JP5925535B2 - Gallium-indium composite oxide powder - Google Patents
Gallium-indium composite oxide powder Download PDFInfo
- Publication number
- JP5925535B2 JP5925535B2 JP2012054120A JP2012054120A JP5925535B2 JP 5925535 B2 JP5925535 B2 JP 5925535B2 JP 2012054120 A JP2012054120 A JP 2012054120A JP 2012054120 A JP2012054120 A JP 2012054120A JP 5925535 B2 JP5925535 B2 JP 5925535B2
- Authority
- JP
- Japan
- Prior art keywords
- gallium
- indium
- powder
- particles
- composite oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000843 powder Substances 0.000 title claims description 63
- 239000002131 composite material Substances 0.000 title claims description 52
- 229910052738 indium Inorganic materials 0.000 title claims description 44
- 239000002245 particle Substances 0.000 claims description 71
- 229910052733 gallium Inorganic materials 0.000 claims description 35
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 claims description 31
- 229910001195 gallium oxide Inorganic materials 0.000 claims description 31
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 30
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 29
- 238000009826 distribution Methods 0.000 claims description 7
- 229910003437 indium oxide Inorganic materials 0.000 claims description 6
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 6
- 238000000691 measurement method Methods 0.000 claims description 2
- 238000006386 neutralization reaction Methods 0.000 description 12
- 238000010304 firing Methods 0.000 description 10
- 229910021513 gallium hydroxide Inorganic materials 0.000 description 10
- DNUARHPNFXVKEI-UHFFFAOYSA-K gallium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[Ga+3] DNUARHPNFXVKEI-UHFFFAOYSA-K 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000007864 aqueous solution Substances 0.000 description 8
- 238000000034 method Methods 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000012266 salt solution Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical class [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 239000002994 raw material Substances 0.000 description 6
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 5
- 230000032683 aging Effects 0.000 description 5
- 150000002258 gallium Chemical class 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 238000001132 ultrasonic dispersion Methods 0.000 description 5
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 4
- 239000003513 alkali Substances 0.000 description 4
- 235000011114 ammonium hydroxide Nutrition 0.000 description 4
- LKRFCKCBYVZXTC-UHFFFAOYSA-N dinitrooxyindiganyl nitrate Chemical compound [In+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O LKRFCKCBYVZXTC-UHFFFAOYSA-N 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011163 secondary particle Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- -1 ammonium ions Chemical class 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000010408 film Substances 0.000 description 3
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 description 3
- 239000011812 mixed powder Substances 0.000 description 3
- 230000005070 ripening Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010908 decantation Methods 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 150000002259 gallium compounds Chemical class 0.000 description 2
- 229940044658 gallium nitrate Drugs 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 229920005646 polycarboxylate Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- UQTCSFPVHNDUOG-UHFFFAOYSA-N azanium 4-carboxy-2,6-dihydroxyphenolate Chemical compound [NH4+].OC(=O)C1=CC(O)=C([O-])C(O)=C1 UQTCSFPVHNDUOG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 description 1
- 235000019982 sodium hexametaphosphate Nutrition 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Description
本発明は、例えばIn−Ga−Zn複合酸化物の焼結体(「IGZO焼結体」と称する)を製造するのに好適に用いることができるIGZO焼結体原料としてのガリウム・インジウム複合酸化物粉末に関する。 In the present invention, for example, a gallium-indium composite oxide as an IGZO sintered body raw material that can be suitably used to produce a sintered body of an In—Ga—Zn composite oxide (referred to as “IGZO sintered body”). The product powder.
非晶質のIn−Ga−Zn複合酸化物(以下、単に「IGZO」と呼称する)は、電気抵抗率が半導体的な値を示し、室温成膜が可能である上、信号応答性の高い材料であるため、例えば電子ペーパーや液晶パネル、有機ELを駆動するTFTの半導体層材料として注目を集めている材料の一つである。この材料から形成される薄膜は、可視光を透過するため、透明の膜をつくることができるばかりか、室温〜150℃といった低温プロセスで膜を形成でき、プラスチック基板等、高温プロセスに適さない基板材料にも適用可能であるため様々な分野での利用が期待されている。 An amorphous In—Ga—Zn composite oxide (hereinafter simply referred to as “IGZO”) has a semiconductor electrical resistivity, can be formed at room temperature, and has high signal response. Since it is a material, for example, it is one of materials attracting attention as a semiconductor layer material for TFTs for driving electronic paper, liquid crystal panels, and organic ELs. A thin film formed from this material transmits visible light, so that a transparent film can be formed, and a film can be formed by a low temperature process such as room temperature to 150 ° C., and a substrate that is not suitable for a high temperature process such as a plastic substrate. Since it can be applied to materials, it is expected to be used in various fields.
IGZOからなる半導体膜(「IGZO薄膜」と称する)は、スパッタリング法で形成されるのが一般的であり、この際スパッタリングターゲットとして用いられるのがIGZO焼結体である。
このIGZO焼結体は、酸化ガリウム、酸化亜鉛、酸化インジウムなどの原料粉末を混合し、得られた混合粉末をスラリーとし、これを鋳型に鋳込んで成形し、焼成して製造するのが一般的である。
A semiconductor film made of IGZO (referred to as an “IGZO thin film”) is generally formed by a sputtering method. In this case, an IGZO sintered body is used as a sputtering target.
