JP5928394B2 - Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe - Google Patents

Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe Download PDF

Info

Publication number
JP5928394B2
JP5928394B2 JP2013075007A JP2013075007A JP5928394B2 JP 5928394 B2 JP5928394 B2 JP 5928394B2 JP 2013075007 A JP2013075007 A JP 2013075007A JP 2013075007 A JP2013075007 A JP 2013075007A JP 5928394 B2 JP5928394 B2 JP 5928394B2
Authority
JP
Japan
Prior art keywords
hydrogen
steel
less
transformation point
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013075007A
Other languages
Japanese (ja)
Other versions
JP2014198878A (en
Inventor
彰英 長尾
彰英 長尾
▲高▼木 周作
周作 ▲高▼木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013075007A priority Critical patent/JP5928394B2/en
Publication of JP2014198878A publication Critical patent/JP2014198878A/en
Application granted granted Critical
Publication of JP5928394B2 publication Critical patent/JP5928394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、高圧水素環境中で優れた耐水素脆化特性を有する水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物、ならびにこれら水素用蓄圧器および水素用ラインパイプの製造方法に関する。   TECHNICAL FIELD The present invention relates to a steel structure for hydrogen, such as a hydrogen pressure accumulator and a hydrogen line pipe having excellent hydrogen embrittlement resistance in a high-pressure hydrogen environment, and a method for producing these hydrogen pressure accumulator and hydrogen line pipe. .

近年、クリーンなエネルギー源として、また、エネルギーの多様化の観点から、世界的に水素が大きく注目されている。特に、高圧水素ガスを燃料源とする燃料電池自動車に対する期待は大きく、燃料電池自動車の開発に関連した研究が世界的に広く進められており、一部では、すでに実用化試験まで行われている。   In recent years, hydrogen has attracted a great deal of attention worldwide as a clean energy source and from the viewpoint of energy diversification. In particular, there are high expectations for fuel cell vehicles that use high-pressure hydrogen gas as the fuel source, and research related to the development of fuel cell vehicles has been widely promoted worldwide, and some have already been put into practical use. .

燃料電池車はガソリンの代わりに水素をタンクに積んで走行するため、燃料電池自動車の普及のためには、ガソリンスタンドに代わって燃料補給を行う水素ステーションが必要となる。水素ステーションでは水素を高圧で貯蔵する水素用容器である水素用蓄圧器から車載の水素燃料タンクへ水素を充填する。車載の水素タンクへの充填最高圧力は、現状では35MPaであるが、航続距離をガソリン車並とするために、充填最高圧力を70MPaとすることが期待されており、このような高圧水素環境下で、水素を安全に貯蔵、供給することが要求される。そのため水素ステーションの水素用蓄圧器の圧力も現状では40MPaが要求されているが、さらに充填最高圧力を70MPaに上昇する場合、水素ステーションの水素用蓄圧器の圧力は80MPaが要求されることとなり、水素ステーションの水素用蓄圧器は80MPaの環境にさらされることになる。   Since a fuel cell vehicle travels with hydrogen stored in a tank instead of gasoline, a hydrogen station for refueling is required instead of a gas station in order to spread the fuel cell vehicle. In the hydrogen station, hydrogen is filled from a hydrogen pressure accumulator, which is a hydrogen container for storing hydrogen at a high pressure, into an on-vehicle hydrogen fuel tank. The maximum filling pressure in an on-vehicle hydrogen tank is currently 35 MPa, but it is expected that the maximum filling pressure is 70 MPa in order to make the cruising range comparable to that of a gasoline vehicle. Therefore, it is required to store and supply hydrogen safely. Therefore, although the pressure of the hydrogen pressure accumulator at the hydrogen station is currently required to be 40 MPa, when the maximum filling pressure is further increased to 70 MPa, the pressure of the hydrogen pressure accumulator at the hydrogen station is required to be 80 MPa, The hydrogen accumulator at the hydrogen station will be exposed to an 80 MPa environment.

一方、低合金鋼に水素が侵入すると脆化することが知られている。水素圧が15MPa程度までであれば、十分な肉厚を有する低合金鋼が用いられているが、それ以上の圧力では使用中に水素脆性破壊する危険性が高まるため、低合金鋼は使用されず、低合金鋼よりも水素脆化し難いSUS316L鋼等のオーステナイト系ステンレス鋼等が用いられている。   On the other hand, it is known that embrittlement occurs when hydrogen enters low alloy steel. If the hydrogen pressure is up to about 15 MPa, a low alloy steel having a sufficient thickness is used, but at higher pressures, the risk of hydrogen embrittlement failure during use increases, so low alloy steel is used. In addition, austenitic stainless steel such as SUS316L steel, which is less susceptible to hydrogen embrittlement than low alloy steel, is used.

しかし、SUS316L鋼等は鋼材のコストが高いことに加えて、強度が低いため、80MPaの水素圧に耐えうるように設計するためには、非常に肉厚が厚くなり、水素用蓄圧器そのものの価格も非常に高価となる。そのため、より低コストで80MPaの圧力に耐えうる水素ステーション用の水素用蓄圧器を開発することが要望されている。   However, since SUS316L steel has a low strength in addition to the high cost of the steel material, in order to design it to withstand the hydrogen pressure of 80 MPa, the wall thickness becomes very thick, and the hydrogen pressure accumulator itself The price is also very expensive. Therefore, it is desired to develop a hydrogen accumulator for a hydrogen station that can withstand a pressure of 80 MPa at a lower cost.

上記問題点を解決し、低合金鋼を高圧水素蓄圧器に適用するための技術が種々検討されている。特許文献1では、鋼中水素のトラップサイトとして、MnSやCa系介在物、またはVCを活用して非拡散性水素とし、拡散性水素による脆化を抑制する高圧水素環境用鋼が提案されている。特許文献2、3では、Cr−Mo鋼の調質処理において比較的高い温度で焼戻し処理をすることで引張強度を900〜950MPaの極めて狭い範囲に制御した、耐高圧水素環境脆化特性に優れた低合金高強度鋼が提案されている。特許文献4では、V−Mo系炭化物を活用し、焼戻し温度を高めることで耐水素環境脆化特性を向上した、高圧水素環境用低合金鋼が提案され、特許文献5では、MoとVを多量に添加し、鋼板製造時に焼準処理の後に長時間の応力除去焼鈍を施すことで、(Mo,V)Cを多量に析出させた耐水素性に優れた高圧水素ガス貯蔵容器用鋼が提案されている。特許文献6では、セメンタイトの微細化により水素侵入量を低減し母材靭性を向上させることにより水素脆化を抑制する技術が、特許文献7では、粗大セメンタイトおよび島状マルテンサイト(MA)の生成を抑制することにより、水素侵入と延性低下を抑制することにより水素脆化を抑制する技術が提案されている。なお、通常の低合金鋼についての疲労き裂進展特性については、非特許文献1、2等に記載されている。   Various techniques for solving the above problems and applying low alloy steel to a high pressure hydrogen accumulator have been studied. Patent Document 1 proposes a steel for high pressure hydrogen environment that uses MnS, Ca-based inclusions, or VC as non-diffusible hydrogen as a hydrogen trap site in steel and suppresses embrittlement due to diffusible hydrogen. Yes. In Patent Documents 2 and 3, the tensile strength is controlled to an extremely narrow range of 900 to 950 MPa by tempering at a relatively high temperature in the tempering treatment of Cr—Mo steel, and it has excellent high-pressure hydrogen environment embrittlement resistance. Low alloy high strength steels have been proposed. Patent Document 4 proposes a low-alloy steel for high-pressure hydrogen environment in which V-Mo-based carbides are utilized and the tempering temperature is increased to improve hydrogen embrittlement resistance, and in Patent Document 5, Mo and V are combined. Proposed steel for high-pressure hydrogen gas storage vessel with excellent hydrogen resistance by adding a large amount and applying stress-relief annealing for a long time after the normalizing treatment during steel plate production. Has been. In Patent Document 6, a technique for suppressing hydrogen embrittlement by reducing the amount of hydrogen intrusion and improving the base material toughness by refining cementite, and Patent Document 7 generates coarse cementite and island martensite (MA). A technique for suppressing hydrogen embrittlement by suppressing hydrogen intrusion and ductility reduction has been proposed. Note that the fatigue crack growth characteristics of ordinary low alloy steels are described in Non-Patent Documents 1 and 2, etc.

特開2005−2386号公報Japanese Patent Laying-Open No. 2005-2386 特開2009−46737号公報JP 2009-46737 A 特開2009−275249号公報JP 2009-275249 A 特開2009−74122号公報JP 2009-74122 A 特開2010−37655号公報JP 2010-37655 A 特開2012−107332号公報JP 2012-107332 A 特開2012−107333号公報JP 2012-107333 A

和田洋流著:「水素エネルギーシステム」,Vol.35,No.4(2010),p.38〜44Wada Yoryu: “Hydrogen Energy System”, Vol. 35, no. 4 (2010), p. 38-44 宮本泰介ら著:「日本機械学会論文集(A編)」,78巻,788号(2012),p.531〜546Taisuke Miyamoto et al .: “The Transactions of the Japan Society of Mechanical Engineers (Part A)”, 78, 788 (2012), p. 531 to 546

特に高圧水素環境下で使用する水素用蓄圧器では、繰り返し水素の充填を行うことにより、容器に繰返し応力がかかるため、長期間の使用寿命を確保することが難しかった。使用寿命を長期間化する上では、疲労き裂進展速度を低減することが重要である。しかしながら、上記したような従来技術では、疲労き裂進展速度を十分に低下させることはできなかった。   In particular, in a hydrogen pressure accumulator used in a high-pressure hydrogen environment, it is difficult to secure a long-term service life because repeated stress is applied to the container by repeatedly filling with hydrogen. In order to extend the service life, it is important to reduce the fatigue crack growth rate. However, the conventional techniques as described above cannot sufficiently reduce the fatigue crack growth rate.

