JP5920426B2 - Fluid transport device - Google Patents

Fluid transport device Download PDF

Info

Publication number
JP5920426B2
JP5920426B2 JP2014179913A JP2014179913A JP5920426B2 JP 5920426 B2 JP5920426 B2 JP 5920426B2 JP 2014179913 A JP2014179913 A JP 2014179913A JP 2014179913 A JP2014179913 A JP 2014179913A JP 5920426 B2 JP5920426 B2 JP 5920426B2
Authority
JP
Japan
Prior art keywords
channel
elastic member
fluid
flow path
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014179913A
Other languages
Japanese (ja)
Other versions
JP2014231841A (en
Inventor
宮崎 肇
肇 宮崎
和夫 河角
和夫 河角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2014179913A priority Critical patent/JP5920426B2/en
Publication of JP2014231841A publication Critical patent/JP2014231841A/en
Application granted granted Critical
Publication of JP5920426B2 publication Critical patent/JP5920426B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、微量な流体を低速で輸送する流体輸送装置に関する。   The present invention relates to a fluid transportation device that transports a small amount of fluid at a low speed.

従来、液体を低速で輸送する装置として蠕動駆動方式のポンプがある。蠕動駆動方式のポンプとしては、流体の輸送流路である弾性を有するチューブを複数のフィンガーで上流側から下流側に押圧して液体を送出する構造のものがある(例えば、特許文献1参照)。
あるいは、回転体に取り付けられた複数のローラーによりチューブを上流側から下流側に押圧して液体を送出する構造のものもある(例えば、特許文献2参照)。
これらのポンプは共に、弾性を有するチューブを押圧することで送液することからチューブポンプと呼ばれる。
Conventionally, there is a peristaltic pump as a device for transporting a liquid at a low speed. As a peristaltic drive type pump, there is a pump having a structure in which a tube having elasticity as a fluid transport channel is pressed from an upstream side to a downstream side by a plurality of fingers to send out a liquid (for example, see Patent Document 1). .
Alternatively, there is a structure in which a tube is pressed from the upstream side to the downstream side by a plurality of rollers attached to the rotating body to send out the liquid (for example, see Patent Document 2).
Both of these pumps are called tube pumps because they send liquid by pressing an elastic tube.

特表2001−515557号公報JP-T-2001-515557 特開平2−280763号公報JP-A-2-280763

微量の液体を送液する場合、前述した特許文献1や特許文献2によるチューブポンプでは、チューブを押圧して送液する構造のため、チューブ内径の寸法の製造上の変動が送液量の精度に直接影響する。しかし、弾性を有するチューブの内径の精度を確保することは困難である。   In the case of feeding a small amount of liquid, the tube pumps according to Patent Document 1 and Patent Document 2 described above have a structure in which the tube is pressed to feed the liquid. Directly affect. However, it is difficult to ensure the accuracy of the inner diameter of the tube having elasticity.

本発明は、上述の課題を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。   The present invention has been made to solve the above-described problems, and can be realized as the following forms or application examples.

[適用例1]本適用例に係る流体輸送装置は、回転体と、流路枠側面に前記回転体の回転軸と同心円で形成される円弧状の溝と、前記溝の前記回転体方向の開口部を封止するシート状の弾性部材と、で形成される流体の輸送流路と、前記回転体と前記弾性部材の間に配置され、前記回転体の回転により前記弾性部材を変形させて前記輸送流路を上流側から下流側に閉塞と開放を順次繰り返す複数の押圧部材と、を有することを特徴とする。   [Application Example 1] A fluid transportation device according to this application example includes a rotating body, an arc-shaped groove formed concentrically with a rotating shaft of the rotating body on a flow path frame side surface, and the groove in the direction of the rotating body. A sheet-like elastic member that seals the opening; and a fluid transport channel formed between the rotating body and the elastic member, and the elastic member is deformed by the rotation of the rotating body. And a plurality of pressing members that sequentially close and open the transport channel from the upstream side to the downstream side.

本適用例によれば、輸送流路を流路枠に形成される溝とシート状の弾性部材で構成している。従来の弾性を有するチューブの内径精度に比べ、溝は射出成形等の手段により高精度で形成可能であることと、シート状の弾性部材は輸送流路の寸法変動にほとんど影響しないことから、輸送流路の断面積精度が向上し、輸送流路の断面積変動に起因する流体の輸送量の変動を抑制できるという効果がある。つまり、流体輸送量の精度を高めることができる。   According to this application example, the transport channel is configured by a groove formed in the channel frame and a sheet-like elastic member. Compared with the inner diameter accuracy of conventional elastic tubes, the groove can be formed with high accuracy by means such as injection molding, and the sheet-like elastic member has little effect on the dimensional fluctuation of the transport channel. There is an effect that the cross-sectional area accuracy of the flow path is improved, and fluctuations in the transport amount of the fluid due to fluctuations in the cross-sectional area of the transport flow path can be suppressed. That is, the accuracy of the fluid transportation amount can be increased.

[適用例2]上記適用例に係る流体輸送装置は、前記複数の押圧部材に形成され前記弾性部材を押圧する押圧部を有し、前記押圧部が前記溝の流体流動方向に対して垂直な断面形状に倣った形状を有していることが好ましい。   Application Example 2 The fluid transportation device according to the application example includes a pressing portion that is formed on the plurality of pressing members and presses the elastic member, and the pressing portion is perpendicular to the fluid flow direction of the groove. It preferably has a shape that follows the cross-sectional shape.

押圧部材の押圧部を上述のような形状にすることで、輸送流路を確実に閉塞することができる。   By making the pressing portion of the pressing member into the shape as described above, the transport channel can be reliably closed.

[適用例3]上記適用例に係る流体輸送装置は、前記押圧部が弾性を有していることが好ましい。   Application Example 3 In the fluid transport device according to the application example, it is preferable that the pressing portion has elasticity.

押圧部材の押圧部が弾性を有していれば、弾性部材を押圧するときに溝の形状に押圧部の形状が馴染みやすく、より一層確実に輸送流路を閉塞することができるという効果がある。   If the pressing portion of the pressing member has elasticity, the shape of the pressing portion is easily adapted to the shape of the groove when pressing the elastic member, and there is an effect that the transport channel can be more reliably closed. .

[適用例4]上記適用例に係る流体輸送装置は、前記押圧部が、前記弾性部材が固着される前記溝の周縁面を押圧する鍔部を有していることが好ましい。   Application Example 4 In the fluid transport device according to the application example described above, it is preferable that the pressing portion has a flange portion that presses a peripheral surface of the groove to which the elastic member is fixed.

押圧部材により輸送流路を閉塞するとき、溝と弾性部材との固着境界部に極小さい空間ができ閉塞しきれないことが考えられる。このような場合、所定の輸送量を確保できないことがあるが、上述のような鍔部を設けることにより固着境界部も閉塞可能となり、所定の輸送量を確保できるようになる。   When the transport channel is closed by the pressing member, it is conceivable that a very small space is formed at the boundary between the groove and the elastic member and cannot be closed. In such a case, the predetermined transportation amount may not be ensured, but by providing the above-described collar portion, the fixing boundary portion can be closed, and the predetermined transportation amount can be secured.

[適用例5]上記適用例に係る流体輸送装置は、前記溝を構成する流路壁の流体流動方向に対して垂直な断面形状が、略円弧形状を有していることが好ましい。   Application Example 5 In the fluid transportation device according to the application example described above, it is preferable that a cross-sectional shape perpendicular to the fluid flow direction of the flow path wall constituting the groove has a substantially arc shape.

溝の形状は特に限定されず四角形や台形でもよいが、略円弧状にすることで溝形状を簡単にできる。また、溝形状が四角形や台形の場合、辺の交差部には角部が形成される。弾性部材により輸送流路を閉塞する際、角部に極微小な隙間が発生することが考えられる。そこで、流路壁を略円弧状にすれば角部が形成されることなく隙間を排除し、より確実に輸送流路を閉塞できる。   The shape of the groove is not particularly limited and may be a quadrangle or a trapezoid. However, the groove shape can be simplified by making it substantially arc-shaped. Further, when the groove shape is a square or a trapezoid, a corner is formed at the intersection of the sides. When the transport channel is closed by the elastic member, it is considered that a very small gap is generated at the corner. Therefore, if the flow path wall is formed in a substantially arc shape, the gap is eliminated without forming a corner portion, and the transport flow path can be closed more reliably.