This IGZO sintered body is generally manufactured by mixing raw material powders such as gallium oxide, zinc oxide, and indium oxide, making the obtained mixed powder into a slurry, casting this into a mold, molding, and firing. Is.
IGZO焼結体並びにIGZO薄膜の性能に酸化ガリウム粉末等の原料の物性が影響するため、用途に応じて酸化ガリウム粉末を改良することが望まれていた。 Since the physical properties of raw materials such as gallium oxide powder affect the performance of the IGZO sintered body and the IGZO thin film, it has been desired to improve the gallium oxide powder according to applications.
酸化ガリウムは、ガリウム塩溶液にアルカリを添加して中和することによって水酸化ガリウム(中間体)を沈澱生成させ、これを濾過乾燥した後、焼成することによって製造するのが一般的である。 Gallium oxide is generally produced by adding alkali to a gallium salt solution and neutralizing it to precipitate gallium hydroxide (intermediate), filtering and drying it, followed by firing.
酸化ガリウムに関しては、従来、例えば特許文献1において、流動性に優れた酸化ガリウム粉末を製造するべく、ガリウムを陽極として電解することにより得られた水酸化ガリウムを仮焼して酸化ガリウム粉末を得る製法が提案されている。 Regarding gallium oxide, conventionally, in order to produce a gallium oxide powder excellent in fluidity, for example, in Patent Document 1, gallium hydroxide obtained by electrolysis using gallium as an anode is calcined to obtain a gallium oxide powder. A manufacturing method has been proposed.
また、特許文献2には、塩素などの不純物の少ない酸化ガリウム粉末を製造するべく、溶融ガリウムメタルを入れた温水浴中に塩素ガスを吹き込み、塩化ガリウム水溶液とし、これを中和して得られる水酸化ガリウムを脱水・乾燥し、次いで、ばい焼、解砕する酸化ガリウム粉末の製造方法が提案されている。 Further, in Patent Document 2, in order to produce a gallium oxide powder containing less impurities such as chlorine, chlorine gas is blown into a hot water bath containing molten gallium metal to obtain a gallium chloride aqueous solution, which is obtained by neutralization. A method for producing gallium oxide powder in which gallium hydroxide is dehydrated and dried, then roasted and crushed has been proposed.
特許文献3には、ガリウム塩溶液にシュウ酸を加えて、シュウ酸の存在下で中和することによって水酸化ガリウム(中間体)を沈澱生成させ、これを濾過乾燥した後焼成することによって、比表面積(BET値)が3〜10m2/gであって、0.1〜10μmの範囲に粒子の99%(体積基準)が含まれる酸化ガリウム粉末を得る方法が提案されている。 In Patent Document 3, oxalic acid is added to a gallium salt solution and neutralized in the presence of oxalic acid to precipitate gallium hydroxide (intermediate), which is filtered and dried and then fired. There has been proposed a method for obtaining a gallium oxide powder having a specific surface area (BET value) of 3 to 10 m 2 / g and containing 99% (volume basis) of particles in a range of 0.1 to 10 μm.
特許文献4には、ガリウム塩溶液を硫酸イオンとアンモニウムイオンの共存下で中和して得られるガリウム化合物(ガリウム酸アンモニウム)を焼成して得られる酸化ガリウムが開示されている。 Patent Document 4 discloses gallium oxide obtained by firing a gallium compound (ammonium gallate) obtained by neutralizing a gallium salt solution in the presence of sulfate ions and ammonium ions.
特許文献5には、粒度分布が揃い、粒子形状が等方的である粒子を提供するべく、ガリウム塩の水溶液に硫酸イオンとアンモニウムイオンとを共存させて反応させることで、粒子形状が等方的な多面体形状を有するガリウム化合物(NH4Ga3(SO4)2(OH)6・H2O)粉末を得る方法が提案されている。 In Patent Document 5, in order to provide particles having a uniform particle size distribution and isotropic particle shape, an aqueous solution of gallium salt is reacted in the presence of sulfate ions and ammonium ions in the presence of sulfate ions and ammonium ions, whereby the particle shapes are isotropic. A method for obtaining a gallium compound (NH 4 Ga 3 (SO 4 ) 2 (OH) 6 .H 2 O) powder having a typical polyhedral shape has been proposed.
特許文献6には、ガリウム濃度、アルカリ濃度、反応終了pHを制御することにより水酸化ガリウムの粒径を任意の粒径に制御し、所定時間以上の熟成によって粒子の顆粒化を促進して粒度分布の揃った水酸化ガリウムを得て、この水酸化ガリウムを濾過、乾燥、焼成することによって目的の酸化ガリウム粉末、すなわち、粒径D50が0.8〜2.4μmで、かつ、粒径比(D90−D10)/D50が1.0未満である酸化ガリウム粉末を得る方法が提案されている。 In Patent Document 6, the particle size of gallium hydroxide is controlled to an arbitrary particle size by controlling the gallium concentration, the alkali concentration, and the reaction termination pH, and the granulation of the particles is promoted by aging for a predetermined time or more. A gallium hydroxide having a uniform distribution is obtained, and the gallium hydroxide is filtered, dried, and fired to obtain a target gallium oxide powder, that is, a particle diameter D50 of 0.8 to 2.4 μm and a particle diameter ratio. A method for obtaining a gallium oxide powder having (D90-D10) / D50 of less than 1.0 has been proposed.