また、水素用パイプラインで使用される水素用ラインパイプ等、現状では必ずしも水素用蓄圧器ほどの高圧水素環境下にはない水素用鋼構造物についても、水素用蓄圧器と同程度の安全性を確保できることが望ましい。   In addition, hydrogen steel pipes used in hydrogen pipelines and other steel structures that are not always in a high-pressure hydrogen environment as high as hydrogen accumulators are as safe as hydrogen accumulators. It is desirable to be able to ensure.

本発明は、上記の現状に鑑み開発されたもので、従来鋼より高圧水素環境中での疲労き裂進展速度を低下させた、優れた耐水素脆化特性を有する水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を提供することを目的とする。   The present invention has been developed in view of the above-mentioned present situation, and has a hydrogen accumulator and hydrogen-resistant hydrogen having excellent hydrogen embrittlement resistance, which has a lower fatigue crack growth rate in a high-pressure hydrogen environment than conventional steels. It aims at providing the steel structure for hydrogen, such as a line pipe.

本発明者らは、上記の観点で様々な組織形態を有する水素用鋼構造物の高圧水素ガス中における耐水素脆化特性を慎重に調べた結果、鋼組織を所定量のマルテンサイトを有し残部を実質的にベイナイトとする、すなわち鋼組織を実質的にベイナイトおよびマルテンサイトの二相組織とすることによって、単相組織の従来材よりも高圧水素ガス中での耐水素脆化特性を向上でき、耐水素脆化特性に優れた水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得ることができることを見出した。   As a result of careful examination of hydrogen embrittlement resistance in high-pressure hydrogen gas of a steel structure for hydrogen having various structure forms from the above viewpoint, the present inventors have found that the steel structure has a predetermined amount of martensite. Improves hydrogen embrittlement resistance in high-pressure hydrogen gas than conventional materials with a single-phase structure by making the balance substantially bainite, that is, making the steel structure substantially a two-phase structure of bainite and martensite. It has been found that hydrogen steel structures such as hydrogen pressure accumulators and hydrogen line pipes having excellent hydrogen embrittlement resistance can be obtained.

本発明は、かかる新たな知見に基づき、更に検討を加えてなされたものであって、以下を要旨構成とする。   The present invention has been made on the basis of such new findings and has been further studied.

[1]マルテンサイトの面積率が10〜95%であり、残部が実質的にベイナイトからなる鋼組織を有する高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。   [1] A steel structure for hydrogen having excellent martensitic area resistance in high-pressure hydrogen gas in a high-pressure hydrogen gas having a steel structure in which the area ratio of martensite is 10 to 95% and the balance is substantially composed of bainite.

[2]質量%で、C:0.10〜0.50%、Si:0.05〜0.5%、Mn:0.5〜2.0%、Al:0.01〜0.10%、N:0.0005〜0.008%、P:0.05%以下、S:0.01%以下、O:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有することを特徴とする、前記[1]に記載の水素用鋼構造物。   [2] By mass%, C: 0.10 to 0.50%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.10% , N: 0.0005 to 0.008%, P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, with the balance being Fe and inevitable impurities The steel structure for hydrogen according to the above [1], comprising:

[3]さらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜2.0%、Cr:0.1〜2.5%、Mo:0.05〜2.0%、Nb:0.005〜0.1%、V:0.005〜0.2%、Ti:0.005〜0.1%、W:0.05〜2.0%、B:0.0005〜0.005%の一種または二種以上を含有する鋼組成を有することを特徴とする、前記[2]に記載の水素用鋼構造物。   [3] Further, in terms of mass%, Cu: 0.05 to 1.0%, Ni: 0.05 to 2.0%, Cr: 0.1 to 2.5%, Mo: 0.05 to 2.%. 0%, Nb: 0.005-0.1%, V: 0.005-0.2%, Ti: 0.005-0.1%, W: 0.05-2.0%, B: 0 The steel structure for hydrogen according to [2] above, which has a steel composition containing one or more of 0.0005 to 0.005%.

[4]さらに、質量%で、Nd:0.005〜1.0%、Ca:0.0005〜0.005%、Mg:0.0005〜0.005%、REM:0.0005〜0.005%の一種または二種以上を含有する鋼組成を有することを特徴とする、前記[2]または[3]に記載の水素用鋼構造物。   [4] Further, in terms of mass%, Nd: 0.005-1.0%, Ca: 0.0005-0.005%, Mg: 0.0005-0.005%, REM: 0.0005-0. The steel structure for hydrogen according to the above [2] or [3], which has a steel composition containing one or more of 005%.

[5]前記水素用鋼構造物が、水素用蓄圧器あるいは水素用ラインパイプである、前記[1]ないし[4]のいずれか一つに記載の水素用鋼構造物。   [5] The hydrogen steel structure according to any one of [1] to [4], wherein the hydrogen steel structure is a hydrogen pressure accumulator or a hydrogen line pipe.

[6]前記[5]に記載する水素用ラインパイプの製造方法であって、前記[2]〜[4]のいずれかに記載の鋼組成を有する鋼素材を、Ac変態点以上に加熱し、熱間圧延後、引続きAr変態点以上から冷却速度1〜200℃/sで600℃以下の温度まで冷却することを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用ラインパイプの製造方法。 [6] The method for producing a hydrogen line pipe according to [5], wherein the steel material having the steel composition according to any one of [2] to [4] is heated to an Ac 3 transformation point or higher. And after hot rolling, it was excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, characterized in that it was continuously cooled from the Ar 3 transformation point or higher to a temperature of 600 ° C. or lower at a cooling rate of 1 to 200 ° C./s. Manufacturing method of hydrogen line pipe.

[7]前記[5]に記載する水素用ラインパイプの製造方法であって、前記[2]〜[4]のいずれかに記載の鋼組成を有する鋼素材を、Ac変態点以上に加熱し、熱間圧延後、引続きAr変態点以上から冷却速度1〜200℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻すことを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用ラインパイプの製造方法。 [7] The method for producing a hydrogen line pipe according to [5], wherein the steel material having the steel composition according to any one of [2] to [4] is heated to an Ac 3 transformation point or higher. Then, after hot rolling, the high pressure hydrogen is characterized in that it is continuously quenched from the Ar 3 transformation point or higher to a temperature of 250 ° C. or lower at a cooling rate of 1 to 200 ° C./s, and subsequently tempered at a temperature below the Ac 1 transformation point. A method for producing a hydrogen line pipe with excellent hydrogen embrittlement resistance in gas.

[8]前記[5]に記載する水素用蓄圧器の製造方法であって、前記[2]〜[4]のいずれかに記載の鋼組成を有する鋼材を所定の形状に成形後、Ac変態点以上に加熱し、引続きAr変態点以上から冷却速度0.5〜100℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻すことを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用蓄圧器の製造方法。 [8] A method for manufacturing a hydrogen pressure accumulator according to [5], wherein a steel material having the steel composition according to any one of [2] to [4] is formed into a predetermined shape, and then Ac 3 Heating above the transformation point, and subsequently quenching from the Ar 3 transformation point or more to a temperature of 250 ° C. or less at a cooling rate of 0.5 to 100 ° C./s, and subsequently tempering at a temperature below the Ac 1 transformation point, A method for producing a hydrogen pressure accumulator excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas.

本発明によれば、従来よりも高圧水素ガス中の耐水素脆化特性が極めて優れる水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得ることができ、産業上極めて有用である。   According to the present invention, it is possible to obtain a steel structure for hydrogen, such as a hydrogen accumulator or a hydrogen line pipe, which is extremely superior in hydrogen embrittlement resistance in high-pressure hydrogen gas, and is extremely useful industrially. .

以下、本発明を具体的に説明する。
本発明の水素用鋼構造物の鋼組織は、マルテンサイトの面積率が10〜95%であり、残部が実質的にベイナイトからなる。
Hereinafter, the present invention will be specifically described.
The steel structure of the steel structure for hydrogen according to the present invention has a martensite area ratio of 10 to 95%, and the balance substantially consists of bainite.

本発明の水素用鋼構造物の鋼組織は、軟質なベイナイトと硬質のマルテンサイトが分散しており、それらの界面近傍で疲労き裂が停滞し、迂回、分岐する効果のため、疲労き裂の進展速度が低下し、優れた耐水素脆化特性を有する。   The steel structure of the steel structure for hydrogen of the present invention has a structure in which soft bainite and hard martensite are dispersed, and the fatigue crack is stagnated near the interface between them, and the effect of diverting and branching The rate of progress of the material decreases, and it has excellent hydrogen embrittlement resistance.

