JP5924083B2 - Multi-core optical fiber preform manufacturing method - Google Patents

Multi-core optical fiber preform manufacturing method Download PDF

Info

Publication number
JP5924083B2
JP5924083B2 JP2012084184A JP2012084184A JP5924083B2 JP 5924083 B2 JP5924083 B2 JP 5924083B2 JP 2012084184 A JP2012084184 A JP 2012084184A JP 2012084184 A JP2012084184 A JP 2012084184A JP 5924083 B2 JP5924083 B2 JP 5924083B2
Authority
JP
Japan
Prior art keywords
core
core rod
optical fiber
jacket material
fiber preform
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012084184A
Other languages
Japanese (ja)
Other versions
JP2013212955A (en
Inventor
稔樹 樽
稔樹 樽
拓志 永島
拓志 永島
笹岡 英資
英資 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2012084184A priority Critical patent/JP5924083B2/en
Publication of JP2013212955A publication Critical patent/JP2013212955A/en
Application granted granted Critical
Publication of JP5924083B2 publication Critical patent/JP5924083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/01222Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of multiple core optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/34Plural core other than bundles, e.g. double core

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、長手方向に延在する複数のコアを有するマルチコア光ファイバ母材を製造する方法に関するものである。   The present invention relates to a method of manufacturing a multi-core optical fiber preform having a plurality of cores extending in the longitudinal direction.

長手方向に延在するコアを有する光ファイバ母材を製造する方法としてロッドインコラプス法が知られている。ロッドインコラプス法では、パイプにコアロッドが挿入され、パイプの外部からの加熱によってパイプとコアロッドとが一体化されて光ファイバ母材が製造される。そして、この光ファイバ母材が線引されることにより光ファイバが製造される。   A rod-in collapse method is known as a method for manufacturing an optical fiber preform having a core extending in the longitudinal direction. In the rod-in collapse method, a core rod is inserted into a pipe, and the pipe and the core rod are integrated by heating from the outside of the pipe to produce an optical fiber preform. And an optical fiber is manufactured by drawing this optical fiber preform.

特許文献1,2には、長手方向に延在する1本のコアを有する光ファイバ母材を製造する方法が開示されている。特許文献1には、一体化工程前においてパイプ内径とコアロッド外径との差が0.3〜1.0mmであるのが好ましいと記載されている。また、特許文献2には、一体化工程前においてパイプの内表面粗さ及びコアロッドの表面粗さの双方が20μm以下であるのが好ましく、これにより、一体化工程の際の界面での気泡の発生が抑制され、線引工程の際の断線や径変動が抑制され、また、得られる光ファイバの伝送損失が低減される、と記載されている。   Patent Documents 1 and 2 disclose a method of manufacturing an optical fiber preform having a single core extending in the longitudinal direction. Patent Document 1 describes that the difference between the pipe inner diameter and the core rod outer diameter is preferably 0.3 to 1.0 mm before the integration step. Further, in Patent Document 2, it is preferable that both the inner surface roughness of the pipe and the surface roughness of the core rod are 20 μm or less before the integration step. It is described that generation is suppressed, disconnection and diameter variation during the drawing process are suppressed, and transmission loss of the obtained optical fiber is reduced.

長手方向に延在する複数のコアを有するマルチコア光ファイバ母材を製造する際にも、上記と同様のロッドインコラプス法が用いられ得る。すなわち、長手方向に延在する複数の孔を有するジャケット材が作製され、このジャケット材の複数の孔それぞれにコアロッドが挿入され、ジャケット材の外部からの加熱によってジャケット材とコアロッドとが一体化されてマルチコア光ファイバ母材が製造される。そして、このマルチコア光ファイバ母材が線引されることによりマルチコア光ファイバが製造される。ロッドインコラプス法によれば、断面におけるコアの位置精度が良いマルチコア光ファイバ母材が製造され得る。   When manufacturing a multi-core optical fiber preform having a plurality of cores extending in the longitudinal direction, the same rod-in collapse method as described above can be used. That is, a jacket material having a plurality of holes extending in the longitudinal direction is produced, a core rod is inserted into each of the plurality of holes of the jacket material, and the jacket material and the core rod are integrated by heating from the outside of the jacket material. Thus, a multi-core optical fiber preform is manufactured. And this multi-core optical fiber preform is drawn, and a multi-core optical fiber is manufactured. According to the rod-in collapse method, a multi-core optical fiber preform with good core position accuracy in a cross section can be manufactured.

