following equation is actually used.

LTD=被冷却体の冷却後の温度−冷却水出口温度
ATD=被冷却体の冷却後の温度−冷却水入口温度
この被冷却体の冷却後の温度は、被冷却体の熱交換器出口温度として測定することができる。
LTD = temperature after cooling of the object to be cooled−cooling water outlet temperature ATD = temperature after cooling of the object to be cooled−cooling water inlet temperature The temperature after cooling of the object to be cooled is the heat exchanger outlet temperature of the object to be cooled. Can be measured as

一般に、圧縮式冷凍機では、熱交換が不十分になると被冷却体の冷却後の温度(この場合凝縮温度)が上昇し、一定レベルを超えると高圧カットを引き起こし、稼働不能となるため、LTD,ATDで状況を判断することが可能である。即ち、上記2式から、ATD=LTD+(冷却水出口温度−冷却水入口温度)の関係式が得られ、これから求められるATD(又はLTD)は温度を単位とするため、この温度と既知の被冷却体凝縮温度とを比較することにより、高圧カットが生じるか否かを直ちに判断することができる。   Generally, in a compression refrigerator, if the heat exchange is insufficient, the temperature after cooling of the cooled object (condensation temperature in this case) rises, and if it exceeds a certain level, it causes a high-pressure cut and becomes inoperable. , ATD can determine the situation. That is, a relational expression of ATD = LTD + (cooling water outlet temperature−cooling water inlet temperature) is obtained from the above two formulas, and the ATD (or LTD) obtained from this is in units of temperature. By comparing the cooling body condensing temperature, it can be immediately determined whether or not a high pressure cut occurs.

なお、このATD,LTDは、汚れの他に負荷変動の影響を強く受けるところから、特許文献2には、このLTD,ATDを補正し、補正LTD値又は補正ATD値と基準値とを比較して熱交換器の汚れを評価することが記載されている。   Since the ATD and LTD are strongly affected by load fluctuations in addition to dirt, Patent Document 2 corrects the LTD and ATD, and compares the corrected LTD value or the corrected ATD value with a reference value. It is described that the contamination of the heat exchanger is evaluated.

特開2003−322494JP 2003-322494 A 特開平7−218188JP-A-7-218188

熱交換器の汚れ状態を推定する指標値としてLTD,ATDおよび補正LTD、補正ATDを用いる方法では、汚れ状態を推定することはできるが、冷却水ラインを洗浄するとどの程度のメリットがあるかは直ちには認識することができない。   In the method using LTD, ATD, correction LTD, and correction ATD as index values for estimating the contamination state of the heat exchanger, it is possible to estimate the contamination state, but what is the merit of cleaning the cooling water line? It cannot be recognized immediately.

本発明は、冷凍システムの冷却水ラインを洗浄すると、消費エネルギーやCO排出量をどの程度削減することができるか推定することができる、洗浄効果推定方法を提供することを目的とする。 An object of the present invention is to provide a cleaning effect estimation method capable of estimating how much energy consumption and CO 2 emission can be reduced by cleaning a cooling water line of a refrigeration system.

請求項1の冷凍システムにおける冷却水ラインの洗浄効果推定方法は、圧縮機、凝縮器及び蒸発器を備えた圧縮式冷凍機、又は再生器、凝縮器、蒸発器及び吸収器を有した吸収式冷凍機を有する冷凍システムにおける洗浄効果推定方法であって、前記凝縮器に冷却水を循環流通させる冷却水ラインを洗浄した場合の効果を推定する方法において、既設の第1の冷凍システムについてその冷却水ラインの洗浄前後で、負荷および消費エネルギー項目をそれぞれ計測し、該計測値からLTDを算出してデータを蓄積し、別箇所に設置された同一メーカーの同一型番の第2の冷凍システムの冷却水ラインを洗浄する前にその負荷及び消費エネルギー項目を測定し前記第1の冷凍システムの負荷と、洗浄前後のLTDと、洗浄前後の消費エネルギーと、定格消費エネルギーと、冷水入口温度及び出口温度と、定格冷水温度差とを求め、洗浄効果係数を
洗浄効果係数=[(洗浄前の消費エネルギー)−(洗浄後の消費エネルギー)]/[定格消費エネルギー]/[冷水負荷率]/[(洗浄前のLTD)−(洗浄後のLTD)]
……(4)
(但し、[冷水負荷率]=[(冷水入口温度)−(冷水出口温度)]/[定格冷水温度差])
にて算出し、
前記第2の冷凍システムについては、(4)式にこの算出された洗浄効果係数値を代入し、また(洗浄後のLTD)については第1の冷凍システムの前記洗浄後のLTD値(標準LTD値)を代入し、(4)式のその他の値については前記第2の冷凍システムの冷却水ラインを洗浄する前にその負荷及び消費エネルギー項目を測定した測定値を代入し、これによって洗浄後の消費エネルギーを(4)式から算出し、洗浄前の消費エネルギーと、算出した洗浄後の消費エネルギーとの差から消費エネルギー削減量を求めることを特徴とするものである。
The method for estimating the cleaning effect of the cooling water line in the refrigeration system according to claim 1 is a compression type refrigerator having a compressor, a condenser and an evaporator, or an absorption type having a regenerator, a condenser, an evaporator and an absorber. A method for estimating a cleaning effect in a refrigeration system having a refrigerator, wherein the cooling effect is estimated for an existing first refrigeration system in a method for estimating an effect when a cooling water line for circulating cooling water through the condenser is circulated. Before and after cleaning the water line, measure the load and energy consumption items, calculate the LTD from the measured value, accumulate the data, and cool the second refrigeration system of the same model of the same manufacturer installed in another location the load and energy consumption item before washing water line is measured and the a load of the first refrigeration system, and before and after washing LTD, energy consumption before and after washing Calculate the rated energy consumption, the cold water inlet / outlet temperature, and the rated cold water temperature difference, and set the cleaning effect coefficient to the cleaning effect coefficient = [(consumed energy before cleaning)-(consumed energy after cleaning)] / [rated Energy consumption] / [Cooling water load factor] / [(LTD before washing) − (LTD after washing)]
...... (4)
(However, [Cooling water load factor] = [(Cooling water inlet temperature) − (Cooling water outlet temperature)] / [Rated chilled water temperature difference])
Calculated by
For the second refrigeration system, the calculated cleaning effect coefficient value is substituted into the equation (4), and for the (LTD after cleaning), the LTD value after cleaning of the first refrigeration system (standard LTD) assigns a value), (4) other for value by substituting the measured values obtained by measuring the load and energy consumption items before cleaning the cooling water line of the second refrigeration system type, whereby after washing Is calculated from the equation (4), and the amount of energy consumption reduction is obtained from the difference between the energy consumption before cleaning and the calculated energy consumption after cleaning .