このような効果は、組織全体に対する面積率で、マルテンサイト組織の面積率を10〜95%とし、残部を基本的にベイナイトとすること、すなわち主としてマルテンサイトおよびベイナイトの二相組織とすることで、明らかな効果が認められるため、本発明では、上記水素用鋼構造物の鋼組織を、マルテンサイト組織の面積率を10〜95%とし、残部を実質的にベイナイト組織とする。好ましくはマルテンサイトの面積率は20〜95%、より好ましくは25〜95%である。ここで、ベイナイト組織とマルテンサイト組織の面積率がほぼ同じ場合、すなわちベイナイト組織とマルテンサイト組織の合計の面積率に対するマルテンサイト組織の面積率の割合である、マルテンサイト面積率比[マルテンサイト面積率比:(マルテンサイト組織の面積率)/((ベイナイト組織の面積率)+(マルテンサイト組織の面積率))]が、0.3〜0.7の場合に、最も疲労き裂進展速度が低下する。このため、マルテンサイト面積率比は0.3〜0.7とすることが好ましい。より好ましくは、マルテンサイト面積率比は0.4〜0.6である。なお、マルテンサイト組織以外の残部は、実質的にはベイナイトとするが、フェライトやパーライト等、マルテンサイトおよびベイナイト以外の組織を合計の面積率で2%以下であれば、本発明の効果に影響はないため、含有しても良い。すなわち、マルテンサイトとベイナイトの合計の面積率が98%以上であれば、その他の組織を含有しても良い。   Such an effect is an area ratio with respect to the whole structure. The area ratio of the martensite structure is 10 to 95%, and the remainder is basically bainite, that is, mainly a two-phase structure of martensite and bainite. Since an obvious effect is recognized, in the present invention, the steel structure of the hydrogen steel structure has an area ratio of the martensite structure of 10 to 95%, and the balance is substantially a bainite structure. Preferably, the area ratio of martensite is 20 to 95%, more preferably 25 to 95%. Here, when the area ratios of the bainite structure and the martensite structure are substantially the same, that is, the ratio of the area ratio of the martensite structure to the total area ratio of the bainite structure and the martensite structure, the martensite area ratio ratio [martensite area Ratio: (martensite structure area ratio) / ((bainite structure area ratio) + (martensite structure area ratio))] is 0.3 to 0.7, the most fatigue crack growth rate Decreases. For this reason, the martensite area ratio is preferably 0.3 to 0.7. More preferably, the martensite area ratio is 0.4 to 0.6. The remainder other than the martensite structure is substantially bainite. However, if the total area ratio of the structure other than martensite and bainite, such as ferrite and pearlite, is 2% or less, the effect of the present invention is affected. Therefore, it may be contained. That is, other structures may be included as long as the total area ratio of martensite and bainite is 98% or more.

組織分率の測定は、例えばナイタールエッチングによって、ミクロ組織を現出させ、光学顕微鏡またはSEM(Scanning Electron Microscope)を用いて組織写真を撮影し、それぞれの組織を識別して、面積率を求めればよい。   For the measurement of the tissue fraction, the microstructure is revealed by, for example, nital etching, and a structure photograph is taken using an optical microscope or SEM (Scanning Electron Microscope), and each tissue is identified to obtain the area ratio. That's fine.

なお、高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物とは、後述するような応力拡大係数範囲ΔK=25(MPa・m1/2)の時の疲労き裂進展速度が1.0×10−6(m/cycle)以下である水素用鋼構造物を意味し、水素用蓄圧器や水素用ラインパイプが例示される。 Note that a steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas is a fatigue crack growth rate when the stress intensity factor range ΔK = 25 (MPa · m 1/2 ) as described later. Means a steel structure for hydrogen having 1.0 × 10 −6 (m / cycle) or less, and examples thereof include a hydrogen accumulator and a hydrogen line pipe.

また、本発明の水素用鋼構造物である水素用蓄圧器は、前記したように、水素ステーションなどで使用される蓄圧器であり、例えば、タイプ1の鋼材のみを用いるタイプまたは、タイプ2およびタイプ3の鋼材に炭素繊維強化プラスチック(CFRP:Carbon Fiber Reinforced Plastic)を巻くタイプである。なお、ここでタイプ1、タイプ2、タイプ3とは、圧縮天然ガス自動車燃料容器に関する各規格、ISO11439、ANSI/NGV、高圧ガス保安法 容器保安規則例示基準別添9などに記載される容器の構造についての区分である。また、貯蔵される水素の圧力としては、35MPa程度または70MPa程度である。また、本発明の水素用鋼構造物である水素用ラインパイプは、シームレスタイプまたはUOEタイプの鋼管であり、水素の圧力としては、5MPa以上である。   Further, as described above, the hydrogen pressure accumulator which is the steel structure for hydrogen of the present invention is a pressure accumulator used in a hydrogen station or the like, for example, a type using only a type 1 steel material, or type 2 and This is a type in which a carbon fiber reinforced plastic (CFRP) is wound around a type 3 steel material. Here, type 1, type 2, and type 3 are the standards for compressed natural gas vehicle fuel containers, ISO 11439, ANSI / NGV, High Pressure Gas Safety Act, Container Safety Regulations, Example Standard Attachment 9, etc. It is a division about the structure. Further, the pressure of hydrogen stored is about 35 MPa or about 70 MPa. Moreover, the hydrogen line pipe which is the steel structure for hydrogen of the present invention is a seamless type or UOE type steel pipe, and the hydrogen pressure is 5 MPa or more.

次に、本発明の水素用鋼構造物の好ましい鋼組成を上記範囲に限定した理由について、説明する。なお、成分組成を示す%は、特に断らない限り、質量%を意味する。   Next, the reason why the preferable steel composition of the steel structure for hydrogen of the present invention is limited to the above range will be described. In addition,% which shows a component composition means the mass% unless there is particular notice.

C:0.10〜0.50%
Cは、適度な焼入れ性を確保するために含有するが、0.10%未満ではその効果が不十分であり、一方、0.50%を超えると母材および溶接熱影響部の靭性が劣化するとともに、溶接性が著しく劣化する。従って、C含有量を0.10〜0.50%に限定する。
C: 0.10 to 0.50%
C is contained in order to ensure moderate hardenability. However, if it is less than 0.10%, the effect is insufficient. On the other hand, if it exceeds 0.50%, the toughness of the base metal and the weld heat-affected zone deteriorates. In addition, the weldability is significantly deteriorated. Therefore, the C content is limited to 0.10 to 0.50%.

Si:0.05〜0.5%
Siは、製鋼段階の脱酸材および焼入れ性を確保する元素として含有するが、0.05%未満ではその効果が不十分であり、一方、0.5%を超えると粒界が脆化し、低温靭性を劣化させる。従って、Si含有量を0.05〜0.5%に限定する。
Si: 0.05-0.5%
Si is contained as a deoxidizing material in the steelmaking stage and an element that ensures hardenability, but if less than 0.05%, the effect is insufficient, while if exceeding 0.5%, the grain boundary becomes brittle, Deteriorates low temperature toughness. Therefore, the Si content is limited to 0.05 to 0.5%.

Mn:0.5〜2.0%
Mnは、焼入れ性を確保する元素として含有するが、0.5%未満ではその効果が不十分であり、一方、2.0%を超えて含有すると、粒界強度が低下し、低温靭性が劣化する。したがって、Mn含有量を0.5〜2.0%に限定する。
Mn: 0.5 to 2.0%
Mn is contained as an element for ensuring hardenability. However, if it is less than 0.5%, the effect is insufficient. On the other hand, if it exceeds 2.0%, the grain boundary strength is lowered, and the low temperature toughness is low. to degrade. Therefore, the Mn content is limited to 0.5 to 2.0%.

Al:0.01〜0.10%
Alは、脱酸材として添加されると同時に、Al系窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する効果があるが、0.01%未満の場合にはその効果が十分でなく、一方、0.10%を超えて含有すると、鋼板の表面疵が発生し易くなる。従って、Al含有量を0.01〜0.10%に限定する。
Al: 0.01-0.10%
Al is added as a deoxidizer and at the same time, pinning austenite grains during heating as Al-based nitride fine precipitates, and has the effect of suppressing grain coarsening, but less than 0.01% The effect is not sufficient. On the other hand, if the content exceeds 0.10%, surface flaws of the steel sheet are likely to occur. Therefore, the Al content is limited to 0.01 to 0.10%.

N:0.0005〜0.008%
Nは、Nb、Ti、Alなどと窒化物を形成することによって微細析出物を形成し、加熱時にオーステナイト粒をピンニングすることによって、粒の粗大化を抑制し、低温靭性を向上させる効果を有するために添加する。0.0005%未満の添加では組織の微細化効果が充分にもたらされず、一方、0.008%を超える添加は固溶N量が増加するために母材および溶接熱影響部の靭性を損なう。従って、N含有量を0.0005〜0.008%に限定する。
N: 0.0005 to 0.008%
N forms fine precipitates by forming nitrides with Nb, Ti, Al, etc., and pinning austenite grains during heating, thereby suppressing grain coarsening and improving low-temperature toughness Add for. If the addition is less than 0.0005%, the effect of refining the structure is not sufficiently brought about. On the other hand, the addition exceeding 0.008% impairs the toughness of the base metal and the weld heat-affected zone because the amount of solute N increases. Therefore, the N content is limited to 0.0005 to 0.008%.

