JP5926038B2 - Wave power generation [compound type] - Google Patents

Wave power generation [compound type] Download PDF

Info

Publication number
JP5926038B2
JP5926038B2 JP2011259529A JP2011259529A JP5926038B2 JP 5926038 B2 JP5926038 B2 JP 5926038B2 JP 2011259529 A JP2011259529 A JP 2011259529A JP 2011259529 A JP2011259529 A JP 2011259529A JP 5926038 B2 JP5926038 B2 JP 5926038B2
Authority
JP
Japan
Prior art keywords
power generation
wave
float
yen
floating body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011259529A
Other languages
Japanese (ja)
Other versions
JP2012041934A5 (en
JP2012041934A (en
Inventor
健 秋元
健 秋元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2011259529A priority Critical patent/JP5926038B2/en
Publication of JP2012041934A publication Critical patent/JP2012041934A/en
Publication of JP2012041934A5 publication Critical patent/JP2012041934A5/ja
Application granted granted Critical
Publication of JP5926038B2 publication Critical patent/JP5926038B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、無公害な発電に関するものである。The present invention relates to pollution-free power generation.

海には潮流、波、潮の干満等の要素が複雑に入り交じっている。
更に台風、津波と云った自然災害にも見舞われる。
また地球温暖化による海水面上昇も予想される。
然し、東日本大震災で原子力発電に対する不信感が高まっている今、大規模発電の可能性は波力にしか残されていない。
The ocean is complex with elements such as tidal currents, waves, and tidal fluctuations.
In addition, natural disasters such as typhoons and tsunamis have been hit.
Sea level rise due to global warming is also expected.
However, now that the distrust of nuclear power generation is increasing due to the Great East Japan Earthquake, the possibility of large-scale power generation is left only to wave power.

波力発電は波高によって発電効率が決定される。
更に外海での設営となる為、台風、津波、潮の干満、潮流、波の方向にも対処出来なければならない。
また、地球温暖化による海水面上昇にも配慮が必要とされる。
In wave power generation, power generation efficiency is determined by wave height.
Furthermore, since it is set up in the open sea, it must be able to cope with typhoons, tsunamis, tidal currents, tidal currents, and wave directions.
Consideration is also required for sea level rise due to global warming.

課題を解決しようとする手段Means to solve the problem

複胴式フロートを浮かべ、インカー(コンクリート製の重り)で繋ぐと、潮流と波力の合力上にフロートは流動する。
複胴式であるから、その水路に流れる波と潮流は一定方向に規則正しく流れる。(「図1」参照)
その波力を使い、発電する。
そのフロートの最後尾には潮流発電機を設置し、その負荷で更に方向を操舵する。
フロートであるから潮の干満の影響を受けないし、地球温暖化による海水面上昇にも対処出来る。
台風時は、港に避難、津波時には船外機を使って津波を乗り切る。「図6参照」
しかし、問題がある。水路延長が長くなり、水路後方で波力が減衰する恐れである。
更に、動き回ると、送電にも影響が出る。
そこで、副案を用意した。
If you float a multi-body float and connect with an inker (concrete weight), the float will flow on the combined force of tidal current and wave power.
Because it is a double-hull type, the waves and tides that flow through the channel flow regularly in a certain direction. (See “Figure 1”)
It uses that wave power to generate electricity.
A tidal current generator is installed at the end of the float, and the direction is further steered by the load.
Because it is a float, it is not affected by tidal fluctuations and can cope with sea level rise due to global warming.
During a typhoon, she evacuates to the port, and during an tsunami, she uses an outboard to survive the tsunami. "See Figure 6"
But there is a problem. The length of the waterway becomes longer and the wave force may be attenuated behind the waterway.
Furthermore, moving around affects the power transmission.
Therefore, a sub-plan was prepared.

フロートを波に直角にして浮かべ、インカー数本で固定する。(「図2」参照)
水路は短くなるが、複数の水路設営が可能となる。
台風時、津波時にはフロートに海水を注水することで浮き上がり高さを減らして波の衝撃を和らげる。
Float the float at right angles to the wave and fix it with several inkers. (See “Figure 2”)
Although the waterway is shortened, a plurality of waterways can be constructed.
In the event of a typhoon or tsunami, the seawater is poured into the float to reduce the height and reduce the impact of the waves.

