JP5917951B2 - Antioxidant ability determination tool - Google Patents

Antioxidant ability determination tool Download PDF

Info

Publication number
JP5917951B2
JP5917951B2 JP2012046119A JP2012046119A JP5917951B2 JP 5917951 B2 JP5917951 B2 JP 5917951B2 JP 2012046119 A JP2012046119 A JP 2012046119A JP 2012046119 A JP2012046119 A JP 2012046119A JP 5917951 B2 JP5917951 B2 JP 5917951B2
Authority
JP
Japan
Prior art keywords
sample
observation
antioxidant
observation unit
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012046119A
Other languages
Japanese (ja)
Other versions
JP2013181851A (en
Inventor
大倫 越智
大倫 越智
一雄 酒居
一雄 酒居
聡子 木野
聡子 木野
Original Assignee
日研ザイル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日研ザイル株式会社 filed Critical 日研ザイル株式会社
Priority to JP2012046119A priority Critical patent/JP5917951B2/en
Publication of JP2013181851A publication Critical patent/JP2013181851A/en
Application granted granted Critical
Publication of JP5917951B2 publication Critical patent/JP5917951B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、抗酸化能判定具に関し、特に、簡易迅速に試料の抗酸化能を判定できる抗酸化能判定具に関する。   The present invention relates to an antioxidant capacity determination tool, and more particularly to an antioxidant capacity determination tool that can easily and quickly determine the antioxidant capacity of a sample.

従来、食品などが有する抗酸化能を測定する方法は種々知られており、例えば、ORAC(Oxygen Radical Absorbance Capacity)法や、DPPH(1,1-Diphenyl-2-picrylhydrazyl)法などが知られている。   Conventionally, various methods for measuring the antioxidant capacity of foods and the like are known, for example, ORAC (Oxygen Radial Absorbance Capacity) method, DPPH (1,1-Diphenyl-2-picrylhydrazyl) method and the like are known. Yes.

また、本出願人によるPAO(Potential Anti Oxidant)法が提案されている(特許文献1)。PAO法は、試料の添加により還元された銅試薬が、発色試薬によって色が変化することを利用して試料の抗酸化能の有無を測定する方法である。   Further, a PAO (Potential Anti Oxidant) method by the present applicant has been proposed (Patent Document 1). The PAO method is a method for measuring the presence or absence of antioxidant ability of a sample by utilizing the fact that a copper reagent reduced by the addition of the sample changes its color depending on the coloring reagent.

また、特許文献2には、尿の抗酸化度を測定することにより生体内のストレスを判定する方法等が記載されている。この方法は、2,4,6−トリス(2−ピリジル)−1,3,5−トリアジンと3価の鉄を含有する金属塩とを含む指示薬を含有する測定キットと尿を反応させると、尿の抗酸化度に応じて前記指示薬成分の色が変化することを利用して尿の抗酸化度の高低を測定する方法である。   Patent Document 2 describes a method for determining stress in a living body by measuring the degree of antioxidant urine. In this method, when urine is reacted with a measurement kit containing an indicator containing 2,4,6-tris (2-pyridyl) -1,3,5-triazine and a metal salt containing trivalent iron, This is a method for measuring the level of antioxidant level of urine utilizing the fact that the color of the indicator component changes according to the level of antioxidant of urine.

特開2011−17663号公報JP 2011-17663 A 特開2010−2245号公報JP 2010-2245 A

従来の抗酸化能を測定する方法は、試験、研究のために利用されるものが多く、試料の抗酸化能を測定するのに長時間要するものがある。また、抗酸化能の測定に使用する器具、装置が高価なものや、操作方法も特殊な操作を要するものもある。   Many conventional methods for measuring antioxidant capacity are used for testing and research, and some methods require a long time to measure the antioxidant capacity of a sample. In addition, there are some instruments and devices that are used for measuring the antioxidant capacity, and there are some that require special operations.

従って、高価な装置や特殊な操作方法を要せず、短時間で試料の抗酸化能を判定したいという要望には十分応えられていなかった。   Therefore, an expensive apparatus or a special operation method is not required, and the request for determining the antioxidant capacity of a sample in a short time has not been sufficiently met.

そこで、本発明は、高価な装置や特殊な操作方法を要せず、簡便迅速に試料の抗酸化能を判定できる抗酸化能判定具を提供することを目的とする。   Therefore, an object of the present invention is to provide an antioxidant capacity determination tool that can easily and quickly determine the antioxidant capacity of a sample without requiring an expensive apparatus or a special operation method.

上記課題を解決するため、以下の発明を提案する。   In order to solve the above problems, the following invention is proposed.