また、特許文献7には、酸化インジウム粉末との均一混合性に優れた酸化ガリウム粉末として、嵩密度(AD)が0.40〜0.70g/cm3であることを特徴とする酸化ガリウム粉末が提案されている。 Patent Document 7 discloses a gallium oxide powder having a bulk density (AD) of 0.40 to 0.70 g / cm 3 as a gallium oxide powder excellent in uniform mixing with the indium oxide powder. Has been proposed.
ところで、酸化ガリウムの密度は、文献値としての密度が6.4であるのに対し、実際に製造された酸化ガリウムの密度をアルキメデス法で測定してみると、当該文献値よりも低い6.2程度であることが多く、実際に製造されている多くの酸化ガリウム粉末粒子は内部に空隙を多く含んでいることが分かってきた。
そして、このような酸化ガリウム粉末を原料としてIGZO焼結体を作製すると、酸化ガリウム粒子内部に存在する空隙は、IGZO焼結体を作製ずる際の焼成では抜けずにそのままIGZO焼結体に移行することになり、これがIGZO焼結体の焼結密度を高める際の障害となっている可能性があることが分かってきた。
By the way, the density of gallium oxide is 6.4 as a reference value, whereas when the density of gallium oxide actually manufactured is measured by the Archimedes method, it is lower than the reference value. It has often been about 2, and it has been found that many gallium oxide powder particles actually produced contain many voids inside.
When an IGZO sintered body is produced using such a gallium oxide powder as a raw material, the voids existing inside the gallium oxide particles are transferred to the IGZO sintered body as they are without being removed by firing when producing the IGZO sintered body. Thus, it has been found that this may be an obstacle to increasing the sintered density of the IGZO sintered body.
そこで本発明は、スラリー粘度を高めることができ、IGZO焼結体の焼結密度をさらに高めることができる新たなIGZO原料を提供せんとするものである。 Therefore, the present invention provides a new IGZO raw material that can increase the slurry viscosity and can further increase the sintered density of the IGZO sintered body.
本発明は、多面体形状を呈するガリウム・インジウム複合酸化物粒子を主な粒子として含有するガリウム・インジウム複合酸化物粉末を提案する。 The present invention proposes a gallium / indium composite oxide powder containing gallium / indium composite oxide particles having a polyhedral shape as main particles.
上述のように、通常の酸化ガリウム粉末粒子は粒子内部に空隙を有しているが、インジウムと複合化させて多面体形状を呈するガリウム・インジウム複合酸化物粒子とすることにより、粒子内部の空隙を顕著に減らすことができることが新たに判明した。よって、このようなガリウム・インジウム複合酸化物粒子を主な粒子とするガリウム・インジウム複合酸化物粉末を用いてIGZO焼結体を作製すれば、すなわち、本発明が提案するガリウム・インジウム複合酸化物粉末と、酸化亜鉛粉末を混合し、得られた混合粉末をスラリーとすれば、スラリー粘度を高めることができる。そして、これを鋳型に鋳込むことで成形して焼成すれば、IGZO焼結体の密度をより一層高めることができる。また、原料段階から酸化ガリウムと酸化インジウムを複合化させることができるため、より一層均質なIGZO焼結体を製造することができる。 As described above, normal gallium oxide powder particles have voids inside the particles, but by forming a polyhedral gallium / indium composite oxide particle by compounding with indium, voids inside the particles are reduced. It has been newly found that it can be significantly reduced. Therefore, if an IGZO sintered body is produced using a gallium-indium composite oxide powder mainly composed of such gallium-indium composite oxide particles, that is, the gallium-indium composite oxide proposed by the present invention. If the powder and the zinc oxide powder are mixed and the obtained mixed powder is made into a slurry, the slurry viscosity can be increased. And if this is cast by casting into a mold and then fired, the density of the IGZO sintered body can be further increased. Moreover, since gallium oxide and indium oxide can be compounded from the raw material stage, a more uniform IGZO sintered body can be produced.
以下、本発明の一実施形態の例(以下、「本実施形態」という)について説明するが、本発明が下記本実施形態に限定されるものではない。 Hereinafter, although an example of one embodiment of the present invention (hereinafter referred to as “this embodiment”) will be described, the present invention is not limited to the following embodiment.
本実施形態に係るガリウム・インジウム複合酸化物粉末(以下、「本複合粉末」という)は、ガリウムとインジウムの複合酸化物からなる粒子(「ガリウム・インジウム複合酸化物粒子」と称する)を主な粒子として含有するガリウム・インジウム複合酸化物粉末であり、該ガリウム・インジウム複合酸化物粒子のほかに、酸化ガリウム粒子及び酸化インジウム粒子を含有してもよい。 The gallium / indium composite oxide powder (hereinafter referred to as “the present composite powder”) according to the present embodiment is mainly composed of particles composed of a composite oxide of gallium and indium (referred to as “gallium / indium composite oxide particles”). It is a gallium / indium composite oxide powder contained as particles, and may contain gallium oxide particles and indium oxide particles in addition to the gallium / indium composite oxide particles.