波の仕組み
波の高さについて
▲1▼周期によって波高が異なる。
波高と周期の関係を表す「3/2乗則」を用いて検討する。
:B×T(3/2)乗−−−−−>T=(H/B)2/3
:無次元波高
B :定数(0.062)
:無次元周期
この式を紐解くと下記の様になる。

Figure 0005926038
よって波高2.0mの周期は10.13秒/1波となる。
この波高は9月〜翌年6月の有義波高である。
有義波高:水深50mの場所に於いて波の高い降順に1/3の波高の平均値をいう。
▲2▼水深によって波高が異なる。
気象庁の発表する波の高さとは、有義波高と呼ばれるものである。
当案は、計画波高を高める目的と、管理上から水深を5mの場所で実施する、と仮定し検討を行う。
Figure 0005926038
よって水深5.0mでは
波高は3.6/2.7=1.33倍となる。−−−>この時、周期に変化無し。
波長は8.2mであるから、浮体の長さは8.2m/2以下とする。−−−>3.0mで検討。
計画波高について
9月〜翌年6月までの有義波高を2.0m(少し控えめ)と仮定する。−−−7,8月は波高、低い。
Figure 0005926038
発電の比較
Figure 0005926038
2案の検討(「図1」、「図2」)
検討条件
静岡市のメガフロート(H=2.0m)−−−10万円/m
波高2.0m×1.33=2.66で検討するため、安全を取ってH=5.0mとする。−−−>25万円/m
発電機1基160万円,フロート150万円とする。(概算な為、未調査)
フロートの大きさ: 巾35m、延長100mとする。
水路巾: 巾12.0mとする。(1列に浮体3基可能となる。)
浮体の検討
延長: L=3.0m(前頁参照)
巾: 回転軸で浮体との、ねじれを考慮して B=3.0m(余り大きく出来ない)
高さ: 浮体の回転を考慮すると 面取りしても H=3.0m
比重: 波は昇降するので、同じエネルギーを期待し、0.5とする。
「図1」案
水路: 1列
浮体 25段×3基=75基設置可能
Figure 0005926038
1基当たり位置エネルギーは、2.66mの波高では(1周期では移動量は倍となる)
E=3.0m×2.66m×2倍×0.5(比重)=71.82t・m/1基
75基では5386.5t・m
Figure 0005926038
電気料に換算するとE=9.8×1914256/3600秒≒5211.0KW/H
1軒の1時間当たりの電気使用量は3KW/H(東京電力調べ)であるから (時間当たりの検討)
1737軒分の電気が賄える事になる。
考えられるエネルギー損失を2割として換算しても1390軒分の電気を賄える。
Figure 0005926038
建設費11億円であるから、11.0億/0.97億=11.3年で焼却出来る。
「図2」案
浮体 81基設置可能
1列35m:(9段)では浮体は3基×9段×3列=81基
Figure 0005926038
1基当たり位置エネルギーは、2.66mの波高では、
E=3.0m×2.66m×2倍×0.5(比重)=71.82t・m/1基
81基では5817.4t・m
1時間では3600秒となる訳だから3600/10.13×5817.4t・m
=2,067,388t・m
電気料に換算するとE=9.8×2067388t・m/3600秒≒5627.9KW/H
1軒の1時間当たりの電気使用量は3KW/H(東京電力調べ)であるから
1876軒分の電気が賄える事になる。
考えられるエネルギー損失を2割として換算しても1501軒分の電気を賄える。
一般家庭の電気料金は6987円であるから1501軒×6987円×10月
=104,874,870円/年≒1.05億円
建設費11、2億円であるから、11.2億/1.45億=10.7年で焼却出来る。
よって波力発電(複胴式)の原価償却期間は、2案の平均を摂って11年とする。
Figure 0005926038
その他の発電
Figure 0005926038
建設費 200〜250万円
実体 一般家庭の3,4割程度の供給で残りは電力会社から買っているのが現状である。
(売電も含めて)(シャープ談)
寸評 一般家庭の電気料金は約6987円であるからソーラーで浮かせる金額は
6987円×0.35(3〜4割)×12ヶ月=29345円
原価償却期間は225万円/2,9345万円=76年となる。
Figure 0005926038
建設費 一般的な風力発電の建設コストは3億円(三菱重工談)
実体: 1基で1000kw/H位と聞いている。
1軒の1時間当たりの電気使用量は3KW/Hであるから333軒分の電気料を賄える。
Figure 0005926038
実際には7〜8mの風速が一般的であるとのこと。
運動エネルギーは1/2mvであるから速度の二乗に比例する。
7.0/12.5=0.31(約3割)
よって103軒分の電気が賄えることになる。
103軒×6987円/月×12月=8,635,932円/年
原価償却期間は3億円/8,635,932万円=35年となる。
実際には風の吹かない日も多々あるため、原価償却期間は2倍の70年とする。
水力発電
水没する土地の買収などで経費がかさむ為20年償却はクリーンなエネルギーなこともあって考慮していないとのこと。
火力発電
地球温暖化、及びオゾン層破壊の元凶である。
地熱発電
地球内部に籠った熱を大気中に放出し、更には地球内部が収縮のため空洞化現象何を考えているのか?−−−論外である。
原子力発電
住民の賛同は、もう得られないし、 核融合によって熱を放出する。
広島、長崎で核の洗礼を受けた日本で、またしても福島で−−−論外!
Figure 0005926038
メンテナンス
油差し
既出願の「定水位給水器」を提案する。
粘性の強い油では疑問が残る。(更に受け皿の問題)
参考文献
(出願番号「特願 2007−146149」)
想定外
海上の施設である。よって土嚢には頼れない。
そこで「重力式水嚢」を提案する。(海水は捨てるほどある。)
水を持って、水を制すシステムです。
参考文献
(出願番号「特願 2007−144130」)Wave structure Wave height (1) Wave height varies depending on the period.
Consider using the "3/2 power law" that expresses the relationship between wave height and period.
H * : B × T * (3/2) squared -----> T * = (H / B) 2/3
H * : dimensionless wave height
B: Constant (0.062)
T * : dimensionless cycle
When this equation is solved, it becomes as follows.
Figure 0005926038
Therefore, the period of the wave height of 2.0 m is 10.13 seconds / 1 wave.