請求項1の発明は、
持体に備えられた試料滴下部と、
前記試料滴下部から近い順に前記支持体に備えられた第一観測部、第二観測部及び第三観測部とを備えてなり、
前記第一観測部には発色試薬が含まれ、
前記第二観測部には遷移金属を含む試薬が含まれ、
前記第三観測部には還元剤が含まれ
前記発色試薬が、前記試料滴下部に滴下された試料とともに前記第二観測部に浸潤し、更に、前記試料滴下部に滴下された前記試料及び前記第二観測部に含まれている前記遷移金属とともに前記第三観測部に浸潤する、前記試料の抗酸化能の有無を判定する抗酸化能判定具であって、
前記発色試薬は、前記第二観測部に含まれている前記遷移金属が前記試料滴下部に滴下された前記試料に含まれている抗酸化物質によって還元された際に発色するとともに、前記第三観測部に浸潤してきた前記遷移金属が前記還元剤によって還元された際に発色するキレート発色剤である
酸化能判定具である。
The invention of claim 1
A sample dropping portion provided in the supporting lifting member,
Comprising a first observation unit, a second observation unit and a third observation unit provided on the support in order from the sample dropping unit;
The first observation part includes a coloring reagent,
The second observation part includes a reagent containing a transition metal,
The third observation part includes a reducing agent ,
The coloring reagent infiltrates the second observation part together with the sample dropped on the sample dropping part, and further, the sample dropped on the sample dropping part and the transition metal contained in the second observation part infiltrating the third observation unit with judges whether the antioxidant capacity of the sample, an anti-oxidation ability determination device,
The coloring reagent develops color when the transition metal contained in the second observation part is reduced by the antioxidant contained in the sample dropped on the sample dropping part, and the third reagent It is a chelate color former that develops color when the transition metal that has infiltrated the observation section is reduced by the reducing agent.
An anti-oxidation ability determination device.

請求項2の発明は、前記第三観測部における発色により前記試料滴下部に滴下された前記試料が前記第三観測部にまで浸潤したことを確認し、
前記第一観測部における発色状態と、前記第二観測部における発色状態との比較により前記試料の抗酸化能の有無を判定する
請求項1記載の抗酸化能判定具である。
The invention of claim 2 confirms that the sample dropped on the sample dropping part by color development in the third observation part has infiltrated the third observation part,
2. The antioxidant capacity determination tool according to claim 1, wherein the presence or absence of the antioxidant capacity of the sample is determined by comparing the color development state in the first observation section and the color development state in the second observation section .

請求項3の発明は、 前記遷移金属は銅、鉄、又は亜鉛から選択される請求項1又は2記載の抗酸化能判定具。 The invention according to claim 3, wherein the transition metal is copper, iron, or Motomeko 1 or 2 antioxidant capacity determination device according zinc Ru is selected.

請求項の発明は、前記支持体は紙材又は繊維材よりなる請求項1乃至のいずれか一項記載の抗酸化能判定具である。 A fourth aspect of the present invention is the antioxidant capacity determination device according to any one of the first to third aspects, wherein the support is made of a paper material or a fiber material.

本発明によれば、高価な装置や特殊な操作方法を要せず、簡便迅速に試料の抗酸化能を判定できる抗酸化能判定具を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, an antioxidant apparatus determination tool which can determine the antioxidant capacity of a sample simply and rapidly without requiring an expensive apparatus and a special operation method can be provided.

本発明の抗酸化能判定具の一実施例を示す図。The figure which shows one Example of the antioxidant ability determination tool of this invention. 本発明の一実施形態による抗酸化能の有無を判定するプロセス示す図であって、(a)判定前の抗酸化能判定具、(b)試料が抗酸化能を有する場合、(c)試料が抗酸化能を有さない場合、(d)抗酸化能の判定が不可の場合をそれぞれ表す斜視図。It is a figure which shows the process which determines the presence or absence of antioxidant ability by one Embodiment of this invention, Comprising: (a) Antioxidant ability judgment tool before judgment, (b) When a sample has antioxidant ability, (c) Sample (D) The perspective view showing the case where determination of antioxidant ability is improper, respectively, when does not have antioxidant ability. 本発明の抗酸化能判定具を用いて抗酸化能の有無の判定を行った状態を示す図であって、(a)抗酸化能があると判定された場合、(b)抗酸化能がないと判定された場合をそれぞれ表す平面図。It is a figure which shows the state which determined the presence or absence of antioxidant ability using the antioxidant ability determination tool of this invention, Comprising: When it determines with (a) antioxidant ability, (b) antioxidant ability is The top view showing the case where it determines with there being no.

以下、添付図面を参照して本発明の一実施形態について説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.

図1は、本発明の抗酸化能判定具の一実施形態を示す図である。濾紙などの紙材又は繊維材よりなる支持体2に、抗酸化能を判定すべき試料を滴下する試料滴下部3、発色試薬が含まれた第一観測部4、遷移金属を含む試薬が含まれた第二観測部5及び還元剤が含まれた第三観測部6が備えられ、抗酸化能判定具1が構成される。   FIG. 1 is a diagram showing an embodiment of the antioxidant capacity determination tool of the present invention. Included are a sample dropping unit 3 for dropping a sample whose antioxidant ability is to be determined, a first observation unit 4 containing a coloring reagent, and a reagent containing a transition metal on a support 2 made of a paper material such as filter paper or a fiber material. The second observation unit 5 and the third observation unit 6 including a reducing agent are provided, and the antioxidant capacity determination tool 1 is configured.