特開昭63−2826号公報JP-A 63-2826 国際公開第2004/101456号International Publication No. 2004/101456

通常の1本のコアを有する光ファイバ母材を製造する方法と比べて、マルチコア光ファイバ母材製造方法では、ジャケット材の複数の孔それぞれにコアロッドが挿入されて一体化されることから、孔の数に応じて界面の面積が大きく、それ故に気泡の発生数が多くなる。   Compared with the method of manufacturing an optical fiber preform having a single core, in the multi-core optical fiber preform manufacturing method, the core rod is inserted into each of the plurality of holes of the jacket material, so that the holes are integrated. The area of the interface is large according to the number of bubbles, and therefore the number of bubbles generated is increased.

マルチコア光ファイバにとって重要な特性である各コアの配置精度を保つため、一体化工程前のクリアランス(ジャケット材の孔径とコアロッド外径との差)は小さいことが望まれる。クリアランスを小さくためにコアロッド外径を調整するためにコアロッドを延伸したり外周研削したりすることができるが、延伸したコアロッドより外周研削したコアロッドの方が機械的な精度が良い。また、水分を含む雰囲気でコアロッドを延伸するとOHロスが増大する問題が生じるので、この点でも外周研削したコアロッドの方が好ましい。   In order to maintain the arrangement accuracy of each core, which is an important characteristic for a multi-core optical fiber, it is desirable that the clearance before the integration process (the difference between the hole diameter of the jacket material and the outer diameter of the core rod) be small. To adjust the outer diameter of the core rod in order to reduce the clearance, the core rod can be stretched or peripherally ground. However, the mechanical accuracy of the core rod subjected to peripheral grinding is better than that of the stretched core rod. Further, when the core rod is stretched in an atmosphere containing moisture, there is a problem that OH loss is increased. Therefore, the core rod subjected to outer peripheral grinding is also preferable in this respect.

ジャケット材の内壁面を平滑化することでも気泡発生を抑制することができるものの、ジャケット材の内壁面を平滑化は容易ではない。ジャケット材の内壁面を平滑化する方法として気相エッチングや高温加熱の方法があるが、これらの方法では、ジャケット材の各孔(特に中心から遠い位置にある孔)が変形し易くなり、孔の変形により、コアの配置精度が悪化したり、ジャケット材の孔にコアロッドを挿入できない事態が生じたりする。また、ジャケット材の内壁面を平滑化する他の方法として低温で行えるホーニングや機械研磨の方法があるが、これらの方法では、孔の個数に応じてコストが高くなり、設備の制約から長尺のジャケット材に対応することが困難である。   Although smoothing the inner wall surface of the jacket material can also suppress the generation of bubbles, it is not easy to smooth the inner wall surface of the jacket material. As a method of smoothing the inner wall surface of the jacket material, there are a vapor phase etching method and a high temperature heating method, but in these methods, each hole of the jacket material (especially a hole located far from the center) is likely to be deformed. Due to the deformation, the core placement accuracy may deteriorate, or the core rod may not be inserted into the hole of the jacket material. There are other methods for smoothing the inner wall surface of the jacket material, such as honing and mechanical polishing, which can be performed at low temperatures. However, these methods increase the cost according to the number of holes, and are long due to equipment limitations. It is difficult to cope with the jacket material.

本発明は、上記問題点を解消する為になされたものであり、気泡発生数を抑制することができるマルチコア光ファイバ母材製造方法を提供することを目的とする。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a multi-core optical fiber preform manufacturing method that can suppress the number of bubbles generated.