請求項2の冷凍システムにおける冷却水ラインの洗浄効果推定方法は、請求項1において、前記消費エネルギー削減量から、削減される電力コスト又はCO排出量を計算することを特徴とするものである。 The method for estimating the cleaning effect of the cooling water line in the refrigeration system according to claim 2 is characterized in that, in claim 1, the reduced power cost or CO 2 emission amount is calculated from the energy consumption reduction amount. .

圧縮機、凝縮器、膨張弁及び蒸発器を備えた圧縮式冷凍機においては、圧縮機で圧縮された蒸気が凝縮器で冷却され、膨張弁等を経て蒸発器で蒸発し、冷媒と熱交換した後、圧縮機に戻る。   In a compression type refrigerator equipped with a compressor, a condenser, an expansion valve and an evaporator, the steam compressed by the compressor is cooled by the condenser, evaporated through the expansion valve, etc., and exchanged with the refrigerant. After that, it returns to the compressor.

凝縮器の冷却水ラインには冷却水が通水されており、この冷却水は該ラインに設けられた冷却塔などによって冷却される。この冷却水ラインの汚れが増加してくると、LTDが大きくなってくる。   Cooling water is passed through the cooling water line of the condenser, and this cooling water is cooled by a cooling tower or the like provided in the line. As the contamination of the cooling water line increases, the LTD increases.

吸収式冷凍機の場合は、再生器で加熱されて気化した蒸気を凝縮器で冷却して凝縮させ、この凝縮水を蒸発器に供給する。この凝縮器に設けられた冷却水ラインの汚れが増加してくると、LTDが大きくなってくる。   In the case of an absorption chiller, the vapor heated and vaporized by the regenerator is cooled and condensed by the condenser, and this condensed water is supplied to the evaporator. When the contamination of the cooling water line provided in the condenser increases, the LTD increases.

従って、このLTDが大きくなってきた場合には、冷却水ラインの洗浄を行う必要が生じてくるが、どの程度までLTDが大きくなったならば洗浄を行うべきであるかについては、洗浄を行うことによりどの程度LTDが低下してどの程度の経済的効果が得られるかということと、洗浄に要するコストとを比較して洗浄の時期を設定するのが好ましい。   Therefore, when the LTD becomes large, it becomes necessary to clean the cooling water line. However, to what extent the LTD should be cleaned, the cleaning is performed. Therefore, it is preferable to set the timing of cleaning by comparing how much the LTD is reduced and how much economic effect is obtained, and the cost required for cleaning.

本発明では、例えば、ある冷凍機メーカーのある型番の冷凍機の実機について実際に洗浄を行い、どの程度LTDが小さくなるかを冷凍機負荷との関係において把握し、データを蓄積する。   In the present invention, for example, an actual machine of a refrigerator of a certain model of a certain refrigerator manufacturer is actually cleaned, and how much the LTD is reduced is grasped in relation to the refrigerator load, and data is accumulated.

そして、別箇所に設置された同一メーカーの同一型番の冷凍機について、現状のLTDと負荷を蓄積データにあてはめ、洗浄を行うとどの程度LTDが小さくなり、それによりどの程度の経済的効果が得られるかを試算する。   Then, for the same model refrigerators of the same manufacturer installed in different locations, the current LTD and load are applied to the accumulated data, and how much the LTD is reduced by washing, thereby obtaining the economic effect. Estimate whether it is possible.

このようにして、本発明によれば、冷却水ラインの洗浄の技術的効果(LTDの低下)と経済的効果との双方を推定することができる。   In this way, according to the present invention, it is possible to estimate both the technical effect (decrease in LTD) and the economic effect of cleaning the cooling water line.

圧縮式冷凍システムのフロー図である。It is a flowchart of a compression-type refrigeration system. 本発明方法を実施するためのシステムのブロック図である。1 is a block diagram of a system for carrying out the method of the present invention. 本発明方法を実施するためのシステムのブロック図である。1 is a block diagram of a system for carrying out the method of the present invention. 本発明方法を実施するためのシステムのブロック図である。1 is a block diagram of a system for carrying out the method of the present invention.

以下、本発明についてさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail.