本発明では、抗酸化能判定具1を構成する支持体2において、試料滴下部3とする箇所から近い順に、第一観測部4、第二観測部5、第三観測部6としている。そこで、図1図示のように、抗酸化能判定具1を構成する支持体2の一端側を試料滴下部3とし、ここから近い順に、第一観測部4、第二観測部5、第三観測部6とし、前述した発色試薬、遷移金属を含む試薬、還元剤が、それぞれの箇所に含浸されているようにすることが望ましい。   In this invention, in the support body 2 which comprises the antioxidant ability determination tool 1, it is set as the 1st observation part 4, the 2nd observation part 5, and the 3rd observation part 6 in order from the location used as the sample dripping part 3. FIG. Therefore, as shown in FIG. 1, one end side of the support 2 constituting the antioxidant capacity determination tool 1 is set as the sample dropping unit 3, and the first observation unit 4, the second observation unit 5, and the third are arranged in order from this point. It is desirable that the observation unit 6 is impregnated with the above-described coloring reagent, reagent containing transition metal, and reducing agent.

支持体2は、抗酸化能の判定に適宜な形状であればよく、本実施形態では1枚の濾紙をスティック状に形成した。   The support 2 may have any shape suitable for the determination of the antioxidant ability. In this embodiment, one filter paper is formed in a stick shape.

本発明は、後述するように、支持体2の試料滴下部3に抗酸化能を判定すべき試料を滴下し、滴下した試料が支持体2が備えている吸水性、浸透性により支持体2中を浸透していくことにより試料の抗酸化能を判定するものである。そこで、支持体2は吸水性、浸透性を備えている部材であれば、種々の材質から構成することができる。例えば、支持体2を濾紙などの紙材又は繊維材とすることで、抗酸化能判定具の構成を単純、安価なものとすることができる。   In the present invention, as will be described later, a sample whose antioxidant ability is to be determined is dropped on the sample dropping portion 3 of the support 2, and the dropped sample is supported by the water absorption and permeability of the support 2. The antioxidant ability of the sample is judged by penetrating the inside. Therefore, the support 2 can be made of various materials as long as it is a member having water absorption and permeability. For example, when the support 2 is a paper material such as filter paper or a fiber material, the structure of the antioxidant capacity determination tool can be made simple and inexpensive.

支持体2を展開し、支持体2の一端側である試料滴下部3に抗酸化能を判定すべき試料を滴下すると、支持体2の吸水性、浸透性により前記試料は、試料滴下部3から第一観測部4、第二観測部5、第三観測部6の順に支持体2中に浸潤していく。   When the support 2 is developed and a sample whose antioxidant ability is to be determined is dropped on the sample dropping portion 3 on one end side of the support 2, the sample is dropped into the sample dropping portion 3 due to the water absorption and permeability of the support 2. To the first observation unit 4, the second observation unit 5, and the third observation unit 6 in this order.

例えば、図1図示のように、ガラス製や金属製などの基板7の上に支持体2を展開し、支持体2の一端側の試料滴下部3に抗酸化能を判定すべき試料、例えば果汁などを滴下する。滴下された試料(果汁)は、支持体2の吸水性、浸透性により、試料滴下部3から第一観測部4、第二観測部5、第三観測部6の順に矢印8の方向に沿って支持体2中を浸潤していく。   For example, as shown in FIG. 1, a support 2 is developed on a substrate 7 made of glass or metal, and a sample whose antioxidant ability is to be determined on a sample dropping portion 3 on one end side of the support 2, for example, Dripping fruit juice. The dropped sample (fruit juice) follows the direction of the arrow 8 in this order from the sample dropping unit 3 to the first observation unit 4, the second observation unit 5, and the third observation unit 6 due to the water absorption and permeability of the support 2. And infiltrate the support 2.

そこで、第一観測部4では試料(果汁)と発色試薬とが混合し、第二観測部5では試料(果汁)と試薬とが混合し、第三観測部6では試料(果汁)と還元剤とが混合する。   Therefore, the first observation unit 4 mixes the sample (fruit juice) and the coloring reagent, the second observation unit 5 mixes the sample (fruit juice) and the reagent, and the third observation unit 6 mixes the sample (fruit juice) and the reducing agent. And mix.

第二観測部5に含まれる試薬には遷移金属、例えば、2価の銅(Cu2+)が含まれている。試料(果汁)が第二観測部5に到達すると、試料(果汁)に含まれている抗酸化物質により2価の銅(Cu2+)は還元され1価の銅(Cu1+)となる。この還元された1価の銅(Cu1+)が、第一観測部4で試料(果汁)と混合し、試料(果汁)中に溶解している発色試薬と反応する。この反応によって生じた色を検出することで試料(果汁)が抗酸化能を有するか否か判定することができる。 The reagent contained in the second observation unit 5 contains a transition metal, for example, divalent copper (Cu 2+ ). When the sample (fruit juice) reaches the second observation section 5, divalent copper (Cu 2+ ) is reduced to monovalent copper (Cu 1+ ) by the antioxidant substance contained in the sample (fruit juice). This reduced monovalent copper (Cu 1+ ) is mixed with the sample (fruit juice) in the first observation section 4 and reacts with the coloring reagent dissolved in the sample (fruit juice). By detecting the color produced by this reaction, it can be determined whether or not the sample (fruit juice) has antioxidant ability.

第三観測部6はポジティブコントロールの役割を果たす部分である。すなわち、試料滴下部3に滴下された試料が第二観測部5を経由して第三観測部6に到達したことを確認するために用いられる部分である。   The third observation unit 6 is a part that plays a role of positive control. That is, it is a part used to confirm that the sample dropped on the sample dropping unit 3 has reached the third observation unit 6 via the second observation unit 5.