ここで、「ガリウム・インジウム複合酸化物」とは、酸化ガリウムにインジウムが取り込まれた固溶体の状態となっている複合酸化物の意味である。酸化ガリウムにインジウムが取り込まれた固溶体の状態となっているか否かは、X線回折により確認することができる。
また、「ガリウム・インジウム複合酸化物粒子を主な粒子として含有する」とは、ガリウム・インジウム複合酸化物粒子が全粒子の中で最も多い種類の粒子として含有すること、言い換えれば、ガリウム・インジウム複合酸化物粒子が全粒子中の50%(個数)以上、中でも70%以上、その中でも90%以上占めることを意味する。
Here, the “gallium / indium composite oxide” means a composite oxide in a solid solution state in which indium is incorporated into gallium oxide. Whether or not gallium oxide is in a solid solution state in which indium is taken in can be confirmed by X-ray diffraction.
“Containing gallium / indium composite oxide particles as main particles” means that the gallium / indium composite oxide particles are contained as the most common type of particles, in other words, gallium / indium. It means that the composite oxide particles occupy 50% (number) or more, especially 70% or more, and 90% or more of all particles.
(粒子形状)
ガリウム・インジウム複合酸化物粒子としての2次粒子の粒子形状は、多面体形状であるのが好ましい。多面体形状とは平面によって囲まれた形状の意味である。中でも、例えば直方体や立法体などの6面体形状を呈する粒子であるのがより好ましい。よって、本複合粉末を構成する全粒子(2次粒子)のうち50%以上、中でも70%以上、その中でも特に90%以上を多面体形状、特に六面体形状を呈する粒子が占めるのが好ましい。
このように本複合粉末を構成する多くの粒子が微粒であって、多面体形状を呈していれば、パッキングし易く、水の中で分散性が良くてしまりやすいため、成型密度及び焼結密度を高くすることができるので好ましい。
なお、本複合粉末の2次粒子の粒子形状は、SEM(走査型電子顕微鏡、5000〜20000倍)により観察することができる。
本複合粉末を構成する全粒子(2次粒子)のうちの50%以上(個数)を、多面体形状を呈する粒子が占めるようにするには、InとGaの混合塩溶液をアルカリで中和して、共沈することで本複合粉末を製造するのが好ましい。
(Particle shape)
The particle shape of the secondary particles as the gallium / indium composite oxide particles is preferably a polyhedral shape. The polyhedral shape means a shape surrounded by a plane. Among these, particles having a hexahedral shape such as a rectangular parallelepiped or a cubic body are more preferable. Therefore, it is preferable that 50% or more, especially 70% or more, particularly 90% or more of all particles (secondary particles) constituting the composite powder occupy a polyhedral shape, particularly a hexahedral shape.
In this way, if many particles constituting the composite powder are fine particles and have a polyhedral shape, packing is easy and dispersibility in water is easy, so the molding density and sintering density can be reduced. This is preferable because it can be increased.
In addition, the particle shape of the secondary particle of this composite powder can be observed by SEM (scanning electron microscope, 5000 to 20000 times).
In order to occupy 50% or more (number) of all particles (secondary particles) constituting the composite powder with particles having a polyhedral shape, the mixed salt solution of In and Ga is neutralized with an alkali. The composite powder is preferably produced by coprecipitation.
(ガリウムとインジウムとの比率)
ガリウム・インジウム複合酸化物粒子におけるガリウムとインジウムとの比率(Ga:In)は、特に限定するものではない。ガリウム・インジウム複合酸化物粒子を多面体形状、特に6面体形状にする観点から、Ga:Inの重量比で47:30〜56:20又は48:28〜54:22の範囲内であるのが好ましい。
(Ratio of gallium to indium)
The ratio of gallium to indium (Ga: In) in the gallium / indium composite oxide particles is not particularly limited. From the viewpoint of making the gallium / indium composite oxide particles into a polyhedral shape, particularly a hexahedral shape, the Ga: In weight ratio is preferably in the range of 47:30 to 56:20 or 48:28 to 54:22. .
(D50)
本複合粉末のD50、すなわちレーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布による(超音波分散後)D50は、0.5〜10.0μmであるのが好ましい。本複合粉末のD50の値が0.5μm以上であれば、粒径が大き過ぎることがないため、より一層均一且つ最密に充填することができる。他方、10.0μm以下であれば、微粉が多いために分散性が低下するのを避けることができる。
かかる観点から、本複合粉末のD50は、0.7μm以上或いは5.0μm以下であるのがより一層好ましく、3.0μm以下であるのがより一層好ましい。
なお、D50は、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準累積度数50%の粒子径の意味である。
(D50)
It is preferable that D50 of this composite powder, that is, D50 by volume reference particle size distribution (after ultrasonic dispersion) obtained by measurement by a laser diffraction / scattering particle size distribution measuring method is 0.5 to 10.0 μm. If the value of D50 of the present composite powder is 0.5 μm or more, the particle size will not be too large, so that it can be more evenly and closely packed. On the other hand, if it is 10.0 micrometers or less, since there are many fine powders, it can avoid that a dispersibility falls.
From this viewpoint, the D50 of the present composite powder is more preferably 0.7 μm or more or 5.0 μm or less, and even more preferably 3.0 μm or less.
In addition, D50 means the particle diameter of the volume reference | standard cumulative frequency 50% obtained by measuring by the laser diffraction scattering type particle size distribution measuring method.