図1は圧縮式冷凍システムの一例を示すフロー図である。冷凍機1は、圧縮機2によって媒体(例えばHFC(ハイドロフルオロカーボン)系、HCFC(ハイドロクロロフルオロカーボン)系、CFC(クロロフルオロカーボン)系)を圧縮し、凝縮器3に導き、凝縮させる。凝縮器3の伝熱管(冷却コイル)3aには、冷却塔6で冷却された冷却水がポンプ7を介して循環通水される。   FIG. 1 is a flowchart showing an example of a compression refrigeration system. The refrigerator 1 compresses a medium (for example, an HFC (hydrofluorocarbon) system, an HCFC (hydrochlorofluorocarbon) system, or a CFC (chlorofluorocarbon) system) by a compressor 2, and guides it to a condenser 3 for condensation. The cooling water cooled by the cooling tower 6 is circulated through the heat transfer tube (cooling coil) 3 a of the condenser 3 through the pump 7.

凝縮した液は、膨張弁4を介して蒸発器5に導入され、蒸発して断熱膨張し、伝熱コイル5a内を流れる冷媒(この実施の形態では水)を冷却する。蒸気は圧縮機2に送られ、再び圧縮される。伝熱コイル5aには、負荷体9で熱交換器して昇温した水がポンプ8を介して通水され、冷却された冷水が負荷体9に循環通水される。伝熱管3a、冷却塔6、ポンプ7、及び配管類によって冷却水ラインが構成されている。   The condensed liquid is introduced into the evaporator 5 via the expansion valve 4, evaporates and adiabatically expands, and cools the refrigerant (water in this embodiment) flowing in the heat transfer coil 5 a. The steam is sent to the compressor 2 and compressed again. The heat transfer coil 5 a is supplied with water heated by a heat exchanger with the load body 9 through the pump 8, and the cooled cold water is circulated through the load body 9. A cooling water line is constituted by the heat transfer tube 3a, the cooling tower 6, the pump 7, and the piping.

は蒸発器5への冷水の流入温度、Tはその流出温度、Tは凝縮器3の冷却水流入温度、Tは凝縮器3の冷却水流出温度、Tは凝縮器3の媒体流入温度、Tは凝縮器3の媒体流出温度である。LTD=T−Tである。冷水温度差ΔT=T−Tである。 T a is the inflow temperature of cold water to the evaporator 5, T b is the outflow temperature thereof, T c is the inflow temperature of cooling water in the condenser 3, T d is the outflow temperature of cooling water in the condenser 3, and Te is the condenser 3 The medium inflow temperature Tf is the medium outflow temperature of the condenser 3. LTD = TfTd . Cold water temperature difference ΔT = T a −T b .

なお、冷却水ラインの洗浄を行うには、例えば洗浄剤を循環冷却水ラインに添加すればよい。冷却水ラインの洗浄は、ライン全体について行ってもよく、伝熱管3aについてのみ行ってもよい。   In order to wash the cooling water line, for example, a cleaning agent may be added to the circulating cooling water line. The cooling water line may be cleaned for the entire line or only for the heat transfer tube 3a.

本発明では、既設のある冷凍機メーカー(A)のある型番(B)の冷凍機(定格消費電力WkW、定格冷水温度差ΔT℃)の洗浄を行う前に、この冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tおよび消費電力Wを計測する。このときのLTDの値LTDを次式(1)により計算する。 LTD=[冷媒凝縮温度]−[冷却水出口温度]
=T−T ……(1)
In the present invention, before washing an existing refrigerator manufacturer (A) with a model number (B) (rated power consumption W 0 kW, rated cold water temperature difference ΔT 0 ° C.), the refrigerator is cooled. The water inlet temperature T c , the cooling water outlet temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , the refrigerant condensing temperature T f and the power consumption W 1 are measured. The value LTD 1 of the LTD at this time is calculated by the following equation (1). LTD 1 = [refrigerant condensing temperature] − [cooling water outlet temperature]
= Tf - Td (1)

また、次式によりこのときの冷水負荷率CLを求める。
[冷水負荷率CL]=[冷水入口温度−冷水出口温度]/[定格冷水温度差]
=(T−T)/ΔT …(2)
Further, the following equation obtains the cold load factor CL 1 at this time.
[Chilled water load factor CL 1 ] = [Cold water inlet temperature−Cold water outlet temperature] / [Rated chilled water temperature difference]
= (T a -T b ) / ΔT 0 (2)

次に冷却水ラインの洗浄を行い、その後、冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tおよび消費電力Wを計測し、このときのLTDおよび冷水負荷率の値LTD,CLを上記式(1),(2)と同様にして求める。洗浄後のLTDを標準LTDと称することとする。 Next, the cooling water line is washed, and then the cooling water inlet temperature T c , the cooling water outlet temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , the refrigerant condensing temperature T f, and the power consumption W. 2 is measured, and the LTD and the cold water load factor values LTD 2 and CL 2 at this time are obtained in the same manner as the above formulas (1) and (2). The LTD 2 after washing will be referred to as standard LTD.

また、洗浄前後のLTDの差ΔLTDを次式(3)により求める。
ΔLTD=洗浄前のLTD−洗浄後のLTD
=LTD−LTD ……(3)
Further, the difference ΔLTD between the LTD before and after the cleaning is obtained by the following equation (3).
ΔLTD = LTD before washing−LTD after washing
= LTD 1 -LTD 2 (3)

さらに、次式により洗浄効果係数Eを求める。
洗浄効果係数E=[(洗浄前の消費エネルギー)−(洗浄後の消費エネルギー)]/[定格消費エネルギー]/[冷水負荷率CL]/[LTDの差]
=(W−W)/W/CL/ΔLTD ……(4)
Moreover, obtaining a cleaning effect coefficient E 1 by the following equation.
Cleaning effect coefficient E 1 = [(energy consumption before cleaning) − (energy consumption after cleaning)] / [rated energy consumption] / [chilled water load factor CL 1 ] / [LTD difference]
= (W 1 −W 2 ) / W 0 / CL 1 / ΔLTD (4)