試料滴下部3に滴下された試料は、第一観測部4で発色試薬と混合し、第二観測部5で遷移金属を含んでいる試薬と混合する。そこで、第三観測部6に到達した試料には、第一観測部4に含まれていた発色試薬、第二観測部5の試薬に含まれていた遷移金属がそれぞれ溶解している。   The sample dropped on the sample dropping unit 3 is mixed with a coloring reagent in the first observation unit 4 and mixed with a reagent containing a transition metal in the second observation unit 5. Therefore, in the sample that has reached the third observation unit 6, the color developing reagent contained in the first observation unit 4 and the transition metal contained in the reagent of the second observation unit 5 are dissolved.

例えば、前述したように、第二観測部5に含まれる試薬に遷移金属として2価の銅(Cu2+)が含まれていて、第三観測部6に含まれる還元剤として尿酸を用いている場合、試料が第三観測部6に到達すると、尿酸に含まれている抗酸化物質により試料に溶解している2価の銅(Cu2+)は還元され、1価の銅(Cu1+)となる。そして、この1価の銅(Cu1+)が、試料に溶解している発色試薬と反応することによって生じた色を検出することで試料が第三観測部6に到達したか否か判定することができる。 For example, as described above, the reagent included in the second observation unit 5 includes divalent copper (Cu 2+ ) as a transition metal, and uric acid is used as the reducing agent included in the third observation unit 6. In this case, when the sample reaches the third observation section 6, the divalent copper (Cu 2+ ) dissolved in the sample is reduced by the antioxidant contained in the uric acid, and the monovalent copper (Cu 1+ ) is reduced. Become. Then, it is determined whether or not the sample has reached the third observation unit 6 by detecting the color generated by the reaction of the monovalent copper (Cu 1+ ) with the coloring reagent dissolved in the sample. Can do.

次に、本発明の抗酸化能判定具1を用いて、試料が抗酸化能を備えているか否かを判定するプロセスの一例を図2を用いて説明する。   Next, an example of a process for determining whether or not a sample has antioxidant ability using the antioxidant ability determining tool 1 of the present invention will be described with reference to FIG.

図2(a)のように、濾紙製でスティック状の支持体2からなる本発明の抗酸化能測定具1を展開し、試料滴下部3に試料を滴下する。   As shown in FIG. 2 (a), the antioxidant capacity measuring instrument 1 of the present invention comprising a stick-like support 2 made of filter paper is developed, and a sample is dropped on the sample dropping section 3.

支持体2の吸水性、浸透性により試料は、試料滴下部3から第一観測部4、第二観測部5、第三観測部6の順に支持体2中を矢印8の方向に沿って浸潤していく。   Due to the water absorption and permeability of the support 2, the sample infiltrates the support 2 along the direction of the arrow 8 in the order of the sample dropping unit 3, the first observation unit 4, the second observation unit 5, and the third observation unit 6. I will do it.

第一観測部4では滴下された試料と第一観測部4に含有されている発色試薬であるキレート発色剤とが混合し、キレート発色剤が試料中に溶解する。   In the first observation unit 4, the dropped sample and the chelate color former, which is a color development reagent contained in the first observation unit 4, are mixed, and the chelate color former is dissolved in the sample.

第二観測部5ではキレート発色剤が溶解している試料が、遷移金属である2価の銅(Cu2+)を含んでいて第二観測部5に含有されている試薬と混合する。そこで、第二観測部5に含有されている試薬に含まれている遷移金属である2価の銅(Cu2+)が試料中に溶解する。 In the second observation unit 5, the sample in which the chelating color former is dissolved is mixed with a reagent containing divalent copper (Cu 2+ ) as a transition metal and contained in the second observation unit 5. Therefore, divalent copper (Cu 2+ ), which is a transition metal contained in the reagent contained in the second observation unit 5, is dissolved in the sample.

第三観測部6では、第一観測部4に含有されていたキレート発色剤および、第二観測部5に含有されている試薬に含まれている遷移金属(2価の銅(Cu2+))が溶解している試料が、第三観測部6に含有されている還元剤、例えば、尿酸と混合する。 In the third observation unit 6, the chelate color former contained in the first observation unit 4 and the transition metal (divalent copper (Cu 2+ )) contained in the reagent contained in the second observation unit 5. A sample in which is dissolved is mixed with a reducing agent, for example, uric acid, contained in the third observation unit 6.

そこで、試料が抗酸化能を有する場合には、図2(b)で示されるような発色パターンになる。   Therefore, when the sample has an antioxidant ability, a coloring pattern as shown in FIG.

すなわち、試料滴下部3に滴下された試料が第二観測部5に到達すると、試料に含まれている抗酸化物質により、第二観測部5の試薬に含まれている2価の銅(Cu2+)が1価の銅(Cu1+)に還元される還元反応が生じる。そして、この1価の銅(Cu1+)と、第一観測部4で試料に溶解したキレート発色剤とが反応して発色し、発色パターン5aが形成される。このとき、第一観測部4では発色反応は生じておらず、支持体2が有する発色パターン4aのままである。 That is, when the sample dropped on the sample dropping unit 3 reaches the second observation unit 5, divalent copper (Cu) contained in the reagent of the second observation unit 5 due to the antioxidant contained in the sample. A reduction reaction occurs in which ( 2+ ) is reduced to monovalent copper (Cu 1+ ). The monovalent copper (Cu 1+ ) reacts with the chelating color former dissolved in the sample in the first observation section 4 to develop a color, thereby forming a color pattern 5a. At this time, the color development reaction does not occur in the first observation unit 4, and the color development pattern 4a of the support 2 remains.