P:0.05%以下
不純物元素であるPは、結晶粒界に偏析しやすく、0.05%を超えると隣接結晶粒の接合強度を低下させ、低温靭性を劣化させる。従って、P含有量を0.05%以下に限定する。
P: 0.05% or less P, which is an impurity element, is easily segregated at the grain boundaries. Therefore, the P content is limited to 0.05% or less.

S:0.01%以下
不純物元素であるSは、結晶粒界に偏析しやすく、また、非金属介在物であるMnSを生成しやすい。0.01%を超えると隣接結晶粒の接合強度が低下し、介在物の量が多くなり、低温靭性を劣化させる。従って、S含有量を0.01%以下に限定する。
S: 0.01% or less S, which is an impurity element, easily segregates at the crystal grain boundaries and easily generates MnS, which is a non-metallic inclusion. When it exceeds 0.01%, the bonding strength of adjacent crystal grains decreases, the amount of inclusions increases, and the low-temperature toughness deteriorates. Therefore, the S content is limited to 0.01% or less.

O:0.01%以下
Oは、Alなどと酸化物を形成することによって、材料の加工性に影響を及ぼす。0.01%を超える含有は介在物が増加し、加工性を損なう。従って、O含有量を0.01%以下に限定する。
O: 0.01% or less O affects the workability of the material by forming an oxide with Al or the like. Inclusions exceeding 0.01% increase inclusions and impair processability. Therefore, the O content is limited to 0.01% or less.

本発明では、上記成分組成の残部はFeおよび不可避的不純物からなる鋼組成とすることが好ましいが、所望する特性に応じて更に、Cu:0.05〜1.0%、Ni:0.05〜2.0%、Cr:0.1〜2.5%、Mo:0.05〜2.0%、Nb:0.005〜0.1%、V:0.005〜0.2%、Ti:0.005〜0.1%、W:0.05〜2.0%、B:0.0005〜0.005%の一種または二種以上、Nd:0.005〜1.0%、Ca:0.0005〜0.005%、Mg:0.0005〜0.005%、REM:0.0005〜0.005%の一種または二種以上を、個別にあるいは同時に適宜含有させることがより好ましい。   In the present invention, the balance of the above component composition is preferably a steel composition composed of Fe and inevitable impurities. However, depending on the desired characteristics, Cu: 0.05 to 1.0%, Ni: 0.05 -2.0%, Cr: 0.1-2.5%, Mo: 0.05-2.0%, Nb: 0.005-0.1%, V: 0.005-0.2%, Ti: 0.005 to 0.1%, W: 0.05 to 2.0%, B: 0.0005 to 0.005%, one or more, Nd: 0.005 to 1.0%, One or two or more of Ca: 0.0005-0.005%, Mg: 0.0005-0.005%, REM: 0.0005-0.005% may be appropriately contained individually or simultaneously. preferable.

Cu:0.05〜1.0%
Cuは、焼入れ性を向上する作用を有している。0.05%未満ではその効果が充分でなく、一方、1.0%を超えると、鋼片加熱時や溶接時に熱間での割れを生じやすくする。従って、Cuを添加する場合には、その含有量を0.05〜1.0%に限定する。
Cu: 0.05 to 1.0%
Cu has the effect | action which improves hardenability. If it is less than 0.05%, the effect is not sufficient. On the other hand, if it exceeds 1.0%, hot cracking is likely to occur during heating of the steel slab or welding. Therefore, when adding Cu, the content is limited to 0.05 to 1.0%.

Ni:0.05〜2.0%
Niは、Cuと同様に焼入れ性を向上する作用を有しており、さらに靭性を向上する作用も有する。0.05%未満ではその効果が充分ではなく、一方、2.0%を超えると、経済性が劣る。従って、Niを添加する場合には、その含有量を0.05〜2.0%に限定する。
Ni: 0.05-2.0%
Ni, like Cu, has an effect of improving hardenability, and further has an effect of improving toughness. If it is less than 0.05%, the effect is not sufficient, while if it exceeds 2.0%, the economy is inferior. Therefore, when adding Ni, the content is limited to 0.05 to 2.0%.

Cr:0.1〜2.5%
Crは、焼入れ性を確保する元素として含有するが、0.1%未満ではその効果が不十分であり、一方、2.5%を超えて含有すると溶接性が劣化する。従って、Crを添加する場合には、その含有量を0.1〜2.5%に限定する。
Cr: 0.1 to 2.5%
Cr is contained as an element for ensuring hardenability. However, if it is less than 0.1%, its effect is insufficient. On the other hand, if it exceeds 2.5%, weldability deteriorates. Therefore, when adding Cr, the content is limited to 0.1 to 2.5%.

Mo:0.05〜2.0%
Moは、焼入れ性を向上する作用を有するが、0.05%未満ではその効果が不十分であり、一方、2.0%を超える添加は経済性が劣る。従って、Moを添加する場合には、その含有量を0.05〜2.0%に限定する。
Mo: 0.05-2.0%
Mo has the effect of improving the hardenability, but if less than 0.05%, the effect is insufficient, while the addition exceeding 2.0% is inferior in economic efficiency. Therefore, when adding Mo, the content is limited to 0.05 to 2.0%.

Nb:0.005〜0.1%
Nbは、焼入れ性を向上する作用を有するとともに、Nb系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。含有量が0.005%未満ではその効果が不十分であり、一方、0.1%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Nbを添加する場合には、その含有量を0.005〜0.1%に限定する。
Nb: 0.005 to 0.1%
Nb has the effect of improving hardenability, and also pinns austenite grains during heating as fine precipitates of Nb-based carbonitrides, thereby suppressing grain coarsening. If the content is less than 0.005%, the effect is insufficient. On the other hand, addition exceeding 0.1% deteriorates the toughness of the weld heat affected zone. Therefore, when adding Nb, the content is limited to 0.005 to 0.1%.

V:0.005〜0.2%
Vは、焼入れ性を向上する作用を有すると共に、V系炭化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の粗大化を抑制する。含有量が0.005%未満ではその効果が不十分であり、一方、0.2%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Vを添加する場合には、その含有量を0.005〜0.2%に限定する。
V: 0.005-0.2%
V has the effect of improving hardenability, and also pinns austenite grains during heating as fine precipitates of V-based carbides, and suppresses coarsening of the grains. If the content is less than 0.005%, the effect is insufficient. On the other hand, addition exceeding 0.2% deteriorates the toughness of the weld heat affected zone. Therefore, when adding V, the content is limited to 0.005 to 0.2%.

Ti:0.005〜0.1%
Tiは、焼入れ性を向上する作用を有するとともに、Ti系炭窒化物の微細析出物として加熱時にオーステナイト粒をピンニングし、粒の成長を抑制する効果がある。含有量が0.005%未満ではその効果が不十分であり、一方、0.1%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Tiを添加する場合には、その含有量を0.005〜0.1%に限定する。
Ti: 0.005 to 0.1%
Ti has the effect of improving the hardenability and has the effect of pinning austenite grains during heating as a fine precipitate of Ti-based carbonitride to suppress grain growth. If the content is less than 0.005%, the effect is insufficient. On the other hand, addition exceeding 0.1% deteriorates the toughness of the weld heat affected zone. Therefore, when adding Ti, the content is limited to 0.005 to 0.1%.

W:0.05〜2.0%
Wは、焼入れ性を向上する作用を有するが、0.05%未満ではその効果が不十分であり、一方、2.0%を超えると、溶接性が劣化する。従って、Wを添加する場合は、その含有量を0.05〜2.0%に限定する。
W: 0.05-2.0%
W has an effect of improving the hardenability, but if it is less than 0.05%, its effect is insufficient. On the other hand, if it exceeds 2.0%, the weldability deteriorates. Therefore, when adding W, the content is limited to 0.05 to 2.0%.

B:0.0005〜0.005%
Bは、焼入れ性を確保する元素として含有するが、0.0005%未満ではその効果が不十分であり、一方、0.005%を超えると、靭性を劣化させる。従って、Bを添加する場合には、その含有量を0.0005〜0.005%に限定する。
B: 0.0005 to 0.005%
B is contained as an element for ensuring hardenability. However, if it is less than 0.0005%, its effect is insufficient. On the other hand, if it exceeds 0.005%, the toughness is deteriorated. Therefore, when adding B, the content is limited to 0.0005 to 0.005%.

Nd:0.005〜1.0%
Ndは、Sを介在物として取り込み、Sの粒界偏析量を低減させ、低温靭性および耐水素脆性を向上させる作用を有している。含有量が0.005%未満ではその効果が不十分であり、一方、1.0%を超える添加は溶接熱影響部の靭性を劣化させる。従って、Ndを添加する場合には、その含有量を0.005〜1.0%に限定する。
Nd: 0.005 to 1.0%
Nd has the effect of incorporating S as inclusions, reducing the amount of S grain boundary segregation, and improving low-temperature toughness and hydrogen embrittlement resistance. If the content is less than 0.005%, the effect is insufficient. On the other hand, addition exceeding 1.0% degrades the toughness of the weld heat affected zone. Therefore, when adding Nd, the content is limited to 0.005 to 1.0%.