本複合粉末のD50は、中和熟成時のガリウム濃度を制御することで調整することができる。この際、ガリウム濃度が低い方が、粒子径は小さくなり、逆に高い場合、粒子径は大きくなる。焼成温度も多少影響し、高温焼成の方が粒子径は大きくなる傾向はあるが、酸化ガリウム粒子の特徴として、焼成の前後で粒径がほとんど変わらないという特徴がある。すなわち、中和熟成完了時点で、最終の焼成粉の粒子形状・粒子径はほぼ完成するため、中和熟成時の条件を調整するのが効果的である。 The D50 of the present composite powder can be adjusted by controlling the gallium concentration during neutralization ripening. At this time, the particle diameter is smaller when the gallium concentration is lower, and conversely when the gallium concentration is higher, the particle diameter is larger. The firing temperature also has some influence, and high-temperature firing tends to have a larger particle size, but the characteristic of gallium oxide particles is that the particle size hardly changes before and after firing. That is, since the particle shape and particle diameter of the final baked powder are almost completed when neutralization ripening is completed, it is effective to adjust the conditions during neutralization ripening.
(粘度)
本複合粉末は、水を30wt%、分散剤としてのポリカルボン酸アンモニウムを1wt%、及びバインダーとしてのポリビニルアルコールを0.5wt%混合したスラリーとして東機産業製E型粘度計RE205で測定される粘度が10〜55cPであるのが好ましい。当該粘度が55cP以上であれば、高粘度であるため、金型の隅などにまで充填することが困難になるため成型体の密度を高めることが難しくなる一方、10cP以下であれば、低粘度であるため、沈降などが生じて成型体に反りや割れなどが発生する可能性がある。かかる観点から、当該粘度は25cP以上或いは45cP以下であるのがさらに好ましい。
(viscosity)
This composite powder is measured by a Toki Sangyo E-type viscometer RE205 as a slurry in which 30 wt% of water, 1 wt% of ammonium polycarboxylate as a dispersant, and 0.5 wt% of polyvinyl alcohol as a binder are mixed. The viscosity is preferably 10 to 55 cP. If the viscosity is 55 cP or more, the viscosity is high, and therefore it is difficult to fill the corners of the mold, so it is difficult to increase the density of the molded body. Therefore, sedimentation or the like may occur and the molded body may be warped or cracked. From this viewpoint, the viscosity is more preferably 25 cP or more or 45 cP or less.
(製造方法)
次に、本複合粉末の製造方法の一例について説明する。但し、あくまで一例であって、本複合粉末の製造方法が以下に説明する製造方法に限定されるものではない。
(Production method)
Next, an example of the manufacturing method of this composite powder is demonstrated. However, it is an example to the last, and the manufacturing method of this composite powder is not limited to the manufacturing method demonstrated below.
具体的には、先ず、硝酸ガリウム塩溶液と硝酸インジウム塩溶液を、アルカリに添加して中和することによって水酸化ガリウムと水酸化インジウムを共沈させる。例えばアンモニア水を加えてpH7〜10に調整することで、水酸化ガリウムと水酸化インジウムの複合物を共沈させ、所定の温度で所定時間保持することにより水熱熟成すればよい。
中和にはアンモニア水以外にも、例えばアンモニア、水酸化ナトリウム、尿素などの他のアルカリを用いることもできる。
Specifically, first, gallium hydroxide and indium hydroxide are coprecipitated by adding a gallium nitrate salt solution and an indium nitrate salt solution to an alkali to neutralize the solution. For example, by adding ammonia water to adjust the pH to 7 to 10, a composite of gallium hydroxide and indium hydroxide may be coprecipitated and kept at a predetermined temperature for a predetermined time to be hydrothermally ripened.
In addition to aqueous ammonia, other alkalis such as ammonia, sodium hydroxide, and urea can be used for neutralization.
中和工程では、反応過程で中和熱が発生するために液温が高くなる可能性があるが、液温が高くならないように制御することも必要である。具体的には、初期の液温と中和後の液温の差が±15℃となり、中和後の液温が50℃以下、特に10〜50℃、中でも20〜40℃となるように制御することが好ましい。
この際、温度制御手段としては、中和に要する時間を十分長くとることで、一気に中和熱が発生するのを抑える方法を挙げることができる。
かかる観点から、ガリウム塩溶液のガリウム濃度は50〜300g/Lが好ましく、また、アルカリ溶液、例えばアンモニア水におけるアンモニア濃度は1〜10wt%とするのが好ましい。
In the neutralization step, heat of neutralization is generated in the reaction process, so that the liquid temperature may increase. However, it is necessary to control the liquid temperature not to increase. Specifically, the difference between the initial liquid temperature and the liquid temperature after neutralization is ± 15 ° C., and the liquid temperature after neutralization is 50 ° C. or less, particularly 10 to 50 ° C., particularly 20 to 40 ° C. It is preferable to control.
In this case, examples of the temperature control means include a method for suppressing the generation of heat of neutralization at a stretch by taking a sufficiently long time for neutralization.
From this viewpoint, the gallium concentration of the gallium salt solution is preferably 50 to 300 g / L, and the ammonia concentration in an alkaline solution such as ammonia water is preferably 1 to 10 wt%.
中和が完了したら、均一に撹拌を行い、70〜90℃にて1時間以上の熟成を行って粒子を成長させることが重要である。この際、熟成温度及び時間は、粒子の形状や形成度合に影響するため、70℃以上で1時間以上熟成することが好ましい。 When neutralization is completed, it is important to uniformly stir and age the particles at 70 to 90 ° C. for 1 hour or longer to grow the particles. At this time, the aging temperature and time affect the shape and degree of formation of the particles, and therefore, aging is preferably performed at 70 ° C. or higher for 1 hour or longer.