本発明のマルチコア光ファイバ母材製造方法は、長手方向に延在する複数のコアを有するマルチコア光ファイバ母材を製造する方法であって、長手方向に延在する複数の孔を有するジャケット材を作製するジャケット材作製工程と、ジャケット材の複数の孔それぞれにコアロッドを挿入する挿入工程と、ジャケット材の外部からの加熱によってジャケット材とコアロッドとを一体化させてマルチコア光ファイバ母材を製造する一体化工程とを備え、一体化工程前において、コアロッドの表面を平均粒径25μm以下の粒度のダイヤモンドホイールで研磨し、コアロッドの表面をフッ酸でエッチングして、コアロッドの表面の算術平均粗さRaを1.0μm以下とし、コアロッドの表面の凹凸の最大差を5μm未満とすることを特徴とする。 The multi-core optical fiber preform manufacturing method of the present invention is a method for manufacturing a multi-core optical fiber preform having a plurality of cores extending in the longitudinal direction, and a jacket material having a plurality of holes extending in the longitudinal direction. A multi-core optical fiber preform is manufactured by integrating a jacket material and a core rod by heating from the outside of the jacket material, an insertion step of inserting a core rod into each of a plurality of holes of the jacket material, and a jacket material production step to be produced. An integration step, and before the integration step, the surface of the core rod is polished with a diamond wheel having an average particle size of 25 μm or less, the surface of the core rod is etched with hydrofluoric acid, and the arithmetic average roughness of the surface of the core rod Ra is 1.0 μm or less, and the maximum difference in the irregularities on the surface of the core rod is less than 5 μm.

一体化工程前において、ジャケット材の孔の径とコアロッドの径との差を0.5mm未満とするのが好適である。 Before the integration step, the difference between the diameters of the core rod of the pores of the jacket material Ru preferred der that is less than 0.5 mm.

本発明によれば、マルチコア光ファイバ母材製造時に気泡発生数を抑制することができる。   According to the present invention, it is possible to suppress the number of bubbles generated when manufacturing a multi-core optical fiber preform.

マルチコア光ファイバ1の断面図である。1 is a cross-sectional view of a multicore optical fiber 1. FIG. HF洗浄前の表面粗さRaとHF洗浄後の表面粗さRaとの関係について纏めた図表である。4 is a table summarizing the relationship between the surface roughness Ra before HF cleaning and the surface roughness Ra after HF cleaning. HF洗浄後のコアロッドAの写真である。It is a photograph of core rod A after HF washing. HF洗浄後のコアロッドAの凹凸を示す図である。It is a figure which shows the unevenness | corrugation of the core rod A after HF washing | cleaning. HF洗浄後のコアロッドBの写真である。It is a photograph of core rod B after HF washing. HF洗浄後のコアロッドBの凹凸を示す図である。It is a figure which shows the unevenness | corrugation of the core rod B after HF washing | cleaning. HF洗浄後のコアロッドA,Bの表面の凹凸の特徴的なサイズを纏めた図表である。It is the table | surface which put together the characteristic size of the unevenness | corrugation of the surface of the core rods A and B after HF washing | cleaning.

以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.

図1は、マルチコア光ファイバ1の断面図である。同図に示されるマルチコア光ファイバ1は、長手方向に延在する7本のコア11〜17がジャケット部20により覆われている。ファイバ軸に垂直な断面において、コア11は中心に位置し、他の6本のコア12〜17はコア11を中心とする円の周上に等間隔で位置する。コア11〜17それぞれは、ジャケット材20の屈折率より高い屈折率を有し、光を導波させることができる。このようなマルチコア光ファイバ1は、同様の屈折率分布を有するマルチコア光ファイバ母材を線引することで製造される。   FIG. 1 is a cross-sectional view of a multi-core optical fiber 1. In the multi-core optical fiber 1 shown in the figure, seven cores 11 to 17 extending in the longitudinal direction are covered with a jacket portion 20. In the cross section perpendicular to the fiber axis, the core 11 is located at the center, and the other six cores 12 to 17 are located at equal intervals on the circumference of a circle centered on the core 11. Each of the cores 11 to 17 has a refractive index higher than that of the jacket member 20 and can guide light. Such a multi-core optical fiber 1 is manufactured by drawing a multi-core optical fiber preform having a similar refractive index profile.