This wave height is a significant wave height from September to June of the following year.
Significant wave height: Mean value of 1/3 wave height in descending order of wave height at a water depth of 50m.
(2) Wave height varies depending on water depth.
The wave height announced by the Japan Meteorological Agency is called the significant wave height.
This plan will be examined on the assumption that the planned wave height will be increased and that the water depth will be 5m from the viewpoint of management.
Figure 0005926038
Therefore, at a water depth of 5.0 m, the wave height is 3.6 / 2.7 = 1.33 times. ----> At this time, there is no change in the cycle.
Since the wavelength is 8.2 m, the length of the floating body is set to 8.2 m / 2 or less. ----> Considered at 3.0m.
About the planned wave height The assumed wave height from September to June of the following year is assumed to be 2.0 m (a bit conservative). --- In July and August, the wave height is low.
Figure 0005926038
Comparison of power generation
Figure 0005926038
Examination of two plans ("Fig. 1", "Fig. 2")
Examination conditions Mega float in Shizuoka City (H = 2.0m) --- 100,000 yen / m 2
In order to consider a wave height of 2.0 m × 1.33 = 2.66, H = 5.0 m is taken for safety. ---> 250,000 yen / m 2
One generator is 1.6 million yen and the float is 1.5 million yen. (Because it is an estimate, it has not been investigated yet)
Float size: width 35 m, extension 100 m.
Channel width: The width is 12.0 m. (Three floating bodies can be arranged in one row.)
Examination of floating body
Extension: L = 3.0m (see previous page)
Width: B = 3.0m (cannot be too large) in consideration of torsion with the floating body on the rotating shaft
Height: H = 3.0m even if chamfered considering the rotation of the floating body
Specific gravity: Since waves move up and down, the same energy is expected and 0.5.
"Figure 1" plan Waterway: 1 row Floating body 25 stages x 3 units = 75 units can be installed
Figure 0005926038
The potential energy per unit is 2.66m wave height (the movement amount is doubled in one cycle)
E = 3.0 m 3 × 2.66 m × 2 times × 0.5 (specific gravity) = 71.82 t · m / 1 group 5356.5 t · m for 75 units
Figure 0005926038
E = 9.8 x 191256/3600 seconds ≒ 5211.0 kW / H in terms of electricity charges
Because the electricity consumption per hour per house is 3KW / H (according to TEPCO) (examination per hour)
1737 houses of electricity can be covered.
Even if you convert the possible energy loss to 20%, you can cover 1390 electricity.
Figure 0005926038
Since the construction cost is 1.1 billion yen, it can be incinerated in 1.13 billion / 0.97 billion = 11.3 years.
"Fig.2" plan Floating body 81 units can be installed 1 row 35m: (9 steps) Floating body is 3 units x 9 steps x 3 rows = 81 units
Figure 0005926038
The potential energy per unit is 2.66 m.
E = 3.0 m 3 × 2.66 m × 2 times × 0.5 (specific gravity) = 71.82 t · m / 1 group 8181 for 5817.4 t · m
3600 / 10.13 × 5817.4t · m because 1 hour is 3600 seconds
= 2,067,388 t · m