また、試料滴下部3に滴下された試料が第三観測部6に到達すると、第三観測部6に含まれている尿酸に含まれている抗酸化物質により、第二観測部5で試料に溶解した試薬に含まれている2価の銅(Cu2+)が1価の銅(Cu1+)に還元される還元反応が生じる。そして、この1価の銅(Cu1+)が、試料に溶解している第一観測部4のキレート発色剤と反応して発色し、発色パターン6aが形成される。 Further, when the sample dropped on the sample dropping unit 3 reaches the third observation unit 6, the antioxidant is contained in the uric acid contained in the third observation unit 6, and the second observation unit 5 forms the sample. A reduction reaction occurs in which divalent copper (Cu 2+ ) contained in the dissolved reagent is reduced to monovalent copper (Cu 1+ ). Then, this monovalent copper (Cu 1+ ) reacts with the chelate color former of the first observation section 4 dissolved in the sample to develop a color, thereby forming a color pattern 6a.

そこで、図2(b)図示の発色パターンになった場合には、試料が抗酸化能を備えていると判定することができる。   Therefore, when the color pattern shown in FIG. 2B is obtained, it can be determined that the sample has an antioxidant ability.

一方、試料が抗酸化能を有さない場合の発色パターンは図2(c)図示のようになる。   On the other hand, the color development pattern when the sample does not have antioxidant ability is as shown in FIG.

すなわち、試料滴下部3に滴下された試料が第二観測部5に到達し、第二観測部5に含まれている遷移金属、例えば、2価の銅(Cu2+)を含んでいる試薬と、第二観測部5に到達した試料とが混合しても、試料が抗酸化能を有さないので、遷移金属(2価の銅(Cu2+))との間に還元反応は生じない。 That is, the sample dropped on the sample dropping unit 3 reaches the second observation unit 5, and includes a transition metal contained in the second observation unit 5, for example, a reagent containing divalent copper (Cu 2+ ) Even if the sample that has reached the second observation section 5 is mixed, since the sample does not have an antioxidant ability, no reduction reaction occurs with the transition metal (divalent copper (Cu 2+ )).

このため、第二観測部5では発色反応も生じず、支持体2が有する発色パターン5bのままである。また、第一観測部4でも発色反応は生じておらず、支持体2が有する発色パターン4bのままである。   For this reason, the second observing unit 5 does not cause a color development reaction and remains the color development pattern 5b that the support 2 has. In addition, the color development reaction does not occur in the first observation unit 4, and the color development pattern 4b of the support 2 remains as it is.

一方、試料滴下部3に滴下された試料が第三観測部6に到達すると、第三観測部6に含まれている尿酸が有する抗酸化物質により、第二観測部5で試料に溶解した試薬に含まれている2価の銅(Cu2+)が1価の銅(Cu1+)に還元される還元反応が生じる。そして、この1価の銅(Cu1+)が、試料に溶解している第一観測部4のキレート発色剤と反応して発色し、発色パターン6bが形成される。 On the other hand, when the sample dropped on the sample dropping unit 3 reaches the third observation unit 6, the reagent dissolved in the sample in the second observation unit 5 by the antioxidant substance contained in the uric acid contained in the third observation unit 6 A reduction reaction occurs in which divalent copper (Cu 2+ ) contained in is reduced to monovalent copper (Cu 1+ ). Then, this monovalent copper (Cu 1+ ) reacts with the chelate color former of the first observation section 4 dissolved in the sample to develop a color, thereby forming a color pattern 6b.

こうして、第二観測部5で発色反応が生じなくても、第三観測部6で発色パターンを確認できることにより、試料滴下部3に滴下された試料が第二観測部5を経由して第三観測部6まで到達できたことを確認できる。   Thus, even if the color development reaction does not occur in the second observation unit 5, the color observation pattern can be confirmed by the third observation unit 6, so that the sample dropped on the sample dropping unit 3 passes through the second observation unit 5 to the third. It can be confirmed that the observation part 6 has been reached.

そして、試料滴下部3に滴下された試料が第二観測部5を経由して第三観測部6まで到達しているにもかかわらず、第二観測部5で発色反応が生じていないことから、試料が抗酸化能を備えていない、と判定することができる。   Since the sample dropped on the sample dropping unit 3 reaches the third observation unit 6 via the second observation unit 5, no color reaction occurs in the second observation unit 5. It can be determined that the sample does not have antioxidant capacity.

なお、図2(d)図示のような発色パターンとなり、第一観測部4、第二観測部5、第三観測部6のいずれにおいても発色反応が発生し、それぞれ、発色パターン4c、5c、6cが形成される場合は、判定不能ということになる。   2 (d), the color development reaction occurs in any of the first observation unit 4, the second observation unit 5, and the third observation unit 6, and the color development patterns 4c, 5c, When 6c is formed, it is impossible to determine.

上述したように、本発明の抗酸化能判定具1は極めて簡単、かつ単純な構成にすることができる。   As described above, the antioxidant capacity determination tool 1 of the present invention can be configured to be extremely simple and simple.