マルチコア光ファイバ母材は以下のようにして製造される。長手方向に延在する複数の孔を有するジャケット材が作製される(ジャケット材作製工程)。また、複数本のコアロッドも作製される。ジャケット材は、円柱形状のガラス体に対してドリルによる穿孔で孔が形成されることで作製される。ジャケット材はジャケット部20となるべきものであり、複数本のコアロッドはコア11〜17となるべきものである。   The multi-core optical fiber preform is manufactured as follows. A jacket material having a plurality of holes extending in the longitudinal direction is manufactured (jacket material manufacturing step). A plurality of core rods are also produced. The jacket material is manufactured by forming a hole in a cylindrical glass body by drilling with a drill. The jacket material should be the jacket portion 20, and the plurality of core rods should be the cores 11 to 17.

例えば、ジャケット材はフッ素が添加された石英ガラスからなり、コアロッドは、塩素が添加された石英ガラスからなる中心コアの周囲に、フッ素が添加された石英ガラスからなる光学クラッドが設けられたものである。又は、ジャケット材は純石英ガラスからなり、コアロッドは、GeOが添加された石英ガラスからなる中心コアの周囲に、純石英ガラスからなる光学クラッドが設けられたものである。 For example, the jacket material is made of quartz glass to which fluorine is added, and the core rod is an optical cladding made of quartz glass to which fluorine is added around the central core made of quartz glass to which chlorine is added. is there. Alternatively, the jacket material is made of pure quartz glass, and the core rod is formed by providing an optical cladding made of pure quartz glass around a central core made of quartz glass to which GeO 2 is added.

次に、ジャケット材の複数の孔それぞれにコアロッドが挿入される(挿入工程)。そして、ロッドインコラプス法により、ジャケット材の外部からの加熱によってジャケット材とコアロッドとが一体化されてマルチコア光ファイバ母材が製造される(一体化工程)。このマルチコア光ファイバ母材が線引されることにより、図1に示されるマルチコア光ファイバが高精度に得られる。   Next, the core rod is inserted into each of the plurality of holes of the jacket material (insertion step). Then, by the rod-in collapse method, the jacket material and the core rod are integrated by heating from the outside of the jacket material to produce a multi-core optical fiber preform (integration step). By drawing this multi-core optical fiber preform, the multi-core optical fiber shown in FIG. 1 can be obtained with high accuracy.

このような製造方法において、マルチコア光ファイバ母材のコア位置の精度を高めるため、以下のような機械加工が行われる。ジャケット材の孔がドリルによる穿孔により形成されることで、孔の内径の長手方向ばらつきは有効部全長で0.1mm以下とされ得る。コアロッドの外周は研削加工が行われる。例えば、延伸されたコアロッドの外径の長手方向ばらつきは0.1〜0.3mmであるが、このコアロッドが外周研削されることで外径の長手方向ばらつきは有効部全長で0.1mm以下とされ得る。   In such a manufacturing method, the following machining is performed in order to increase the accuracy of the core position of the multi-core optical fiber preform. By forming the hole of the jacket material by drilling with a drill, the variation in the longitudinal direction of the inner diameter of the hole can be 0.1 mm or less in the effective part overall length. The outer periphery of the core rod is ground. For example, the longitudinal variation in the outer diameter of the stretched core rod is 0.1 to 0.3 mm. However, the outer diameter of the core rod is ground to 0.1 mm or less in the entire effective portion. Can be done.

このようなジャケット材の複数の孔それぞれにコアロッドが挿入されたときのクリアランス(ジャケット材の孔径とコアロッド外径との差)は、0.5mm以下とされ、好ましくは0.3mm以下とされ得る。このような狭いクリアランスで一体化工程が行われることで、一体化後の断面におけるコア配置のばらつきは、最悪でもこのクリアランスの範囲に収まる。   The clearance (difference between the hole diameter of the jacket material and the outer diameter of the core rod) when the core rod is inserted into each of the plurality of holes of the jacket material is 0.5 mm or less, and preferably 0.3 mm or less. . By performing the integration process with such a narrow clearance, the variation in the core arrangement in the cross-section after the integration falls within this clearance range at the worst.