このようにして求めた洗浄効果係数Eを次のデータと共にデータベースに記録する。
メーカー型式
定格消費エネルギー:W
定格冷水温度差:ΔT
標準LTD:LTD
Thus to the cleaning effect coefficient E 1 obtained to record in a database with the following data.
Manufacturer model Rated energy consumption: W 0
Rated cold water temperature difference: ΔT 0
Standard LTD: LTD 2

以上の作業を、種々のメーカーの冷凍機の型番ごとに同様に行ってデータを第2図の如くデータベースaに蓄積する。また、第3図の如く別のデータベースbには各エネルギー供給事業者名と、そのCO排出原単位(この場合0.324kg−CO/kWhとする。)を記録する。
エネルギー供給事業者:S電力
CO排出原単位:0.324kg−CO/kWh
The above operation is similarly performed for each model number of refrigerators of various manufacturers, and data is accumulated in the database a as shown in FIG. Further, as shown in FIG. 3, the name of each energy supplier and its CO 2 emission basic unit (in this case, 0.324 kg-CO 2 / kWh) are recorded in another database b.
Energy supplier: S power CO 2 emission intensity: 0.324 kg-CO 2 / kWh

別箇所に設置されたまだ洗浄を行っていない冷凍機(A社製、型番B)について、冷却水ラインの洗浄効果を推定するに際しては、当該冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tを計測し、このときのLTDの値LTDを計測する。 When estimating the cooling effect of the cooling water line for a refrigerator that has not been cleaned yet (model number B) installed in another location, the cooling water inlet temperature T c of the refrigerator, the cooling water outlet The temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , and the refrigerant condensing temperature T f are measured, and the LTD value LTD x at this time is measured.

そして、データベースに蓄積したA社B型冷凍機に関する次の蓄積データ
定格消費エネルギー:W
定格冷水温度差:ΔT
標準LTD:LTD
洗浄効果係数:E
を読み出す。そして、洗浄により低下することが期待できるLTDの値ΔLTDexpを次式により求める。
ΔLTDexp=[計測したLTD]−[標準LTD]
=LTD−LTD ……(5)
And the following accumulation data about company A type B refrigerator accumulated in the database Rated energy consumption: W 0
Rated cold water temperature difference: ΔT 0
Standard LTD: LTD 2
Detergency coefficient: E 1
Is read. Then, an LTD value ΔLTD exp that can be expected to decrease due to cleaning is obtained by the following equation.
ΔLTD exp = [measured LTD] − [standard LTD]
= LTD x -LTD 2 (5)

また、前記式(2)より、この場合の冷水負荷率CLを今回のT、T値に基づいて、CL=(T−T)/ΔTにて求める。 Further, from the above equation (2), the cold water load factor CL x in this case is obtained by CL x = (T a −T b ) / ΔT 0 based on the current T a and T b values.

洗浄により削減が期待できる消費エネルギーを次式(6)により計算する。
[洗浄により削減が期待できる消費エネルギー]=[定格消費エネルギー]×[洗浄により低下することが期待できるLTD]×[洗浄効果係数]×[冷水負荷]…(6)
=W・ΔLTDexp・E・CL
The energy consumption that can be expected to be reduced by cleaning is calculated by the following equation (6).
[Energy consumption that can be expected to be reduced by cleaning] = [Rated energy consumption] × [LTD that can be expected to decrease by cleaning] × [Coefficient of cleaning effect] × [Cooling water load] (6)
= W 0 · ΔLTD exp · E 1 · CL x

当該冷凍機の稼働率と、洗浄により削減が期待できる1ヶ月あたりの消費エネルギーと、電力単価とに基づいて、洗浄により削減が期待できる1ヶ月あたりの電力料金を計算することができる。また、CO排出原単位に基づいて、洗浄により削減が期待できる1ヶ月あたりのCO排出量を計算することができる。第4図はこの作業のフロー図である。 Based on the operating rate of the refrigerator, the energy consumption per month that can be expected to be reduced by cleaning, and the unit price of electric power, it is possible to calculate the power rate per month that can be expected to be reduced by cleaning. Further, based on the CO 2 emission basic unit, the CO 2 emission amount per month that can be expected to be reduced by cleaning can be calculated. FIG. 4 is a flowchart of this work.

このように、過去に洗浄及び計測したことがあるメーカー及び型式の冷凍機であれば、別箇所に設置されたそれと同型の冷凍機について各温度を計測することにより、冷凍機の洗浄によって期待できる省エネルギー量を推定することができる。   In this way, if it is a manufacturer and type of refrigerator that has been cleaned and measured in the past, it can be expected by washing the refrigerator by measuring each temperature for the same type of refrigerator installed in another location. The amount of energy saving can be estimated.

なお、洗浄効果係数Eを経験値から利用することにより、洗浄効果係数が未知の異型番の冷凍機を対象とする場合であっても、ある程度の精度で洗浄による省エネルギー量を推定することができる。 It should be noted that by using the cleaning effect coefficient E 1 based on empirical values, it is possible to estimate the energy saving amount due to cleaning with a certain degree of accuracy even when a refrigerator with a different model number whose cleaning effect coefficient is unknown is targeted. it can.

上記説明は圧縮式冷凍機に関するものであるが、ガス、燃料油や蒸気などを熱源とした再生器を有する吸収式冷凍システムにも適用できる。   Although the above description relates to a compression refrigerator, it can also be applied to an absorption refrigeration system having a regenerator using gas, fuel oil, steam or the like as a heat source.