このように熟成を行った後、得られたスラリーを洗浄、濾過を行い、十分に乾燥させる、具体的には105℃以上で少なくとも5時間以上乾燥させるのが好ましい。
水酸化ガリウムと水酸化インジウムの複合物を洗浄濾過乾燥する手段としては、例えば純水を用いてデカンテーションを繰り返すなどして、例えば硝酸根等を洗浄除去した後、濾過等によって固液分離し、乾燥させて乾燥体(ケーキ)を得、その後解砕して焼成するようにすればよい。
After aging in this manner, the obtained slurry is washed, filtered and sufficiently dried, specifically, it is preferably dried at 105 ° C. or higher for at least 5 hours.
As a means for washing, filtering, and drying the composite of gallium hydroxide and indium hydroxide, for example, decantation is repeated using pure water, for example, after washing and removing nitrate radicals, etc., solid-liquid separation is performed by filtration or the like. And drying to obtain a dried product (cake), which is then crushed and fired.
焼成は、大気雰囲気において、600〜1300℃を1時間〜6時間保持するように行うのが好ましい。
焼成温度(保持温度)は、600℃以上の適宜温度で行うのが好ましい。
また、保持温度での保持時間は、1時間〜6時間、特に1時間〜5時間とするのが好ましい。
Firing is preferably performed in an air atmosphere so as to hold 600 to 1300 ° C. for 1 to 6 hours.
The firing temperature (holding temperature) is preferably an appropriate temperature of 600 ° C. or higher.
The holding time at the holding temperature is preferably 1 hour to 6 hours, particularly 1 hour to 5 hours.
(用途)
本複合粉末は、ターゲット材料、例えばIGZOなどのように、酸化亜鉛粉末などと混合して圧縮成形する用途に特に好適に用いることができる。例えばIGZO焼結体であれば、本複合粉末と、酸化亜鉛粉末とを混合して圧縮成型した後、焼結してIGZO焼結体を製造することができる。
(Use)
The present composite powder can be particularly suitably used for a purpose of compression molding by mixing with a zinc oxide powder or the like such as a target material such as IGZO. For example, in the case of an IGZO sintered body, the composite powder and the zinc oxide powder are mixed and compression molded, and then sintered to produce an IGZO sintered body.
(語句の説明)
本明細書において「X〜Y」(X,Yは任意の数字)と表現する場合、特にことわらない限り「X以上Y以下」の意と共に、「好ましくはXより大きい」或いは「好ましくYより小さい」の意も包含する。
また、「X以上」(Xは任意の数字)と表現する場合、特にことわらない限り「好ましくはXより大きい」の意を包含し、「Y以下」(Yは任意の数字)と表現する場合、特にことわらない限り「好ましくYより小さい」の意を包含する。
(Explanation of words)
In the present specification, when expressed as “X to Y” (X and Y are arbitrary numbers), “X is preferably greater than X” or “preferably more than Y” with the meaning of “X to Y” unless otherwise specified. The meaning of “small” is also included.
In addition, when expressed as “X or more” (X is an arbitrary number), it means “preferably larger than X” unless otherwise specified, and expressed as “Y or less” (Y is an arbitrary number). In the case, unless otherwise specified, the meaning of “preferably smaller than Y” is included.
以下、本発明の実施例について説明する。 Examples of the present invention will be described below.
<粒子形状>
走査型電子顕微鏡(SEM)を用いて20000倍にて観察し、実施例・比較例で得た粉末(サンプル)を構成する主な粒子の形状と、6面体形状を呈する粒子の個数割合を測定した。
<Particle shape>
Observe at 20000 times using a scanning electron microscope (SEM) and measure the shape of the main particles constituting the powders (samples) obtained in the examples and comparative examples, and the number ratio of particles exhibiting a hexahedral shape. did.
<粒度測定>
実施例・比較例で得た粉末(サンプル)を、少量ビーカーに取り、2%ヘキサメタリン酸ナトリウムを2、3滴添加して、粉末になじませてから、純水を50mL添加し、その後、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて2分間分散処理して測定用サンプルを調製した。この測定用サンプルを、レーザー回折散乱式粒度分布測定装置MT3300(日機装製)を用いて、体積累積基準D50を測定した。
なお、超音波分散の有無によるD50の差を測定する際には、上記測定方法において、超音波分散の有の場合は、超音波分散器TIPφ20(日本精機製作所製、OUTPUT:8、TUNING:5)を用いて5分間分散処理し、他方、超音波分散無しの場合は、超音波分散せずに薬さじで撹拌して、3分間循環させてから測定を開始し、D50を測定し、両者の差を算出した。
<Particle size measurement>
Take a small amount of the powder (sample) obtained in Examples and Comparative Examples in a small beaker, add 2 or 3 drops of 2% sodium hexametaphosphate, adjust to the powder, and then add 50 mL of pure water. A measurement sample was prepared by dispersing for 2 minutes using a sonic disperser TIPφ20 (Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5). The volume accumulation standard D50 of this measurement sample was measured using a laser diffraction / scattering particle size distribution analyzer MT3300 (manufactured by Nikkiso).