一体化工程前に、ジャケット材およびコアロッドそれぞれは、機械加工の際に表面に付着した研磨剤等を除去する為、5〜25%のHF水溶液に10分〜2時間程度に亘って浸漬されて表面が洗浄される。HF洗浄によりガラス表面がエッチングされるが、エッチング後の表面形状はエッチング前の表面凹凸状態に依存する。HF洗浄は表面粗さの悪化を招く。   Before the integration process, the jacket material and the core rod are each immersed in a 5 to 25% HF aqueous solution for about 10 minutes to 2 hours in order to remove abrasives attached to the surface during machining. The surface is cleaned. Although the glass surface is etched by HF cleaning, the surface shape after etching depends on the surface irregularity state before etching. HF cleaning leads to deterioration of surface roughness.

HF洗浄前の表面粗さRaとHF洗浄後の表面粗さRaとの関係について調査したところ、図2に示される結果が得られた。コアロッドAは、コアロッドBと比較して、外周研削時に荒い砥粒が用いられた。外周研削時に用いられたガラス研削・研磨用ダイヤモンドホイールは、コアロッドAでは♯80(JISB 4130)であり、コアロッドBでは♯800(平均粒径18〜25μm)であった。同図に示されるように、算術平均粗さRaはHF洗浄により悪化しており、HF洗浄前の表面粗さRaが大きいほど悪化の程度が大きい。   When the relationship between the surface roughness Ra before HF cleaning and the surface roughness Ra after HF cleaning was investigated, the results shown in FIG. 2 were obtained. Compared with the core rod B, the core rod A used rough abrasive grains during outer periphery grinding. The diamond wheel for glass grinding / polishing used at the outer periphery grinding was # 80 (JISB 4130) for the core rod A and # 800 (average particle diameter of 18 to 25 μm) for the core rod B. As shown in the figure, the arithmetic average roughness Ra is deteriorated by HF cleaning, and the degree of deterioration is greater as the surface roughness Ra before HF cleaning is larger.

図3はHF洗浄後のコアロッドAの写真であり、図4はHF洗浄後のコアロッドAの凹凸を示す図である。また、図5はHF洗浄後のコアロッドBの写真であり、図6はHF洗浄後のコアロッドBの凹凸を示す図である。これらの図に示されるように、HF洗浄後のコアロッドA,Bの表面には、クレーター状の窪みが多重に形成されたような凹凸が見られた。図7は、HF洗浄後のコアロッドA,Bの表面の凹凸の特徴的なサイズを纏めた図表である。   FIG. 3 is a photograph of the core rod A after HF cleaning, and FIG. 4 is a diagram showing the irregularities of the core rod A after HF cleaning. FIG. 5 is a photograph of the core rod B after HF cleaning, and FIG. 6 is a diagram showing the irregularities of the core rod B after HF cleaning. As shown in these figures, the surface of the core rods A and B after HF cleaning was found to have irregularities such that crater-like depressions were formed in multiple layers. FIG. 7 is a chart summarizing the characteristic sizes of the irregularities on the surfaces of the core rods A and B after HF cleaning.

これらコアロッドA,Bおよびジャケット材を用いて一体化工程を行ってマルチコア光ファイバ母材を製造した。コアロッドAを用いた場合には、界面において長手方向で10〜1000個/1cmの界面気泡が多発した。これは線引工程でのガラス径変動などの異常を招くレベルであった。これに対して、コアロッドBを用いた場合には、界面気泡は0〜5個/10mmであり、問題のないレベルまで大幅に軽減されることがわかった。 A multi-core optical fiber preform was manufactured by performing an integration process using these core rods A and B and the jacket material. When the core rod A was used, 10 to 1000 cells / 1 cm 2 of interface bubbles occurred frequently in the longitudinal direction at the interface. This was a level that caused abnormalities such as glass diameter fluctuations in the drawing process. On the other hand, when the core rod B was used, it was found that the number of interface bubbles was 0 to 5/10 mm, which was greatly reduced to a level where there was no problem.