[実施例1]
ある企業Pが所有する実稼動しているA社製B型ターボ冷凍機(定格消費エネルギーW=500kW、定格冷水温度差ΔT=5.0℃)の洗浄を行い、データ蓄積を行った。
[Example 1]
A company-owned B-type centrifugal chiller manufactured by company A owned by a company P (rated energy consumption W 0 = 500 kW, rated cold water temperature difference ΔT 0 = 5.0 ° C.) was washed and data was accumulated. .

洗浄を行う前に、ターボ冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tおよび消費電力Wを計測した結果、各計測値は32.0℃、35.0℃、10.0℃、7.0℃、39.5℃、500kWであった。 Before performing the washing, cooling water inlet temperature T c of the turbo chiller, the cooling water outlet temperature T d, the cold water inlet temperature T a, coolant outlet temperature T e, the result of measuring the refrigerant condensing temperature T f and the power consumption W 1 The measured values were 32.0 ° C., 35.0 ° C., 10.0 ° C., 7.0 ° C., 39.5 ° C., and 500 kW.

(1)式によりLTDを計算すると、次式の通り4.5℃であった。
LTD=[冷媒凝縮温度]−[冷却水出口温度] ……(1)
=39.5−35.0=4.5(℃)
When LTD 1 was calculated by the formula (1), it was 4.5 ° C. as shown in the following formula.
LTD 1 = [refrigerant condensation temperature] − [cooling water outlet temperature] (1)
= 39.5-35.0 = 4.5 (° C)

また、(2)式により冷水負荷率CLを求めると、
CL=[(冷水入口温度)−(冷水出口温度)]/[定格冷水温度差]……(2)
=(10.0−7.0)/5.0=0.6
であった。
Further, when the cold water load factor CL 1 is obtained by the equation (2),
CL 1 = [(cold water inlet temperature) − (cold water outlet temperature)] / [rated cold water temperature difference] (2)
= (10.0-7.0) /5.0=0.6
Met.

次に洗浄を行い、その後、ターボ冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tおよび消費電力Wを計測した結果、各計測値は32.0℃、35.0℃、10.0℃、7.0℃、35.5℃、464kWであった。 Next, cleaning is performed, and then the cooling water inlet temperature T c , the cooling water outlet temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , the refrigerant condensing temperature T f, and the power consumption W 2 are measured. As a result, each measured value was 32.0 ° C., 35.0 ° C., 10.0 ° C., 7.0 ° C., 35.5 ° C., and 464 kW.

(1)式により、この洗浄後のLTDを計算すると、LTD=35.5−35.0=0.5℃であった。洗浄後のLTD(LTD)が標準LTDである。 When the LTD 2 after this washing was calculated by the equation (1), LTD 2 = 35.5-35.0 = 0.5 ° C. LTD after washing (LTD 2 ) is the standard LTD.

また、(2)式により洗浄後の冷水負荷率CLを求めると、CL=(10.0−7.0)/5.0=0.6であった。 Further, when obtaining the cold load factor CL 2 after washing by (2) was CL 2 = (10.0-7.0) /5.0=0.6.

洗浄前後のLTDの差ΔLTDを(3)式により求めると、
ΔLTD=[洗浄前のLTD]−[洗浄後のLTD]……(3)
=4.5−0.5=4.0
であった。
When the difference ΔLTD of the LTD before and after cleaning is obtained by the equation (3),
ΔLTD = [LTD 1 before washing] − [LTD 2 after washing] (3)
= 4.5-0.5 = 4.0
Met.

ΔLTDと消費エネルギーから、(4)式により洗浄効果係数Eを求めると、
洗浄効果係数E=[(洗浄前の消費エネルギー)−(洗浄後の消費エネルギー)]/[定格消費エネルギー]/[冷水負荷率]/[ΔLTD]……(4)
=(500−464)/500/0.6/4=0.03
であった。
From the ΔLTD and the energy consumption, the cleaning effect coefficient E 1 is obtained by the equation (4).
Cleaning effect coefficient E 1 = [(energy consumption before cleaning) − (energy consumption after cleaning)] / [rated energy consumption] / [chilled water load factor] / [ΔLTD] (4)
= (500-464) /500/0.6/4=0.03
Met.

上記で求めた各値を次の通りデータベースaに記録した。
メーカー型式:A社B型ターボ冷凍機
定格消費エネルギー:500kW
定格冷水温度差:5.0℃
標準LTD:0.5℃
洗浄効果係数:0.03
Each value obtained above was recorded in the database a as follows.
Manufacturer model: Company A type B turbo refrigerator Rated energy consumption: 500 kW
Rated cold water temperature difference: 5.0 ° C
Standard LTD: 0.5 ° C
Cleaning effect coefficient: 0.03

また、別のデータベースbには各エネルギー供給事業者のCO排出原単位を記録した。この地域では、次の通りであった。
エネルギー供給事業者:S電力
CO排出原単位:0.324kg−CO/kWh
In another database b, the CO 2 emission intensity of each energy supplier was recorded. In this area:
Energy supplier: S power CO 2 emission intensity: 0.324 kg-CO 2 / kWh

その後、別の企業Qが所有する上記と同一型式のA社B型ターボ冷凍機の洗浄効果を次のようにして推定した。   Thereafter, the cleaning effect of the same type A company B type turbo chiller owned by another company Q was estimated as follows.

ターボ冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tを計測した結果、各計測値は32.0℃、35.5℃、10.5℃、7.0℃、39.0℃であった。 As a result of measuring the cooling water inlet temperature T c , the cooling water outlet temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , and the refrigerant condensing temperature T f of the turbo refrigerator, each measured value is 32.0 ° C., 35 It was 0.5 ° C, 10.5 ° C, 7.0 ° C, and 39.0 ° C.