[適用例6]上記適用例に係る流体輸送装置は、前記輸送流路が、前記溝と前記弾性部材とを前記弾性部材が固着される前記溝の周縁面に対して略対称形となるよう形成されていることが好ましい。   Application Example 6 In the fluid transportation device according to the application example described above, the transportation flow path has a substantially symmetrical shape with respect to the peripheral surface of the groove to which the elastic member is fixed to the groove and the elastic member. Preferably it is formed.

このような構成では、輸送流路は、溝と、溝の断面形状とほぼ同じ凹部を有する形状の弾性部材とから構成される。弾性部材が単純なシート状の場合、押圧部材で弾性部材を押圧して輸送流路を閉塞するときには、弾性部材を引き伸ばすように押圧する。よって、押圧部材の押圧力は大きくなる。しかし、弾性部材を溝の形状と同形状にすれば、弾性部材の引き伸ばし量は少なくてすみ、押圧部材の押圧力が小さくても確実に輸送流路を閉塞できる。また、弾性部材の耐久性が向上するという効果がある。   In such a configuration, the transport channel is constituted by a groove and an elastic member having a shape having a recess substantially the same as the cross-sectional shape of the groove. When the elastic member is a simple sheet, when the elastic member is pressed by the pressing member to close the transport flow path, the elastic member is pressed so as to be stretched. Therefore, the pressing force of the pressing member increases. However, if the elastic member has the same shape as the groove, the amount of stretching of the elastic member can be reduced, and the transport channel can be reliably closed even if the pressing force of the pressing member is small. Moreover, there exists an effect that durability of an elastic member improves.

[適用例7]上記適用例に係る流体輸送装置は、前記輸送流路が、前記流路枠の外周側面に形成されていることが好ましい。   Application Example 7 In the fluid transportation device according to the application example, it is preferable that the transportation channel is formed on an outer peripheral side surface of the channel frame.

このようにすれば、溝の形成が容易になると共に、弾性部材の固着作業が容易になるという効果がある。   If it does in this way, while forming a groove | channel easily, there exists an effect that the adhering operation | work of an elastic member becomes easy.

[適用例8]上記適用例に係る流体輸送装置は、前記流路枠が、前記輸送流路と、前記溝を構成する前記流路壁を貫通にする流体の流入流路及び吐出流路を有し、前記流入流路は前記輸送流路の最上流側に、前記吐出流路は前記輸送流路の最下流側に配置されていることが好ましい。   Application Example 8 In the fluid transport device according to the above application example, the flow channel frame includes the transport flow channel and a fluid inflow channel and a discharge channel that pass through the flow channel wall forming the groove. Preferably, the inflow channel is disposed on the most upstream side of the transport channel, and the discharge channel is disposed on the most downstream side of the transport channel.

このような構成によれば、円弧状の輸送流路の延長上に流入流路及び吐出流路を形成するよりも、流路枠に流入流路と吐出流路とを孔によって形成することが可能で構造を単純化できる。また、輸送流路と流入流路と吐出流路とを流路枠のみに形成できるため、輸送対象流体が生体内に注入する薬液の場合には、薬液に接触する構成要素を含む流路枠を交換使用とすれば、安全性を高めると共に、他の構成要素は繰り返し使用することが可能でランニングコストを低減できるという効果がある。   According to such a configuration, rather than forming the inflow channel and the discharge channel on the extension of the arc-shaped transport channel, the inflow channel and the discharge channel can be formed in the channel frame by the holes. It is possible and the structure can be simplified. In addition, since the transport channel, the inflow channel, and the discharge channel can be formed only in the channel frame, in the case where the fluid to be transported is a chemical solution that is injected into the living body, the flow channel frame including components that come into contact with the chemical solution If it is used as a replacement, the safety can be improved and the other components can be used repeatedly and the running cost can be reduced.

[適用例9]上記適用例に係る流体輸送装置は、前記回転体がカムであって、前記複数の押圧部材が、前記カムの回転軸方向から放射状に配置されると共に、前記カムによって押動されるフィンガーであることが好ましい。   Application Example 9 In the fluid transportation device according to the application example described above, the rotating body is a cam, and the plurality of pressing members are arranged radially from the rotation axis direction of the cam and are pushed by the cam. It is preferable that it is a finger.

このような構成によれば、フィンガーの蠕動運動により流体を輸送することができ、フィンガーは、弾性部材を垂直方向に押圧するため、カムの回転負荷が小さく構成要素の小型化が可能となり、よって流体輸送装置の小型化を実現できる。   According to such a configuration, the fluid can be transported by the peristaltic movement of the finger, and the finger presses the elastic member in the vertical direction, so that the rotational load of the cam is small and the component can be downsized. Miniaturization of the fluid transportation device can be realized.

実施形態1に係る流体輸送装置の一部を示す平面図。FIG. 3 is a plan view showing a part of the fluid transportation device according to the first embodiment. (a)は図1のA−P1−A切断面を示す部分断面図、(b)はフィンガーの一部を示す斜視図。(A) is a fragmentary sectional view which shows the A-P1-A cut surface of FIG. 1, (b) is a perspective view which shows a part of finger. 実施形態1に係る輸送流路の閉塞状態を示す部分断面図。FIG. 3 is a partial cross-sectional view showing a closed state of the transport channel according to the first embodiment. 実施形態1の変形例に係るフィンガーを示す部分斜視図。The fragmentary perspective view which shows the finger which concerns on the modification of Embodiment 1. FIG. 実施形態2に係る流体輸送装置を示し、(a)は図1のA−P1−A切断面を示す部分断面図、(b)はフィンガーの一部を示す斜視図。The fluid transport apparatus which concerns on Embodiment 2 is shown, (a) is a fragmentary sectional view which shows the A-P1-A cut surface of FIG. 1, (b) is a perspective view which shows a part of finger. 実施形態2の変形例に係るフィンガーを示す部分斜視図。The fragmentary perspective view which shows the finger which concerns on the modification of Embodiment 2. FIG. 実施形態3に係る輸送流路を示す部分断面図。FIG. 6 is a partial cross-sectional view showing a transport channel according to a third embodiment. 実施形態4に係る流体輸送装置を示す平面図。FIG. 6 is a plan view showing a fluid transport device according to a fourth embodiment. 図8のB−P1−B切断面を示す断面図。Sectional drawing which shows the BB1-B cut surface of FIG. 図8のD−P2−D切断面を示す断面図。Sectional drawing which shows the D-P2-D cut surface of FIG. 実施形態5に係るフィンガーを示し、(a)は実施例1を示す正面図、(b)は実施例2を示す正面図。The finger which concerns on Embodiment 5 is shown, (a) is a front view which shows Example 1, (b) is a front view which shows Example 2. FIG.

以下、本発明の実施形態を図面に基づいて説明する。
なお、以下の説明で参照する図は、図示の便宜上、部材ないし部分の縦横の縮尺は実際のものとは異なる模式図である。なお、以下の実施形態にて説明する流体輸送装置は、微量な薬液を生体に低速で注入するための装置を例示している。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Note that the drawings referred to in the following description are schematic views in which the vertical and horizontal scales of members or portions are different from actual ones for convenience of illustration. In addition, the fluid transport apparatus demonstrated in the following embodiment has illustrated the apparatus for inject | pouring a trace amount chemical | medical solution into a biological body at low speed.
(Embodiment 1)

図1は、実施形態1に係る流体輸送装置の一部を示す平面図、図2(a)は図1のA−P1−A切断面を示す部分断面図、図2(b)はフィンガーの一部を示す斜視図である。なお、図1は、主たる機能要素を透視して示す機能説明図である。図1、図2において、流体輸送装置1は、薬液を収容するリザーバー11と、回転体としてのカム20と、流体の輸送流路15が形成される流路枠14と、輸送流路15とカム20の間にあってカム20の回転軸P1方向から等間隔で放射状に配置される押圧部材としての複数のフィンガー40〜46とから構成されている。   FIG. 1 is a plan view showing a part of the fluid transportation device according to the first embodiment, FIG. 2A is a partial cross-sectional view showing a cut surface A-P1-A in FIG. 1, and FIG. It is a perspective view which shows a part. FIG. 1 is a functional explanatory diagram showing the main functional elements in perspective. 1 and 2, a fluid transport device 1 includes a reservoir 11 for storing a chemical solution, a cam 20 as a rotating body, a flow channel frame 14 in which a fluid transport flow channel 15 is formed, and a transport flow channel 15. It is comprised from the several fingers 40-46 as a press member which are between the cams 20 and are arrange | positioned radially from the rotation axis P1 direction of the cam 20 at equal intervals.