また、抗酸化能を備えているかどうか判定すべき試料を試料滴下部3へ滴下した後、第二観測部5及び第三観測部6それぞれに発色パターンが形成されるまでの要する時間は約3分ほどである。そこで、迅速に、かつ1ステップで半定量の測定結果を得ることができる。   In addition, after the sample to be determined whether it has anti-oxidation ability is dropped onto the sample dropping unit 3, the time required for forming the color pattern on the second observation unit 5 and the third observation unit 6 is about 3 Minutes. Therefore, a semi-quantitative measurement result can be obtained quickly and in one step.

しかも、試薬等の調整も必要なく、判定者は、抗酸化能を備えているかどうか判定すべき試料を試料滴下部3に滴下するだけなので使用方法も簡単である。   Moreover, there is no need for adjustment of reagents or the like, and the judging person simply drops the sample to be judged whether or not it has anti-oxidation ability onto the sample dropping part 3, so that the method of use is simple.

なお、前述した図2(b)図示のような発色パターンが形成されている抗酸化能判定具1をスキャナなどの光学機器を用いて分析すれば、抗酸化能の定量測定も可能である。   In addition, if the antioxidant ability determination tool 1 in which the coloring pattern as shown in FIG. 2B is formed is analyzed using an optical device such as a scanner, the antioxidant ability can be quantitatively measured.

前記では、抗酸化能判定具1を構成する支持体2の第二観測部5に含有されている遷移金属を銅とし、第一観測部4に含まれている発色試薬(キレート発色剤)には、抗酸化物質によって銅の還元反応が生起された際に発色(色の変化)を起こすものが使用されていた。   In the above, the transition metal contained in the second observation part 5 of the support 2 constituting the antioxidant capacity determination tool 1 is copper, and the coloring reagent (chelate coloring agent) contained in the first observation part 4 is used. Used to develop color (change in color) when a reduction reaction of copper is caused by an antioxidant.

しかし、第二観測部5に含有されている試薬に含まれている遷移金属は銅に限られない。第二観測部5に含有されている試薬に含まれている遷移金属を鉄や亜鉛とし、これらと試料が有する抗酸化物質との還元反応を利用して試料が抗酸化能を備えているかどうか判定することができる。なお、これらの場合、第一観測部4に含まれている発色試薬(キレート発色剤)には、抗酸化物質によって鉄や亜鉛の還元反応が生起した際に発色(色の変化)を起こす発色試薬(キレート発色剤)が使用されることになる。   However, the transition metal contained in the reagent contained in the second observation unit 5 is not limited to copper. Whether or not the sample has an antioxidant ability by using a reduction reaction between the transition metal contained in the reagent contained in the second observation unit 5 and iron and zinc and the antioxidant contained in the sample. Can be determined. In these cases, the coloring reagent (chelate coloring agent) included in the first observation unit 4 develops a color (change in color) when a reduction reaction of iron or zinc occurs by an antioxidant. A reagent (chelating color former) will be used.

(実験例)
尿酸水溶液及び蒸留水を試料として用いて本発明の抗酸化能判定具1を用いた抗酸化能の判定について確認実験を行った。
(Experimental example)
A confirmation experiment was performed on the determination of the antioxidant ability using the antioxidant ability determining tool 1 of the present invention using an aqueous uric acid solution and distilled water as samples.

本実験例で使用する抗酸化能判定具9は、脱脂綿よりなる支持体10に、試料を滴下する試料滴下部11、キレート発色剤が含まれた第一観測部12、2価の銅(Cu2+)を含む試薬が含まれた第二観測部13及び尿酸が含まれた第三観測部14を備えている。 Antioxidant ability determination tool 9 used in this experiment example includes a sample dropping unit 11 for dropping a sample on a support 10 made of absorbent cotton, a first observation unit 12 containing a chelating color former, and divalent copper (Cu 2 ), a second observation unit 13 containing a reagent containing 2+ ) and a third observation unit 14 containing uric acid.

試料を尿酸水溶液とした場合、図3(a)で示されるように、第一観測部12では支持体10の有する発色パターン12aが観測され、第二観測部13では、尿酸が有する抗酸化物質により、尿酸水溶液と混合した試薬に含まれている2価の銅(Cu2+)が1価の銅(Cu1+)に還元され、この1価の銅(Cu1+)と、第一観測部12で尿酸水溶液に混合、溶解しているキレート発色剤とが反応し、発色パターン13aが観測された。 When the sample is a uric acid aqueous solution, as shown in FIG. 3A, the first observation unit 12 observes the coloring pattern 12a of the support 10, and the second observation unit 13 observes the antioxidant substance possessed by uric acid. the divalent copper contained in the reagent mixed with uric acid aqueous solution (Cu 2+) is reduced to monovalent copper (Cu 1+), and the monovalent copper (Cu 1+), first observation portion 12 Then, the chelating color former mixed and dissolved in the uric acid aqueous solution reacted, and the color development pattern 13a was observed.

第三観測部14でも、尿酸水溶液に第二観測部13で混入、溶解した2価の銅(Cu2+)が、第三観測部14に含まれている還元剤(尿酸)によって1価の銅(Cu1+)に還元され、この1価の銅(Cu1+)と、第一観測部12で尿酸水溶液に混合、溶解しているキレート発色剤とが反応し、発色パターン14aが観測された。 Also in the third observation unit 14, the divalent copper (Cu 2+ ) mixed and dissolved in the uric acid aqueous solution by the second observation unit 13 is converted into monovalent copper by the reducing agent (uric acid) contained in the third observation unit 14. is reduced to (Cu 1+), and the monovalent copper (Cu 1+), mixed with uric acid aqueous solution in the first observation portion 12, and the chelating coloring agent is dissolved is reacted, color pattern 14a was observed.