(1)式によりこの場合のLTDを計測すると、LTD=39.0−35.5=3.5℃であった。データベースaからA社B型ターボ冷凍機に関するデータを検索すると次のデータが得られる。
定格消費エネルギー:500kW
定格冷水温度差:5.0℃
標準LTD:0.5℃
洗浄効果係数:0.03
When the LTD x in this case was measured by the equation (1), LTD x = 39.0-35.5 = 3.5 ° C. The following data is obtained by searching for data related to Company A type B centrifugal chiller from database a.
Rated energy consumption: 500kW
Rated cold water temperature difference: 5.0 ° C
Standard LTD: 0.5 ° C
Cleaning effect coefficient: 0.03

このように、データベースaからA社B型ターボ冷凍機の標準LTDが0.5℃であり、洗浄効果係数が0.03であることが得られる。式(5)より、洗浄により低下することが期待できるLTDである、ΔLTDexp
ΔLTDexp=[計測したLTD]−[標準LTD]
=3.5−0.5=3.0(℃)
であった。
Thus, it can be obtained from the database a that the standard LTD of Company A type B centrifugal chiller is 0.5 ° C. and the cleaning effect coefficient is 0.03. From the formula (5), ΔLTD exp , which is an LTD that can be expected to be reduced by washing, is ΔLTD exp = [measured LTD] − [standard LTD]
= 3.5-0.5 = 3.0 (° C.)
Met.

(2)式より、冷水負荷率CLを求めると、CL=(10.5−7.0)/5.0=0.7であった。 When the cold water load factor CL x was obtained from the equation (2), it was CL x = (10.5−7.0) /5.0=0.7.

(6)式より、洗浄により削減が期待できる消費エネルギーは、次の通り、
[洗浄により削減が期待できる消費エネルギー]=[定格消費エネルギー]×[洗浄により低下することが期待できるLTD]×[洗浄効果係数]×[冷水負荷率]
=500×3.0×0.03×0.7=31.5kW
であった。
From equation (6), the energy consumption expected to be reduced by cleaning is as follows:
[Energy consumption that can be expected to be reduced by washing] = [Rated energy consumption] × [LTD that can be expected to be reduced by washing] × [Coefficient of cleaning effect] × [Cooling water load factor]
= 500 x 3.0 x 0.03 x 0.7 = 31.5 kW
Met.

当該冷凍機の稼働率は1.0であったので、洗浄により削減が期待できる1ヶ月あたりの消費エネルギーは、31.5kW×24時間×30日×1.0=22,680kWhであった。   Since the operating rate of the refrigerator was 1.0, the energy consumption per month that could be expected to be reduced by washing was 31.5 kW × 24 hours × 30 days × 1.0 = 22,680 kWh.

この企業Qの電力単価は10円/kWhであったので、洗浄により削減が期待できる1ヶ月あたりの電力料金は22,680kWh×10円/kWh=226,800円であった。   Since the unit price of electricity for company Q was 10 yen / kWh, the monthly electricity charge that can be expected to be reduced by washing was 22,680 kWh × 10 yen / kWh = 226,800 yen.

この企業へのエネルギー供給事業者はS電力であったので、S電力のCO排出原単位をデータベースbから検索した。 Since the energy supplier to this company was S power, the CO 2 emission intensity of S power was searched from the database b.

検索の結果S電力のCO排出原単位は0.324kg−CO/kWhであることが得られたので、洗浄により削減が期待できる1ヶ月あたりのCO排出量は、22,680kWh×0.324kg−CO/kWh=7348.32kg−COであった。このように、Q社での洗浄前の冷凍機の各温度を測定し、P社での実績データからQ社での洗浄によるLTD低下及び経済的メリットを推定することができた。 As a result of the search, it was found that the CO 2 emission basic unit of S power was 0.324 kg-CO 2 / kWh, so the CO 2 emission amount per month that can be expected to be reduced by cleaning is 22,680 kWh × 0. was .324kg-CO 2 /kWh=7348.32kg-CO 2. Thus, each temperature of the refrigerator before washing | cleaning in Q company was measured, and the LTD fall by the washing | cleaning in Q company and an economic merit could be estimated from the performance data in P company.

[参考例1]
別の企業Rが所有するC社D型ターボ冷凍機(定格消費エネルギー500kW、定格冷水温度差5.0℃)の洗浄を行う前に、ターボ冷凍機の冷却水入口温度T、冷却水出口温度T、冷水入口温度T、冷水出口温度T、冷媒凝縮温度Tおよび消費電力Wを計測した結果、各計測値は32.0℃、35.0℃、10.0℃、7.0℃、39.5℃、500kWであった。
[Reference Example 1]
Before cleaning company C's D-type turbo chiller (rated energy consumption 500 kW, rated chilled water temperature difference 5.0 ° C) owned by another company R, the cooling water inlet temperature T c , cooling water outlet of the turbo chiller As a result of measuring the temperature T d , the cold water inlet temperature T a , the cold water outlet temperature T b , the refrigerant condensing temperature T f and the power consumption W 1 , each measured value is 32.0 ° C., 35.0 ° C., 10.0 ° C., 7.0 ° C., 39.5 ° C., and 500 kW.

(1)式によりLTDを計算すると、LTD=39.5−35.0=4.5℃であった。 When LTD 1 was calculated by the equation (1), LTD 1 = 39.5-35.0 = 4.5 ° C.

また、(2)式により冷水負荷率CLを求めると、CL=(10.0−7.0)/5.0=0.6であった。 Further, when obtaining the cold load factor CL 1 by (2) was CL 1 = (10.0-7.0) /5.0=0.6.

次に洗浄を行い、その後、ターボ冷凍機の冷却水出口温度、冷却水出口温度、冷水入口温度、冷水出口温度、冷媒凝縮温度および消費電力を計測した結果、各計測値は32.0℃、35.0℃、10.0℃、7.0℃、35.5℃、464kWであった。   Next, after washing, after measuring the cooling water outlet temperature, the cooling water outlet temperature, the cold water inlet temperature, the cold water outlet temperature, the refrigerant condensing temperature and the power consumption of the turbo refrigerator, each measured value is 32.0 ° C, They were 35.0 degreeC, 10.0 degreeC, 7.0 degreeC, 35.5 degreeC, and 464 kW.

(1)式によりLTDを計算すると、LTD=35.5−35.0=0.5℃であった。この洗浄後のLTDが標準LTDである。 When LTD 2 was calculated by the formula (1), LTD 2 = 35.5-35.0 = 0.5 ° C. LTD 2 after this wash is the standard LTD.

また、(2)式により冷水負荷率CLを求めると、CL=(12.0−7.0)/5.0=0.6であった。 Further, when obtaining the cold load factor CL 2 by (2) was CL 2 = (12.0-7.0) /5.0=0.6.

洗浄前後のLTDの差ΔLTDを(3)式により求めると、ΔLTD=4.5−0.5=4.0(℃)であった。   The difference ΔLTD between the LTD before and after the cleaning was determined by the equation (3), and was ΔLTD = 4.5−0.5 = 4.0 (° C.).

(6)式より、洗浄により削減が期待できる消費エネルギーは500×4.0×0.03×0.6=36.0kWであった。なお、洗浄効果係数Eについては、冷凍機型式が異なるが、前記の値を準用して0.03とした。 From formula (6), the energy consumption that can be expected to be reduced by cleaning was 500 × 4.0 × 0.03 × 0.6 = 36.0 kW. Incidentally, the cleaning effect factor E 1 is refrigerator type is different, was 0.03 mutatis mutandis the value.

当該冷凍機の稼働率は1.0であったので、洗浄により削減が期待できる1ヶ月あたりの消費エネルギーは、36.0kW×24時間×30日×1.0=25,920kWhであった。   Since the operating rate of the refrigerator was 1.0, the energy consumption per month that could be expected to be reduced by washing was 36.0 kW × 24 hours × 30 days × 1.0 = 25,920 kWh.

この企業Rの電力単価は10円/kWhであったので、洗浄により削減が期待できる1ヶ月あたりの電力料金は25,920kWh×10円/kWh=259,200円であった。   Since the power unit price of this company R was 10 yen / kWh, the monthly power charge that can be expected to be reduced by washing was 25,920 kWh × 10 yen / kWh = 259,200 yen.

この企業Rへのエネルギー供給事業者のCO排出原単位は0.324kg−CO/kWhであったので、洗浄により削減が期待できる1ヶ月あたりのCO排出量は、25,920kWh×0.324kg−CO/kWh=8398.08kg−COであった。 Since the CO 2 emission intensity of the energy supplier to this company R was 0.324 kg-CO 2 / kWh, the CO 2 emission per month that can be expected to be reduced by cleaning is 25,920 kWh × 0 was .324kg-CO 2 /kWh=8398.08kg-CO 2.

1 冷凍機
2 圧縮機
3 凝縮器
4 膨張弁
5 蒸発器
1 Refrigerator 2 Compressor 3 Condenser 4 Expansion Valve 5 Evaporator

Claims (2)

圧縮機、凝縮器及び蒸発器を備えた圧縮式冷凍機、又は再生器、凝縮器、蒸発器及び吸収器を有した吸収式冷凍機を有する冷凍システムにおける洗浄効果推定方法であって、
前記凝縮器に冷却水を循環流通させる冷却水ラインを洗浄した場合の効果を推定する方法において、
既設の第1の冷凍システムについてその冷却水ラインの洗浄前後で、負荷および消費エネルギー項目をそれぞれ計測し、該計測値からLTDを算出してデータを蓄積し、
別箇所に設置された同一メーカーの同一型番の第2の冷凍システムの冷却水ラインを洗浄する前にその負荷及び消費エネルギー項目を測定し
前記第1の冷凍システムの負荷と、洗浄前後のLTDと、洗浄前後の消費エネルギーと、定格消費エネルギーと、冷水入口温度及び出口温度と、定格冷水温度差とを求め、洗浄効果係数を
洗浄効果係数=[(洗浄前の消費エネルギー)−(洗浄後の消費エネルギー)]/[定格消費エネルギー]/[冷水負荷率]/[(洗浄前のLTD)−(洗浄後のLTD)]
……(4)
(但し、[冷水負荷率]=[(冷水入口温度)−(冷水出口温度)]/[定格冷水温度差])
にて算出し、
前記第2の冷凍システムについては、(4)式にこの算出された洗浄効果係数値を代入し、また(洗浄後のLTD)については第1の冷凍システムの前記洗浄後のLTD値(標準LTD値)を代入し、(4)式のその他の値については前記第2の冷凍システムの冷却水ラインを洗浄する前にその負荷及び消費エネルギー項目を測定した測定値を代入し、これによって洗浄後の消費エネルギーを(4)式から算出し、洗浄前の消費エネルギーと、算出した洗浄後の消費エネルギーとの差から消費エネルギー削減量を求めることを特徴とする冷凍システムにおける冷却水ラインの洗浄効果推定方法。
A method for estimating a cleaning effect in a refrigeration system having a compressor, a compressor, a compressor and a compressor, or an absorption refrigerator having a regenerator, a condenser, an evaporator and an absorber,
In the method of estimating the effect when washing the cooling water line for circulating cooling water through the condenser,
Before and after cleaning the cooling water line for the existing first refrigeration system, measure the load and energy consumption items, calculate the LTD from the measured values, accumulate data,
Before washing the cooling water line of the second refrigeration system of the same model of the same manufacturer installed in another location, measure its load and energy consumption items ,
Determine the load of the first refrigeration system, the LTD before and after cleaning, the energy consumption before and after cleaning, the rated energy consumption, the chilled water inlet temperature and outlet temperature, and the rated chilled water temperature difference to determine the cleaning effect coefficient Coefficient = [(energy consumption before cleaning) − (energy consumption after cleaning)] / [rated energy consumption] / [chilled water load factor] / [(LTD before cleaning) − (LTD after cleaning)]
...... (4)
(However, [Cooling water load factor] = [(Cooling water inlet temperature) − (Cooling water outlet temperature)] / [Rated chilled water temperature difference])
Calculated by
For the second refrigeration system, the calculated cleaning effect coefficient value is substituted into the equation (4), and for the (LTD after cleaning), the LTD value after cleaning of the first refrigeration system (standard LTD) assigns a value), (4) other for value by substituting the measured values obtained by measuring the load and energy consumption items before cleaning the cooling water line of the second refrigeration system type, whereby after washing The cooling effect of the cooling water line in the refrigeration system is characterized in that the energy consumption of the refrigeration system is calculated from the equation (4) and the energy consumption reduction amount is obtained from the difference between the energy consumption before the cleaning and the calculated energy consumption after the cleaning. Estimation method.
請求項1において、前記消費エネルギー削減量から、削減される電力コスト又はCO排出量を計算することを特徴とする冷凍システムにおける冷却水ラインの洗浄効果推定方法。 The method for estimating a cleaning effect of a cooling water line in a refrigeration system according to claim 1, wherein a power cost to be reduced or a CO 2 emission amount is calculated from the energy consumption reduction amount .
JP2011072524A 2011-03-29 2011-03-29 Method for estimating cleaning effect of cooling water line in refrigeration system Active JP5929003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011072524A JP5929003B2 (en) 2011-03-29 2011-03-29 Method for estimating cleaning effect of cooling water line in refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011072524A JP5929003B2 (en) 2011-03-29 2011-03-29 Method for estimating cleaning effect of cooling water line in refrigeration system