なお、図示は省略するが、流体輸送装置1には、駆動源としての駆動装置と、駆動装置の駆動をカム20まで所定の減速比で伝達する伝達機構と、駆動装置の制御を行う制御回路と、制御回路に電力を与える電源としての小型電池と、が含まれる。   Although not shown, the fluid transport device 1 includes a drive device as a drive source, a transmission mechanism that transmits the drive of the drive device to the cam 20 at a predetermined reduction ratio, and a control circuit that controls the drive device. And a small battery as a power source for supplying power to the control circuit.

リザーバー11は、流体の収容量によって容積が変化するような弾性を有する樹脂製の容器であって、接続管81によって輸送流路15に連通されている。   The reservoir 11 is a resin container having elasticity such that the volume changes according to the amount of fluid contained, and is communicated with the transport channel 15 by a connecting pipe 81.

カム20は、円盤状の形状を有し外周側面がカム面であって、最外周部にフィンガー押圧面21a〜21dが形成されている。フィンガー押圧面21a〜21dは、回転軸P1から等距離の同心円上に形成される。フィンガー押圧面21aとフィンガー押圧面21b、フィンガー押圧面21bとフィンガー押圧面21c、フィンガー押圧面21cとフィンガー押圧面21d、及びフィンガー押圧面21dとフィンガー押圧面21a、の周方向ピッチと外形形状は等しく形成されている。   The cam 20 has a disk shape, the outer peripheral side surface is a cam surface, and finger pressing surfaces 21a to 21d are formed on the outermost peripheral portion. The finger pressing surfaces 21a to 21d are formed on concentric circles that are equidistant from the rotation axis P1. The circumferential pitch and outer shape of the finger pressing surface 21a and the finger pressing surface 21b, the finger pressing surface 21b and the finger pressing surface 21c, the finger pressing surface 21c and the finger pressing surface 21d, and the finger pressing surface 21d and the finger pressing surface 21a are equal. Is formed.

カム20は、カム歯車76と共にカム軸75に固定された状態で第1機枠12と第2機枠13とによって回転可能に支持されている(図2(a)参照)。カム20は、カム歯車76を介して前述した駆動装置の回転をカム20に伝達し、カム20は回転軸P1を回転中心として矢視R方向に回転する(図1、参照)。   The cam 20 is rotatably supported by the first machine frame 12 and the second machine frame 13 while being fixed to the cam shaft 75 together with the cam gear 76 (see FIG. 2A). The cam 20 transmits the rotation of the driving device described above to the cam 20 via the cam gear 76, and the cam 20 rotates in the direction of arrow R about the rotation axis P1 (see FIG. 1).

フィンガー押圧面21a〜21dのそれぞれは、フィンガー押圧斜面22と回転軸P1を中心とする同心円上の円弧部23とが連続して形成されている。この円弧部23は、フィンガー40〜46を押圧しない位置に設けられる。   Each of the finger pressing surfaces 21a to 21d is formed with a finger pressing slope 22 and a concentric circular arc portion 23 centering on the rotation axis P1. The arc portion 23 is provided at a position where the fingers 40 to 46 are not pressed.

また、フィンガー押圧面21a,21b,21c,21dそれぞれの一方の端部と円弧部23とは、回転軸P1から延長した直線部24で結ばれている。   In addition, one end of each of the finger pressing surfaces 21a, 21b, 21c, and 21d and the arc portion 23 are connected by a linear portion 24 that extends from the rotation axis P1.

流体の輸送流路15は、流路枠14の外周側面に形成され、カム20の回転軸P1と同心円となる円弧状の溝16と、溝16のカム20に対向する方向の開口部を封止するシート状の弾性部材90と、で形成されている。溝16は、流路壁16cと、斜面部16a,16bによって形成されており、本実施形態では台形形状の場合を例示している。なお、輸送流路15の延長上のリザーバー11側の端部は流入流路17に連通し、他方の端部は吐出流路18に連通している。なお、流入流路側を上流側、吐出流路側を下流側と表す。   The fluid transport channel 15 is formed on the outer peripheral side surface of the channel frame 14, and seals the arc-shaped groove 16 concentric with the rotation axis P <b> 1 of the cam 20 and the opening of the groove 16 in the direction facing the cam 20. And a sheet-like elastic member 90 to be stopped. The groove 16 is formed by the flow path wall 16c and the slope portions 16a and 16b, and the trapezoidal shape is illustrated in the present embodiment. Note that the end of the transport channel 15 on the reservoir 11 side communicates with the inflow channel 17, and the other end communicates with the discharge channel 18. The inflow channel side is represented as the upstream side, and the discharge channel side is represented as the downstream side.

弾性部材90は、前述した溝16の周縁面16dに固着されており、溝16のカム20側の開口部を密閉する。輸送流路15は、溝16と弾性部材90によって構成されている。   The elastic member 90 is fixed to the peripheral surface 16d of the groove 16 described above, and seals the opening of the groove 16 on the cam 20 side. The transport channel 15 is constituted by the groove 16 and the elastic member 90.

また、弾性部材90は、フィンガー40〜46によって流路壁16cと斜面部16a,16bに密着するまで変形可能な弾性を有している。また、弾性部材90は、カム20によるフィンガー40〜46の押圧状態が解除されたときにフィンガー40〜46を回転軸P1方向に輸送流路15を開放する位置まで移動させる弾性力を有する。   The elastic member 90 has elasticity that can be deformed until the fingers 40 to 46 are in close contact with the flow path wall 16c and the slope portions 16a and 16b. Further, the elastic member 90 has an elastic force that moves the fingers 40 to 46 in the direction of the rotation axis P <b> 1 to the position at which the transport channel 15 is opened when the pressing state of the fingers 40 to 46 by the cam 20 is released.

輸送流路15は、図1に示すように、少なくとも最上流側のフィンガー40の押圧範囲から最下流側のフィンガー46の押圧範囲に至る範囲に形成され、最上流側は流入流路17に、最下流側は吐出流路18に連通される。   As shown in FIG. 1, the transport channel 15 is formed at least in a range from the pressing range of the finger 40 on the most upstream side to the pressing range of the finger 46 on the most downstream side. The most downstream side communicates with the discharge flow path 18.

流入流路17と吐出流路18はそれぞれ、流路枠14の上面側から溝を形成し、第2機枠13によって封止される。なお、第2機枠13以外の封止部材を用いて封止する構造としてもよい。流入流路17は、接続管81を介してリザーバー11に連通されている。また、吐出流路18は接続管82を介して流体輸送装置1の外部に導出されている。薬液を生体内に注入する場合には、接続管82に注入チューブ(図示せず)がさらに挿着される。   Each of the inflow channel 17 and the discharge channel 18 forms a groove from the upper surface side of the channel frame 14 and is sealed by the second machine frame 13. In addition, it is good also as a structure sealed using sealing members other than the 2nd machine casing 13. FIG. The inflow channel 17 communicates with the reservoir 11 via the connection pipe 81. Further, the discharge flow path 18 is led out of the fluid transport apparatus 1 through the connection pipe 82. When injecting a chemical solution into a living body, an injection tube (not shown) is further inserted into the connection pipe 82.

次に、フィンガー40〜46の形状について図2を参照して説明する。フィンガー40〜46は同じ形状のため、フィンガー44を例示して説明する。なお、図2(a)は、フィンガー44が弾性部材90を押圧しない状態、つまり輸送流路15が開放されている状態を表している。フィンガー44は、棒状の軸部44aと、軸部44aの弾性部材90側に形成される押圧部44cと、カム20側に形成されるカム当接部44bとから構成されている。軸部44aの断面形状は四角形または円形であって、カム当接部44bは滑らかに丸められている。   Next, the shape of the fingers 40 to 46 will be described with reference to FIG. Since the fingers 40 to 46 have the same shape, the finger 44 will be described as an example. 2A shows a state in which the finger 44 does not press the elastic member 90, that is, a state in which the transport channel 15 is opened. The finger 44 includes a rod-shaped shaft portion 44a, a pressing portion 44c formed on the elastic member 90 side of the shaft portion 44a, and a cam contact portion 44b formed on the cam 20 side. The cross-sectional shape of the shaft portion 44a is square or circular, and the cam contact portion 44b is smoothly rounded.

なお、軸部44aの断面形状は円形でも四角形でもよいが、四角形の場合には、カム当接部44bは平面視して略円形に滑らかに丸められる。   In addition, although the cross-sectional shape of the axial part 44a may be circular or square, in the case of a square, the cam contact part 44b is smoothly rounded into a substantially circular shape in plan view.

押圧部44cは、図2(b)に示すように略四角形の鍔状をなし、流路壁16cと同心円である押圧面44dと、斜面部16a,16bと同じ角度の斜面部44e,44fを有する。よって、押圧部44c(押圧面44dと斜面部44e,44f)は、輸送流路15(流路壁16cと斜面部16a,16b)に倣った形状(略相似形)を有している。   As shown in FIG. 2B, the pressing portion 44c has a substantially quadrangular bowl shape, and includes a pressing surface 44d that is concentric with the flow path wall 16c, and slope portions 44e and 44f having the same angle as the slope portions 16a and 16b. Have. Therefore, the pressing portion 44c (the pressing surface 44d and the slope portions 44e and 44f) has a shape (substantially similar) following the transport channel 15 (the channel wall 16c and the slope portions 16a and 16b).

フィンガー40〜46は、第1機枠12に形成されたフィンガー装着溝12aに装着され、第2機枠13によって上部を覆うことによって、軸方向に進退可能に保持される。なお、フィンガー40〜46の保持は、第2機枠13以外の専用の保持部材を用いる構造としてもよい。   The fingers 40 to 46 are mounted in finger mounting grooves 12 a formed in the first machine casing 12, and are covered by the second machine casing 13 so as to be movable forward and backward in the axial direction. Note that the fingers 40 to 46 may be held using a dedicated holding member other than the second machine casing 13.

次に、輸送流路15の閉塞について図3を参照して説明する。
図3は、実施形態1に係る輸送流路の閉塞状態を示す部分断面図である。フィンガー44を例示して説明する。また、図1も参照する。フィンガー44は、カム20のフィンガー押圧面21dがフィンガー44を押動する位置まで達すると、フィンガー44の押圧部44cによって弾性部材90が輸送流路15を閉塞する。カム20がさらに回転してフィンガー押圧面21dとカム当接部44bとの係合が解除されると、弾性部材90の弾性力によってフィンガー44はカム20側に押し戻され、輸送流路15は開放される(図2(a)で表す状態)。
Next, the blockage of the transport channel 15 will be described with reference to FIG.
FIG. 3 is a partial cross-sectional view illustrating a closed state of the transport channel according to the first embodiment. The finger 44 will be described as an example. Reference is also made to FIG. When the finger 44 reaches a position where the finger pressing surface 21 d of the cam 20 pushes the finger 44, the elastic member 90 closes the transport channel 15 by the pressing portion 44 c of the finger 44. When the cam 20 further rotates and the engagement between the finger pressing surface 21d and the cam contact portion 44b is released, the finger 44 is pushed back to the cam 20 side by the elastic force of the elastic member 90, and the transport channel 15 is opened. (The state shown in FIG. 2A).

続いて、流体輸送装置の流体輸送に係る作用について図1〜図3を参照して説明する。カム20は、駆動装置と、駆動装置の駆動をカム20まで所定の減速比で伝達する伝達機構を介してカム歯車76を回転する。カム歯車76はカム20と一体化されているのでカム20は矢視R方向に回転され、フィンガー押圧面21dでフィンガー44を押動する。この際、フィンガー44は弾性部材90を変形させて輸送流路15を閉塞している。   Then, the effect | action which concerns on the fluid transport of a fluid transport apparatus is demonstrated with reference to FIGS. 1-3. The cam 20 rotates the cam gear 76 via a drive device and a transmission mechanism that transmits the drive of the drive device to the cam 20 at a predetermined reduction ratio. Since the cam gear 76 is integrated with the cam 20, the cam 20 is rotated in the arrow R direction and pushes the finger 44 with the finger pressing surface 21 d. At this time, the finger 44 deforms the elastic member 90 and closes the transport channel 15.

フィンガー45はフィンガー押圧面21dとフィンガー押圧斜面22との接合部に当接しており、輸送流路15を閉塞している。また、フィンガー46はフィンガー押圧斜面22上で弾性部材90を押圧しているが、フィンガー44の押圧量より小さく、輸送流路15を完全には圧閉していない。   The finger 45 is in contact with the joint portion between the finger pressing surface 21 d and the finger pressing slope 22 and closes the transport channel 15. Further, the finger 46 presses the elastic member 90 on the finger pressing slope 22 but is smaller than the pressing amount of the finger 44 and does not completely close the transport channel 15.

フィンガー40〜43は、カム20の円弧部23またはフィンガー押圧斜面22の範囲にあり、押動されない初期位置にある。
この位置から、さらにカム20を矢視R方向に回転すると、カム20のフィンガー押圧面21dによって、フィンガー45,46の順で押動して輸送流路15を閉塞していく。フィンガー44はフィンガー押圧面21dから解除され輸送流路15は開放される。輸送流路15には開放される位置または、まだ閉塞されていない位置に流体が流入している。
The fingers 40 to 43 are in the range of the arc portion 23 of the cam 20 or the finger pressing slope 22 and are in an initial position where they are not pushed.
When the cam 20 is further rotated in the arrow R direction from this position, the fingers 45 and 46 are pushed in this order by the finger pressing surface 21d of the cam 20 to close the transport channel 15. The finger 44 is released from the finger pressing surface 21d, and the transport channel 15 is opened. The fluid flows into the transport channel 15 at a position where it is opened or not yet closed.

カム20をさらに回転すると、フィンガー押圧斜面22が、フィンガー40,41,42,43の順に流体の上流側から下流側に順次押圧していき、フィンガー押圧面21cに達したときに輸送流路15を閉塞する。   When the cam 20 is further rotated, the finger pressing inclined surface 22 sequentially presses the fluid from the upstream side to the downstream side in the order of the fingers 40, 41, 42, and 43, and the transport flow path 15 when reaching the finger pressing surface 21c. Occlude.

このような動作を繰り返すことにより、流体をリザーバー11から吐出流路18向けて輸送し吐出する。   By repeating such an operation, the fluid is transported from the reservoir 11 toward the discharge flow path 18 and discharged.

従って、本実施形態によれば、流路枠14に形成される溝16とシート状の弾性部材90により輸送流路15を構成している。従来の弾性を有するチューブの内径精度に比べ、溝16は射出成形等の手段により高精度で形成可能であることと、シート状の弾性部材90は輸送流路15の寸法変動にほとんど影響しないことから、輸送流路15の断面積精度が向上し、輸送流路15の断面積の変動に起因する流体の輸送量の変動を抑制できるという効果がある。つまり、流体輸送量の精度を高めることができる。   Therefore, according to the present embodiment, the transport channel 15 is constituted by the groove 16 formed in the channel frame 14 and the sheet-like elastic member 90. The groove 16 can be formed with high accuracy by means such as injection molding, and the sheet-like elastic member 90 has little influence on the dimensional variation of the transport channel 15 compared to the inner diameter accuracy of a conventional tube having elasticity. Therefore, the cross-sectional area accuracy of the transport channel 15 is improved, and the variation in the transport amount of the fluid due to the variation in the cross-sectional area of the transport channel 15 can be suppressed. That is, the accuracy of the fluid transportation amount can be increased.

また、フィンガー40〜46の各押圧部(押圧部44cを例示)が、輸送流路15の溝16(流路壁16c及び斜面部16a,16b)に倣った形状を有していることから、弾性部材90が溝16の内壁に密接し、輸送流路15を隙間なく閉塞することができる。   Moreover, since each pressing part (illustrating the pressing part 44c) of the fingers 40 to 46 has a shape that follows the groove 16 (the channel wall 16c and the slope parts 16a and 16b) of the transport channel 15, The elastic member 90 is in close contact with the inner wall of the groove 16, and the transport channel 15 can be closed without a gap.

また、図1に示すように、輸送流路15を流路枠14の外周側面に形成している。このようにすれば、流路枠14を射出成形で成形する場合には、溝16を高精度で形成でき、溝を切削加工することも可能になる。また、弾性部材90の固着作業が容易になるという効果がある。   Further, as shown in FIG. 1, the transport channel 15 is formed on the outer peripheral side surface of the channel frame 14. In this way, when the flow path frame 14 is formed by injection molding, the groove 16 can be formed with high accuracy, and the groove can be cut. In addition, there is an effect that the fixing operation of the elastic member 90 becomes easy.

なお、本実施形態の技術思想は、複数のフィンガーを特許文献2に記載の複数のローラーに置き換えた構造にも適合可能であるが、ローラーにより輸送流路を閉塞する場合、弾性部材を流体の輸送方向(回転体の回転方向)に押し伸ばし変形させることがある。しかし、本実施形態では、フィンガーにより弾性部材を略垂直方向に押圧するため、上述のように弾性部材を変形させることがないという特長を有している。
(実施形態1の変形例)
The technical idea of this embodiment can be applied to a structure in which a plurality of fingers are replaced with a plurality of rollers described in Patent Document 2, but when the transport channel is closed by the rollers, the elastic member is made of a fluid. It may be stretched and deformed in the transport direction (rotating body rotation direction). However, this embodiment has a feature that the elastic member is not deformed as described above because the elastic member is pressed in a substantially vertical direction by the finger.
(Modification of Embodiment 1)

続いて、実施形態1の変形例について図面を参照して説明する。この変形例はフィンガー40〜46の各押圧部が、弾性部材90が固着される溝16の周縁面16dを押圧する鍔部を有していることを特徴とするよって、前述した実施形態1(図2(b)、参照)との相違箇所を、図2(b)と同じ機能部には同じ符号を付して説明する。
図4は、実施形態1の変形例に係るフィンガーを示す部分斜視図である。なお、複数のフィンガーのうち、フィンガー44を例示している。フィンガー44には、軸部44aの先端部に押圧部44cが形成されている。
Subsequently, a modification of the first embodiment will be described with reference to the drawings. This modification is characterized in that each pressing portion of the fingers 40 to 46 has a flange portion that presses the peripheral surface 16d of the groove 16 to which the elastic member 90 is fixed. Differences from FIG. 2B will be described by assigning the same reference numerals to the same functional units as those in FIG.
FIG. 4 is a partial perspective view showing a finger according to a modification of the first embodiment. In addition, the finger 44 is illustrated among several fingers. In the finger 44, a pressing portion 44c is formed at the tip of the shaft portion 44a.

押圧部44cは、流路壁16cと同心円である押圧面44dと、斜面部16a,16bと同じ角度の斜面部44e,44fを有し、さらに斜面部44e,44fに連続する鍔部44g,44hを有している。押圧面44dと斜面部16a,16bとは、実施形態1(図2(b)、参照)と同じ形状である。   The pressing portion 44c has a pressing surface 44d that is concentric with the flow path wall 16c, and slope portions 44e and 44f having the same angle as the slope portions 16a and 16b, and further, flange portions 44g and 44h that are continuous with the slope portions 44e and 44f. have. The pressing surface 44d and the slope portions 16a and 16b have the same shape as that of the first embodiment (see FIG. 2B).

鍔部44g,44hは、弾性部材90が固着される溝16の周縁面16dの少なくとも一部押圧する範囲に突設されている。従って、鍔部44g,44hの弾性部材90側の平面視形状は、周縁面16dと同心円となる形状を有する。   The flange portions 44g and 44h are provided so as to protrude in a range where at least a part of the peripheral surface 16d of the groove 16 to which the elastic member 90 is fixed is pressed. Therefore, the planar view shape of the flange portions 44g and 44h on the elastic member 90 side has a shape that is concentric with the peripheral surface 16d.

フィンガー40〜46のいずれかにより輸送流路15を閉塞するとき、溝16と弾性部材90との固着境界部に極小さい隙間ができ閉塞しきれないことが考えられる。このような場合、所定の輸送量を確保できないことがあるが、上述のような鍔部44g,44hを設けることにより固着境界部も閉塞可能となり、上述の隙間を排除でき所定の流体輸送量を確保できるようになる。また、弾性部材90を押圧するときにおいて弾性部材90の固着強度の補強効果もある。
(実施形態2)
When the transport flow path 15 is closed by any of the fingers 40 to 46, it is conceivable that a very small gap is formed at the fixing boundary between the groove 16 and the elastic member 90 and cannot be completely closed. In such a case, the predetermined transport amount may not be ensured. However, by providing the flanges 44g and 44h as described above, the fixing boundary portion can also be closed, and the above-described gap can be eliminated and the predetermined fluid transport amount can be reduced. It can be secured. Further, when the elastic member 90 is pressed, there is an effect of reinforcing the fixing strength of the elastic member 90.
(Embodiment 2)

次に、実施形態2について図面を参照して説明する。実施形態2は、輸送流路の流路壁の流体流動方向に対して垂直な断面形状が、円弧形状を有していることを特徴としている。よって、実施形態1との相違箇所を中心に、同じ機能部には同じ符号を付して説明する。なお、フィンガー44を例示している。   Next, Embodiment 2 will be described with reference to the drawings. Embodiment 2 is characterized in that the cross-sectional shape perpendicular to the fluid flow direction of the flow path wall of the transport flow path has an arc shape. Therefore, the same functional parts will be described with the same reference numerals, centering on the differences from the first embodiment. In addition, the finger 44 is illustrated.

図5は、実施形態2に係る流体輸送装置を示し、(a)は図1のA−P1−A切断面を示す部分断面図、(b)はフィンガーの一部を示す斜視図である。図5(a),(b)において、輸送流路15は、流路枠14に形成される溝16と弾性部材90によって形成されている。溝16は、断面形状が円弧状の流路壁16cによって形成されている。   5A and 5B show a fluid transport device according to the second embodiment, in which FIG. 5A is a partial cross-sectional view showing a cut surface A-P1-A in FIG. 1, and FIG. 5B is a perspective view showing a part of a finger. 5A and 5B, the transport channel 15 is formed by the groove 16 formed in the channel frame 14 and the elastic member 90. The groove 16 is formed by a flow path wall 16c having a circular cross section.

フィンガー44は、棒状の軸部44aと、軸部44aの弾性部材90側に形成される押圧部44cと、カム20側に形成されるカム当接部44bとから構成されている。押圧部44cは、図5(b)に示すように略四角形の鍔状をなし、流路壁16cの形状に倣った押圧面44dを有している。具体的には、押圧面44dは平面視して流路壁16cと同心円の円弧と、流路壁16cの断面の円弧形状と、が合成された曲面から構成されている。   The finger 44 includes a rod-shaped shaft portion 44a, a pressing portion 44c formed on the elastic member 90 side of the shaft portion 44a, and a cam contact portion 44b formed on the cam 20 side. As shown in FIG. 5B, the pressing portion 44 c has a substantially quadrangular bowl shape, and has a pressing surface 44 d that follows the shape of the flow path wall 16 c. Specifically, the pressing surface 44d is composed of a curved surface obtained by combining a circular arc concentric with the flow path wall 16c and a circular arc shape of the cross section of the flow path wall 16c in plan view.

輸送流路15が実施形態1のように断面形状が四角形や台形の場合、輸送流路15を形成する辺の交差部、弾性部材90との固着境界部には角部が形成される。これら角部は、弾性部材90により閉塞する際、微小な隙間が発生することが考えられる。もし、このような隙間が発生すると流体輸送量に誤差や変動が発生する。そこで、流路壁16cの断面形状を略円弧状にすれば角部が形成されることなく、より確実に輸送流路15を閉塞でき、正確な流体輸送量を維持することができる。
(実施形態2の変形例)
When the transport channel 15 has a quadrangular or trapezoidal cross-sectional shape as in the first embodiment, a corner is formed at the intersection of the sides forming the transport channel 15 and at the fixing boundary with the elastic member 90. When these corners are closed by the elastic member 90, it is considered that minute gaps are generated. If such a gap is generated, an error or fluctuation occurs in the fluid transport amount. Therefore, if the cross-sectional shape of the flow path wall 16c is substantially arcuate, the transport flow path 15 can be more reliably closed without forming corners, and an accurate fluid transport amount can be maintained.
(Modification of Embodiment 2)

続いて、実施形態2の変形例について図面を参照して説明する。実施形態1の変形例と同様に、フィンガー40〜46の各押圧部が、弾性部材90が固着される溝16の周縁面16dを押圧する鍔部を有していることを特徴とするよって、前述した実施形態2(図5(b)、参照)との相違箇所を、図5(b)と同じ符号を付して説明する。   Subsequently, a modification of the second embodiment will be described with reference to the drawings. Similarly to the modification of the first embodiment, each pressing portion of the fingers 40 to 46 has a flange portion that presses the peripheral surface 16d of the groove 16 to which the elastic member 90 is fixed. Differences from the second embodiment (see FIG. 5B) will be described with the same reference numerals as those in FIG. 5B.

図6は、実施形態2の変形例に係るフィンガーを示す部分斜視図である。なお、複数のフィンガーのうち、フィンガー44を例示している。フィンガー44は、軸部44aの先端部に押圧部44cが形成されている。押圧部44cは、前述した実施形態2と同形状である押圧面44dと、押圧面44dに連続する鍔部44g,44hを有している。   FIG. 6 is a partial perspective view showing a finger according to a modification of the second embodiment. In addition, the finger 44 is illustrated among several fingers. As for the finger 44, the press part 44c is formed in the front-end | tip part of the axial part 44a. The pressing portion 44c has a pressing surface 44d having the same shape as that of the second embodiment described above, and flanges 44g and 44h continuous with the pressing surface 44d.

鍔部44g,44hは、弾性部材90が固着される溝16の周縁面16d(図5、参照)の少なくとも一部を押圧する範囲に突設されている。従って、鍔部44g,44hの平面視形状は、周縁面16dと同心円となる形状を有する。   The flange portions 44g and 44h are provided so as to protrude in a range in which at least a part of the peripheral surface 16d (see FIG. 5) of the groove 16 to which the elastic member 90 is fixed is pressed. Therefore, the planar view shapes of the flange portions 44g and 44h have shapes that are concentric with the peripheral surface 16d.

このような構造にすれば、前述した実施形態2の角部を排除することによる効果と、実施形態1の変形例による鍔部44g,44hを有する効果と、を有する流体輸送装置1を実現できる。
なお、流路壁16cを略円弧状にすれば形状を単純化でき、よって製造しやすくなるため、寸法精度も向上する。
(実施形態3)
With such a structure, it is possible to realize the fluid transport device 1 having the effect of eliminating the corners of the second embodiment described above and the effect of having the flange portions 44g and 44h according to the modification of the first embodiment. .
In addition, since the shape can be simplified if the flow path wall 16c is formed in a substantially circular arc shape, and the manufacturing becomes easier, the dimensional accuracy is also improved.
(Embodiment 3)

次に、実施形態3について図面を参照して説明する。前述した実施形態1及び実施形態2は、輸送流路を形成する弾性部材がシート状であることに対して、輸送流路が、流路枠に形成される溝と弾性部材とが、溝の周縁面に対して略対称形となるよう形成されていることに特徴を有する。よって、実施形態1と実施形態2との相違箇所について説明する。   Next, Embodiment 3 will be described with reference to the drawings. In the first embodiment and the second embodiment described above, the elastic member forming the transport channel is in the form of a sheet, whereas the transport channel has a groove formed in the channel frame and the elastic member. It is characterized by being formed so as to be substantially symmetrical with respect to the peripheral surface. Therefore, differences between the first embodiment and the second embodiment will be described.

図7は、実施形態3に係る輸送流路を示す部分断面図である。輸送流路15は、流路枠14に形成された断面が円弧状の流路壁16cからなる溝16と、弾性部材90の凹部91によって形成されている。凹部91は、シート状の弾性部材90を加熱型押し成形、または射出成形等によって成形することが可能である。流路枠14の流路壁16cと弾性部材90の凹部91とは、溝16の周縁面16dに対して略対称形となるような形状を有している。   FIG. 7 is a partial cross-sectional view showing a transport channel according to the third embodiment. The transport channel 15 is formed by a groove 16 formed of a channel wall 16 c having an arc-shaped cross section formed in the channel frame 14 and a recess 91 of the elastic member 90. The concave portion 91 can be formed by heat-pressing or injection molding the sheet-like elastic member 90. The flow path wall 16 c of the flow path frame 14 and the recess 91 of the elastic member 90 have shapes that are substantially symmetrical with respect to the peripheral surface 16 d of the groove 16.

図7では、このような輸送流路15を閉塞するフィンガーとして実施形態2によるフィンガー44を例示しており、押圧部44cの押圧面44dの断面形状は、流路壁16cに倣った曲面によって構成されている。   In FIG. 7, the finger 44 according to the second embodiment is illustrated as a finger for closing the transport flow path 15, and the cross-sectional shape of the pressing surface 44 d of the pressing portion 44 c is configured by a curved surface that follows the flow path wall 16 c. Has been.

ここで、フィンガー44で弾性部材90を押圧すると凹部91の表面が流路壁16cに密接し、輸送流路15が閉塞される。   Here, when the elastic member 90 is pressed by the finger 44, the surface of the recess 91 comes into close contact with the flow path wall 16c, and the transport flow path 15 is closed.

なお、図7では、押圧面44dは断面形状を実施形態2による円弧状(曲面)としたが、実施形態1による台形形状としてもよい。また、実施形態1及び実施形態2それぞれの変形例による鍔部44g,44hをも設ける構造とすればなおよい。   In FIG. 7, the pressing surface 44 d has an arc shape (curved surface) according to the second embodiment, but may have a trapezoidal shape according to the first embodiment. In addition, it is more preferable that the flanges 44g and 44h according to the modified examples of the first and second embodiments are also provided.

このような構成では、輸送流路15は、流路壁16断面形状と略対称となる弾性部材90の凹部91とから構成される。弾性部材90が単純なシート状部材の場合、フィンガーで弾性部材90を押圧して輸送流路15を閉塞するときには、弾性部材90を引き伸ばすように押圧する。よって、弾性部材90の押圧力は大きくなる。しかし、弾性部材90に凹部91を設けるようにすれば、弾性部材90の閉塞時における引き伸ばし量は少なくてすみ、フィンガー40〜46の押圧力が小さくても確実に輸送流路15を閉塞できる。また、弾性部材90の耐久性が向上するという効果がある。
(実施形態4)
In such a configuration, the transport channel 15 is configured by the recess 91 of the elastic member 90 that is substantially symmetric with the cross-sectional shape of the channel wall 16. When the elastic member 90 is a simple sheet-like member, when the elastic member 90 is pressed with a finger to close the transport channel 15, the elastic member 90 is pressed so as to be stretched. Therefore, the pressing force of the elastic member 90 increases. However, if the recess 91 is provided in the elastic member 90, the amount of stretching when the elastic member 90 is closed can be reduced, and the transport channel 15 can be reliably closed even if the pressing force of the fingers 40 to 46 is small. In addition, the durability of the elastic member 90 is improved.
(Embodiment 4)

次に、実施形態4について図面を参照して説明する。前述した実施形態1が、輸送流路15の延長上に流入流路17と吐出流路18とが連通されていることに対し、実施形態4は、輸送流路15に対して略垂直方向に流入流路17と吐出流路18とが連通されていることを特徴としている。よって、実施形態1との相違箇所を中心に説明する。なお、実施形態1と同じ機能を有する要素には同じ符号を付している。   Next, a fourth embodiment will be described with reference to the drawings. In the first embodiment described above, the inflow channel 17 and the discharge channel 18 communicate with each other on the extension of the transport channel 15, whereas the fourth embodiment is substantially perpendicular to the transport channel 15. The inflow channel 17 and the discharge channel 18 are in communication with each other. Therefore, it demonstrates centering on a different location from Embodiment 1. FIG. In addition, the same code | symbol is attached | subjected to the element which has the same function as Embodiment 1. FIG.

図8は、実施形態4に係る流体輸送装置を示す平面図、図9は図8のB−P1−B切断面を示す断面図、図10はD−P2−D切断面を示す断面図である。なお、輸送流路15及びフィンガー40〜46は実施形態1によるものを例示している。図8、図9において、流入流路17は、輸送流路15の最上流側のフィンガー40の延長方向位置において、流路壁16cを貫通する孔によって輸送流路15と、流体溜まり19aに連通されている。   8 is a plan view showing a fluid transportation device according to Embodiment 4, FIG. 9 is a cross-sectional view showing a B-P1-B cut surface of FIG. 8, and FIG. 10 is a cross-sectional view showing a D-P2-D cut surface. is there. The transport channel 15 and the fingers 40 to 46 are exemplified by the first embodiment. 8 and 9, the inflow channel 17 communicates with the transport channel 15 and the fluid reservoir 19a through a hole penetrating the channel wall 16c at the position in the extension direction of the finger 40 on the most upstream side of the transport channel 15. Has been.

流体溜まり19aは接続管81によりリザーバー11に連通されている。流体溜まり19aは、流入流路17の垂直上方から孔19を開設し、封止部材83で流入流路17の断面積を確保しつつ封止することで形成される。   The fluid reservoir 19 a communicates with the reservoir 11 through a connection pipe 81. The fluid reservoir 19 a is formed by opening the hole 19 from the vertically upper side of the inflow channel 17 and sealing the inflow channel 17 with the sealing member 83 while ensuring the cross-sectional area.

接続管81は、2段構造であって、細管部が流体溜まり19aまで接続され、太管部分がリザーバー11との接続部81aには、リザーバー11から突設された接続部11aが接続されている。このような構造により、リザーバー11と輸送流路15とが連通される。接続管81は、流路枠14の側面壁14bと略垂直に挿着されている。
なお、流入流路17の開設位置は、輸送流路15のフィンガー40より上流側であればよく、図示した位置に限定されない。
The connecting pipe 81 has a two-stage structure, the thin tube portion is connected to the fluid reservoir 19a, and the connecting portion 81a projecting from the reservoir 11 is connected to the connecting portion 81a of the thick tube portion connected to the reservoir 11. Yes. With such a structure, the reservoir 11 and the transport channel 15 communicate with each other. The connecting pipe 81 is inserted substantially perpendicularly to the side wall 14b of the flow path frame 14.
In addition, the opening position of the inflow channel 17 should just be upstream from the finger 40 of the transport channel 15, and is not limited to the illustrated position.

続いて、吐出流路18の構成について説明する。図8、図10において、吐出流路18は、輸送流路15の最下流側のフィンガー46の延長方向位置において、流路壁16cを貫通する孔によって形成されている。吐出流路18は、流路枠14の外周側壁14aに略垂直に開設される孔によって構成され、接続管82が挿着されて外部に延在されている。   Then, the structure of the discharge flow path 18 is demonstrated. 8 and 10, the discharge flow path 18 is formed by a hole penetrating the flow path wall 16c at the position in the extending direction of the finger 46 on the most downstream side of the transport flow path 15. The discharge flow path 18 is configured by a hole that is opened substantially perpendicularly to the outer peripheral side wall 14 a of the flow path frame 14, and a connection pipe 82 is inserted and extends to the outside.

なお、接続管82を流入流路側の接続管81と同様な構造とし、輸送流路15に直接連通させる構造としてもよい。また、吐出流路18の開設位置は、輸送流路15のフィンガー46より下流側であればよく、図示した位置に限定されない。   Note that the connection pipe 82 may have a structure similar to that of the connection pipe 81 on the inflow channel side, and may have a structure that directly communicates with the transport channel 15. Moreover, the opening position of the discharge flow path 18 should just be downstream from the finger 46 of the transport flow path 15, and is not limited to the illustrated position.

従って、本実施形態では、流路枠14に弾性部材90を含む輸送流路15と、接続管81を含む流入流路17と、接続管82を含む吐出流路18と、が一体でユニット化されており、さらにリザーバー11が接続されていることになる。   Therefore, in this embodiment, the transport flow path 15 including the elastic member 90 in the flow path frame 14, the inflow flow path 17 including the connection pipe 81, and the discharge flow path 18 including the connection pipe 82 are unitized. In addition, the reservoir 11 is connected.

このような構成によれば、流路枠14に流入流路17と吐出流路18とを孔によって形成することが可能で構造を単純化できる。また、輸送流路15と流入流路17と吐出流路18とを流路枠14に形成できるため、輸送対象流体が生体内に注入する薬液の場合には、薬液に接触する流路枠ユニットを交換使用とすればよく安全性を高めると共に、他の構成要素を繰り返し使用とすれば、ランニングコストを低減できるという効果がある。
(実施形態5)
According to such a configuration, the inflow channel 17 and the discharge channel 18 can be formed in the channel frame 14 by holes, and the structure can be simplified. Further, since the transport flow path 15, the inflow flow path 17 and the discharge flow path 18 can be formed in the flow path frame 14, in the case where the transport target fluid is a chemical liquid to be injected into the living body, a flow path frame unit that contacts the chemical liquid The replacement can be used for improving safety, and if other components are used repeatedly, the running cost can be reduced.
(Embodiment 5)

続いて、実施形態5に係る流体輸送装置について図面を参照して説明する。実施形態5は、フィンガーの構成に係り、弾性部材を押圧する押圧部が弾性を有していることを特徴としている。
図11は、実施形態5に係るフィンガーを示す正面図であり、(a)は実施例1、(b)は実施例2を示している。
Subsequently, a fluid transportation device according to Embodiment 5 will be described with reference to the drawings. The fifth embodiment relates to the configuration of the fingers and is characterized in that the pressing portion that presses the elastic member has elasticity.
FIG. 11: is a front view which shows the finger which concerns on Embodiment 5, (a) has shown Example 1, (b) has shown Example 2. FIG.

まず、実施例1について説明する。7個のフィンガーは同じ形状を有しているので、フィンガー60として説明する。フィンガー60は、軸部61と鍔状の押圧部62とから構成されている。押圧部62は弾性を有する材料により形成されており、軸部61の一方の端部に開口された穴部61aに、軸部62aが挿着されている。   First, Example 1 will be described. Since the seven fingers have the same shape, they will be described as fingers 60. The finger 60 includes a shaft portion 61 and a bowl-shaped pressing portion 62. The pressing portion 62 is made of an elastic material, and the shaft portion 62 a is inserted into the hole portion 61 a opened at one end of the shaft portion 61.

軸部61は、カム20によって輸送流路15を閉塞する際に変形しない程度の剛性を有している。また、押圧部62は、輸送流路15を閉塞した際に、流路壁16の形状に馴染む程度の弾性を有することが望ましい。   The shaft portion 61 has such a rigidity that it does not deform when the transport channel 15 is closed by the cam 20. Further, it is desirable that the pressing portion 62 has an elasticity that is compatible with the shape of the flow path wall 16 when the transport flow path 15 is closed.

次に、実施例2について説明する。フィンガー60は、軸部61と鍔状の押圧部62とを2種成形によって形成されている。押圧部62は弾性を有する材料であって、軸部61は、カム20によって輸送流路15を閉塞する際に変形しない程度の剛性を有している。   Next, Example 2 will be described. The finger 60 is formed by two types of molding of a shaft portion 61 and a bowl-shaped pressing portion 62. The pressing portion 62 is an elastic material, and the shaft portion 61 has a rigidity that does not deform when the transport channel 15 is closed by the cam 20.

上述した実施例1及び実施例2では、フィンガー60の押圧部62が弾性を有していることから輸送流路15を閉塞するときに輸送流路15の流路壁16cや斜面部16a,16bの形状に押圧部62の形状が馴染みやすく、より一層確実に輸送流路を閉塞することができる。   In Example 1 and Example 2 mentioned above, since the pressing part 62 of the finger 60 has elasticity, when the transport channel 15 is closed, the channel wall 16c of the transport channel 15 and the slopes 16a and 16b. The shape of the pressing part 62 is easy to be adapted to the shape, and the transport channel can be more reliably closed.

また、押圧部62が弾性を有していることから、カム20を含むフィンガー、輸送流路15の寸法変動を吸収し、過負荷により駆動が停止してしまうことを防止できるという効果もある。   In addition, since the pressing portion 62 has elasticity, it is possible to absorb fluctuations in dimensions of the finger including the cam 20 and the transport flow path 15 and prevent the drive from being stopped due to overload.

なお、図11では、実施形態1による構造を例示したが、実施形態2による構造や各変形例にも適用できる。   In addition, in FIG. 11, the structure by Embodiment 1 was illustrated, However, It can apply also to the structure by Embodiment 2, and each modification.

さらに、実施形態1〜実施形態5による流体輸送装置1は、回転体としてのカム20と、押圧部材としてのフィンガー40〜46とにより、輸送流路15を構成する弾性部材90を押圧して、フィンガー40〜46の蠕動運動により流体を輸送する構造を例示して説明したが、前述した特許文献2のような回転体に取り付けられた複数のローラーによりチューブを上流側から下流側に押圧して液体を送出する構造にも適用可能である。   Furthermore, the fluid transport device 1 according to the first to fifth embodiments presses the elastic member 90 constituting the transport flow path 15 by the cam 20 as the rotating body and the fingers 40 to 46 as the pressing members, The structure for transporting the fluid by the peristaltic motion of the fingers 40 to 46 has been described as an example. However, the tube is pressed from the upstream side to the downstream side by a plurality of rollers attached to the rotating body as in Patent Document 2 described above. The present invention can also be applied to a structure for delivering a liquid.