このような図3(a)図示の各発色パターンにより、試料滴下部11に滴下する試料が、尿酸水溶液のように、抗酸化能を有する場合、前述した図2(b)図示の発色パターンが形成され、本発明の抗酸化能判定具9を用いて試料が抗酸化能を備えているか否かを簡便に判定できることを確認できた。   When the sample dripped onto the sample dropping unit 11 has an antioxidant ability like the uric acid aqueous solution, the color pattern shown in FIG. It was confirmed that it can be easily determined whether or not the sample has the antioxidant ability by using the antioxidant ability determining tool 9 of the present invention.

試料を蒸留水とした場合、図3(b)で示されるように、第一観測部12及び第二観測部13では、それぞれ支持体10の有する発色パターン12b、13bが観測された。また、第三観測部14では、第三観測部14に含まれている尿酸が有する抗酸化物質により、前記蒸留水に第二観測部13で混入・溶解した前記試薬に含まれている2価の銅(Cu2+)が1価の銅(Cu1+)に還元され、この1価の銅(Cu1+)と、第一観測部12で蒸留水に混入・溶解したキレート発色剤とが反応して発色し、発色パターン14bが観測された。 When the sample was distilled water, as shown in FIG. 3B, the first observation unit 12 and the second observation unit 13 observed the coloring patterns 12b and 13b of the support 10, respectively. In the third observation unit 14, the divalent contained in the reagent mixed and dissolved in the distilled water by the second observation unit 13 due to the antioxidant substance contained in the uric acid contained in the third observation unit 14. copper (Cu 2+) is reduced to monovalent copper (Cu 1+), and the monovalent copper (Cu 1+), a chelating coloring agent that is mixed and dissolved in distilled water to react at the first observation portion 12 The color developed and the color development pattern 14b was observed.

このような図3(b)図示の各発色パターンにより、試料滴下部11に滴下する試料が、蒸留水のように、抗酸化能を有しない場合、前述した図2(c)図示の発色パターンが形成され、本発明の抗酸化能判定具9を用いて試料が抗酸化能を備えているか否かを簡便に判定できることを確認できた。   When the sample dripped onto the sample dripping portion 11 does not have an antioxidant ability like distilled water due to each color pattern shown in FIG. 3B, the color pattern shown in FIG. It was confirmed that it can be easily determined whether or not the sample has antioxidant ability using the antioxidant ability determining tool 9 of the present invention.

以上、添付図面を参照して本発明の好ましい実施形態を説明したが、本発明はかかる実施形態に限定されるものではなく、特許請求の範囲の記載から把握される技術的範囲において種々に変更可能である。   The preferred embodiments of the present invention have been described above with reference to the accompanying drawings, but the present invention is not limited to such embodiments, and various modifications can be made within the technical scope grasped from the description of the claims. Is possible.

1、9 抗酸化能判定具
2、10 支持体
3、11 試料滴下部
4、12 第一観測部
5、13 第二観測部
6、14 第三観測部
DESCRIPTION OF SYMBOLS 1, 9 Antioxidant ability determination tool 2, 10 Support body 3, 11 Sample dripping part 4, 12 First observation part 5, 13 Second observation part 6, 14 Third observation part

Claims (4)

持体に備えられた試料滴下部と、
前記試料滴下部から近い順に前記支持体に備えられた第一観測部、第二観測部及び第三観測部とを備えてなり、
前記第一観測部には発色試薬が含まれ、
前記第二観測部には遷移金属を含む試薬が含まれ、
前記第三観測部には還元剤が含まれ
前記発色試薬が、前記試料滴下部に滴下された試料とともに前記第二観測部に浸潤し、更に、前記試料滴下部に滴下された前記試料及び前記第二観測部に含まれている前記遷移金属とともに前記第三観測部に浸潤する、前記試料の抗酸化能の有無を判定する抗酸化能判定具であって、
前記発色試薬は、前記第二観測部に含まれている前記遷移金属が前記試料滴下部に滴下された前記試料に含まれている抗酸化物質によって還元された際に発色するとともに、前記第三観測部に浸潤してきた前記遷移金属が前記還元剤によって還元された際に発色するキレート発色剤である
酸化能判定具。
A sample dropping portion provided in the supporting lifting member,
Comprising a first observation unit, a second observation unit and a third observation unit provided on the support in order from the sample dropping unit;
The first observation part includes a coloring reagent,
The second observation part includes a reagent containing a transition metal,
The third observation part includes a reducing agent ,
The coloring reagent infiltrates the second observation part together with the sample dropped on the sample dropping part, and further, the sample dropped on the sample dropping part and the transition metal contained in the second observation part infiltrating the third observation unit with, determines the presence or absence of antioxidant capacity of the sample, an anti-oxidation ability determination device,
The coloring reagent develops color when the transition metal contained in the second observation part is reduced by the antioxidant contained in the sample dropped on the sample dropping part, and the third reagent It is a chelate color former that develops color when the transition metal that has infiltrated the observation section is reduced by the reducing agent.
Antioxidant capacity determination tool.
前記第三観測部における発色により前記試料滴下部に滴下された前記試料が前記第三観測部にまで浸潤したことを確認し、
前記第一観測部における発色状態と、前記第二観測部における発色状態との比較により前記試料の抗酸化能の有無を判定する
請求項1記載の抗酸化能判定具。
Confirm that the sample dropped on the sample dropping part by color development in the third observation part has infiltrated the third observation part,
The antioxidant capacity determination tool according to claim 1, wherein the presence or absence of the antioxidant capacity of the sample is determined by comparing the color development state in the first observation section and the color development state in the second observation section .
前記遷移金属は銅、鉄、又は亜鉛から選択される請求項1又は2記載の抗酸化能判定具。 The transition metal is copper, iron, or Motomeko 1 or 2 antioxidant capacity determination device according zinc Ru is selected. 前記支持体は紙材又は繊維材よりなる請求項1乃至3のいずれか一項記載の抗酸化能判定具。 The antioxidant determination device according to any one of claims 1 to 3, wherein the support is made of a paper material or a fiber material .
JP2012046119A 2012-03-02 2012-03-02 Antioxidant ability determination tool Active JP5917951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012046119A JP5917951B2 (en) 2012-03-02 2012-03-02 Antioxidant ability determination tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012046119A JP5917951B2 (en) 2012-03-02 2012-03-02 Antioxidant ability determination tool

Publications (2)

Publication Number Publication Date
JP2013181851A JP2013181851A (en) 2013-09-12
JP5917951B2 true JP5917951B2 (en) 2016-05-18

Family

ID=49272593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012046119A Active JP5917951B2 (en) 2012-03-02 2012-03-02 Antioxidant ability determination tool

Country Status (1)

Country Link
JP (1) JP5917951B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104568928B (en) * 2013-10-22 2017-05-31 上海中医药大学 A kind of method for screening oxidation-resistant active ingredient

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604316B2 (en) * 2000-02-28 2004-12-22 三光純薬株式会社 Colored image measurement set, fixing jig for sheet container for color image measurement, and color image measurement method
EP1430309A2 (en) * 2001-09-25 2004-06-23 Prionics AG Test strips for the detection of prion proteins
KR101254512B1 (en) * 2005-01-28 2013-04-19 모치다 세이야쿠 가부시키가이샤 Immunochromatogaraphic test instrument and semiquantitative method using the same
JP4865664B2 (en) * 2007-09-28 2012-02-01 富士フイルム株式会社 Method of mixing two or more liquids in a porous carrier
JP2010002245A (en) * 2008-06-19 2010-01-07 Lion Corp Anti-oxidation degree measuring kit of urine, anti-oxidation degree measuring method of urine and determining method of stress in living body by measurement of anti-oxidation degree of urine

Also Published As

Publication number Publication date
JP2013181851A (en) 2013-09-12

Similar Documents

Publication Publication Date Title
Wang et al. Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S 2−
Lewis et al. A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout
Li et al. Chemiluminescence cloth-based glucose test sensors (CCGTSs): A new class of chemiluminescence glucose sensors
AU2004200506B2 (en) Method for Reducing Effect of Hematocrit on Measurement of an Analyte in Whole Blood, and Test Kit and Test Article Useful in the Method
Baker et al. Prediction of metal leaching rates from solidified/stabilized wastes using the shrinking unreacted core leaching procedure
US20110300634A1 (en) Method for Determining Chromium Content in a Tungsten Matrix with Added Chromium or Simultaneously Added Chromium and Vanadium
JP5164388B2 (en) Sample measuring device
WO2001038873A3 (en) Devices and methods for detecting analytes using electrosensor having capture reagent
EP2028495A3 (en) Sample analyzer, sample analyzing method, and computer program product
JP5022942B2 (en) Simple determination of hexavalent chromium
WO2006047182A8 (en) Method and apparatus for determining an analyte concentration in a sample having interferents
WO2006047591A3 (en) Rapid microfluidic assay for analyte interactions
WO2008086401A3 (en) Extraction method and apparatus for high-sensitivity body fluid testing device
JP2005509161A5 (en)
WO2008066607A3 (en) Device for detection of molecules in biological fluids
WO2008157403A3 (en) Method and apparatus for metal nanoparticle electrocatalytic amplification
KR20170016210A (en) Selective colorimetric detection sensor and method for hexavalent chromium ions using size controlled label-free gold nanoparticles
Lertvachirapaiboon et al. Optical sensing platform for the colorimetric determination of silver nanoprisms and its application for hydrogen peroxide and glucose detections using a mobile device camera
JP5917951B2 (en) Antioxidant ability determination tool
US9671378B2 (en) Sensing device for spectroscopic detection of hydrogen peroxide
AU2016201281B2 (en) On-board control detection
Ko et al. Determination of glycated albumin using boronic acid-derived agarose beads on paper-based devices
CA2755361A1 (en) Test element for determining a body fluid and measurement method
CN109564205B (en) Method for measuring concentration of chemical species using reagent baseline
Charlton et al. Nanopillar based enhanced-fluorescence detection of surface-immobilized beryllium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160407

R150 Certificate of patent or registration of utility model

Ref document number: 5917951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160330

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250