気泡は粗いガラス表面の形状がそのまま界面として残ることによって発生すると考えられる。その観点では、従来の表面粗さのみをパラメータとするだけでなく、今回見られた窪みの形状(特に深さ)もパラメータとなると考えられる。すなわち、一体化工程前において、コアロッドの表面の算術平均粗さRaを1.0μm以下とし、コアロッドの表面の凹凸の最大差を5μm未満とすることで、マルチコア光ファイバ母材製造時に気泡発生数を効果的に抑制することができる。また、その為には、コアロッドの表面を平均粒径25μm以下の粒度のダイヤモンドホイールで研磨し、コアロッドの表面をフッ酸でエッチングするのが好適である。   It is considered that bubbles are generated when the rough glass surface shape remains as an interface. From this viewpoint, it is considered that not only the conventional surface roughness is used as a parameter, but also the shape (particularly the depth) of the dent seen this time is used as a parameter. That is, before the integration process, the arithmetic average roughness Ra of the core rod surface is set to 1.0 μm or less, and the maximum difference in the irregularities on the surface of the core rod is set to less than 5 μm. Can be effectively suppressed. For this purpose, it is preferable to polish the surface of the core rod with a diamond wheel having an average particle size of 25 μm or less and etch the surface of the core rod with hydrofluoric acid.

1…マルチコア光ファイバ、11〜17…コア、20…ジャケット部。   DESCRIPTION OF SYMBOLS 1 ... Multi-core optical fiber, 11-17 ... Core, 20 ... Jacket part.

Claims (2)

長手方向に延在する複数のコアを有するマルチコア光ファイバ母材を製造する方法であって、
長手方向に延在する複数の孔を有するジャケット材を作製するジャケット材作製工程と、
前記ジャケット材の前記複数の孔それぞれにコアロッドを挿入する挿入工程と、
前記ジャケット材の外部からの加熱によって前記ジャケット材と前記コアロッドとを一体化させてマルチコア光ファイバ母材を製造する一体化工程と、
を備え、
前記一体化工程前において、前記コアロッドの表面を平均粒径25μm以下の粒度のダイヤモンドホイールで研磨し、前記コアロッドの表面をフッ酸でエッチングして、前記コアロッドの表面の算術平均粗さRaを1.0μm以下とし、前記コアロッドの表面の凹凸の最大差を5μm未満とする、
ことを特徴とするマルチコア光ファイバ母材製造方法。
A method of manufacturing a multi-core optical fiber preform having a plurality of cores extending in a longitudinal direction,
A jacket material production step of producing a jacket material having a plurality of holes extending in the longitudinal direction;
An insertion step of inserting a core rod into each of the plurality of holes of the jacket material;
An integration step of manufacturing the multi-core optical fiber preform by integrating the jacket material and the core rod by heating from the outside of the jacket material;
With
Before the integration step, the surface of the core rod is polished with a diamond wheel having an average particle size of 25 μm or less, the surface of the core rod is etched with hydrofluoric acid, and the arithmetic average roughness Ra of the surface of the core rod is 1 0.0 μm or less, and the maximum difference in irregularities on the surface of the core rod is less than 5 μm.
A multi-core optical fiber preform manufacturing method characterized by the above.
前記一体化工程前において、前記ジャケット材の孔の径と前記コアロッドの径との差を0.5mm未満とする、ことを特徴とする請求項1に記載のマルチコア光ファイバ母材製造方法。   2. The multi-core optical fiber preform manufacturing method according to claim 1, wherein a difference between a diameter of the hole of the jacket material and a diameter of the core rod is less than 0.5 mm before the integration step.
JP2012084184A 2012-04-02 2012-04-02 Multi-core optical fiber preform manufacturing method Active JP5924083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012084184A JP5924083B2 (en) 2012-04-02 2012-04-02 Multi-core optical fiber preform manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012084184A JP5924083B2 (en) 2012-04-02 2012-04-02 Multi-core optical fiber preform manufacturing method

Publications (2)

Publication Number Publication Date
JP2013212955A JP2013212955A (en) 2013-10-17
JP5924083B2 true JP5924083B2 (en) 2016-05-25