E = 9.8 x 2067388 t · m / 3600 seconds ≒ 5627.9 KW / H in terms of electricity charges
Since the amount of electricity used per hour is 3 kW / H (according to TEPCO), 1876 houses can be covered.
Even if you convert the possible energy loss to 20%, you can cover the electricity for 1501 houses.
Electricity charges for ordinary households are 6987 yen, 1501 houses x 6987 yen x October = 104,874,870 yen / year ≒ 1.05 billion yen Construction costs are 111.2 billion yen, 1.12 billion / It can be incinerated in 144.5 billion = 10.7 years.
Therefore, the depreciation period for wave power generation (compound type) is 11 years, taking the average of the two plans.
Figure 0005926038
Other power generation
Figure 0005926038
Construction cost 2 million to 2.5 million yen Reality The current situation is that about 40 to 40% of ordinary households are supplied and the rest is purchased from electric power companies.
(Including electricity sales) (Sharp talk)
Approximate price of electricity for a general household is about 6987 yen.
6987 yen x 0.35 (30-40%) x 12 months = 29345 yen
The cost amortization period is 2.25 million yen / 29.345 million yen = 76 years.
Figure 0005926038
Construction cost General wind power construction cost is 300 million yen (Mitsubishi Heavy Industries talks)
Entity: I heard that one unit is about 1000 kW / H.
The electricity usage per hour per house is 3KW / H, so the electricity charge for 333 houses can be covered.
Figure 0005926038
Actually, wind speed of 7-8m is common.
Since the kinetic energy is 1/2 mv 2, it is proportional to the square of the velocity.
7.0 2 /12.5 2 = 0.31 (about 30%)
Therefore, 103 houses can be supplied with electricity.
103 houses x 6987 yen / month x December = 8,635,932 yen / year
The depreciation period is 300 million yen / 8,635,932,000 yen = 35 years.
Actually, there are many days when the wind does not blow, so the cost amortization period is doubled to 70 years.
Hydroelectric power generation Because the cost of the acquisition of submerged land is high, 20-year depreciation is not considered because it is clean energy.
Thermal power generation Causes global warming and ozone layer destruction.
Geothermal power generation What is the cavitation phenomenon because the heat inside the earth is released into the atmosphere and the earth's interior contracts? --- Out of the question.
Nuclear power The public's support is no longer available and heat is released by nuclear fusion.
In Japan, which received nuclear baptism in Hiroshima and Nagasaki, again in Fukushima --- out of the question!
Figure 0005926038
Maintenance Oil filler Proposes a "constant water level water supply" already filed.
The question remains with viscous oils. (Further problem of saucer)
References (Application No. “Japanese Patent Application No. 2007-146149”)
Unexpected facility at sea. Therefore, you cannot rely on sandbags.
Therefore, we propose a “gravity water sacs”. (There is so much to throw away seawater.)
A system that holds water and controls water.
References (Application number “Japanese Patent Application No. 2007-144130”)