Ca:0.0005〜0.005%
Caは、CaSを形成し、圧延によって展伸しやすい介在物であるMnSの代わりに、圧延により展伸しにくい球状介在物であるCaSへと、硫化物系介在物の形態を制御する作用を有する。含有量が0.0005%未満ではその効果は充分ではなく、一方、0.005%を超えて含有すると清浄度が低下するため、靭性などの材質が劣化する。したがって、Caを添加する場合には、その含有量を0.0005〜0.005%に限定する。
Ca: 0.0005 to 0.005%
Ca forms CaS and acts to control the form of sulfide inclusions to CaS, which is a spherical inclusion that is difficult to expand by rolling, instead of MnS, which is an inclusion that is easy to expand by rolling. Have. If the content is less than 0.0005%, the effect is not sufficient. On the other hand, if the content exceeds 0.005%, the cleanliness is lowered, and thus materials such as toughness deteriorate. Therefore, when adding Ca, the content is limited to 0.0005 to 0.005%.

Mg:0.0005〜0.005%
Mgは、溶銑脱硫材として使用する場合がある。含有量が0.0005%未満ではその効果は充分ではなく、一方、0.005%を超える添加は、清浄度の低下を招く。従って、Mgを添加する場合には、その添加量を0.0005〜0.005%に限定する。
Mg: 0.0005 to 0.005%
Mg may be used as a hot metal desulfurization material. If the content is less than 0.0005%, the effect is not sufficient. On the other hand, addition exceeding 0.005% causes a decrease in cleanliness. Therefore, when adding Mg, the addition amount is limited to 0.0005 to 0.005%.

REM:0.0005〜0.005%
REMは、鋼中でREM(O、S)として硫化物を生成することによって結晶粒界の固溶S量を低減して耐SR割れ特性を改善する。含有量が0.0005%未満ではその効果が充分ではなく、一方、0.005%を超える添加は、沈殿晶帯にREM硫化物が著しく集積し、材質の劣化を招く。従って、REMを添加する場合には、その添加量を0.0005〜0.005%に限定する。なお、REMとはRare Earth Metalの略、であり、希土類金属である。
REM: 0.0005 to 0.005%
REM improves the SR cracking resistance by reducing the amount of solid solution S at the grain boundaries by producing sulfide as REM (O, S) in steel. When the content is less than 0.0005%, the effect is not sufficient. On the other hand, when the content exceeds 0.005%, REM sulfide is remarkably accumulated in the precipitation crystal zone, resulting in deterioration of the material. Therefore, when adding REM, the addition amount is limited to 0.0005 to 0.005%. Note that REM is an abbreviation for Rare Earth Metal and is a rare earth metal.

本発明の水素用鋼構造物は、上記鋼組織を有するものであり、好ましくは、上記の成分組成を有するものとすればよく、その製造方法は、特に限定されるものではない。以下に、本発明の水素用鋼構造物である水素用ラインパイプ、水素用蓄圧器を例示して、本発明の水素用鋼構造物の好ましい製造方法について説明する。なお、本発明の水素用鋼構造物は、上記鋼組織を有し、好ましくは上記の成分組成を有する高圧水素ガス中の耐疲労き裂進展特性に優れる薄板、厚板、パイプ、形鋼および棒鋼など種々の鋼材をそのまま使用する水素用鋼構造物、あるいは所定形状に成形した水素用鋼構造物としてもよい。   The steel structure for hydrogen of the present invention has the above steel structure, and preferably has the above component composition, and the production method is not particularly limited. Below, the hydrogen steel pipe and hydrogen pressure accumulator which are the steel structures for hydrogen of this invention are illustrated, and the preferable manufacturing method of the steel structure for hydrogen of this invention is demonstrated. The steel structure for hydrogen of the present invention has a steel structure, preferably a thin plate, a thick plate, a pipe, a shape steel, and excellent fatigue crack growth resistance in high-pressure hydrogen gas having the above component composition, and It is good also as a steel structure for hydrogen which uses various steel materials, such as bar steel, as it is, or a steel structure for hydrogen formed in a predetermined shape.

また、製造条件における温度規定は鋼材中心部のものとし、薄板、厚板、パイプ、形鋼は板厚中心、棒鋼では径方向の中心とする。但し、中心部近傍はほぼ同様の温度履歴となるので、中心そのものに限定するものではない。   In addition, the temperature regulation in the manufacturing conditions is the center of the steel material, and the thin plate, thick plate, pipe, and shape steel are the center of the plate thickness, and the steel bar is the center of the radial direction. However, the vicinity of the center portion has substantially the same temperature history, and is not limited to the center itself.

本発明の水素用鋼構造物である水素用ラインパイプは、例えば鋼素材を熱間圧延して加速冷却する、あるいは直接焼入れ焼戻しすることにより製造することができる。   The hydrogen line pipe that is the steel structure for hydrogen of the present invention can be produced, for example, by hot rolling and accelerated cooling of a steel material, or by direct quenching and tempering.

鋼素材
本発明の水素用ラインパイプの製造に用いる鋼素材は、上記成分組成に調整された溶鋼から鋳造する。ここで、特に鋳造条件を限定する必要はなく、いかなる鋳造条件で製造された鋼素材としてもよい。溶鋼から鋳片を製造する方法や、鋳片を圧延して鋼片を製造する方法は特に規定しない。転炉法・電気炉法等で溶製された鋼や、連続鋳造・造塊法等で製造された鋼スラブが利用できる。
Steel material The steel material used for the production of the hydrogen line pipe of the present invention is cast from molten steel adjusted to the above composition. Here, it is not necessary to limit the casting conditions in particular, and a steel material manufactured under any casting conditions may be used. A method for producing a slab from molten steel and a method for producing a slab by rolling the slab are not particularly specified. Steel melted by a converter method, an electric furnace method, etc., or a steel slab produced by a continuous casting / ingot-making method can be used.

加速冷却による製造
上記鋼素材を、Ac変態点以上に加熱し、熱間圧延によって所定の板厚とし、引続きAr変態点以上から、水冷などにより冷却速度を1〜200℃/sとして600℃以下の温度まで加速冷却する。加熱温度がAc変態点未満では、一部未変態オーステナイトが残存するため、熱間圧延および加速冷却後に所望の鋼組織を得ることができない。このため、熱間圧延前の加熱温度はAc変態点以上とする。また、熱間圧延後の冷却の開始温度がAr変態点未満であるとオーステナイトの一部の変態が冷却開始前に生じてしまうため、加速冷却後に所望の鋼組織を得ることができない。このため熱間圧延後、Ar変態点以上から冷却を開始する。Ar変態点以上からの冷却速度は、所望の組織を得るため、1〜200℃/sとする。なお、該冷却速度は、板厚中心での平均冷却速度である。冷却手段は特に限定する必要はなく、水冷等により行えばよい。また、該冷却を600℃超えの温度で停止すると、所望の変態が完了しないため、所望の鋼組織を得ることができない。このため、600℃以下の温度まで加速冷却する。
Production by Accelerated Cooling The steel material is heated to the Ac 3 transformation point or higher, hot rolled to a predetermined plate thickness, and continuously from the Ar 3 transformation point to 600 ° C./s with a cooling rate of 1 to 200 ° C./s. Accelerate cooling to below ℃. When the heating temperature is less than the Ac 3 transformation point, a part of untransformed austenite remains, so that a desired steel structure cannot be obtained after hot rolling and accelerated cooling. Therefore, the heating temperature before hot rolling is set to Ac 3 transformation point or more. Further, if the start temperature of cooling after hot rolling is less than the Ar 3 transformation point, some transformation of austenite occurs before the start of cooling, so that a desired steel structure cannot be obtained after accelerated cooling. For this reason, after hot rolling, cooling is started from the Ar 3 transformation point or higher. The cooling rate from the Ar 3 transformation point or higher is set to 1 to 200 ° C./s in order to obtain a desired structure. The cooling rate is an average cooling rate at the center of the plate thickness. The cooling means is not particularly limited and may be performed by water cooling or the like. Further, when the cooling is stopped at a temperature exceeding 600 ° C., the desired transformation is not completed, so that a desired steel structure cannot be obtained. For this reason, accelerated cooling is performed to a temperature of 600 ° C. or lower.