Family

ID=49586615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012084184A Active JP5924083B2 (en) 2012-04-02 2012-04-02 Multi-core optical fiber preform manufacturing method

Country Status (1)

Country Link
JP (1) JP5924083B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385401B2 (en) 2019-12-04 2022-07-12 Alcon Inc. Multi-core optical fiber with reduced bubble formation

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6291885B2 (en) * 2014-02-12 2018-03-14 住友電気工業株式会社 Multi-core optical fiber manufacturing method
JP6291892B2 (en) * 2014-02-19 2018-03-14 住友電気工業株式会社 Multi-core optical fiber preform manufacturing method
JP6875227B2 (en) * 2017-08-22 2021-05-19 株式会社フジクラ Manufacturing method of multi-core optical fiber base material and manufacturing method of multi-core optical fiber
JP6715815B2 (en) * 2017-11-17 2020-07-01 三菱電線工業株式会社 Optical fiber for laser light transmission and welding method
EP3761087A4 (en) * 2018-02-28 2021-10-27 Furukawa Electric Co., Ltd. Multicore fiber and manufacturing method therefor, and optical transmission system and optical transmission method
CN113121103B (en) * 2019-12-31 2022-12-30 武汉光谷长盈通计量有限公司 Method for manufacturing hollow internally-suspended high-refractive-index multi-core optical fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4975911B2 (en) * 2001-07-02 2012-07-11 古河電気工業株式会社 Optical fiber preform manufacturing method
WO2003033422A1 (en) * 2001-10-15 2003-04-24 The Furukawa Electric Co., Ltd. Method for producing rare earth element doped glass and fiber for optical amplification using the glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11385401B2 (en) 2019-12-04 2022-07-12 Alcon Inc. Multi-core optical fiber with reduced bubble formation

Also Published As

Publication number Publication date
JP2013212955A (en) 2013-10-17

Similar Documents

Publication Publication Date Title
JP5924083B2 (en) Multi-core optical fiber preform manufacturing method
US9352996B2 (en) Optical fiber article for handling higher power and method of fabricating or using
CN103913800B (en) Optical fiber and optical fiber quartz glass base material
JP4383377B2 (en) Fabrication method of microstructured optical fiber
CN112596148A (en) Ytterbium-doped active optical fiber for high-power large-mode field and preparation method thereof
JP2015193507A (en) Production method of multicore optical fiber
CN104777552A (en) Double-clad active optical fiber and manufacturing method thereof
JP6151310B2 (en) Optical fiber preform manufacturing method and optical fiber manufacturing method
CN104678489B (en) A kind of preparation method of polygonal fibre core rare-earth doped optical fibre
JP6095690B2 (en) Quartz glass tube as semi-finished product for optical components and method for producing said quartz glass tube
JP5702344B2 (en) Optical fiber and manufacturing method thereof
JP7213000B2 (en) Method for manufacturing rod assembly for forming multi-core optical fiber, method for manufacturing multi-core optical fiber preform using same, method for manufacturing multi-core optical fiber
KR100314699B1 (en) Manufacturing method of Qurtz Glass preform for optical fiber
CN110746109A (en) Preparation method of polarization maintaining optical fiber
JP2011219339A (en) Method for producing optical fiber and optical fiber preform
CN114400492A (en) Active optical fiber and manufacturing method thereof
JP5995646B2 (en) Manufacturing method of optical fiber preform and manufacturing method of hole structure optical fiber
JP6291892B2 (en) Multi-core optical fiber preform manufacturing method
JP5735468B2 (en) Optical fiber, method for manufacturing the same, and method for manufacturing optical fiber preform
JP2013001629A (en) Method for producing optical fiber
JP2004051455A (en) Method of manufacturing optical fiber
JP6567303B2 (en) Optical fiber preform manufacturing method
CN211452022U (en) Evaporation heat exchange tube
CN102617032B (en) Optical fiber and method of manufacturing optical fiber preform
JP2014139114A (en) Optical fiber preform, production method of optical fiber preform, and production method of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160404

R150 Certificate of patent or registration of utility model

Ref document number: 5924083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250