発明の効果Effect of the invention

他の発電方法と比較して原価償却期間の短い発電方法となった。
更に使用電力の少ない時間帯には「地球環境改良システム」に電気を供給すれば(下図参照)地球温暖化、オゾン層破壊、及び海洋酸性化問題は簡単に解決するものと、思っている。
Compared to other power generation methods, the power generation method has a shorter cost amortization period.
Furthermore, we believe that if electricity is supplied to the “Global Environment Improvement System” during times when power consumption is low (see the figure below), global warming, ozone depletion, and ocean acidification problems can be easily solved.

Figure 0005926038
※1:設置場所は、既に廃止の検討をしている原子力発電所敷地の沖合いが望ましい。
a)広大な敷地があり、その敷地は海に面している。
「地球環境改良システム」の実施には、海に近い場所を必要とする。
b)送電施設を持っている。−−−>送電の設備投資が不要である。
c)セキュリティも万全。
d)インフラ整備の充実。
日本海の特徴は、冬には波が荒すぎ、夏は鏡の様に穏やかな為、適さない。
Figure 0005926038
(機器の破損等を考慮した。)
Figure 0005926038
* 1: The installation location is preferably offshore from the site of a nuclear power plant that has already been considered for decommissioning.
a) There is a vast site that faces the sea.
The implementation of the “Global Environment Improvement System” requires a place close to the sea.
b) Has a power transmission facility. ---- No capital investment for transmission is required.
c) Complete security.
d) Enhancement of infrastructure development.
The feature of the Sea of Japan is that it is not suitable because the waves are too rough in winter and it is calm like a mirror in summer.
Figure 0005926038
(Considering equipment damage)

平面図(平常時)Plan view (normal) 平面図(平常時)副案Plan (normal) sub-plan 浮体鳥瞰図Floating bird eye view 浮体移動図Floating body movement diagram 発電機への伝達ギア詳細図Detailed diagram of transmission gear to generator 平面図(津波時)Plan (at tsunami)

1.波力
2.潮流
3.合力
4.排水口
5.浮体
6.水路
7.潮流発電箇所(負荷によって方向制御を懸ける)
8.船外機(津波時の動力用)
9.インカー
10.フロート
11.回転感知レバー
12.軸を中心に回転
13.回転軸
14.ガイドに沿って移動する部材
15.発電機への伝達ギア
16.回転軸を芯とした円弧
17.面取り(回転対策)
18.発電機ギア(連結)
19.計画波高
20.上げ波高
21.下げ波高
22.波の上下運動で回転方向が逆になる。
23.ギア連結部を移動
24.自重で浮体ギアに接触
25.押し出される
26 浮体ギアに接続
27.接続ギアの回転軸
28.発電機の接続ギア
29.回転感知レバー
30.浮体の回転方向
31.地震の震源地
32.アンカー投入
33.津波
1. 1. Wave force 2. Tidal current Resulting force 4. Drain port 5. Floating body 6. Waterway 7. Tidal current power generation location (Direction control depends on load)
8). Outboard motor (for power during tsunami)
9. Inker 10. Float 11. Rotation sensing lever 12. 12. Rotate about axis Rotating shaft 14. 15. A member that moves along the guide Transmission gear to generator 16. 18. Arc with the rotation axis as the core Chamfer (rotation countermeasure)
18. Generator gear (linked)
19. Plan wave height20. Raised wave height 21. Down wave height 22. The direction of rotation is reversed by the vertical movement of the wave.
23. Move gear coupling 24. Contact the floating gear with its own weight25. Connected to 26 extruded body gear 27. Rotating shaft of connecting gear 28. Generator connection gear 29. Rotation sensing lever 30. Direction of rotation of floating body 31. Earthquake epicenter 32. Anchor insertion33. tsunami