直接焼入れ焼戻し
上記鋼素材を、Ac変態点以上に加熱し、熱間圧延後、引続きAr変態点以上から冷却速度1〜200℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻す。加熱温度がAc変態点未満では、一部未変態オーステナイトが残存するため、熱間圧延および焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、熱間圧延前の加熱温度はAc変態点以上とする。また、熱間圧延後の焼入れの開始温度がAr変態点未満であるとオーステナイトの一部の変態が焼入れ前に生じてしまうため、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため熱間圧延後、Ar変態点以上から冷却を開始し、焼入れを行う。Ar変態点以上から焼入れる際の冷却速度は、所望の組織を得るため、1〜200℃/sとする。なお、該冷却速度は、板厚中心での平均冷却速度である。冷却手段は特に限定する必要はなく、水冷等により行えばよい。また、該焼入れを250℃超えの温度で停止すると、所望の変態が完了しないため、焼戻し後に所望の鋼組織を得ることができない。このため、250℃以下の温度まで焼入れることとする。焼入れ後は、引き続きAc変態点以下の温度で焼戻す。焼戻し温度がAc変態点を超えると、一部オーステナイトに変態するため、焼戻し後に所望の鋼組織を得ることができない。
Direct quenching and tempering The above steel material is heated to the Ac 3 transformation point or higher, and after hot rolling, is subsequently quenched from the Ar 3 transformation point to a temperature of 250 ° C. or less at a cooling rate of 1 to 200 ° C./s, and subsequently the Ac 1 transformation. Temper at a temperature below the point. When the heating temperature is less than the Ac 3 transformation point, a part of untransformed austenite remains, and thus a desired steel structure cannot be obtained after hot rolling, quenching, and tempering. Therefore, the heating temperature before hot rolling is set to Ac 3 transformation point or more. Further, if the start temperature of quenching after hot rolling is less than the Ar 3 transformation point, a part of austenite transformation occurs before quenching, and thus a desired steel structure cannot be obtained after quenching and tempering. For this reason, after hot rolling, cooling is started from the Ar 3 transformation point or higher, and quenching is performed. The cooling rate at the time of quenching from the Ar 3 transformation point or higher is set to 1 to 200 ° C./s in order to obtain a desired structure. The cooling rate is an average cooling rate at the center of the plate thickness. The cooling means is not particularly limited and may be performed by water cooling or the like. Further, when the quenching is stopped at a temperature exceeding 250 ° C., the desired transformation is not completed, so that a desired steel structure cannot be obtained after tempering. For this reason, it shall temper to the temperature of 250 degrees C or less. After quenching, tempering is continued at a temperature below the Ac 1 transformation point. When the tempering temperature exceeds the Ac 1 transformation point, a part of the steel is transformed into austenite, so that a desired steel structure cannot be obtained after tempering.

本発明の水素用鋼構造物である水素用蓄圧器は、例えば所定の成分組成を有する鋼材を所定形状、すなわち所望する水素用蓄圧器の形状に成形後、再加熱焼入れ焼戻しすることにより製造することができる。   The hydrogen pressure accumulator which is the steel structure for hydrogen of the present invention is produced by, for example, forming a steel material having a predetermined component composition into a predetermined shape, that is, a desired hydrogen pressure accumulator shape, and then reheating and tempering. be able to.

再加熱焼入れ焼戻し
上記の成分組成を有する鋼材を、所定形状に成形後、Ac変態点以上に加熱し、引続きAr変態点以上から冷却速度0.5〜100℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻す。ここで、Ac変態点以上に加熱する鋼材は、上記した成分組成を有するものであれば良く、鋼組織は特に規定する必要はない。所定形状に成形後の加熱温度がAc変態点未満では、一部未変態オーステナイトが残存するため、熱間圧延および焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため、加熱温度はAc変態点以上とする。また、加熱後の焼入れの開始温度がAr変態点未満であるとオーステナイトの一部の変態が冷却前に生じてしまうため、焼入れ、焼戻し後に所望の鋼組織を得ることができない。このため前記加熱後に、Ar変態点以上から冷却を開始し、焼入れを行う。Ar変態点以上から焼入れる際の冷却速度は、所望の組織を得るとともに、焼割れを防止するため、0.5〜100℃/sとする。なお、該冷却速度は、板厚(蓄圧器の壁厚)中心での平均冷却速度である。冷却手段は特に限定する必要はなく、油冷や水冷等により行えばよい。また、該焼入れ、すなわち該冷却を250℃超えの温度で停止すると、所望の変態が完了しないため、焼戻し後に所望の鋼組織を得ることができない。このため、250℃以下の温度まで焼入れることとする。焼入れ後は、引き続きAc変態点以下の温度で焼戻す。焼戻し温度がAc変態点を超えると、一部オーステナイトに変態するため、焼戻し後に所望の鋼組織を得ることができない。
Reheating, quenching, and tempering After forming the steel material having the above-described composition into a predetermined shape, the steel material is heated to the Ac 3 transformation point or higher, and continuously from the Ar 3 transformation point to the cooling rate of 0.5 to 100 ° C./s at 250 ° C. or lower. Quenching to temperature, followed by tempering at a temperature below the Ac 1 transformation point. Here, the steel material to be heated to the Ac 3 transformation point or higher is only required to have the above-described component composition, and the steel structure is not particularly required to be defined. If the heating temperature after forming into a predetermined shape is less than the Ac 3 transformation point, a part of untransformed austenite remains, and thus a desired steel structure cannot be obtained after hot rolling, quenching, and tempering. Therefore, the heating temperature is set to Ac 3 transformation point or more. Further, if the quenching start temperature after heating is less than the Ar 3 transformation point, a partial transformation of austenite occurs before cooling, so that a desired steel structure cannot be obtained after quenching and tempering. For this reason, after the heating, cooling is started from the Ar 3 transformation point or higher, and quenching is performed. The cooling rate at the time of quenching from the Ar 3 transformation point or higher is set to 0.5 to 100 ° C./s in order to obtain a desired structure and prevent quench cracking. The cooling rate is an average cooling rate at the center of the plate thickness (wall thickness of the accumulator). The cooling means is not particularly limited and may be performed by oil cooling or water cooling. Further, when the quenching, that is, the cooling is stopped at a temperature exceeding 250 ° C., the desired transformation is not completed, and thus a desired steel structure cannot be obtained after tempering. For this reason, it shall temper to the temperature of 250 degrees C or less. After quenching, tempering is continued at a temperature below the Ac 1 transformation point. When the tempering temperature exceeds the Ac 1 transformation point, a part of the steel is transformed into austenite, so that a desired steel structure cannot be obtained after tempering.

なお、本発明では、Ac変態点(℃)、Ar変態点(℃)およびAc変態点(℃)の求め方については特に規定しないが、例えばAc=854−180C+44Si−14Mn−17.8Ni−1.7Cr、Ar=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo、Ac=723−14Mn+22Si−14.4Ni+23.3Crとして求めることができる。なお、上記式中において各元素記号は各元素の鋼中含有量(質量%)である。 In the present invention, the method for obtaining the Ac 3 transformation point (° C.), the Ar 3 transformation point (° C.), and the Ac 1 transformation point (° C.) is not particularly specified. For example, Ac 3 = 854-180C + 44Si-14Mn-17 .8Ni-1.7Cr, Ar 3 = 910-310C -80Mn-20Cu-15Cr-55Ni-80Mo, can be obtained as Ac 1 = 723-14Mn + 22Si-14.4Ni + 23.3Cr. In the above formula, each element symbol is the content (% by mass) of each element in steel.

以上の条件によって、所望の量のマルテンサイトを有し残部を実質的にベイナイトとする鋼組織を有する水素用鋼構造物である水素用ラインパイプあるいは水素用蓄圧器が得られる。   Under the above conditions, a hydrogen line pipe or a hydrogen pressure accumulator which is a steel structure for hydrogen having a steel structure having a desired amount of martensite and the remainder substantially bainite is obtained.

以下、本発明の効果を検証した実施例について、説明する。なお、以下の実施例においては、水素用ラインパイプおよび水素用蓄圧器の製造方法および特性評価を、鋼板の製造方法および特性評価でシミュレイトした。具体的には、製造方法が加速冷却あるいは直接焼入れ焼戻しの場合は、水素用ラインパイプをシミュレイトした場合であり、再加熱焼入れ焼戻しの場合は水素用蓄圧器をシミュレイトした場合である。   Examples in which the effects of the present invention are verified will be described below. In the following examples, the manufacturing method and characteristic evaluation of the hydrogen line pipe and the hydrogen pressure accumulator were simulated by the steel sheet manufacturing method and characteristic evaluation. Specifically, when the production method is accelerated cooling or direct quenching and tempering, the hydrogen line pipe is simulated, and when reheating and quenching and tempering, the hydrogen pressure accumulator is simulated.

表1に示す化学成分の鋼A〜Hを溶製してスラブに鋳造し、表2に示す加熱温度に加熱後、熱間圧延して、表2に示す条件で水冷により加速冷却して(鋼板No.1、4)あるいは直接焼入れ焼戻して(鋼板No.2、5)鋼板を製造した。また、スラブに鋳造後、一旦鋼板とし、該鋼板を表2に示す条件にて水冷あるいは油冷により焼入れを行う再加熱焼入れ焼戻しをして(鋼板No.3、6〜15)鋼板を製造した。なお、鋼板の温度測定は、板厚中心部に挿入した熱電対によって実施した。また、表2に示す水冷の際の冷却速度は10〜50℃/s、油冷の際の冷却速度は1℃/s〜50℃/sの範囲内であった。   Steels A to H having chemical components shown in Table 1 are melted and cast into slabs, heated to the heating temperatures shown in Table 2, hot-rolled, and accelerated and cooled by water cooling under the conditions shown in Table 2 ( Steel plates No. 1 and 4) or directly quenched and tempered (steel plates No. 2 and 5) were produced. Moreover, after casting into a slab, it was once made into a steel plate, and the steel plate was subjected to reheating quenching and tempering by quenching by water cooling or oil cooling under the conditions shown in Table 2 (steel plates No. 3, 6 to 15) to produce steel plates. . In addition, the temperature measurement of the steel plate was implemented with the thermocouple inserted in plate thickness center part. Moreover, the cooling rate at the time of water cooling shown in Table 2 was in the range of 10 to 50 ° C./s, and the cooling rate at the time of oil cooling was in the range of 1 ° C./s to 50 ° C./s.