Publications (2)

Publication Number Publication Date
JP2012207833A JP2012207833A (en) 2012-10-25
JP5929003B2 true JP5929003B2 (en) 2016-06-01

Family

ID=47187729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011072524A Active JP5929003B2 (en) 2011-03-29 2011-03-29 Method for estimating cleaning effect of cooling water line in refrigeration system

Country Status (1)

Country Link
JP (1) JP5929003B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486898B (en) * 2013-09-13 2015-10-21 中国科学院工程热物理研究所 The automatic safety-control device of industrial afterheat recovery system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677187B2 (en) * 1994-02-04 1997-11-17 栗田工業株式会社 Method for estimating dirty state of heat exchanger and cleaning method
JP4186450B2 (en) * 2001-10-16 2008-11-26 株式会社日立製作所 Air conditioning equipment operation system and air conditioning equipment design support system

Also Published As

Publication number Publication date
JP2012207833A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
da Silva et al. Comparison of a R744 cascade refrigeration system with R404A and R22 conventional systems for supermarkets
JP4749369B2 (en) Refrigeration cycle apparatus failure diagnosis apparatus and refrigeration cycle apparatus equipped with the same
JP5699675B2 (en) Dirty evaluation method for cooling water line in refrigeration system
WO2019097822A1 (en) Performance diagnosis device and performance diagnosis method for air conditioner
JP5884283B2 (en) Dirty evaluation method for cooling water line in refrigeration system
WO2017006455A1 (en) Method for evaluating cleanliness of coolant line
Gao et al. Techno-economic and environmental analysis of low-GWP alternative refrigerants in cold storage unit under year-round working conditions
Deng et al. Thermoeconomic and environmental analysis of an inverter cold storage unit charged R448A
Han et al. Parametric study of a room air conditioner during defrosting cycle based on a modified defrosting model
Takalkar et al. Comprehensive performance analysis and optimization of 1, 3-dimethylimidazolylium dimethylphosphate-water binary mixture for a single effect absorption refrigeration system
JP5929003B2 (en) Method for estimating cleaning effect of cooling water line in refrigeration system
JP5366764B2 (en) Cooling device and refrigeration cycle device
Mota-Babiloni et al. Semi-empirical analysis of HFC supermarket refrigeration retrofit with advanced configurations from energy, environmental, and economic perspectives
JP5757131B2 (en) Method for monitoring contamination of cooling water line in refrigeration system
JP2677187B2 (en) Method for estimating dirty state of heat exchanger and cleaning method
Shen et al. Design and analysis of a suction pretreatment system for the air compressor
Dong et al. Exploring heating performance of gas engine heat pump with heat recovery
Aye et al. Electrical and engine driven heat pumps for effective utilisation of renewable energy resources
JP7187960B2 (en) Energy Loss Judgment Method for Refrigerator Systems
JP5900524B2 (en) Dirt evaluation method for cooling water line
JP2003314933A (en) Abnormality detecting device for heat pump heat exchanger
Pardiñas et al. Two-stage evaporator for R744 heat pumps using greywater as heat source
Song et al. Review on the optimization studies of reverse cycle defrosting for air source heat pump units with multi-circuit outdoor coils
JP2022044935A (en) Energy plant performance estimation device
Karampour et al. Supermarket refrigeration and heat recovery using CO2 as refrigerant: A comprehensive evaluation based on field measurements and modelling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160418

R150 Certificate of patent or registration of utility model

Ref document number: 5929003

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150