Claims (1)

大きなフロート10と小さなフロートである浮体5とを備え、全体をフロート構造とした波力発電システムにおいて、前記フロート10を分割した水路6を備え、前記水路6内に前記浮体5を設置し前記水路6を通過する波の上下運動により浮体5を上下に揺動させ、前記浮体5の揺動をレバー及びギアを用いて一定方向の回転にし、該回転を発電機に接続する、伝達機構を備えた波力発電システム。In a wave power generation system including a large float 10 and a floating body 5 which is a small float and having a float structure as a whole, the water channel 6 is obtained by dividing the float 10, and the floating body 5 is installed in the water channel 6. A transmission mechanism that swings the floating body 5 up and down by a vertical motion of a wave passing through 6, rotates the floating body 5 in a fixed direction using a lever and a gear, and connects the rotation to a generator; Wave power generation system.
JP2011259529A 2011-11-10 2011-11-10 Wave power generation [compound type] Expired - Fee Related JP5926038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011259529A JP5926038B2 (en) 2011-11-10 2011-11-10 Wave power generation [compound type]

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011259529A JP5926038B2 (en) 2011-11-10 2011-11-10 Wave power generation [compound type]

Publications (3)

Publication Number Publication Date
JP2012041934A JP2012041934A (en) 2012-03-01
JP2012041934A5 JP2012041934A5 (en) 2014-05-08
JP5926038B2 true JP5926038B2 (en) 2016-05-25

Family

ID=45898507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011259529A Expired - Fee Related JP5926038B2 (en) 2011-11-10 2011-11-10 Wave power generation [compound type]

Country Status (1)

Country Link
JP (1) JP5926038B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100540885C (en) * 2003-10-14 2009-09-16 星浪能量公司 Comprise the wave power generation equipment of being arranged to a plurality of arms of mutual phase shift pivot
US7686583B2 (en) * 2006-07-10 2010-03-30 Siegel Aerodynamics, Inc. Cyclical wave energy converter
HUE031987T2 (en) * 2007-04-18 2017-08-28 Seabased Ab A wave power unit, a buoy, use of a wave power unit and a method for producing electric energy

Also Published As

Publication number Publication date
JP2012041934A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
Acharya et al. Floating solar photovoltaic (FSPV): a third pillar to solar PV sector
Borthwick Marine renewable energy seascape
Wagner et al. Introduction to hydro energy systems: basics, technology and operation
Christensen et al. The wave energy challenge: the wave dragon case
Di Fresco et al. Energy conversion of orbital motions in gravitational waves: Simulation and test of the Seaspoon wave energy converter
US10502178B2 (en) In-bank veritcal axis hydropower system
JP5926038B2 (en) Wave power generation [compound type]
Chozas et al. State of the art of wave energy in Spain
Vyshnavi et al. A review on the energy prospects of Indian remote islands and preliminary assessment of marine current energy potential
JP6675633B2 (en) Power generator
JP2022107134A (en) Smart city with solar power and hydro power
JP2014152645A (en) Water flow power generation device
Esteban et al. Recent developments in ocean energy and offshore wind: financial challenges and environmental misconceptions
Di Fresco et al. The Seaspoon innovative wave energy converter
Becker et al. The energy river: realising energy potential from the river Mersey
Sewnarain Harnessing tidal energy for power generation in South Africa
Vytautas et al. Hydrokinetic turbines in microgrids based on small hydroelectric plants
Karim et al. Electricity generation by using amplitude of Ocean wave
Siddiqui et al. Ocean Energy: The Future of Renewable Energy Generation
Merkai Tidal park within offshore wind parks: An analysis for the potential use of tidal kites within the Aberdeen offshore wind farm
WO2018042447A1 (en) Permanent power from ocean currents
O'Donnell Update'05: ocean wave and tidal power generation projects in San Francisco
Rodgers et al. The cape wind project in context
Lyatkher et al. Wave, Wind, and Current Power Generation
Deepthi A Review on Tidal Power in India

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140217

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150905

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20151006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5926038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees