JP5918563B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP5918563B2
JP5918563B2 JP2012032498A JP2012032498A JP5918563B2 JP 5918563 B2 JP5918563 B2 JP 5918563B2 JP 2012032498 A JP2012032498 A JP 2012032498A JP 2012032498 A JP2012032498 A JP 2012032498A JP 5918563 B2 JP5918563 B2 JP 5918563B2
Authority
JP
Japan
Prior art keywords
power transmission
power
coil
transmission device
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012032498A
Other languages
Japanese (ja)
Other versions
JP2013169129A (en
Inventor
杉山 寿紀
寿紀 杉山
宮内 靖
靖 宮内
淳史 田中
淳史 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2012032498A priority Critical patent/JP5918563B2/en
Publication of JP2013169129A publication Critical patent/JP2013169129A/en
Application granted granted Critical
Publication of JP5918563B2 publication Critical patent/JP5918563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、非接触(ワイヤレス)で電力を伝送する非接触電力伝送装置に関する。   The present invention relates to a non-contact power transmission apparatus that transmits power in a non-contact (wireless) manner.

非接触で電力を伝送する方法として、電磁誘導(数100kHz)による電磁誘導型、電界または磁界共鳴を介したLC共振間伝送による電界・磁界共鳴型、電波(数GHz)によるマイクロ波送電型、あるいは可視光領域の電磁波(光)によるレーザ送電型が知られている。この中で既に実用化されているのは、電磁誘導型である。これは簡易な回路(トランス方式)で実現可能であるなどの優位性はあるが、送電距離が短いという課題もある。   As a method of transmitting power in a non-contact manner, an electromagnetic induction type by electromagnetic induction (several hundreds of kHz), an electric field / magnetic field resonance type by transmission between LC resonances via electric field or magnetic field resonance, a microwave power transmission type by radio waves (several GHz), Alternatively, a laser power transmission type using electromagnetic waves (light) in the visible light region is known. Among them, the electromagnetic induction type has already been put into practical use. This has the advantage that it can be realized with a simple circuit (transformer system), but there is also a problem that the transmission distance is short.

そこで、最近になって近距離伝送(〜2m)が可能な電界・磁界共鳴型の電力伝送が注目を浴びてきた。このうち、電界共鳴型の場合、伝送経路中に手などを入れると、人体が誘電体であるため、エネルギーを熱として吸収して誘電体損失を生じる。これに対して磁界共鳴型の場合、人体がエネルギーをほとんど吸収せず、誘電体損失を避けられる。この点から磁界共鳴型に対する注目度が上昇してきている。   Therefore, recently, electric field / magnetic field resonance type power transmission capable of short-distance transmission (up to 2 m) has attracted attention. Among these, in the case of the electric field resonance type, when a hand or the like is put in the transmission path, the human body is a dielectric, so that energy is absorbed as heat and dielectric loss occurs. On the other hand, in the case of the magnetic resonance type, the human body hardly absorbs energy, and dielectric loss can be avoided. From this point of view, attention to the magnetic resonance type has been increasing.

このような電磁誘導型や磁界共鳴型の構成により非接触で電力を送受電する方式は、非接触での充電が可能になるため、受電装置において電力を受電する端子を表面に露出する必要がなくなる。その結果、前記端子に汚れが付着して導通が不全になったり、また露出した端子からの漏電や感電といった心配がなくなり、安全性および利便性が向上した装置が実現出来る。特に、磁界共鳴型の構成では、送電装置の受電装置の相対位置に対する自由度が大きいため、ユーザの利便性は大きい。   The contactless power transmission / reception method using such an electromagnetic induction type or magnetic field resonance type configuration enables non-contact charging, and thus it is necessary to expose a terminal for receiving power in the power receiving device on the surface. Disappear. As a result, it is possible to realize a device with improved safety and convenience by eliminating the concern of contamination due to contamination on the terminals and failure of electric leakage or electric shock from the exposed terminals. In particular, in the magnetic resonance type configuration, since the degree of freedom with respect to the relative position of the power receiving device of the power transmitting device is large, the convenience for the user is great.

ただ、一般的な磁界共鳴を用いた非接触電力伝送装置では、電磁波が非接触電力伝送装置の外部に漏れ易いという欠点がある。電磁波の漏れは、周辺機器の誤動作等の原因となるので、電磁波の漏れを抑える手段を設ける必要がある。非接触電力伝送装置の筐体を導体等で覆うシールド構造は、電磁波の漏れを抑える手段として有効であることが知られている。特許文献1は、シールド構造を有する非接触電力伝送装置が開示されている。   However, a non-contact power transmission device using a general magnetic field resonance has a drawback that electromagnetic waves easily leak outside the non-contact power transmission device. Since leakage of electromagnetic waves causes malfunction of peripheral devices, it is necessary to provide means for suppressing leakage of electromagnetic waves. It is known that a shield structure that covers a housing of a non-contact power transmission apparatus with a conductor or the like is effective as a means for suppressing leakage of electromagnetic waves. Patent Document 1 discloses a contactless power transmission device having a shield structure.

さらに、一つの送電装置が異なった形態の受電装置に対して送電できれば、より利便性は向上する。その場合、受電装置の形態ごとに最適な条件で送電する必要があることから、送電装置は、受電装置の形態を自動的に判別できることが望ましい。特許文献2は、送電装置から複数の受電装置に最適な送電条件で送電する装置を開示している。具体的には、受電装置の形態に応じて専用のクレードルを用意し、そのクレードルに個別の識別子を設けている。送電装置がその個別の識別子を読み取ることにより、受電装置の形態を識別し、送電装置の送電条件を受電装置に適した条件に自動で変更している。   Furthermore, if one power transmission device can transmit power to different types of power reception devices, the convenience is further improved. In that case, since it is necessary to transmit power under optimum conditions for each form of the power receiving apparatus, it is desirable that the power transmitting apparatus can automatically determine the form of the power receiving apparatus. Patent Document 2 discloses a device that transmits power from a power transmission device to a plurality of power reception devices under optimal power transmission conditions. Specifically, a dedicated cradle is prepared according to the form of the power receiving apparatus, and an individual identifier is provided for the cradle. The power transmission device reads the individual identifier to identify the form of the power reception device, and automatically changes the power transmission condition of the power transmission device to a condition suitable for the power reception device.

特開2012−19648号公報JP 2012-19648 A 特開2009−219203号公報JP 2009-219203 A

送電装置から複数の受電装置に送電する場合において、受電装置の形態を自動で検出する機能は重要であるが、それと同時に、電磁波のシールド特性を確保しつつ、使用者が非接触電力伝送装置の内部に設置された受電中の受電装置を視認できることが望ましい。   In the case of transmitting power from a power transmission device to a plurality of power receiving devices, the function of automatically detecting the form of the power receiving device is important, but at the same time, while ensuring the shielding characteristics of electromagnetic waves, the user can It is desirable to be able to visually recognize a power receiving device installed inside and receiving power.

まず、特許文献1が開示する構造は電磁波をシールドすることはできるが、使用者は電力送電中に装置の内部に設置された受電中の受電装置を視認できない。   First, although the structure disclosed in Patent Document 1 can shield electromagnetic waves, a user cannot visually recognize a power receiving device that is installed inside the device during power transmission.

また、特許文献2に記載されている装置は、送電装置から複数の受電装置に最適な送電条件で送電することはできるが、送電装置と受電装置が接触した状態であり、送電装置と受電装置の位置関係は一定である。これに対して、非接触で電力を送受電する方式、例えば、送電装置の受電装置に対する位置の自由度が大きい磁界共鳴方式においては、複数の受電装置の位置に変化が生じても、最適な送電条件で送電できなければならない。   The device described in Patent Document 2 can transmit power from a power transmission device to a plurality of power reception devices under optimal power transmission conditions, but is in a state where the power transmission device and the power reception device are in contact with each other. The positional relationship of is constant. On the other hand, in a method of transmitting and receiving power without contact, for example, a magnetic field resonance method with a large degree of freedom in the position of the power transmission device with respect to the power reception device, even if the position of a plurality of power reception devices changes, the optimum It must be possible to transmit power under the transmission conditions.

さらには、外部電源の有無など、場所を選ばず稼働できる非接触電力伝送装置の実現が重要である。非接触電力電送で充電する対象物は、非接触で充電できるが故に、充電のためのコネクタが不要なため、完全防水を容易に実現できる。そのため、非接触電力電送で充電する対象物は屋外での使用を前提としたものが多く、室内はもちろん屋外でも充電できることが要求されるからである。   Furthermore, it is important to realize a non-contact power transmission device that can operate regardless of location, such as the presence or absence of an external power supply. Since an object to be charged by contactless power transmission can be charged contactlessly, a connector for charging is unnecessary, and thus complete waterproofing can be easily realized. Therefore, many objects to be charged by non-contact power transmission are assumed to be used outdoors, and it is required to be able to charge outdoors as well as indoors.

本発明の非接触電力伝送装置は、
送電コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電コイル及び共振容量により構成された受電共振器を有する受電装置を備え、前記送電コイルと前記受電コイルの間の交流電磁界を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
補助コイル及び共振容量により構成された補助共振器を有する送電補助装置を更に備え、
前記送電補助装置と前記送電装置を向かい合わせて配置した状態で、前記送電コイルと前記補助コイルの間に、前記受電コイルを配置するための受電空間を形成し、
前記送電装置、前記受電装置及び前記送電補助装置を内蔵する筺体を有し、
電力を伝送する際の交流電磁界に基づく電磁波が、前記筺体の外部へ漏れないように、前記筺体全体が電磁シールドされた状態で、前記送電装置から前記受電装置へ電力を伝送し、
前記送電コイルと前記補助コイルのうち、前記補助コイルの内寸法/外寸法比率が0.6以上で、かつ、前記送電のコイルの内寸法/外寸法比率が0.4以下であること、若しくは、前記送電コイルと前記補助コイルの両方のコイルの内寸法/外寸法比率が同一であり、かつ、前記送電コイルと前記補助コイルの内寸法/外寸法比率が0.4以上で、かつ、0.6以下であることを特徴とする。
The contactless power transmission device of the present invention is
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonant capacitor;
Non-contact power including a power receiving device having a power receiving resonator including a power receiving coil and a resonance capacitor, and transmitting power from the power transmitting device to the power receiving device via an AC electromagnetic field between the power transmitting coil and the power receiving coil In transmission equipment,
A power transmission auxiliary device having an auxiliary resonator constituted by an auxiliary coil and a resonant capacitor;
In a state where the power transmission auxiliary device and the power transmission device are arranged to face each other, a power reception space for arranging the power reception coil is formed between the power transmission coil and the auxiliary coil,
A housing containing the power transmission device, the power receiving device, and the power transmission auxiliary device;
The electromagnetic wave based on the alternating electromagnetic field when transmitting electric power is transmitted from the power transmission device to the power receiving device in a state where the entire housing is electromagnetically shielded so as not to leak to the outside of the housing,
Of the power transmission coil and the auxiliary coil, the inner dimension / outer dimension ratio of the auxiliary coil is 0.6 or more and the inner dimension / outer dimension ratio of the coil of power transmission is 0.4 or less, or , the power transmission coil and the inner dimension / outer dimensions ratio of the coils of both of the auxiliary coil is the same, and, in the power transmission coil and the inner dimension / outer dimensions ratio of the auxiliary coil 0.4 or more, It is 0.6 or less .

本発明によれば、非接触電力伝送装置において、受電装置における受電量が一定となる範囲を広げることができるとともに、受電装置の視認性を向上することができる。   According to the present invention, in the non-contact power transmission device, the range in which the amount of power received by the power receiving device is constant can be expanded, and the visibility of the power receiving device can be improved.

また、前記受電装置は、前記送電装置内に設けられた個別のトレー内に格納され、前記トレーが前記送電装置から着脱可能な構成になっている。その構成を採用することにより、一つの送電装置で、複数種の受電装置に対して電力の電送が可能となり、使用者の利便性が向上する。   The power receiving device is stored in an individual tray provided in the power transmission device, and the tray is configured to be detachable from the power transmission device. By adopting such a configuration, it is possible to transmit power to a plurality of types of power receiving devices with a single power transmitting device, and the convenience for the user is improved.

さらに本発明によれば、非接触電力電送のための電源としてコンパクトな直流電源を用いるので、非接触電力伝送装置を屋外に持ち運ぶことができ、屋外においても非接触電力伝送が可能となる。   Furthermore, according to the present invention, since a compact DC power source is used as a power source for non-contact power transmission, the non-contact power transmission device can be carried outdoors, and non-contact power transmission is possible even outdoors.

実施の形態1における非接触電力伝送装置の外観を示す斜視図The perspective view which shows the external appearance of the non-contact electric power transmission apparatus in Embodiment 1. 同非接触電力伝送装置の送電装置内部全体を示す斜視図The perspective view which shows the whole power transmission apparatus inside of the non-contact power transmission apparatus 同非接触電力伝送装置の送電装置内部のシールド構造体を示す斜視図The perspective view which shows the shield structure inside the power transmission apparatus of the non-contact electric power transmission apparatus 同非接触電力伝送装置の送電装置内部の窓部材を示す斜視図The perspective view which shows the window member inside the power transmission apparatus of the non-contact electric power transmission apparatus 同非接触電力伝送装置の送電装置内部のトレー検出器を示す斜視図The perspective view which shows the tray detector inside the power transmission apparatus of the non-contact power transmission apparatus 同非接触電力伝送装置の送電装置内部のトレー検出器およびトレー検出部の配置を示す斜視図The perspective view which shows arrangement | positioning of the tray detector and tray detection part inside the power transmission apparatus of the non-contact electric power transmission apparatus 同非接触電力伝送装置のトレー形態aを示す斜視図The perspective view which shows the tray form a of the non-contact electric power transmission apparatus 同非接触電力伝送装置のトレー形態bを示す斜視図The perspective view which shows the tray form b of the non-contact electric power transmission apparatus 同非接触電力伝送装置のトレー形態cを示す斜視図The perspective view which shows the tray form c of the non-contact electric power transmission apparatus 同非接触電力伝送装置の送電装置内部の補助コイル形態を示す平面図The top view which shows the auxiliary coil form inside the power transmission apparatus of the same non-contact power transmission apparatus 同非接触電力伝送装置の送電装置内部の送電コイル形態を示す平面図The top view which shows the power transmission coil form inside the power transmission apparatus of the non-contact power transmission apparatus 非接触電力伝送装置の送電効率位置依存性を示す特性図Characteristic diagram showing power transmission efficiency position dependency of non-contact power transmission equipment 実施の形態2における非接触電力伝送装置の外観を示す斜視図The perspective view which shows the external appearance of the non-contact electric power transmission apparatus in Embodiment 2. 実施例及び比較例の特性を示す説明図Explanatory drawing which shows the characteristic of an Example and a comparative example 実施の形態3における非接触電力伝送装置の直流電源を実装した内部基板の形態を示す斜視図The perspective view which shows the form of the internal substrate which mounted DC power supply of the non-contact electric power transmission apparatus in Embodiment 3. 実施の形態3における非接触電力伝送装置の内部全体を示す断面図Sectional drawing which shows the whole inside of the non-contact electric power transmission apparatus in Embodiment 3. 実施の形態3における非接触電力伝送装置の外部に直流電源を実装した形態を示す斜視図The perspective view which shows the form which mounted DC power supply outside the non-contact electric power transmission apparatus in Embodiment 3. 種々のコイル形状の内寸法、外寸法の定義を示す説明図Explanatory drawing showing the definition of inner and outer dimensions of various coil shapes

以下、本発明の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

<実施の形態1>
図1は、実施の形態1における非接触電力伝送装置の外観の斜視図を示す。非接触電力伝送装置1は、送電装置本体100と送電装置蓋部200とそれらを連結する丁番190からなる。
<Embodiment 1>
FIG. 1 is a perspective view of the appearance of the non-contact power transmission apparatus according to the first embodiment. The non-contact power transmission device 1 includes a power transmission device main body 100, a power transmission device lid 200, and a hinge 190 that connects them.

送電装置本体100は、樹脂材からなる送電装置本体カバー101で覆われており、その内部に銅板材からなる送電装置本体シールド102が形成されている。さらに内部には、受電装置300を格納する樹脂材からなる送電装置トレー120がある。   The power transmission device main body 100 is covered with a power transmission device main body cover 101 made of a resin material, and a power transmission device main body shield 102 made of a copper plate material is formed therein. Furthermore, there is a power transmission device tray 120 made of a resin material that houses the power reception device 300.

また、送電装置蓋部200は、樹脂材からなる送電装置蓋部カバー201で覆われており、その内部には銅板材からなる送電装置蓋部シールド202が形成されている。さらに、中央部には、ニッケルと銅の積層材で構成される金網からなる送電装置覗き窓シールド203が形成されている。   The power transmission device lid 200 is covered with a power transmission device lid cover 201 made of a resin material, and a power transmission device lid shield 202 made of a copper plate material is formed therein. Furthermore, a power transmission device viewing window shield 203 made of a wire mesh made of a laminate of nickel and copper is formed at the center.

図2は、図1の状態から、送電装置本体カバー101、送電装置トレー120、送電装置蓋部カバー201を除いた時の外観の斜視図を示す。   FIG. 2 is a perspective view of the appearance when the power transmission device main body cover 101, the power transmission device tray 120, and the power transmission device lid cover 201 are removed from the state of FIG.

送電装置本体シールド102内部には、送電コイル110が格納されている。送電コイルは、図11に示す様に、送電コイル基板111上に、送電コイル線材112が形成されており、さらに送電コイル基板の裏面には電波吸収体113が配置されている。なお、図示はしないが送電コイル線材の両端は、コイル駆動回路に接続されている。また、送電コイルには共振容量が接続されて、送電共振器を構成している。共振容量としては、回路素子として可変コンデンサあるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。従って、以下の図では、共振容量の図示を省略する。   A power transmission coil 110 is housed inside the power transmission device main body shield 102. As shown in FIG. 11, the power transmission coil has a power transmission coil substrate 112 formed on a power transmission coil substrate 111, and a radio wave absorber 113 is disposed on the back surface of the power transmission coil substrate. Although not shown, both ends of the power transmission coil wire are connected to a coil drive circuit. Further, a resonance capacitor is connected to the power transmission coil to constitute a power transmission resonator. As the resonance capacitance, a variable capacitor or a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used. Therefore, the illustration of the resonance capacitance is omitted in the following drawings.

コイル線材112は、銅製でコイル線材外寸に対して内寸が3割程度で、かつ概ね長方形のスパイラル状で比較的粗の巻き方で巻かれている。なお、コイルの内寸と外寸は、図18に示したコイル形状のバリエーションに応じて、それぞれ定められる。具体的には以下のとおりである。
(1)正方形、長方形の場合
内寸法:対向する短辺間のコイル中心線間距離の中で最短距離
外寸法:対向する辺間のコイル中心線間距離の中で、内寸法と平行な方向での最長距離
(2)多角形の場合
内寸法:コイル最内周の直線部分コイル中心線と対向する部分のコイル最内周中心線間距離
外寸法:コイル直線部分コイル中心線と対向する部分のコイル中心線間距離の中で、内寸法と平行な方向での最長距離
(3)円形スパイラルの場合
内寸法:コイル中心線に内接する円の直径(図中波線が内接円に相当)
外寸法:コイル中心線間距離で、内寸法と平行な方向での最長距離
(4)楕円スパイラルの場合
内寸法:楕円の長軸方向に該当するコイル中心間距離の最短距離
外寸法:コイル中心線間距離で、内寸法と平行な方向での最長距離
なお、図18に示した以外のコイル形状であっても、同様の手法を用いてコイルの内寸と外寸を定義することができる。
The coil wire 112 is made of copper and has an inner dimension of about 30% with respect to the outer dimension of the coil wire, and has a generally rectangular spiral shape and is wound in a relatively coarse manner. Note that the inner dimension and the outer dimension of the coil are respectively determined according to the variation of the coil shape shown in FIG. Specifically, it is as follows.
(1) In the case of a square or a rectangle Inner dimension: the shortest distance among the coil centerline distances between the opposing short sides Outer dimension: The direction parallel to the inner dimension among the coil centerline distances between the opposing sides Longest distance at (2) In the case of a polygon Internal dimension: Distance between the innermost coil centerline of the coil innermost part of the coil The distance between the innermost coil centerline of the coil External dimension: The part of the coil facing the coil centerline Longest distance in the direction parallel to the inner dimension among the distances between the coil center lines (3) In the case of a circular spiral Inner dimension: Diameter of the circle inscribed in the coil center line (the wavy line in the figure corresponds to the inscribed circle)
Outer dimension: Distance between coil center lines, longest distance in the direction parallel to the inner dimension (4) In the case of an elliptical spiral Inner dimension: Shortest distance between coil center distances corresponding to the major axis direction of the ellipse Outer dimension: Coil center The longest distance in the direction parallel to the inner dimension in the line-to-line distance Note that the inner and outer dimensions of the coil can be defined using the same method even for coil shapes other than those shown in FIG. .

送電装置本体シールド102内部には送電装置蓋部200の開閉を検知する蓋開閉検出器130が設置されている。送電装置蓋部200が閉じられたのを、前記蓋開閉検出器130により検知し、シールド構造が確立された後、送電コイル110に電流が流され、受電装置に非接触で電力の供給がされる。   A lid opening / closing detector 130 for detecting opening / closing of the power transmission device lid 200 is installed inside the power transmission device main body shield 102. The closure of the power transmission device lid 200 is detected by the lid open / close detector 130, and after the shield structure is established, a current is passed through the power transmission coil 110 and power is supplied to the power reception device in a contactless manner. The

送電装置蓋部シールド202内部には、補助コイル210が設置されている。補助コイル210は、図10に示す様に、補助コイル基板211上に補助コイル線材212が概ね矩形上にスパイラルで巻かれており、さらに補助コイル基板211の裏面には、電波吸収体213が配置されている。また、コイル線材212は、コイル線材外寸に対して内寸が7割程度で、かつ概ね長方形のスパイラル状で比較的密の巻き方で巻かれている。さらに、コイル基板211の中央には、概ね長方形の補助コイル基板開口214が形成されている。なお、補助コイルには共振容量が接続されて、補助送電共振器を構成している。共振容量としては、回路素子として可変コンデンサあるいは固定コンデンサを接続してもよいし、浮遊容量を利用した構成としてもよい。従って、以下の図では、共振容量の図示を省略する。   An auxiliary coil 210 is installed inside the power transmission device lid shield 202. As shown in FIG. 10, the auxiliary coil 210 has an auxiliary coil wire 212 spirally wound on a substantially rectangular shape on an auxiliary coil substrate 211, and a radio wave absorber 213 disposed on the back surface of the auxiliary coil substrate 211. Has been. In addition, the coil wire 212 is wound in a relatively dense winding manner with an inner dimension of about 70% of the outer dimension of the coil wire and a generally rectangular spiral shape. Furthermore, a substantially rectangular auxiliary coil substrate opening 214 is formed at the center of the coil substrate 211. A resonance capacitor is connected to the auxiliary coil to constitute an auxiliary power transmission resonator. As the resonance capacitance, a variable capacitor or a fixed capacitor may be connected as a circuit element, or a configuration using a stray capacitance may be used. Therefore, the illustration of the resonance capacitance is omitted in the following drawings.

なお、補助コイルとは、発明者らが先願である特願2011−283803公報で開示した物である。   The auxiliary coil is the one disclosed by the inventors in Japanese Patent Application No. 2011-283803, which is a prior application.

すなわち、送電用コイル及び共振容量により構成された送電共振器を有する送電装置と、受電用コイル及び共振容量により構成された受電共振器を有する受電装置とを用い、前記送電用コイルと前記受電用コイルの間の交流電磁界を介して前記送電装置から前記受電装置へ電力を伝送する方法において、新たにコイル及び共振容量により構成された補助共振器を有する送電補助装置を更に用い、前記送電補助装置を前記送電装置と対向させて配置し、前記送電用コイルと前記新たに追加したコイルの間に形成された受電空間に前記受電用コイルを配置して電力伝送を行う構成で、前記新たに追加したコイルを補助コイルと呼ぶ。   That is, a power transmission device having a power transmission resonator constituted by a power transmission coil and a resonance capacitor, and a power reception device having a power reception resonator constituted by a power reception coil and a resonance capacitance, the power transmission coil and the power reception device are used. In the method of transmitting electric power from the power transmission device to the power receiving device via an alternating electromagnetic field between coils, a power transmission auxiliary device having an auxiliary resonator newly configured by a coil and a resonance capacitor is further used, and the power transmission auxiliary A device is disposed opposite to the power transmission device, and the power reception coil is disposed in a power reception space formed between the power transmission coil and the newly added coil to perform power transmission. The added coil is called an auxiliary coil.

次に、説明のため、非接触電力伝送装置1から送電装置本体シールド102と送電装置蓋部シールド202のみを取りだし、蓋を閉めた状態を図3に示す。図で示した様に、送電装置本体シールド102と送電装置蓋部シールド202は、送電装置本体シールド端部105と送電装置蓋部シールド端部205が、接触勘合する構造になっており、その勘合により良好な電気的導通が確保される。また送電装置シールド覗き窓開口部204は、図4で示されるニッケルと銅の積層材からなる金網で構成される送電装置覗き窓シールド203でカバーされる。   Next, for the sake of explanation, FIG. 3 shows a state in which only the power transmission device main body shield 102 and the power transmission device lid shield 202 are taken out from the non-contact power transmission device 1 and the lid is closed. As shown in the figure, the power transmission device main body shield 102 and the power transmission device lid shield 202 have a structure in which the power transmission device main body shield end portion 105 and the power transmission device lid shield end portion 205 are brought into contact with each other. As a result, good electrical conduction is ensured. Further, the power transmission device shield viewing window opening 204 is covered with a power transmission device viewing window shield 203 formed of a wire mesh made of a nickel-copper laminated material shown in FIG.

前記窓シールドは、軟磁性材であるニッケルより磁場を有効に遮断し、良導体である銅により、電場を有効に遮断する構造となっている。   The window shield has a structure in which a magnetic field is effectively cut off from nickel, which is a soft magnetic material, and an electric field is effectively cut off from copper, which is a good conductor.

以上から明らかな様に、非接触電力電送装置1の内部は、送電装置シールド覗き窓開口部204以外、電装置本体シールド102と送電装置蓋部シールド202および送電装置覗き窓シールド203によりシールドされており、内部で発生した電磁波は遮蔽される構造となっている。   As is apparent from the above, the inside of the non-contact power transmission device 1 is shielded by the power device main body shield 102, the power transmission device lid shield 202, and the power transmission device viewing window shield 203 other than the power transmission device shield viewing window opening 204. The electromagnetic wave generated inside is shielded.

送電装置本体シールド102の内部に格納される部材を、図5、図6を用いて示す。送電装置本体シールド102の内部には、トレー収納部150が格納されており、さらにその中に受電装置300を格納するための送電装置トレー120が収納する構造となっている。   Members stored inside the power transmission apparatus main body shield 102 are shown in FIGS. 5 and 6. A tray storage unit 150 is stored inside the power transmission device main body shield 102, and a power transmission device tray 120 for storing the power receiving device 300 is stored therein.

さらに、それぞれの部材間はスペーサを介してトレー収納部150の下部は、送電コイル110、遮蔽板180と回路基板160および170が配置される。   Further, the power transmission coil 110, the shielding plate 180, and the circuit boards 160 and 170 are arranged in the lower part of the tray storage unit 150 via spacers between the respective members.

回路基板170の下部は、スペーサを介して、送電装置本体シールド102(ここでは図示せず)に連接される。   The lower part of the circuit board 170 is connected to the power transmission apparatus main body shield 102 (not shown here) via a spacer.

回路基板160の右端部は、図5で示す様に、反射型のフォトインターラプター1611、1612、1613が配置されおり、トレー収納部150に設けられたトレー開口151越しにトレー120裏面に形成された識別子121を認識する構成になっている。   As shown in FIG. 5, reflection type photo interrupters 1611, 1612, and 1613 are arranged on the right end of the circuit board 160, and are formed on the back surface of the tray 120 through the tray opening 151 provided in the tray storage unit 150. The identifier 121 is recognized.

図7、図8、図9に示した様に、同一の送電装置本体100に対して、トレー1201、1202、1203は、受電装置301(補聴器)、302(音楽プレーヤ)、303(デジタルカメラ)とともに、可換な構造となっており、それぞれのトレー下部には1211、1212、1213に示した様にそれぞれ異なる識別子が設けられている。   As shown in FIGS. 7, 8, and 9, the trays 1201, 1202, and 1203 are connected to the same power transmission device main body 100, and the power receiving devices 301 (hearing aids), 302 (music players), and 303 (digital cameras). At the same time, each of the lower trays is provided with a different identifier as shown at 1211, 1212 and 1213.

非接触電力送電装置1は、前記トレー下部に設けられた固有の識別子を認識することにより、電力送電回路の特性を切り換え、受電対象に適した送電が可能となる構成となっている。   The non-contact power transmission device 1 is configured to recognize the unique identifier provided in the lower part of the tray, thereby switching the characteristics of the power transmission circuit and transmitting power suitable for the power receiving target.

識別子は3カ所の反射率高低パターンで形成され、低い反射率の部分は0、高い反射率の部分は1に対応する3ビットのパターン構成とした。また、ビットの構成として、すべてが同一となるビットパターン例えば000とか111のパターンを禁止するとともに、3ビット中、必ず1のパターンが2カ所にくるパターン構成とした。   The identifier is formed by three patterns of high and low reflectivity. The low reflectivity part has a 3-bit pattern configuration corresponding to 0 and the high reflectivity part corresponds to 1. In addition, as a bit configuration, a bit pattern in which all of them are the same, for example, 000 or 111 patterns is prohibited, and a pattern configuration in which one pattern is always in two places in three bits.

以上の構成にする事により、フォトインターラプター1611、1612、1613が故障したり、識別子の特定の場所が汚れたりして、本来の0あるいは1を読み違えた場合、上記以外のパターンになるので、誤認識を防止できる。また、本発明ではトレーおよび受電対象は図7、図8、図9に示した様に3種なので、以上のパターン則としたが、より多くの種類のパターンを認識するためには、認識ビット数を増やすか、あるいは冗長性はある程度低下するが禁止パターンを000と111のみにする等の変更が可能である。   With the above configuration, if the photo interrupter 1611, 1612, 1613 breaks down or the specific place of the identifier gets dirty and misreads the original 0 or 1, it will result in a pattern other than the above. , Can prevent misrecognition. In the present invention, since the tray and the power receiving target are three types as shown in FIGS. 7, 8, and 9, the above pattern rule is used. However, in order to recognize more types of patterns, a recognition bit is used. The number can be increased, or the redundancy can be reduced to some extent, but the prohibition pattern can be changed to 000 and 111 only.

なお、本実施の形態では、補助コイル210を送電装置蓋部200に設け、送電コイル110を送電装置本体100に設けた例を示したが、送電コイルと補助コイルを入れ替えてもよい。すなわち、補助コイル210を送電装置本体100に設け、送電コイル110を送電装置蓋部200に設けてもよい。但し、送電コイル110を送電装置蓋部200に配置した場合、FPC等を用いて、コイル駆動回路(図示せず)から、送電装置蓋部200に配置した送電コイル110に別途配線する必要がある。   In the present embodiment, the auxiliary coil 210 is provided in the power transmission device lid 200 and the power transmission coil 110 is provided in the power transmission device main body 100. However, the power transmission coil and the auxiliary coil may be interchanged. That is, the auxiliary coil 210 may be provided in the power transmission device main body 100 and the power transmission coil 110 may be provided in the power transmission device lid 200. However, when the power transmission coil 110 is disposed in the power transmission device lid 200, it is necessary to separately wire the coil from a coil drive circuit (not shown) to the power transmission coil 110 disposed in the power transmission device lid 200 using an FPC or the like. .

<実施の形態2>
図13に実施の形態2における非接触電力伝送装置の外観を示す斜視図を示す。実施の形態1と異なり、送電コイル及び補助コイルは、送電装置本体100の縦壁に設けられている。補助コイルは送電装置本体側覗き窓603がある壁側に設けられ、送電コイルは、補助コイルが設けられている壁と対向する壁側に設けられている。
<Embodiment 2>
FIG. 13 is a perspective view showing the appearance of the non-contact power transmission apparatus in the second embodiment. Unlike the first embodiment, the power transmission coil and the auxiliary coil are provided on the vertical wall of the power transmission apparatus main body 100. The auxiliary coil is provided on the wall side where the power transmission apparatus main body side viewing window 603 is provided, and the power transmission coil is provided on the wall side facing the wall where the auxiliary coil is provided.

その他の構成は、実施の形態1と同様であるので記載を省略する。   Since other configurations are the same as those of the first embodiment, description thereof is omitted.

<実施の形態3>
実施の形態3は、非接触電力電送のための電源として直流電源を用いる場合を示す。図15は、非接触電力伝送装置の直流電源173を、非接触電力伝送装置の回路基板170に実装した場合を示す。直流電源173は、回路基板170に設けられた電源ホルダ174にはめ込む形で装備される。直流電源としては、2次電池からなる電池パックを用いることができる。コネクタ175は、前記2次電池に対して外部より電力を充電するためのコネクタである。
<Embodiment 3>
Embodiment 3 shows a case where a DC power source is used as a power source for non-contact power transmission. FIG. 15 shows a case where the DC power source 173 of the non-contact power transmission device is mounted on the circuit board 170 of the non-contact power transmission device. The DC power supply 173 is installed in a form that fits into a power supply holder 174 provided on the circuit board 170. As the DC power source, a battery pack made of a secondary battery can be used. The connector 175 is a connector for charging power from the outside to the secondary battery.

なお、図16は、直流電源173が内蔵された非接触電力伝送装置の内部全体を示す断面図である。   FIG. 16 is a cross-sectional view showing the entire inside of the non-contact power transmission device in which the DC power source 173 is built.

非接触電力電送のための電源として内蔵の直流電源を用いる場合、非接触電力伝送装置を屋外に持ち運び、屋外においても非接触電力伝送ができる。実際、非接触電力電送で充電する対象物は、非接触で充電できるが故に、充電のためのコネクタが不要なため、完全防水を容易に実現できる。そのため、非接触電力電送で充電する対象物は、屋外での使用を前提としたものが多く、その充電も屋外で可能であることが要求される。   When a built-in DC power source is used as a power source for contactless power transmission, the contactless power transmission device can be carried outdoors and contactless power transmission can be performed outdoors. In fact, since an object to be charged by non-contact power transmission can be charged in a non-contact manner, a connector for charging is unnecessary, so that complete waterproofing can be easily realized. For this reason, many objects to be charged by non-contact power transmission are premised on outdoor use, and it is required that charging be possible outdoors.

本実施の形態に従えば、直流電源173が非接触電力伝送装置に内蔵されているので、外部電源の有無を問わず、室内はもちろん屋外でも非接触電力伝送を実現することができる。   According to this embodiment, since DC power supply 173 is built in the non-contact power transmission device, non-contact power transmission can be realized both indoors and outdoors, regardless of the presence or absence of an external power source.

なお、直流電源は、非接触電力伝送装置の外部に設けてもよい。図17は、非接触電力伝送装置4の外部に直流電源800を設け、接続ケーブル801を用いてする電力伝送装置4と直流電源800を接続した場合を示す。直流電源を非接触電力伝送装置の外部に設けた場合でも、非接触電力伝送装置と直流電源を併せて持ち運べば、場所を問わず非接触電力伝送ができる。直流電源が非接触電力伝送装置の外部に存在する分、非接触電力伝送装置の小型化が容易になる。   Note that the DC power supply may be provided outside the non-contact power transmission device. FIG. 17 shows a case where a DC power source 800 is provided outside the non-contact power transmission device 4 and the power transmission device 4 and the DC power source 800 are connected using a connection cable 801. Even when the DC power source is provided outside the non-contact power transmission device, if the non-contact power transmission device and the DC power source are carried together, the non-contact power transmission can be performed regardless of the location. Since the DC power supply exists outside the contactless power transmission device, the contactless power transmission device can be easily downsized.

以下では、上記実施の形態1において、送電コイル及び補助コイルの形状を変えながら、受電装置が送電装置と送電補助装置から受ける受電量を検討した結果について説明する。
<実施例1>
実施例1では、送電コイルの内形状を外形状に対して、0.3にし、かつ補助コイルの内形状を外形状の0.7とした。
<実施例2>
実施例2では、送電コイルの内形状を外形状に対して、0.5にし、かつ補助コイルの内形状を外形状の0.5とした。
<実施例3>
実施例3では、送電コイルの内形状を外形状に対して、0.4にし、かつ補助コイルの内形状を外形状の0.4とした。
<実施例4>
実施例4では、送電コイルの内形状を外形状に対して、0.6にし、かつ補助コイルの内形状を外形状の0.6とした。
<比較例1>
比較例1では、送電コイルの内形状を外形状に対して、0.7にし、かつ補助コイルの内形状を外形状の0.7とした。
<比較例2>
比較例2では、送電コイルの内形状を外形状に対して、0.3にし、かつ補助コイルの内形状を外形状の0.3とした。
Hereinafter, in Embodiment 1 described above, the result of studying the amount of power received by the power receiving device from the power transmitting device and the power transmitting auxiliary device while changing the shapes of the power transmitting coil and the auxiliary coil will be described.
<Example 1>
In Example 1, the inner shape of the power transmission coil was set to 0.3 with respect to the outer shape, and the inner shape of the auxiliary coil was set to 0.7 of the outer shape.
<Example 2>
In Example 2, the inner shape of the power transmission coil was set to 0.5 with respect to the outer shape, and the inner shape of the auxiliary coil was set to 0.5, which is the outer shape.
<Example 3>
In Example 3, the inner shape of the power transmission coil was set to 0.4 with respect to the outer shape, and the inner shape of the auxiliary coil was set to 0.4 of the outer shape.
<Example 4>
In Example 4, the inner shape of the power transmission coil was set to 0.6 with respect to the outer shape, and the inner shape of the auxiliary coil was set to 0.6, which is the outer shape.
<Comparative Example 1>
In Comparative Example 1, the inner shape of the power transmission coil was 0.7 with respect to the outer shape, and the inner shape of the auxiliary coil was 0.7, which is the outer shape.
<Comparative Example 2>
In Comparative Example 2, the inner shape of the power transmission coil was set to 0.3 with respect to the outer shape, and the inner shape of the auxiliary coil was set to 0.3, which is the outer shape.

図6は、受電装置が送電装置と送電補助装置から受ける受電量のX方向依存性を示す。X方向とは、受電コイル中心から受電コイルの長軸方向をいう。受電量は相対的に示したものであり、実施例1乃至4、比較例1及び2ごとに相対受電量のX方向依存性を示した。   FIG. 6 shows the X direction dependency of the amount of power received by the power receiving device from the power transmitting device and the power transmission auxiliary device. The X direction refers to the long axis direction of the receiving coil from the center of the receiving coil. The amount of power received is shown relatively, and the dependence of the relative amount of power received in the X direction was shown for each of Examples 1 to 4 and Comparative Examples 1 and 2.

同図から分かる様に、略長方形送電コイルの長軸の長さを2Aとした場合、実施例1乃至4の場合は、中心から受電コイルの外側方向0.5A程度まで、ほぼ一定の受電量が実現できている。0.5Aより外側では徐々に受電量が低下し、コイル長軸側の外径に相当する1Aの地点で受電量は0になる。   As can be seen from the figure, when the length of the long axis of the substantially rectangular power transmission coil is 2 A, in the case of Examples 1 to 4, the power reception amount is substantially constant from the center to about 0.5 A in the outer direction of the power reception coil. Has been realized. Outside 0.5A, the amount of power received gradually decreases, and the amount of power received becomes zero at a point of 1A corresponding to the outer diameter on the coil long axis side.

図示はしないが、この傾向は、コイルの短軸方向でも同一で、短軸の長さを2Bとすると、0.5B程度まで受電量は一定で、1Bの地点で受電量は0になる。   Although not shown, this tendency is the same even in the short axis direction of the coil. When the length of the short axis is 2B, the received power amount is constant up to about 0.5B, and the received power amount becomes 0 at the point of 1B.

以上から、送電コイルと補助コイルの内寸法/外寸法比率を同一する場合は、送電コイルと補助コイルの内寸法/外寸法比率を0.4以上かつ0.6以下にすることにより、受電量の均一性が実現できることが分かった。一方、送電コイルと補助コイルの内寸法/外寸法比率をいずれかを0.6より大きくした場合は、他方を0.4より小さくする事により、同様に受電量の均一性が実現できることが分かった。   From the above, when the inner dimension / outer dimension ratio of the power transmission coil and auxiliary coil is the same, the amount of power received can be reduced by setting the inner dimension / outer dimension ratio of the power transmission coil and auxiliary coil to 0.4 or more and 0.6 or less. It was found that the uniformity can be realized. On the other hand, when one of the inner dimension / outer dimension ratio of the power transmission coil and the auxiliary coil is made larger than 0.6, it is understood that the uniformity of the amount of power received can be realized similarly by making the other smaller than 0.4. It was.

このように、実施例1乃至4では、広いエリアにおいて受電量を一定にできるので、受電コイルの位置が変動した場合でも受電量の変動が少ないという利点を有する。   As described above, the first to fourth embodiments have an advantage that the amount of received power is small even when the position of the power receiving coil varies because the amount of received power can be made constant in a wide area.

また、図2に示したように、補助コイルは送電装置シールド覗き窓開口部を囲むように形成されているが、実施例1乃至4では補助コイルの内形状が外形状の0.4より大きいので、送電装置シールド覗き窓開口部を大きくすることができる。その結果、電力伝送中において送電装置トレーに搭載された受電装置の視認性が向上する。   Further, as shown in FIG. 2, the auxiliary coil is formed so as to surround the power transmission device shield viewing window opening, but in Examples 1 to 4, the inner shape of the auxiliary coil is larger than the outer shape of 0.4. Therefore, the power transmission device shield viewing window opening can be enlarged. As a result, the visibility of the power receiving device mounted on the power transmission device tray during power transmission is improved.

一方、比較例1の場合でも、補助コイルの内形状が外形状の0.4より大きいので、送電装置シールド覗き窓開口部を大きくすることができる。しかしながら、受電コイルの中心部では受電量が低く、コイル中心から外側方向へ0.6Aで受電量は最大となり、0.6Aを超えた外周では受電量は急速に低下し、コイル長軸側の外径に相当する1Aの地点で受電量は0になる。   On the other hand, even in the case of Comparative Example 1, since the inner shape of the auxiliary coil is larger than the outer shape of 0.4, the power transmission device shield viewing window opening can be enlarged. However, the amount of power received is low at the center of the power receiving coil, and the amount of power received becomes maximum at 0.6A outward from the center of the coil. The amount of power received becomes 0 at a point of 1A corresponding to the outer diameter.

また、比較例2の場合では、受電コイルの中心部で受電量が大きく、コイル中心から外側方向へ0.2Aより外側で受電量は低下し、コイル長軸側の外径に相当する1Aの地点で受電量は0になる。補助コイルの内形状が外形状の0.4以下であるので、送電装置シールド覗き窓開口部を大きくすることができない。   In the case of Comparative Example 2, the amount of power received is large at the center of the power receiving coil, and the amount of power received decreases outward from 0.2 A outward from the center of the coil, and 1 A corresponding to the outer diameter on the coil major axis side. The amount of power received at the point becomes zero. Since the inner shape of the auxiliary coil is 0.4 or less of the outer shape, the power transmission device shield viewing window opening cannot be enlarged.

以上の結果を、図14にまとめた。実施例1及び実施例2では受電量の均一性と受電装置の視認性を両立できることが分かる。一方、比較例ではいずれも受電量の均一性を実現することができない。   The above results are summarized in FIG. In Example 1 and Example 2, it turns out that the uniformity of the amount of received electric power and the visibility of a power receiving apparatus can be made compatible. On the other hand, none of the comparative examples can realize the uniformity of the amount of power received.

なお、以上の実施例は実施の形態1に基づく結果であるが、実施の形態2や実施の形態3に基づいた場合でも、同様の結果が得られる。   In addition, although the above Example is a result based on Embodiment 1, even when based on Embodiment 2 or Embodiment 3, the same result is obtained.

本発明によれば、受電装置における受電量が一定となる範囲を広げることができるので、補聴器、携帯電話やデジタルカメラ等のモバイル機器等の小型機器の非接触電力伝送に好適である。   According to the present invention, since the range in which the amount of power received by the power receiving apparatus is constant can be expanded, it is suitable for non-contact power transmission of small devices such as hearing aids, mobile devices such as mobile phones and digital cameras.

1、2 非接触電力電送装置
100 送電装置本体
200 送電装置蓋部
300、301、302、303 受電装置
101 送電装置本体カバー
102 送電装置本体シールド
103、104 LED取り付け穴
105 送電装置本体シールド端部
110 送電コイル
111 送電コイル基板
112 送電コイル線材
113 電波吸収体
120、620、1201、1202、1203 送電装置トレー
121、1211、1212、1213 送電装置トレー識別子
130 蓋開閉検出器
140 導電シール
150 トレー収納部
151 トレー収納底面開口部
160 回路基板1
161 基板材
1611、1612、1613 識別子検出装置
170 回路基板2
180 シールド板
171、172 LED
190 丁番
200、700 送電装置蓋部
201、701 送電装置蓋部カバー
202、702 送電装置蓋部シールド
203、703 送電装置覗き窓シールド
204 送電装置シールド覗き窓開口部
205 送電装置蓋部シールド端部
210 補助コイル
211 補助コイル基板
212 補助コイル線材
213 電波吸収体
214 補助コイル基板開口部
240 導電シール
603 送電装置本体側覗き窓
DESCRIPTION OF SYMBOLS 1, 2 Non-contact electric power transmission apparatus 100 Power transmission apparatus main body 200 Power transmission apparatus cover part 300,301,302,303 Power receiving apparatus 101 Power transmission apparatus main body cover 102 Power transmission apparatus main body shield 103,104 LED attachment hole 105 Power transmission apparatus main body shield edge part 110 Power transmission coil 111 Power transmission coil substrate 112 Power transmission coil wire material 113 Wave absorber 120, 620, 1201, 1202, 1203 Power transmission device tray 121, 1211, 1212, 1213 Power transmission device tray identifier 130 Cover open / close detector 140 Conductive seal 150 Tray storage 151 Tray storage bottom opening 160 circuit board 1
161 Substrate material 1611, 1612, 1613 Identifier detection device 170 Circuit board 2
180 Shield plate 171, 172 LED
190 Hinge 200, 700 Power transmission device cover 201, 701 Power transmission device cover 202, 702 Power transmission device shield 203, 703 Power transmission device viewing window shield 204 Power transmission device shield viewing window opening 205 Power transmission device cover shield end 210 Auxiliary Coil 211 Auxiliary Coil Substrate 212 Auxiliary Coil Wire 213 Radio Wave Absorber 214 Auxiliary Coil Substrate Opening 240 Conductive Seal 603 Power Transmission Device Main View Window

Claims (4)

送電コイル及び共振容量により構成された送電共振器を有する送電装置と、
受電コイル及び共振容量により構成された受電共振器を有する受電装置を備え、前記送電コイルと前記受電コイルの間の交流電磁界を介して前記送電装置から前記受電装置へ電力を伝送する非接触電力伝送装置において、
補助コイル及び共振容量により構成された補助共振器を有する送電補助装置を更に備え、
前記送電補助装置と前記送電装置を向かい合わせて配置した状態で、前記送電コイルと前記補助コイルの間に、前記受電コイルを配置するための受電空間を形成し、
前記送電装置、前記受電装置及び前記送電補助装置を内蔵する筺体を有し、
電力を伝送する際の交流電磁界に基づく電磁波が、前記筺体の外部へ漏れないように、前記筺体全体が電磁シールドされた状態で、前記送電装置から前記受電装置へ電力を伝送し、
前記送電コイルと前記補助コイルのうち、前記補助コイルの内寸法/外寸法比率が0.6以上で、かつ、前記送電のコイルの内寸法/外寸法比率が0.4以下であること、若しくは、前記送電コイルと前記補助コイルの両方のコイルの内寸法/外寸法比率が同一であって、その内寸法/外寸法比率を0.4以上で、かつ、0.6以下にすることを特徴とする非接触電力伝送装置。
A power transmission device having a power transmission resonator composed of a power transmission coil and a resonant capacitor;
Non-contact power including a power receiving device having a power receiving resonator including a power receiving coil and a resonance capacitor, and transmitting power from the power transmitting device to the power receiving device via an AC electromagnetic field between the power transmitting coil and the power receiving coil In transmission equipment,
A power transmission auxiliary device having an auxiliary resonator constituted by an auxiliary coil and a resonant capacitor;
In a state where the power transmission auxiliary device and the power transmission device are arranged to face each other, a power reception space for arranging the power reception coil is formed between the power transmission coil and the auxiliary coil,
A housing containing the power transmission device, the power receiving device, and the power transmission auxiliary device;
The electromagnetic wave based on the alternating electromagnetic field when transmitting electric power is transmitted from the power transmission device to the power receiving device in a state where the entire housing is electromagnetically shielded so as not to leak to the outside of the housing,
Of the power transmission coil and the auxiliary coil, the inner dimension / outer dimension ratio of the auxiliary coil is 0.6 or more and the inner dimension / outer dimension ratio of the coil of power transmission is 0.4 or less, or , the power transmission coil and the inner dimension / outer dimensions ratio of the coils of both of the auxiliary coil is a same, in its inner dimension / outer dimensions ratio 0.4 or more, and to 0.6 or less A non-contact power transmission device.
前記筺体を構成する壁の少なくとも一つには、前記受電装置を前記筺体の外部から視認可能な窓部が形成されており、かつ、前記窓部は電磁シールドされていることを特徴とする請求項に記載の非接触電力伝送装置。 At least one of the walls constituting the housing is formed with a window portion through which the power receiving device can be seen from the outside of the housing, and the window portion is electromagnetically shielded. Item 2. The non-contact power transmission device according to Item 1 . 前記補助コイルが前記窓部を囲むように形成されていることを特徴とする請求項に記載の非接触電力伝送装置。 The contactless power transmission device according to claim 2 , wherein the auxiliary coil is formed so as to surround the window portion. 前記送電コイルが前記窓部を囲むように形成されていることを特徴とする請求項に記載の非接触電力伝送装置。 The contactless power transmission device according to claim 2 , wherein the power transmission coil is formed so as to surround the window portion.
JP2012032498A 2012-02-17 2012-02-17 Non-contact power transmission device Active JP5918563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012032498A JP5918563B2 (en) 2012-02-17 2012-02-17 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012032498A JP5918563B2 (en) 2012-02-17 2012-02-17 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2013169129A JP2013169129A (en) 2013-08-29
JP5918563B2 true JP5918563B2 (en) 2016-05-18

Family

ID=49179089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012032498A Active JP5918563B2 (en) 2012-02-17 2012-02-17 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5918563B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6204767B2 (en) * 2013-09-17 2017-09-27 日立マクセル株式会社 Non-contact power transmission device
KR101709868B1 (en) * 2015-05-15 2017-02-23 삼성전기주식회사 Wireless charging device for vehicle
US9735611B2 (en) 2015-05-15 2017-08-15 Samsung Electro-Mechanics Co., Ltd. Wireless charging device for vehicle
KR101709869B1 (en) * 2015-05-15 2017-02-23 삼성전기주식회사 Wireless charging device for vehicle
KR101771800B1 (en) * 2015-06-12 2017-08-25 삼성전기주식회사 Wireless charging device for vehicle
US10069325B2 (en) 2015-06-12 2018-09-04 Samsung Electro-Mechanics Co., Ltd. Receiver wireless charging and support device
JP2019122110A (en) * 2017-12-28 2019-07-22 株式会社ダイヘン Non-contact power supply device and non-contact power supply method
JP7200709B2 (en) * 2019-01-31 2023-01-10 株式会社オートネットワーク技術研究所 power supply
JP7340448B2 (en) * 2019-12-27 2023-09-07 株式会社シマノ Batteries for human-powered vehicles, battery systems for human-powered vehicles, and battery support devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04317527A (en) * 1991-04-15 1992-11-09 Matsushita Electric Works Ltd Noncontact charger for rechargeable electric appliance
JP3494067B2 (en) * 1999-03-19 2004-02-03 日本電信電話株式会社 Base station communication device and power supply method for portable wireless communication device
JP3719510B2 (en) * 2002-04-08 2005-11-24 アルプス電気株式会社 Storage room with contactless charger
US8501119B2 (en) * 2008-03-26 2013-08-06 Emd Millipore Corporation Contactless power solution for low power sensors in bioprocess environments
US8970070B2 (en) * 2010-07-02 2015-03-03 Panasonic Intellectual Property Management Co., Ltd. Wireless power transmission system
JP5838685B2 (en) * 2011-09-21 2016-01-06 日本電気株式会社 Wireless space power supply system
JP5890170B2 (en) * 2011-09-29 2016-03-22 日立マクセル株式会社 Non-contact power transmission apparatus and non-contact power transmission method

Also Published As

Publication number Publication date
JP2013169129A (en) 2013-08-29

Similar Documents

Publication Publication Date Title
JP5918563B2 (en) Non-contact power transmission device
US9264107B2 (en) Wireless power transmitting device for wireless power communication system
US10122183B2 (en) Thin film coil and electronic device having the same
EP1962305B1 (en) Coil unit, method of manufacturing the same, and electronic instrument
KR102045660B1 (en) A segmented conductive back cover for wireless power transfer
KR102017621B1 (en) Coil substrate for cordless charging and electric device using the same
JP2012527813A (en) Electronic device and method having inductive receiver coil with ultra-thin shielding layer
KR102152541B1 (en) Inductive module
KR20110103395A (en) Retrofitting wireless power and near-field communication in electronic devices
US11515084B2 (en) Magnetic component and wireless power-transferring device including the same
JP2009005475A (en) Non-contact power transfer device
JP4983999B1 (en) Non-contact charging module and non-contact charging device using the same
KR102203090B1 (en) Transformer and adapter
TW201320121A (en) Planar coil, coil module including planar coil, power receiving device including planar coil, and contactless electric power transmission apparatus including planar coil
JP2009267077A (en) Coil unit and electronic apparatus using the same
CN107800197B (en) Wireless power transmission module and electronic device with same
JPWO2019176636A1 (en) Antenna device, communication system, and electronic device
KR101470438B1 (en) Wireless charging battery case of multiple function
CN212010666U (en) Coil module
TWI751120B (en) Electronic device and method for wireless power transfer
KR102494548B1 (en) Cover and electronic device including the same
CN110932416A (en) Wireless energy transmission device, system and wireless charging system
JP2015053439A (en) Non-contact power transmission device
JP2013143515A (en) Power receiving coil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160408

R150 Certificate of patent or registration of utility model

Ref document number: 5918563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250