When measuring the difference in D50 due to the presence or absence of ultrasonic dispersion, in the above measurement method, if ultrasonic dispersion is present, an ultrasonic disperser TIPφ20 (Nippon Seiki Seisakusho, OUTPUT: 8, TUNING: 5) On the other hand, if there is no ultrasonic dispersion, stirring with a spoonful without circulating ultrasonic dispersion, circulating for 3 minutes, and then measuring D50, The difference was calculated.
<粘度>
実施例・比較例で得た粉末(サンプル)に、水を30wt%、分散剤としてのポリカルボン酸アンモニウムを1wt%、及びバインダーとしてのポリビニルアルコールを0.5wt%混合してスラリーを作製し、東機産業製E型粘度計RE205で粘度を測定した。
<Viscosity>
A slurry was prepared by mixing 30 wt% of water, 1 wt% of ammonium polycarboxylate as a dispersant, and 0.5 wt% of polyvinyl alcohol as a binder with the powder (sample) obtained in the examples and comparative examples, The viscosity was measured with a Toki Sangyo E-type viscometer RE205.
<実施例1>
35℃に調整したGa濃度170g/Lの硝酸ガリウム塩水溶液330mL(Ga56g)と、35℃に調整したIn濃度350g/Lの硝酸インジウム塩水溶液57mL(In20g)を混合し、攪拌しながら、35℃に調整したアンモニア水を加えてpH8に調整した。
その後、撹拌を継続したまま90℃まで昇温した。昇温にかかった時間は40分間であった。更に90℃を保持しつつ撹拌を継続したまま3時間熟成させた。
熟成終了後、常温まで自然冷却し、純水によるデカンテーションを繰り返し、アンモニア、硝酸成分を洗浄した。
洗浄した後、濾過により固液分離を行い、更に105℃にて24時間乾燥させて乾燥物を得た。
このようにして得られた乾燥物を、乳鉢を用いて解砕し、セラミック製の焼成容器(焼成匣鉢)に入れ、大気雰囲気にて1000℃で3時間の焼成を行い、60メッシュの網目の振動篩によって造粒してガリウム・インジウム複合酸化物粉末(Ga,In)2O3粉末(サンプル)を得た。
<Example 1>
A gallium nitrate salt aqueous solution 330 g (Ga 56 g) adjusted to 35 ° C. with a Ga concentration of 170 g / L was mixed with an indium nitrate salt aqueous solution 57 mL (In 20 g) adjusted to 35 ° C. with an In concentration of 350 g / L. Ammonia water adjusted to pH 8 was added to adjust to pH 8.
Then, it heated up to 90 degreeC, continuing stirring. The time required for the temperature increase was 40 minutes. Further, the mixture was aged for 3 hours while maintaining stirring at 90 ° C.
After completion of aging, the product was naturally cooled to room temperature, and decantation with pure water was repeated to wash ammonia and nitric acid components.
After washing, solid-liquid separation was performed by filtration, and further dried at 105 ° C. for 24 hours to obtain a dried product.
The dried product thus obtained was crushed using a mortar, placed in a ceramic firing container (baked mortar), fired at 1000 ° C. for 3 hours in an air atmosphere, and a mesh of 60 mesh. And gallium-indium composite oxide powder (Ga, In) 2 O 3 powder (sample).
<実施例2−3>
硝酸ガリウム塩水溶液の量とGa濃度、並びに、硝酸インジウム塩水溶液の量とIn濃度を調整して表1のようにGaとInの量を変更した以外、実施例1と同様にしてガリウム・インジウム複合酸化物粉末(Ga,In)2O3粉末(サンプル)を得た。
<Example 2-3>
The amount of gallium nitrate aqueous solution and the Ga concentration, and the amount of Indium nitrate salt aqueous solution and the In concentration were adjusted to change the amounts of Ga and In as shown in Table 1. A composite oxide powder (Ga, In) 2 O 3 powder (sample) was obtained.
<比較例1−3>
硝酸ガリウム塩水溶液の量とGa濃度、並びに、硝酸インジウム塩水溶液の量とIn濃度を調整して表1のようにGaとInの量を変更した以外、実施例1と同様にして粉末(サンプル)を得た。
<Comparative Example 1-3>
The amount of gallium nitrate aqueous solution and Ga concentration, and the amount of Indium nitrate salt aqueous solution and In concentration were adjusted to change the amounts of Ga and In as shown in Table 1, and the powder (sample )
<比較例4>
市販の酸化ガリウム粉末75gと市販の酸化インジウム粉末24gを用い、Ga:In=56:20になるように混合して、混合粉末を得た。
<Comparative example 4>
75 g of commercially available gallium oxide powder and 24 g of commercially available indium oxide powder were mixed so that Ga: In = 56: 20 was obtained to obtain a mixed powder.
(考察)
実施例1〜3で得られたガリウム・インジウム複合酸化物粉末をX線回折で分析した結果、酸化ガリウムにインジウムが取り込まれた固溶体の状態となっていることを確認することができた。
すなわち、酸化ガリウムをインジウムと複合化して、酸化ガリウムにインジウムが取り込まれた固溶体とすることにより、多面体形状を呈する粒子からなるガリウム・インジウム複合酸化物粒子を作製することができ、粒子内部の空隙を顕著に減らすことができ、その結果、スラリー粘度を高めることができることが分かった。
(Discussion)
As a result of analyzing the gallium / indium composite oxide powders obtained in Examples 1 to 3 by X-ray diffraction, it was confirmed that the gallium oxide was in a solid solution state in which indium was incorporated.