特許文献2による構造では、複数のローラーの回転側面に輸送流路に倣った形状の押圧部を形成することで実現できる。   In the structure by patent document 2, it can implement | achieve by forming the press part of the shape which followed the transport flow path on the rotation side surface of a some roller.

なお、以上前述した実施形態1〜実施形態5による流体輸送装置1は、小型化、薄型化が可能で、微量流量を低速で連続的に輸送することができるため、生体内または生体表面に装着し、新薬の開発やドラッグデリバリーなどの医療用に好適である。また、様々な機械装置において、装置内、または装置外に搭載し、水や食塩水、薬液、油類、芳香液、インク、気体等の流体の輸送に利用することができる。   In addition, since the fluid transport apparatus 1 according to Embodiments 1 to 5 described above can be reduced in size and thickness and can continuously transport a small amount of flow at a low speed, the fluid transport apparatus 1 is mounted on the living body or on the surface of the living body. However, it is suitable for medical use such as development of new drugs and drug delivery. Moreover, in various mechanical devices, it can be mounted in the device or outside the device and used for transporting fluids such as water, saline, chemicals, oils, fragrances, inks and gases.

1…流体輸送装置、14…流路枠、15…輸送流路、16…流路壁、20…カム、40〜46…フィンガー、90…弾性部材。   DESCRIPTION OF SYMBOLS 1 ... Fluid transport apparatus, 14 ... Channel frame, 15 ... Transport channel, 16 ... Channel wall, 20 ... Cam, 40-46 ... Finger, 90 ... Elastic member.

Claims (8)

駆動装置と、
流路枠に形成された溝と前記溝を封止する弾性部材とで形成される流体の輸送流路と、
前記駆動装置の駆動により前記弾性部材を変形させて前記輸送流路の一部を閉塞する押圧部材と、
を有し、
前記弾性部材には、前記弾性部材が固着される前記溝の周縁面に対して前記溝が形成されている方向とは逆の方向の凹部が形成されていることを特徴とする流体輸送装置。
A driving device;
A fluid transport channel formed by a groove formed in the channel frame and an elastic member sealing the groove;
A pressing member that deforms the elastic member by driving the driving device and closes a part of the transport channel;
Have
The fluid transport device according to claim 1, wherein the elastic member has a concave portion in a direction opposite to a direction in which the groove is formed with respect to a peripheral surface of the groove to which the elastic member is fixed.
請求項1に記載の流体輸送装置において、
前記押圧部材で前記弾性部材を変形させて前記輸送流路の一部を閉塞する際に、前記弾性部材を引き伸ばすように変形させるよう構成されていることを特徴とする流体輸送装置。
The fluid transport device according to claim 1,
A fluid transportation device configured to deform the elastic member so as to be stretched when the elastic member is deformed by the pressing member to close a part of the transportation flow path.
請求項1に記載の流体輸送装置において、
前記輸送流路における前記溝と前記弾性部材とが、前記周縁面に対して略対称形となるよう形成されていることを特徴とする流体輸送装置。
The fluid transport device according to claim 1,
The fluid transport device according to claim 1, wherein the groove and the elastic member in the transport channel are formed so as to be substantially symmetrical with respect to the peripheral surface.
請求項1ないし請求項3のいずれか一項に記載の流体輸送装置において、
前記押圧部材に形成され前記弾性部材を押圧する押圧部が前記溝に倣った形状を有していることを特徴とする流体輸送装置。
The fluid transport device according to any one of claims 1 to 3,
A fluid transporting device, wherein a pressing portion formed on the pressing member and pressing the elastic member has a shape following the groove.
請求項4に記載の流体輸送装置において、
前記押圧部が弾性を有していることを特徴とする流体輸送装置。
The fluid transport device according to claim 4, wherein
The fluid transporting device, wherein the pressing portion has elasticity.
請求項1ないし請求項5のいずれか一項に記載の流体輸送装置において、
前記溝が前記流路枠に円弧状に形成されていることを特徴とする流体輸送装置。
The fluid transport device according to any one of claims 1 to 5,
The fluid transport device according to claim 1, wherein the groove is formed in an arc shape in the flow channel frame.
請求項1ないし請求項6のいずれか一項に記載の流体輸送装置において、
前記輸送流路が前記流路枠の外周側面に形成されていることを特徴とする流体輸送装置。
The fluid transport device according to any one of claims 1 to 6,
The fluid transportation device, wherein the transportation channel is formed on an outer peripheral side surface of the channel frame.
請求項1ないし請求項7のいずれか一項に記載の流体輸送装置において、
前記流路枠が、前記輸送流路と連通する、流入流路と吐出流路とを有し、
前記流入流路は前記輸送流路の最上流側に、前記吐出流路は前記輸送流路の最下流側に配置されていることを特徴とする流体輸送装置。
The fluid transport device according to any one of claims 1 to 7,
The flow path frame has an inflow flow path and a discharge flow path communicating with the transport flow path;
The fluid transport device according to claim 1, wherein the inflow channel is disposed on the most upstream side of the transport channel, and the discharge channel is disposed on the most downstream side of the transport channel.
JP2014179913A 2014-09-04 2014-09-04 Fluid transport device Active JP5920426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014179913A JP5920426B2 (en) 2014-09-04 2014-09-04 Fluid transport device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014179913A JP5920426B2 (en) 2014-09-04 2014-09-04 Fluid transport device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2010131740A Division JP5614114B2 (en) 2010-06-09 2010-06-09 Fluid transport device

Publications (2)

Publication Number Publication Date
JP2014231841A JP2014231841A (en) 2014-12-11
JP5920426B2 true JP5920426B2 (en) 2016-05-18

Family

ID=52125354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014179913A Active JP5920426B2 (en) 2014-09-04 2014-09-04 Fluid transport device

Country Status (1)

Country Link
JP (1) JP5920426B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024006269A (en) * 2022-07-01 2024-01-17 パナソニックIpマネジメント株式会社 Liquid feeding device and liquid discharge device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3413437A1 (en) * 1984-04-10 1985-04-11 Hartmut 4370 Marl Kowalzik Screw vane diaphragm pump with eccentric automatic control of lamella vanes
JPS61197283U (en) * 1985-05-29 1986-12-09
US4846637A (en) * 1987-04-10 1989-07-11 Alderson Richard K Infusion pump system and conduit therefor
US6293926B1 (en) * 1999-11-10 2001-09-25 Alcon Universal Ltd. Peristaltic pump and cassette
JP5298699B2 (en) * 2008-08-20 2013-09-25 セイコーエプソン株式会社 Control unit, tube unit, micro pump

Also Published As

Publication number Publication date
JP2014231841A (en) 2014-12-11

Similar Documents

Publication Publication Date Title
JP5614114B2 (en) Fluid transport device
JP3992058B2 (en) Fluid transport device
EP2627371B1 (en) Pump module, base pump module and pump system
US7645127B2 (en) Pulseless peristaltic pump
EP2547908B1 (en) Micropump
JP5569014B2 (en) Fluid transport device
JP2010048121A (en) Control unit, tube unit, and micropump
JP2006207414A (en) Fluid transport device and fluid transport equipment
JP5920426B2 (en) Fluid transport device
JP5481566B2 (en) Cylinder pump
JP2019504245A (en) Microdose peristaltic pump for fluid microdose
JP4946974B2 (en) Fluid transport device and fluid transporter
KR102396192B1 (en) Micropump with cam mechanism for axial displacement of rotor
JP5857466B2 (en) Fluid transport device
JP2009228425A (en) Micropump
JP2013217296A (en) Tube pump
JP7405585B2 (en) Medical pump module and medical pump
JP4552796B2 (en) Medical roller pump
JP5876853B2 (en) Micro pump, tube unit
JP7091788B2 (en) Tube pump
JP2014141970A (en) Fluid transportation device
CN107801380A (en) Include the infusion device of the pendulous device for being acted on pump module
JP2014058871A (en) Tube pump
JP2016125413A (en) Tube pump
JP5623124B2 (en) Gear pump

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140926

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140926

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5920426

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150