表2に得られた鋼板のマルテンサイト面積率、引張強さ、90MPa高圧水素ガス中における応力拡大係数範囲=25MPa・m1/2時の疲労き裂進展速度(m/cycle)を示す。材料試験および材料特性の評価法は次のとおりである。なお、表2に示す各鋼板のマルテンサイト以外の組織は主としてベイナイトであり、マルテンサイトおよびベイナイト以外の組織の合計の面積率は2%以下であった。また、疲労き裂進展速度は、1.0×10−6(m/cycle)以下を目標とし、この目標を満足する場合、耐水素脆化特性に優れるとした。 Table 2 shows the martensite area ratio, tensile strength, and fatigue crack growth rate (m / cycle) when the stress intensity factor range in high-pressure 90 MPa hydrogen gas is 25 MPa · m 1/2 . The material test and the evaluation method of material properties are as follows. In addition, the structures other than martensite of each steel sheet shown in Table 2 were mainly bainite, and the total area ratio of the structures other than martensite and bainite was 2% or less. Further, the fatigue crack growth rate is set to 1.0 × 10 −6 (m / cycle) or less, and when this target is satisfied, the hydrogen embrittlement resistance is excellent.

(1)鋼板の組織
3%ナイタールエッチングによって、ミクロ組織を現出させ、圧延方向に平行な断面の200〜400倍間の適切な倍率で板厚1/4位置の光学顕微鏡写真を撮影し、それぞれの組織を目視で識別して、画像解析により面積率を求めた。
(1) Microstructure of steel sheet by 3% nital etching, and an optical micrograph at a thickness of 1/4 is taken at an appropriate magnification between 200 and 400 times the cross section parallel to the rolling direction. Each tissue was visually identified, and the area ratio was determined by image analysis.

(2)引張特性
JISZ2201(1980)に準拠する圧延方向を長手方向(引張方向)とする全厚引張試験片を用い、JISZ 2241に準拠して引張試験を行い評価した。
(2) Tensile properties A full thickness tensile test piece having a rolling direction based on JISZ2201 (1980) as a longitudinal direction (tensile direction) was used, and a tensile test was performed based on JISZ 2241 for evaluation.

(3)疲労き裂進展試験
疲労き裂伝播特性の調査は、各鋼板から、荷重負荷方向が圧延方向と平行になるようASTM E 647に準拠したCT試験片を採取し、クリップゲージを用いて、コンプライアンス法で疲労き裂の長さを測定して、90MPa高圧水素ガス中における疲労き裂伝播速度を求めた。なお試験片は、板厚が10mm以下の場合は表面から0.5mmずつ研削して各々2mm、5mm、8mm、9mmとし、これら以外の板厚の場合はt/2(t:板厚)の位置から10mm厚さの試験片を採取し、また、き裂進展部には表裏ともに鏡面研磨を施した。この際、パリス則が成り立つ安定成長領域として、応力拡大係数範囲ΔK=25(MPa・m1/2)での疲労き裂進展速度(m/cycle)を代表値として評価した。また、疲労き裂進展速度の目標は、1.0×10−6(m/cycle)以下とした。
(3) Fatigue crack growth test Fatigue crack propagation characteristics were investigated by collecting CT specimens according to ASTM E 647 from each steel plate so that the load direction is parallel to the rolling direction, and using a clip gauge. The fatigue crack propagation rate in 90 MPa high-pressure hydrogen gas was determined by measuring the length of the fatigue crack by the compliance method. When the plate thickness is 10 mm or less, the test piece is ground by 0.5 mm from the surface to 2 mm, 5 mm, 8 mm, and 9 mm, respectively. For other plate thicknesses, t / 2 (t: plate thickness) A specimen having a thickness of 10 mm was taken from the position, and the front and back surfaces were mirror-polished on the crack propagation part. At this time, the fatigue crack growth rate (m / cycle) in the stress intensity factor range ΔK = 25 (MPa · m 1/2 ) was evaluated as a representative value as a stable growth region where the Paris law is established. The target of the fatigue crack growth rate was 1.0 × 10 −6 (m / cycle) or less.

表2に示した鋼板No.1〜6、8、11、14は、化学成分および製造条件いずれの条件も本発明を満足し、主としてベイナイトおよびマルテンサイトの二相組織を呈し、マルテンサイト面積率は本発明の範囲を満足し、疲労き裂進展速度は1.0×10−6(m/cycle)以下であり、高圧水素ガス中の耐水素脆化特性に優れていることが判る。 Steel plate No. shown in Table 2 1 to 6, 8, 11, and 14 satisfy the present invention in any of the chemical components and the production conditions, mainly exhibit a two-phase structure of bainite and martensite, and the martensite area ratio satisfies the scope of the present invention. The fatigue crack growth rate is 1.0 × 10 −6 (m / cycle) or less, which indicates that the hydrogen embrittlement resistance in high-pressure hydrogen gas is excellent.

一方、鋼板No.7は、加熱温度が、本発明範囲の下限(Ac)より低く、マルテンサイト面積率および疲労き裂進展速度のいずれも目標値に達していない。鋼板No.9、12は、冷却開始温度(水冷または油冷の開始温度)が、本発明範囲の下限(Ar)より低く、本発明範囲から外れており、マルテンサイト面積率および疲労き裂進展速度のいずれも目標値に達していない。鋼板No.10、13は、冷却停止温度(水冷または油冷の停止温度)が、本発明範囲の上限(250℃)より高く、本発明範囲から外れており、マルテンサイト面積率および疲労き裂進展速度のいずれも目標値に達していない。鋼板No.15は、焼戻し温度が、本発明範囲の上限(Ac)より高く、本発明範囲から外れており、マルテンサイト面積率および疲労き裂進展速度のいずれも目標値に達していない。なお、これら比較例として提示した鋼板No.7、9、10、12、13、15に関しても、主としてベイナイトおよびマルテンサイトの二相組織を呈していた。 On the other hand, steel plate No. In No. 7, the heating temperature is lower than the lower limit (Ac 3 ) of the present invention range, and neither the martensite area ratio nor the fatigue crack growth rate has reached the target value. Steel plate No. Nos. 9 and 12 have a cooling start temperature (starting temperature of water cooling or oil cooling) lower than the lower limit (Ar 3 ) of the scope of the present invention and out of the scope of the present invention, and the martensite area ratio and fatigue crack growth rate None of them reached the target value. Steel plate No. 10 and 13, the cooling stop temperature (water cooling or oil cooling stop temperature) is higher than the upper limit (250 ° C.) of the present invention range and deviates from the present invention range, and the martensite area ratio and fatigue crack growth rate None of them reached the target value. Steel plate No. No. 15 has a tempering temperature that is higher than the upper limit (Ac 1 ) of the present invention range and is outside the present invention range, and neither the martensite area ratio nor the fatigue crack growth rate has reached the target value. In addition, steel plate No. shown as these comparative examples. 7, 9, 10, 12, 13, and 15 also exhibited a two-phase structure mainly of bainite and martensite.

上記結果から明らかなように、本発明例は、疲労き裂進展速度は1.0×10−6(m/cycle)以下であり、水素脆化特性に優れるものであり、耐水素脆化特性に優れる水素用蓄圧器や水素用ラインパイプ等の水素用鋼構造物を得られることがわかる。 As is clear from the above results, in the examples of the present invention, the fatigue crack growth rate is 1.0 × 10 −6 (m / cycle) or less, and the hydrogen embrittlement characteristics are excellent. It can be seen that a steel structure for hydrogen such as a hydrogen pressure accumulator or a hydrogen line pipe can be obtained.

Figure 0005928394
Figure 0005928394

Figure 0005928394
Figure 0005928394

Claims (7)

質量%で、C:0.10〜0.50%、Si:0.05〜0.5%、Mn:0.5〜2.0%、Al:0.01〜0.10%、N:0.0005〜0.008%、P:0.05%以下、S:0.01%以下、O:0.01%以下を含有し、残部がFeおよび不可避的不純物からなる鋼組成を有し、マルテンサイトの面積率が10〜52%であり、残部が実質的にベイナイトからなり、マルテンサイトとベイナイトの合計の面積率が98%以上である鋼組織を有する高圧水素ガス中の耐水素脆化特性に優れた水素用鋼構造物。 In mass%, C: 0.10 to 0.50%, Si: 0.05 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.01 to 0.10%, N: 0.0005 to 0.008%, P: 0.05% or less, S: 0.01% or less, O: 0.01% or less, with the balance being a steel composition consisting of Fe and inevitable impurities , the area ratio of 10-52% martensite, the remainder Ri Do from substantially bainite, resistance of the high-pressure hydrogen gas total area ratio of the martensite and bainite has a der Ru steel structure 98% Steel structure for hydrogen with excellent hydrogen embrittlement characteristics. さらに、質量%で、Cu:0.05〜1.0%、Ni:0.05〜2.0%、Cr:0.1〜2.5%、Mo:0.05〜2.0%、Nb:0.005〜0.1%、V:0.005〜0.2%、Ti:0.005〜0.1%、W:0.05〜2.0%、B:0.0005〜0.005%の一種または二種以上を含有する鋼組成を有することを特徴とする、請求項に記載の水素用鋼構造物。 Furthermore, in mass%, Cu: 0.05-1.0%, Ni: 0.05-2.0%, Cr: 0.1-2.5%, Mo: 0.05-2.0%, Nb: 0.005-0.1%, V: 0.005-0.2%, Ti: 0.005-0.1%, W: 0.05-2.0%, B: 0.0005 It characterized by having a steel composition containing 0.005% or more of one or two, steel structures for hydrogen according to claim 1. さらに、質量%で、Nd:0.005〜1.0%、Ca:0.0005〜0.005%、Mg:0.0005〜0.005%、REM:0.0005〜0.005%の一種または二種以上を含有する鋼組成を有することを特徴とする、請求項1または2に記載の水素用鋼構造物。 Furthermore, by mass%, Nd: 0.005 to 1.0%, Ca: 0.0005 to 0.005%, Mg: 0.0005 to 0.005%, REM: 0.0005 to 0.005% The steel structure for hydrogen according to claim 1 or 2 , which has a steel composition containing one kind or two or more kinds. 前記水素用鋼構造物が、水素用蓄圧器あるいは水素用ラインパイプである、請求項1ないし請求項のいずれか一項に記載の水素用鋼構造物。 The hydrogen steel structure according to any one of claims 1 to 3 , wherein the hydrogen steel structure is a hydrogen pressure accumulator or a hydrogen line pipe. 請求項に記載する水素用ラインパイプの製造方法であって、請求項のいずれかに記載の鋼組成を有する鋼素材を、Ac変態点以上に加熱し、熱間圧延後、引続きAr変態点以上から冷却速度1〜200℃/sで600℃以下の温度まで冷却することを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用ラインパイプの製造方法。 A method for manufacturing a hydrogen line pipe according to claim 4 , wherein the steel material having the steel composition according to any one of claims 1 to 3 is heated to an Ac 3 transformation point or higher, and after hot rolling, A method for producing a hydrogen line pipe excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, characterized in that cooling is continued from the Ar 3 transformation point or higher to a temperature of 600 ° C. or lower at a cooling rate of 1 to 200 ° C./s. . 請求項に記載する水素用ラインパイプの製造方法であって、請求項のいずれかに記載の鋼組成を有する鋼素材を、Ac変態点以上に加熱し、熱間圧延後、引続きAr変態点以上から冷却速度1〜200℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻すことを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用ラインパイプの製造方法。 A method for manufacturing a hydrogen line pipe according to claim 4 , wherein the steel material having the steel composition according to any one of claims 1 to 3 is heated to an Ac 3 transformation point or higher, and after hot rolling, Hydrogen embrittlement resistance in high-pressure hydrogen gas, characterized in that it is subsequently quenched from the Ar 3 transformation point to a temperature of 250 ° C. or less at a cooling rate of 1 to 200 ° C./s, and subsequently tempered at a temperature of the Ac 1 transformation point or less. A method for producing hydrogen line pipes with excellent characteristics. 請求項に記載する水素用蓄圧器の製造方法であって、請求項のいずれかに記載の鋼組成を有する鋼材を所定形状に成形後、Ac変態点以上に加熱し、引続きAr変態点以上から冷却速度0.5〜100℃/sで250℃以下の温度まで焼入れ、引続きAc変態点以下の温度で焼戻すことを特徴とする、高圧水素ガス中の耐水素脆化特性に優れた水素用蓄圧器の製造方法。 A method for producing a hydrogen pressure accumulator according to claim 4 , wherein after the steel material having the steel composition according to any one of claims 1 to 3 is formed into a predetermined shape, the steel material is heated to the Ac 3 transformation point or higher and continued. Hydrogen embrittlement resistance in high-pressure hydrogen gas, characterized by quenching from an Ar 3 transformation point to a temperature of 250 ° C. or less at a cooling rate of 0.5 to 100 ° C./s, and subsequently tempering at a temperature of an Ac 1 transformation point or less. Method of hydrogen pressure accumulator with excellent conversion characteristics.
JP2013075007A 2013-03-29 2013-03-29 Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe Active JP5928394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075007A JP5928394B2 (en) 2013-03-29 2013-03-29 Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075007A JP5928394B2 (en) 2013-03-29 2013-03-29 Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe

Publications (2)

Publication Number Publication Date
JP2014198878A JP2014198878A (en) 2014-10-23
JP5928394B2 true JP5928394B2 (en) 2016-06-01

Family

ID=52355969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075007A Active JP5928394B2 (en) 2013-03-29 2013-03-29 Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe

Country Status (1)

Country Link
JP (1) JP5928394B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715841A (en) * 2016-09-21 2019-05-03 杰富意钢铁株式会社 Steels for pressure vessel use pipe, the manufacturing method of steels for pressure vessel use pipe and recombination pressure container liner

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6453798B2 (en) * 2015-03-16 2019-01-16 Jfeスチール株式会社 Composite container pressure accumulator liner, composite container pressure accumulator, and method of manufacturing a composite container pressure accumulator liner
JP6278125B2 (en) * 2015-03-16 2018-02-14 Jfeスチール株式会社 Steel tube for composite container pressure accumulator liner and method for manufacturing steel tube for composite container pressure accumulator liner
JP6086134B1 (en) * 2015-08-24 2017-03-01 Jfeスチール株式会社 Structural steel with excellent ethanol pitting resistance
CA3077926C (en) * 2015-09-17 2021-10-26 Jfe Steel Corporation Steel structure for hydrogen gas with excellent hydrogen embrittlement resistance in high pressure hydrogen gas and method of producing the same
CN106555107B (en) * 2015-09-24 2018-11-06 宝山钢铁股份有限公司 A kind of manufacturing method and bainite type high-strength seamless steel pipe of bainite type high-strength seamless steel pipe
KR101654684B1 (en) * 2015-12-11 2016-09-06 주식회사 세아베스틸 Mooring chain steels with high strength and high impact toughness at low temperature and method for manufacturing the same
JP6648646B2 (en) * 2016-07-20 2020-02-14 日本製鉄株式会社 Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
WO2018030223A1 (en) * 2016-08-12 2018-02-15 Jfeスチール株式会社 Composite pressure vessel liner, composite pressure vessel, and method for producing composite pressure vessel liner
JP6593395B2 (en) * 2016-09-21 2019-10-23 Jfeスチール株式会社 Pressure accumulator liner, accumulator, composite container accumulator, and method for producing accumulator liner
KR102551610B1 (en) * 2018-12-26 2023-07-04 제이에프이 스틸 가부시키가이샤 Steel for high-pressure hydrogen gas environment, steel structure for high-pressure hydrogen gas environment, and method for manufacturing steel for high-pressure hydrogen gas environment
EP3950975A4 (en) * 2019-03-29 2022-12-14 Nippon Steel Corporation Steel sheet
JP7428889B2 (en) 2020-03-27 2024-02-07 日本製鉄株式会社 steel material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5346894B2 (en) * 2010-08-27 2013-11-20 株式会社日本製鋼所 Evaluation Method of High Strength Hydrogen Environment Embrittlement Susceptibility of High Strength Low Alloy Steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109715841A (en) * 2016-09-21 2019-05-03 杰富意钢铁株式会社 Steels for pressure vessel use pipe, the manufacturing method of steels for pressure vessel use pipe and recombination pressure container liner
US11168375B2 (en) 2016-09-21 2021-11-09 Jfe Steel Corporation Steel pipe or tube for pressure vessels, method of producing steel pipe or tube for pressure vessels, and composite pressure vessel liner
CN109715841B (en) * 2016-09-21 2022-06-07 杰富意钢铁株式会社 Steel pipe for pressure vessel, method for producing steel pipe for pressure vessel, and composite liner for pressure vessel

Also Published As

Publication number Publication date
JP2014198878A (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP5713152B2 (en) Steel structure for hydrogen, pressure accumulator for hydrogen and method for producing hydrogen line pipe
JP6299885B2 (en) Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas and method for producing the same
JP5928394B2 (en) Steel structure for hydrogen excellent in hydrogen embrittlement resistance in high-pressure hydrogen gas, hydrogen pressure accumulator, and method for producing hydrogen line pipe
JP6989004B2 (en) Method for manufacturing high-pressure hydrogen gas environmental steel, high-pressure hydrogen gas environmental steel structure, and high-pressure hydrogen gas environmental steel
KR101681626B1 (en) Welded steel pipe for linepipe with high compressive strength
KR101664635B1 (en) Hot rolled high tensile strength steel sheet and method for manufacturing same
KR20150013360A (en) Welded steel pipe for linepipe having high compressive strength and excellent sour gas resistance
JP5842537B2 (en) High-strength steel for high-pressure hydrogen storage containers
JP2022068942A (en) Steel material for high-pressure hydrogen gas environment, and method for manufacturing the same
JP2012241266A (en) Steel pipe for sour resistant line pipe having high compressive strength and method for producing the same
CA2980250A1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
JP6202065B2 (en) Steel structure for hydrogen
JP6137259B2 (en) Steel structure for hydrogen
JP7078203B1 (en) Steel plate
WO2023162507A1 (en) Steel sheet and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250