That is, by combining gallium oxide with indium to form a solid solution in which indium is incorporated into gallium oxide, gallium-indium composite oxide particles composed of particles having a polyhedral shape can be produced. As a result, it was found that the slurry viscosity can be increased.
Claims (2)
The gallium / indium composite oxide powder according to claim 1, further comprising gallium oxide particles and indium oxide particles in addition to the gallium / indium composite oxide particles.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012054120A JP5925535B2 (en) | 2012-03-12 | 2012-03-12 | Gallium-indium composite oxide powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012054120A JP5925535B2 (en) | 2012-03-12 | 2012-03-12 | Gallium-indium composite oxide powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013184882A JP2013184882A (en) | 2013-09-19 |
JP5925535B2 true JP5925535B2 (en) | 2016-05-25 |
Family
ID=49386645
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012054120A Active JP5925535B2 (en) | 2012-03-12 | 2012-03-12 | Gallium-indium composite oxide powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5925535B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180129769A (en) * | 2016-03-28 | 2018-12-05 | 미쓰이금속광업주식회사 | Sputtering target material, production method thereof, and sputtering target |
CN111569856B (en) * | 2020-04-03 | 2023-06-09 | 清华-伯克利深圳学院筹备办公室 | In-Ga 2 O 3 Composite photocatalyst, preparation method and application thereof |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5407602A (en) * | 1993-10-27 | 1995-04-18 | At&T Corp. | Transparent conductors comprising gallium-indium-oxide |
JP4816116B2 (en) * | 2006-02-08 | 2011-11-16 | 住友金属鉱山株式会社 | Oxide sintered body for sputtering target, oxide film obtained using the same, and transparent substrate including the same |
JP4760499B2 (en) * | 2006-04-06 | 2011-08-31 | 住友金属鉱山株式会社 | Oxide sintered body and manufacturing method of oxide film transparent conductive film using the same |
KR101596211B1 (en) * | 2007-07-06 | 2016-02-22 | 스미토모 긴조쿠 고잔 가부시키가이샤 | Oxide sintered body and production method therefor, target, and transparent conductive film and transparent conductive substrate obtained by using the same |
JP2009044019A (en) * | 2007-08-10 | 2009-02-26 | Nippon Light Metal Co Ltd | Method of manufacturing gallium oxide-indium oxide mixed crystal, and light-sensitive element using manufactured mixed crystal |
JP2011178640A (en) * | 2010-03-03 | 2011-09-15 | Hitachi Maxell Ltd | Oxide semiconductor powder and method of manufacturing the same |
JP4649536B1 (en) * | 2010-03-31 | 2011-03-09 | 三井金属鉱業株式会社 | Gallium oxide powder |
-
2012
- 2012-03-12 JP JP2012054120A patent/JP5925535B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2013184882A (en) | 2013-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5464840B2 (en) | Method for producing zirconia fine particles | |
JP5588815B2 (en) | Gallium oxide powder | |
KR102206930B1 (en) | Zinc oxide powder for manufacturing zinc oxide sintered body with high strength and low thermal conductivity | |
KR101904579B1 (en) | Method for producing barium titanyl oxalate and method for producing barium titanate | |
JP5809605B2 (en) | Method for producing indium gallium zinc oxide composition | |
JP2009242230A (en) | Method for producing alkali niobate perovskite crystal | |
JP5925535B2 (en) | Gallium-indium composite oxide powder | |
JP5729926B2 (en) | Gallium oxide powder | |
JP2012162432A (en) | Gallium oxide powder, method for producing the same, oxide sintered compact sputtering target, and method for producing the same | |
JP2011213507A (en) | Gallium oxide powder | |
JP7011061B2 (en) | Zinc oxide powder and zinc oxide sintered body for producing zinc oxide sintered body, and a method for producing these. | |
Gul et al. | Influence of particle size and sintering temperatures on electrical properties of 0.94 Na0. 5Bi0. 5TiO3-0.06 BaTiO3 lead free ceramics | |
JPH0688788B2 (en) | Method for producing low temperature sinterable PZT-based piezoelectric ceramic powder | |
JP5008142B2 (en) | Indium oxide powder | |
JP2012162440A (en) | Gallium oxide powder | |
JP2006044993A (en) | Indium oxide powder | |
WO2023163057A1 (en) | Negative thermal expansion material and composite material | |
TWI429582B (en) | Method for fabricating the zinc oxide based nano powder and target | |
KR101514945B1 (en) | Manufacturing method of gallium oxide nano particle using diethylene glycol and gallium oxide therefrom | |
JP6276214B2 (en) | Method for producing gallium oxide aggregate and gallium oxide aggregate | |
JP2015044740A (en) | Gallium oxide powder, method for producing the same, oxide sintered compact sputtering target, and method for producing the target | |
JP2006306669A (en) | Method for manufacturing indium oxide powder | |
GUL et al. | INFLUENCE OF PARTICLE SIZE AND SINTERING TEMPERATURES ON ELECTRICAL PROPERTIES | |
JP2023124757A (en) | Negative thermal expansion material and composite material | |
JP2015193536A (en) | gallium oxide powder |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150928 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151126 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160412 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160420 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5925535 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |