JP5912518B2 - Stationary equipment - Google Patents

Stationary equipment Download PDF

Info

Publication number
JP5912518B2
JP5912518B2 JP2011283336A JP2011283336A JP5912518B2 JP 5912518 B2 JP5912518 B2 JP 5912518B2 JP 2011283336 A JP2011283336 A JP 2011283336A JP 2011283336 A JP2011283336 A JP 2011283336A JP 5912518 B2 JP5912518 B2 JP 5912518B2
Authority
JP
Japan
Prior art keywords
hood
tower
corrugated fins
duct
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011283336A
Other languages
Japanese (ja)
Other versions
JP2013029099A (en
Inventor
淳治 小野
淳治 小野
秀晴 大浜
秀晴 大浜
年樹 白畑
年樹 白畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2011283336A priority Critical patent/JP5912518B2/en
Priority to EP12154642.8A priority patent/EP2538076B1/en
Priority to IN382DE2012 priority patent/IN2012DE00382A/en
Priority to US13/372,127 priority patent/US8698343B2/en
Priority to CN201210212695.0A priority patent/CN102840106B/en
Publication of JP2013029099A publication Critical patent/JP2013029099A/en
Application granted granted Critical
Publication of JP5912518B2 publication Critical patent/JP5912518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/80Arrangement of components within nacelles or towers
    • F03D80/82Arrangement of components within nacelles or towers of electrical components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/60Cooling or heating of wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Transformer Cooling (AREA)

Description

本発明は、自然エネルギーの風を回転力に変換する風車を用いて発電を行う風力発電装置など密閉された空間に設置される静止機器を効率的に冷却する構造に関する。   The present invention relates to a structure for efficiently cooling stationary equipment installed in a sealed space such as a wind power generator that generates power using a windmill that converts wind of natural energy into rotational force.

風力は、現在利用可能な最もクリーンで、かつ環境にやさしいエネルギーの一つであると考えられており、風力発電が益々注目されるようになってきている。
風力発電装置は、一般にタワーのトップに設けた風車を回転させ、回転エネルギーを電気エネルギーに変換して利用するものである。そして、タワー内の下側にはPCS(Power Control System)である制御器、変換器及び変圧器を設置している。
Wind power is considered to be one of the cleanest and environmentally friendly energy currently available, and wind power is gaining increasing attention.
A wind power generator is generally used by rotating a windmill provided at the top of a tower and converting the rotational energy into electric energy. A controller, a converter, and a transformer, which are PCS (Power Control System), are installed on the lower side of the tower.

また、最近では、風車の性能の向上と大型化により種々の装置の発熱が問題となり、発熱を冷却するために特許文献1(特開2011−69363号公報)のように、タワーの下部の壁面に通気孔に設け、通気孔に設けたファンによりタワー内を冷却することが開示されている。   Recently, the heat generation of various devices has become a problem due to the improvement and enlargement of the performance of the windmill, and in order to cool the heat generation, as in Patent Document 1 (Japanese Patent Laid-Open No. 2011-69363), the wall surface at the lower part of the tower It is disclosed that the inside of the tower is cooled by a fan provided in the vent hole and a fan provided in the vent hole.

また、風力発電用ではないが、ガス絶縁変圧器において、放熱器の周囲を上方から遮蔽フードで包囲し、ファンを用いて冷却する特許文献2(特開昭59−104109号公報)がある。   Further, although not for wind power generation, there is Patent Document 2 (Japanese Patent Laid-Open No. 59-104109) in which a gas insulated transformer surrounds a radiator with a shielding hood from above and is cooled using a fan.

特開2011−69363号公報JP 2011-69363 A 特開昭59−104109号公報JP 59-104109 A

一般に、変圧器などの静止機器の強制冷却は、静止機器に冷却ファンを取り付ける座を設置する必要があり、外形寸法が大きくなる。また、風力発電など密閉された空間では、スペースがなく、十分な冷却効率を得ていない。
さらに、自然冷却では、温度上昇を抑える必要があり、静止機器本体の損失を低くした設計や冷却ファンを多く取り付ける設計を行っているが、静止機器本体が大型化し、設置スペースへ入らないなどの問題が生じている。
In general, forced cooling of a stationary device such as a transformer requires installation of a seat for attaching a cooling fan to the stationary device, which increases the external dimensions. Further, in a sealed space such as wind power generation, there is no space and sufficient cooling efficiency is not obtained.
Furthermore, in natural cooling, it is necessary to suppress the temperature rise, and the design is such that the loss of the stationary equipment body is low and the cooling fan is installed many times. However, the stationary equipment body becomes larger and does not enter the installation space. There is a problem.

本願発明の目的は、風力発電装置など密閉された空間で用いる静止機器の冷却を省スペースで効率良く行う装置を提供することにある。   An object of the present invention is to provide an apparatus for efficiently cooling a stationary device used in a sealed space such as a wind power generator in a space-saving manner.

本発明は、上記目的を達成するために、風車とタワーとナセルと発電機を備えた風力発電装置で用い、該発電機にて発電した直流電源を交流に変換して電圧を昇降圧する静止機器において、前記静止機器は、鉄心とコイルと絶縁油を収納した機器本体と、該機器本体に接続し、前記絶縁油を循環する複数の中空のパイプと、該パイプに設けた複数個の中空の波形フィンとで構成し、該パイプのそれぞれに設けた該波形フィンの隣り合う箇所、及び波形フィンの両側に板または断熱布を設置し、該波形フィンをフードで覆い、該フードの下側は開放し、該フードにダクトを接続し、該ダクトは前記タワーの内壁に垂直方向に設けた筒状部材に接続し、煙突効果により空気を上昇させることを特徴とする。 In order to achieve the above object, the present invention is used in a wind turbine generator equipped with a wind turbine, a tower, a nacelle, and a generator, and converts a DC power generated by the generator into an alternating current to step up and down a voltage. The stationary device includes: a device main body containing an iron core, a coil, and insulating oil; a plurality of hollow pipes connected to the device main body for circulating the insulating oil; and a plurality of hollow pipes provided in the pipe. Corrugated fins are provided, and a plate or a heat insulating cloth is installed on both sides of the corrugated fins provided on each of the pipes, and the corrugated fins are covered with a hood, and the lower side of the hood is The duct is opened, the duct is connected to the hood, and the duct is connected to a cylindrical member provided in the vertical direction on the inner wall of the tower, and the air is raised by a chimney effect.

また、上記の静止機器において、前記波形フィンを覆うフードは、テーパ形状又は四角形状の空間を有する構成とし、該波形フィンの上部を覆う構成としたことを特徴とする。 In the stationary apparatus, the hood that covers the corrugated fin is configured to have a tapered or quadrangular space, and the upper portion of the corrugated fin is configured to be covered .

さらに、上記の静止機器において、前記波形フィンを覆うフードは、前記ダクトと横方向の位置で接続することを特徴とする。 Furthermore, in the above stationary device, the hood covering the corrugated fin is connected to the duct at a lateral position .

本発明によれば、風力発電装置に用いる静止機器において、静止機器の冷却フィンにフードを設けて、フードに接続したダクトをタワー内の内側の壁面に設けた筒状部材に接続し、静止機器の冷却フィンを通過した温かい空気を筒状部材から排気するようにしたため、煙突効果により空気の流れがスムーズになり冷却効果が向上する。また、省スペースで静止機器の冷却構造を形成できる。   According to the present invention, in stationary equipment used in a wind turbine generator, a hood is provided on a cooling fin of the stationary equipment, a duct connected to the hood is connected to a cylindrical member provided on an inner wall surface in the tower, and the stationary equipment Since the warm air that has passed through the cooling fins is exhausted from the cylindrical member, the flow of air becomes smooth due to the chimney effect, and the cooling effect is improved. In addition, a cooling structure for stationary equipment can be formed in a small space.

風力発電装置の全体を示す概略断面図である。It is a schematic sectional drawing which shows the whole wind power generator. 本発明の風力発電装置のタワー内を示す部分図である。It is a fragmentary figure which shows the inside of the tower of the wind power generator of this invention. 本発明のタワー内下部の静止機器を設置した図を示す。The figure which installed the stationary apparatus of the lower part in the tower of this invention is shown. 本発明のタワー内下部の上面図を示す。The top view of the lower part in the tower of this invention is shown. 本発明のタワー内下部の側面図を示す。The side view of the lower part in the tower of this invention is shown. 本発明の静止機器を示す図です。It is a figure which shows the stationary equipment of this invention. 本発明の別の実施例の静止機器を示す図である。It is a figure which shows the stationary apparatus of another Example of this invention. 静止機器の波形フィンの長さを同じにした場合、波形フィンにフードを設けた場合の図を示す。The figure at the time of providing the hood in the corrugated fin when the length of the corrugated fin of stationary equipment is made the same is shown. 静止機器の冷却部の構造を示す斜視図である。It is a perspective view which shows the structure of the cooling part of a stationary apparatus. 静止機器の波形フィン間に板または断熱布を設置した構成を示す図である。It is a figure which shows the structure which installed the board or the heat insulation cloth between the corrugated fins of a stationary apparatus. 図10に示した静止機器の冷却部の波形フィンのフード構成を示す図である。It is a figure which shows the food | hood structure of the corrugated fin of the cooling unit of the stationary apparatus shown in FIG. 図10に示した静止機器の冷却部の波形フィンの別のフード構成を示す図である。It is a figure which shows another hood structure of the corrugated fin of the cooling unit of the stationary apparatus shown in FIG.

本発明の実施形態を図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は本発明の風力発電装置の全体を示す図である。
図1において、1は風力発電装置、2は風車、3はプロペラ、4はブレード、5はナセル、6はタワー、7は発電機、8は静止機器である。
一般に、風力発電装置1は、タワー6と風車2と変電開閉設備で構成される。風車2やタワー6などが強風や地震などで倒壊しないように地盤に固定する。タワー6は、ほぼ円筒形状で、先端にいくほど直径が徐々に小さくなっている構造のものが多く、基礎に鉛直に固定されている。
タワー6の先端には、風車2が取り付けられている。風車2は、ナセル5とロータ軸(不図示)とプロペラ3と増速機(不図示)と発電機7より構成される。
ナセル5は、タワー6の先端を軸にして回転可能になっていて、常に風の向きに対して正面に向くように構成されている。
プロペラ3は、3枚のブレード4を等間隔に配置して各ブレード4は正面から風を受けて回転するようにロータ軸に取り付けられている。
ローラ軸には、増速機が接続され、ロータ軸の回転数を所定の回転数に増えるようにギアなどを用いて構成されている。
そして増速機は発電機7に接続され、ロータ軸の回転を増速し、発電機7により回転エネルギーを電気エネルギーに変換している。
また、タワー6内の下側に変電開閉設備を設置しているが、図1にはその代表である変圧器などの静止機器8を記載している。
静止機器8は、発電機7の直流電源(電圧)をインバータ(不図示)を介して交流電源(電圧)に変換して昇降圧して交流電源として外部へ供給する。
FIG. 1 is a diagram showing the entire wind power generator of the present invention.
In FIG. 1, 1 is a wind power generator, 2 is a windmill, 3 is a propeller, 4 is a blade, 5 is a nacelle, 6 is a tower, 7 is a generator, and 8 is a stationary device.
Generally, the wind power generator 1 includes a tower 6, a windmill 2, and a substation opening / closing facility. Fix the windmill 2 and tower 6 to the ground so that they will not collapse due to strong winds or earthquakes. The tower 6 has a substantially cylindrical shape, and has a structure in which the diameter gradually decreases toward the tip, and is fixed vertically to the foundation.
A windmill 2 is attached to the tip of the tower 6. The windmill 2 includes a nacelle 5, a rotor shaft (not shown), a propeller 3, a speed increaser (not shown), and a generator 7.
The nacelle 5 is rotatable about the tip of the tower 6 and is configured to always face the front with respect to the direction of the wind.
The propeller 3 has three blades 4 arranged at equal intervals, and each blade 4 is attached to the rotor shaft so as to rotate by receiving wind from the front.
A speed increaser is connected to the roller shaft, and is configured using a gear or the like so as to increase the rotational speed of the rotor shaft to a predetermined rotational speed.
The speed increaser is connected to the generator 7 to increase the rotation of the rotor shaft, and the generator 7 converts the rotational energy into electrical energy.
In addition, a transformer opening / closing facility is installed on the lower side of the tower 6, and FIG. 1 shows a stationary device 8 such as a transformer as a representative example.
The stationary device 8 converts the DC power supply (voltage) of the generator 7 into an AC power supply (voltage) via an inverter (not shown), and steps up and down to supply it as an AC power supply to the outside.

ここで、この風力発電装置の大きさについて説明する。
タワー6の高さは60〜70m、一つのブレード4の長さは40mで、全体としては100〜110mくらいの高さとなる。また、タワー6の下側の直径はおよそ4mくらいである。
Here, the size of the wind turbine generator will be described.
The height of the tower 6 is 60 to 70 m, the length of one blade 4 is 40 m, and the height is about 100 to 110 m as a whole. The diameter of the lower side of the tower 6 is about 4 m.

次に、タワー内の内部を図2により説明する。
図2(a)、(b)はタワー6内の空気の流れを示すタワーの模式図である。
この図においては、筒状部材22を示し、タワー6内の空気の流れを示す。
図2(a)はタワー6内の内部の下部分を示す正面図で、図2(b)はその側面図を示す。
図2において、6はタワー、8は静止機器で、22は静止機器8の冷却用の波形フィンを通過する温かい空気を導き、上昇させる円形の筒状部材である。
この筒状部材22は、タワー内壁に設け、細長い管形状をしており、タワー6の高さよりやや短くする。例えば、タワーの高さが70mくらいであれば、筒状部材は60mくらいにする。また、筒状部材は図4に示しているが、それぞれ3個ずつ2か所に設置しており、その直径はおよそ30cmくらいとしている。
円形の筒状部材内を上昇する温かい空気は、次第に冷却され、筒状部材から出た空気は、タワー内を壁面や中央部を下降し、再度、静止機器の下側より取り込まれ、循環する。
Next, the inside of the tower will be described with reference to FIG.
2A and 2B are schematic views of the tower showing the air flow in the tower 6.
In this figure, the cylindrical member 22 is shown and the air flow in the tower 6 is shown.
FIG. 2A is a front view showing a lower portion inside the tower 6, and FIG. 2B is a side view thereof.
In FIG. 2, 6 is a tower, 8 is a stationary device, and 22 is a circular cylindrical member that guides and raises warm air passing through corrugated fins for cooling the stationary device 8.
The cylindrical member 22 is provided on the inner wall of the tower, has a long and narrow tube shape, and is slightly shorter than the height of the tower 6. For example, if the height of the tower is about 70 m, the cylindrical member is about 60 m. Moreover, although the cylindrical member is shown in FIG. 4, each three is installed in two places and the diameter is about 30 cm.
The warm air rising inside the circular cylindrical member is gradually cooled, and the air coming out of the cylindrical member descends the wall surface and the central part inside the tower, and is taken in again from the lower side of the stationary equipment and circulates. .

次に、本発明の静止機器について説明する。
図3は、本発明の静止機器をタワー6内に設置した部分図を示す。図3(a)は、上面図で、図3(b)はその側面図を示す。
図3において、静止機器8は、鉄心、コイル及び絶縁油を収納した本体部と、本体部に接続され絶縁油を冷却する冷却部より構成される。また、静止機器本体8には、一次側端子30と二次側端子31を設置している。一次側端子30は風力発電した直流電源を交流電源に変換するインバータに接続する端子で、二次側端子31は電源を供給する負荷側に接続する端子である。
絶縁油の冷却部は、図3(a)に示すように、静止機器本体8に接続して絶縁油が循環するようにパイプ9,10,11(絶縁油の通路でパイプということにする))を設け、このパイプ9,10,11に波形フィン12〜17をパイプの両側に形成し、絶縁油を波形フィンの中を通過させ、またパイプから変圧器本体8に戻し、絶縁油を循環させる構成で、この波形フィン12〜17に空気を流し冷却するものである。
Next, the stationary device of the present invention will be described.
FIG. 3 shows a partial view of the stationary device of the present invention installed in the tower 6. FIG. 3A is a top view and FIG. 3B is a side view thereof.
In FIG. 3, the stationary device 8 includes a main body that stores an iron core, a coil, and insulating oil, and a cooling unit that is connected to the main body and cools the insulating oil. The stationary device body 8 is provided with a primary terminal 30 and a secondary terminal 31. The primary side terminal 30 is a terminal connected to an inverter that converts a DC power generated by wind power into an AC power source, and the secondary side terminal 31 is a terminal connected to a load side that supplies power.
As shown in FIG. 3A, the insulating oil cooling section is connected to the stationary equipment body 8 so that the insulating oil circulates through pipes 9, 10, and 11 (referred to as pipes in the insulating oil passage). ), And corrugated fins 12 to 17 are formed on both sides of the pipe 9, 10, 11, and the insulating oil is passed through the corrugated fins, and is returned from the pipe to the transformer body 8 to circulate the insulating oil. In this configuration, the corrugated fins 12 to 17 are cooled by flowing air.

この構造について、図9を用いて説明する。
図9は、静止機器の冷却部の一つを示す概略図である。
図9において、静止機器本体8には、絶縁油を送る孔56と受ける孔57を設ける。この2つの孔56,57に接続する絶縁油の通路であるパイプ9は、中空の四角柱の胴体50の上下にL字形状の板材を空間51及び52が形成されるように構成する。そして、パイプ9の両側の網掛け部53に波形フィン12を溶接などにより固定する。波形フィン12は、矩形の板材を波形形状に折り曲げて形成するもので、その端面54,55は溶接等で塞いでパイプ9に両側より固定する。
このような冷却構造において、絶縁油は、静止機器本体の上部の孔56より流れ、パイプ9の空間51より複数の波形フィンの中を上方より下方に流れ、パイプ9の下側の空間52より本体8の下側の孔57より本体に戻り、循環する。図3(a)には、図9の構成を3ヶ所設置している。
This structure will be described with reference to FIG.
FIG. 9 is a schematic diagram showing one of the cooling units of the stationary device.
In FIG. 9, the stationary device main body 8 is provided with a hole 56 for sending insulating oil and a hole 57 for receiving the oil. The pipe 9, which is an insulating oil passage connected to the two holes 56, 57, is configured so that spaces 51 and 52 are formed on upper and lower sides of a hollow quadratic cylinder body 50. Then, the corrugated fins 12 are fixed to the shaded portions 53 on both sides of the pipe 9 by welding or the like. The corrugated fin 12 is formed by bending a rectangular plate material into a corrugated shape, and its end faces 54 and 55 are closed by welding or the like and fixed to the pipe 9 from both sides.
In such a cooling structure, the insulating oil flows from the upper hole 56 of the stationary device main body, flows from the space 51 of the pipe 9 downward through the plurality of corrugated fins, and from the space 52 below the pipe 9. It returns to the main body from the lower hole 57 of the main body 8 and circulates. In FIG. 3A, three configurations of FIG. 9 are installed.

また、図3(a)において、18は冷却フィン9の周囲を覆ったフードである。フード18の下側は、波形フィン12〜17の下側とほぼ同じ高さとし、空気を下方より取り込めるように空間を持たせた構造としている。
フード18の上側は、波形フィン12の高さを超えた所で絞って四角錐形状とし、ダクト19に接続する。
そして、ダクト19にはファン20を設け、ファンの回転により下方(冷却部側)より上方へ空気が流れるように構成する。
ダクト19は、タワー6内の壁面に設置した筒状部材22に接続するために、ダクト21に接続する。
In FIG. 3A, reference numeral 18 denotes a hood that covers the periphery of the cooling fin 9. The lower side of the hood 18 has substantially the same height as the lower side of the corrugated fins 12 to 17 and has a structure in which a space is provided so that air can be taken in from below.
The upper side of the hood 18 is squeezed at a location exceeding the height of the corrugated fins 12 to form a quadrangular pyramid and is connected to the duct 19.
And the fan 19 is provided in the duct 19, and it is comprised so that air may flow upwards from the downward direction (cooling part side) by rotation of a fan.
The duct 19 is connected to the duct 21 in order to connect to the cylindrical member 22 installed on the wall surface in the tower 6.

図3(a)において、22〜27は筒状部材で、筒状部材22〜27は、タワー6内の内壁に沿って垂直方向に配置された細長い管状の部材で、冷却フィンである波形フィンで温められた空気はこの筒状部材の中を上昇する。筒状部材の中の空気は、筒状部材の周囲の空気の温度より高いため煙突効果によりより上昇し易い。従って、波形フィンを通過する空気は流れがスムーズになり、冷却効率は向上する。
また、32の8角形は、前記しているPCSを載置するベースを示し、PCSは一般に静止機器等の上側に載置され、筒状部材はこのベースを避けなければならない。
In FIG. 3A, reference numerals 22 to 27 denote cylindrical members, and the cylindrical members 22 to 27 are elongated tubular members arranged vertically along the inner wall in the tower 6 and corrugated fins that are cooling fins. The air heated by the air rises in the cylindrical member. Since the air in the tubular member is higher than the temperature of the air around the tubular member, it is more likely to rise due to the chimney effect. Therefore, the air passing through the corrugated fins flows smoothly and the cooling efficiency is improved.
Further, 32 octagons indicate a base on which the above-described PCS is placed. The PCS is generally placed on the upper side of a stationary device or the like, and the cylindrical member must avoid this base.

図3(b)は、図3(a)の側面図を示す。
図3(b)において、変圧器8に接続された冷却器の波形フィン12の全体を覆ったフード18を波形フィンの上部まで伸ばし、さらにフード18はダクト19に接続する。ダクト19の中にはファン20を設置する。また、ダクト19は筒状部材22に接続するためにダクト21に接続している。
FIG.3 (b) shows the side view of Fig.3 (a).
In FIG. 3 (b), a hood 18 that covers the entire corrugated fin 12 of the cooler connected to the transformer 8 is extended to the top of the corrugated fin, and the hood 18 is connected to a duct 19. A fan 20 is installed in the duct 19. Further, the duct 19 is connected to the duct 21 in order to connect to the cylindrical member 22.

次に、図4及び図5を用いて筒状部材の構成を説明する。
図4及び図5において、筒状部材22〜27は、ダクト21に接続され、ダクト21は三角柱形状で、ダクト21の上部の2面の各々3ヶ所より空気を上昇し易いように筒状部材を形成している。筒状部材は、タワー6内の内壁に沿うように折り曲げている。ここで、筒状部材22〜27は、円形形状としているが四角形状でも三角形形状でも構わない。
また、実施例では、フード18よりダクト19に接続し、三角形状のダクト21を介して2か所3本の筒状部材に接続しているが、ファン20を設けたダクト19から直接、1本の略円形や略楕円形、四角形状の筒状部材に接続する構成でも良い。これらの筒状部材は細長くして煙突効果を持たせる。
Next, the structure of a cylindrical member is demonstrated using FIG.4 and FIG.5.
4 and 5, cylindrical members 22 to 27 are connected to a duct 21, and the duct 21 has a triangular prism shape so that air can easily rise from three places on each of the two upper surfaces of the duct 21. Is forming. The cylindrical member is bent along the inner wall in the tower 6. Here, the cylindrical members 22 to 27 are circular, but may be rectangular or triangular.
In the embodiment, the hood 18 is connected to the duct 19 and is connected to the three cylindrical members at two locations via the triangular duct 21. It may be configured to be connected to a substantially circular, substantially elliptical, or quadrangular cylindrical member of the book. These cylindrical members are elongated to have a chimney effect.

次に、フード18について図6を用いて説明する。
図6は、静止機器本体からのパイプ9,10,11及び波形フィン12〜17の全体をフード18で覆った構成を示している。
そして、フード18の下側は空気40が取り込まれ易いように開放する構成とする。このような構成でダクト19内を空気41は上方へ流れる。
フード18の上部は、波形フィンと同じ高さのところからテーパを持たせ、絞る構造としてダクト19に接続する。すなわち、冷却する空気が上昇するにつれて、ダクトの断面積を狭くしていく構造にする。
Next, the hood 18 will be described with reference to FIG.
FIG. 6 shows a configuration in which the pipes 9, 10, 11 and the corrugated fins 12 to 17 from the stationary device body are entirely covered with a hood 18.
The lower side of the hood 18 is configured to be opened so that the air 40 is easily taken in. With such a configuration, the air 41 flows upward in the duct 19.
The upper portion of the hood 18 is tapered from the same height as the corrugated fins, and is connected to the duct 19 as a squeezing structure. That is, the structure is such that the cross-sectional area of the duct is reduced as the cooling air rises.

また、静止機器の配置すなわち作業者や管理者のための空間が必要であるため、静止機器は中央ではなく、図3(a)のように端に置くケースが多い。そのため静止機器の波形フィンの長さをタワーの円弧の形状に合わせる必要があり、この構成について説明する。
図6(a)において、静止機器の冷却部の中央に配置しているパイプ10及び波形フィン14,15はタワーの内壁の影響を受けないが、両側のパイプ9,11及び波形フィン12,13、16,17は影響を受ける。従って、中央のパイプ10よりパイプ9,11はタワーの半径方向に短くし、同じように波形フィン12,13、16,17もタワーの半径方向に短くする。さらに、両側の12及び17の波形フィンは、波形フィン13、16より短くして、タワーの円弧形状に倣った構成にする。
In addition, since the arrangement of stationary equipment, that is, a space for workers and managers, is required, the stationary equipment is often placed at the end as shown in FIG. Therefore, it is necessary to match the length of the corrugated fin of the stationary device to the shape of the arc of the tower, and this configuration will be described.
In FIG. 6A, the pipe 10 and the corrugated fins 14 and 15 arranged in the center of the cooling unit of the stationary device are not affected by the inner wall of the tower, but the pipes 9 and 11 and the corrugated fins 12 and 13 on both sides are not affected. 16 and 17 are affected. Accordingly, the pipes 9 and 11 are shorter than the central pipe 10 in the radial direction of the tower, and similarly, the corrugated fins 12, 13, 16, and 17 are also shorter in the radial direction of the tower. Further, the corrugated fins 12 and 17 on both sides are made shorter than the corrugated fins 13 and 16 so as to follow the arc shape of the tower.

図7は、フード18で個々のパイプ及び波形フィンを覆う場合を示す側面図である。
図7において、個々のフード18−1,18−2,18−3は、それぞれ波形フィンの高さの位置からテーパ形状とし、上側のダクト19−1,19−2,19−3にそれぞれ接続され、フード下側から吸い込まれた空気40は、波形フィンに沿って流れ、上昇していく。
フード18に接続するダクト19−1,19−2,19−3には、ファン20−1、20―2,20−3を設置し、空気を下方より上方へ強制送風する。
そして、ダクト19−1,19−2,19−3は、筒状部材41〜43に接続するために、ダクト21−1、21−2,21−3に接続する。ダクト21−1、21−2,21−3はテーパ形状とし、断面積を小さくして筒状部材41〜43に接続する。
筒状部材41〜43は、タワー6内の内壁面に長手方向に形成した細長い管状の部材である。
また、図7において、フードの下側がスカートのように拡大する形状とし、空気を取り込み易くしている。
FIG. 7 is a side view showing a case where individual pipes and corrugated fins are covered with the hood 18.
In FIG. 7, each hood 18-1, 18-2, 18-3 is tapered from the position of the height of the corrugated fin, and connected to the upper ducts 19-1, 19-2, 19-3, respectively. Then, the air 40 sucked from the lower side of the hood flows along the corrugated fins and rises.
Fans 20-1, 20-2, and 20-3 are installed in ducts 19-1, 19-2, and 19-3 connected to the hood 18 to forcibly blow air upward from below.
The ducts 19-1, 19-2, and 19-3 are connected to the ducts 21-1, 21-2, and 21-3 in order to connect to the tubular members 41 to 43. The ducts 21-1, 21-2, and 21-3 are tapered and connected to the cylindrical members 41 to 43 with a reduced cross-sectional area.
The cylindrical members 41 to 43 are elongated tubular members formed on the inner wall surface in the tower 6 in the longitudinal direction.
In FIG. 7, the lower side of the hood has a shape that expands like a skirt so that air can be easily taken in.

図8は、タワー内に空間的な余裕があるとき、静止機器の波形フィンの長さや形状を変えないで設置し、波形フィンの全体をフード18で覆った場合の図を示している。
フード18の上部には図6(b)と同じようにダクト19を設け、筒状部材に接続して、波形フィンを通過する空気はフード18で集められ、ダクト19に設けたファン20で強制的に筒状部材に送られ、筒状部材では煙突効果により温められた空気は上昇し、静止機器はより冷却する。
FIG. 8 is a diagram showing a case in which when there is a space in the tower, the corrugated fins of the stationary equipment are installed without changing the length and shape, and the entire corrugated fins are covered with the hood 18.
As shown in FIG. 6B, a duct 19 is provided on the top of the hood 18, connected to a cylindrical member, and air passing through the corrugated fins is collected by the hood 18 and forced by a fan 20 provided in the duct 19. The air heated by the chimney effect rises and the stationary equipment is further cooled.

次に、図10において、波形フィン間に板または断熱布を設置した構成について説明する。   Next, a configuration in which a plate or a heat insulating cloth is installed between the corrugated fins in FIG. 10 will be described.

図10(a)は,変圧器の冷却部を示す上面図で、図10(b)はその正面図で、図10(c)は側面図を示す。   10A is a top view showing a cooling part of the transformer, FIG. 10B is a front view thereof, and FIG. 10C is a side view thereof.

図10(a)において、12〜17は波形フィンで、9〜11は波形フィンを設置、固定するパイプである。パイプ9の両サイドに取り付けられた波形フィン12と13、及びパイプ10の両サイドに取り付けられた波形フィン14と15との間に板または断熱布61を配置し、設置する。
また、パイプ10の両サイドには波形フィン14と15、及びパイプ11の両サイドに取り付けられた波形フィン16と17との間に板または断熱布60を配置し、設置する。
さらに、板または断熱布を変圧器の冷却器の両側にも配置し、設置する。図10(c)には変圧器冷却器の一方の側に設置した図を示す。
このように板または断熱布を隣り合う波形フィンの間、及び変圧器の冷却部の両側に配置し設置すると、波形フィンを流れる空気は板または断熱布で仕切られているため、隣の波形フィン側に流れる空気はなく、上昇する空気のみとなるため空気抵抗が小さく温められた空気は上昇し易くなる。
従って、波形フィンの冷却効率が向上する効果がある。
また、この図10に示した構成のフード18について、図11に再掲して説明する。
In FIG. 10A, 12-17 are corrugated fins, and 9-11 are pipes for installing and fixing the corrugated fins. Between the corrugated fins 12 and 13 attached to both sides of the pipe 9 and the corrugated fins 14 and 15 attached to both sides of the pipe 10, a plate or a heat insulating cloth 61 is disposed and installed.
Further, a plate or a heat insulating cloth 60 is disposed and installed between the corrugated fins 14 and 15 and the corrugated fins 16 and 17 attached to both sides of the pipe 11 on both sides of the pipe 10.
In addition, plates or insulating cloths are also placed and installed on both sides of the transformer cooler. FIG. 10 (c) shows a view of installation on one side of the transformer cooler.
When the plate or heat insulation cloth is arranged between the adjacent corrugated fins and on both sides of the cooling part of the transformer in this way, the air flowing through the corrugated fins is partitioned by the plate or the heat insulation cloth. There is no air flowing to the side, only air that rises, and air that has been heated with a low air resistance is likely to rise.
Therefore, the cooling efficiency of the corrugated fin is improved.
Further, the hood 18 having the configuration shown in FIG. 10 will be described again in FIG.

図11は、タワー6内の下部に設置した変圧器の冷却器を示す正面図である。
図11において、波形フィン12〜17の上部に設置したフード18は、テーパ形状として、板または断熱布で仕切られた波形フィンを通過した空気を、波形フィンのすぐ上部で一括して収集し、ダクト19に接続する。ダクト19は、フード18の中央付近ではなく、フードの横方向の位置で接続する。
このような構成においては、タワー内での空気の流れはタワー壁面に沿って下降し、変圧器の下側より再度冷却フィンに入り冷却し、循環する。
FIG. 11 is a front view showing a transformer cooler installed in the lower part of the tower 6.
In FIG. 11, the hood 18 installed on the upper portions of the corrugated fins 12 to 17 collects air that has passed through the corrugated fins partitioned by a plate or a heat insulating cloth as a taper shape, immediately above the corrugated fins. Connect to duct 19. The duct 19 is connected not at the vicinity of the center of the hood 18 but at a lateral position of the hood.
In such a configuration, the air flow in the tower descends along the tower wall surface, enters the cooling fins again from the lower side of the transformer, cools and circulates.

また、図12には、フード18の変形例を示す変圧器の冷却器を示す正面図である。
図12は、波形フィン12〜17の上部にフード18を設置しているが、図11の構成と異なり、フード18は四角形状の空間を備えた構成で、図11と同じように波形フィンからの空気を四角形状の空間で収集し、フードの横方向の位置でダクト19と接続し、空気を筒状部材へ送る構成である。
FIG. 12 is a front view showing a transformer cooler showing a modification of the hood 18.
In FIG. 12, the hood 18 is installed on top of the corrugated fins 12 to 17, but unlike the configuration of FIG. 11, the hood 18 has a quadrangular space and is similar to FIG. The air is collected in a rectangular space, connected to the duct 19 at a lateral position of the hood, and the air is sent to the tubular member.

以上、説明したように、本発明のフードは、細長い筒状部材に接続しているため、煙突効果により波形フィンを通過した温かい空気は筒状内を上昇し易く、密閉された空間内においても冷却効果を向上することができる。   As described above, since the hood of the present invention is connected to an elongated cylindrical member, the warm air that has passed through the corrugated fins due to the chimney effect is likely to rise in the cylindrical shape, and even in a sealed space. The cooling effect can be improved.

1‥風力発電装置 2‥風車 3‥プロペラ
4‥ブレード 5‥ナセル 6‥タワー
7‥発電機 8‥静止機器 20‥基礎
9、10、11‥パイプ
12、13、14、15、16、17‥波形フィン
18‥フード 19‥ダクト 20‥ファン
22、23、24、25,26,27‥筒状部材
60,61‥板または断熱布
DESCRIPTION OF SYMBOLS 1 ... Wind power generator 2 ... Windmill 3 ... Propeller 4 ... Blade 5 ... Nacelle 6 ... Tower 7 ... Generator 8 ... Stationary equipment 20 ... Base 9, 10, 11 ... Pipe 12, 13, 14, 15, 16, 17 ... Corrugated fin 18 hood 19 duct 20 fan 22, 23, 24, 25, 26, 27 cylindrical member 60, 61 plate or heat insulating cloth

Claims (3)

風車とタワーとナセルと発電機を備えた風力発電装置で用い、該発電機にて発電した直流電源を交流に変換して電圧を昇降圧する静止機器において、
前記静止機器は、
鉄心とコイルと絶縁油を収納した機器本体と、
該機器本体に接続し、前記絶縁油を循環する複数の中空のパイプと、
該パイプに設けた複数個の中空の波形フィンとで構成し、
該パイプのそれぞれに設けた該波形フィンの隣り合う箇所、及び波形フィンの両側に板または断熱布を設置し、
該波形フィンをフードで覆い、
該フードの下側は開放し、
該フードにダクトを接続し、該ダクトは前記タワーの内壁に垂直方向に設けた筒状部材に接続し、
煙突効果により空気を上昇させることを特徴とする静止機器。
In a stationary device that uses a wind turbine, a tower, a nacelle, and a wind power generator equipped with a generator, converts the DC power generated by the generator into AC, and steps up and down the voltage.
The stationary device is
A device body containing an iron core, a coil and insulating oil;
A plurality of hollow pipes connected to the device body and circulating the insulating oil;
Consists of a plurality of hollow corrugated fins provided in the pipe,
Place a plate or a heat insulating cloth on the adjacent portions of the corrugated fins provided on each of the pipes, and on both sides of the corrugated fins,
Cover the corrugated fins with a hood,
The underside of the hood is open,
A duct is connected to the hood, and the duct is connected to a cylindrical member provided in a vertical direction on the inner wall of the tower,
Stationary equipment characterized by raising air by chimney effect.
請求項記載の静止機器において、
前記波形フィンを覆うフードは、テーパ形状又は四角形状の空間を有する構成とし、該波形フィンの上部を覆う構成としたことを特徴とする静止機器。
The stationary device according to claim 1 ,
A stationary device characterized in that the hood covering the corrugated fin is configured to have a tapered or quadrangular space and covers the upper portion of the corrugated fin.
請求項記載の静止機器において、
前記波形フィンを覆うフードは、前記ダクトと横方向の位置で接続することを特徴とする静止機器。
The stationary device according to claim 2 ,
A hood that covers the corrugated fins is connected to the duct at a lateral position.
JP2011283336A 2011-06-22 2011-12-26 Stationary equipment Active JP5912518B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011283336A JP5912518B2 (en) 2011-06-22 2011-12-26 Stationary equipment
EP12154642.8A EP2538076B1 (en) 2011-06-22 2012-02-09 Stationary equipment cooling
IN382DE2012 IN2012DE00382A (en) 2011-06-22 2012-02-10
US13/372,127 US8698343B2 (en) 2011-06-22 2012-02-13 Stationary equipment
CN201210212695.0A CN102840106B (en) 2011-06-22 2012-06-21 Stationary equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011138162 2011-06-22
JP2011138162 2011-06-22
JP2011283336A JP5912518B2 (en) 2011-06-22 2011-12-26 Stationary equipment

Publications (2)

Publication Number Publication Date
JP2013029099A JP2013029099A (en) 2013-02-07
JP5912518B2 true JP5912518B2 (en) 2016-04-27

Family

ID=45655499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011283336A Active JP5912518B2 (en) 2011-06-22 2011-12-26 Stationary equipment

Country Status (5)

Country Link
US (1) US8698343B2 (en)
EP (1) EP2538076B1 (en)
JP (1) JP5912518B2 (en)
CN (1) CN102840106B (en)
IN (1) IN2012DE00382A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228566B2 (en) * 2008-12-17 2016-01-05 Xemc Darwind Bv Wind turbine comprising a cooling circuit
EP2846038A1 (en) * 2013-09-05 2015-03-11 Siemens Aktiengesellschaft Cooling system of a wind turbine
JP6230424B2 (en) * 2014-01-15 2017-11-15 株式会社日立製作所 Wind power generator
DE102015120706B4 (en) * 2015-11-30 2018-03-22 Aerodyn Engineering Gmbh Air-cooled oil tank

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1619332A (en) * 1920-11-29 1927-03-01 Westinghouse Electric & Mfg Co Transformer radiator
US4140174A (en) * 1977-10-31 1979-02-20 Westinghouse Electric Corp. Radiator assembly for fluid filled electrical apparatus
JPS59104109A (en) 1982-12-07 1984-06-15 Fuji Electric Co Ltd Gas insulated transformer
US6327994B1 (en) * 1984-07-19 2001-12-11 Gaudencio A. Labrador Scavenger energy converter system its new applications and its control systems
JP2000232022A (en) * 1999-02-12 2000-08-22 Toshiba Corp Forced ventilation type transformer box
WO2000059062A1 (en) * 1999-03-29 2000-10-05 Kawasaki Jukogyo Kabushiki Kaisha Battery and equipment or device having the battery as part of structure and locally distributed power generation method and power generation device therefor
JP3051401B1 (en) * 1999-03-29 2000-06-12 川崎重工業株式会社 Battery
AU758953B2 (en) * 1999-07-14 2003-04-03 Aloys Wobben Wind energy facility with a closed cooling circuit
AU2004207180C1 (en) * 2003-02-01 2010-03-25 Aloys Wobben Method for the erection of a wind energy plant and wind energy plant
US8403623B2 (en) * 2005-12-29 2013-03-26 Brett C. Krippene Wind energy power enhancer system
US20100278629A1 (en) * 2005-12-29 2010-11-04 Krippene Brett C Vertical Multi-Phased Wind Turbine System
US7753644B2 (en) * 2005-12-29 2010-07-13 Krippene Brett C Vertical multi-phased wind turbine system
US20090302611A1 (en) * 2006-04-28 2009-12-10 Ian Masters Turbine
JP5070011B2 (en) * 2007-11-15 2012-11-07 株式会社日立産機システム Radiator and transformer attached to it
PL2151833T3 (en) * 2008-08-07 2013-08-30 Starkstrom Geraetebau Gmbh Transformer system
US8000102B2 (en) * 2009-08-20 2011-08-16 Babcock & Wilcox Power Generation Group, Inc. Apparatus and arrangement for housing voltage conditioning and filtering circuitry components for an electrostatic precipitator
US7837126B2 (en) 2009-09-25 2010-11-23 General Electric Company Method and system for cooling a wind turbine structure
US8544575B1 (en) * 2009-12-02 2013-10-01 Mainstream Engineering Corporation Lightweight internal combustion/electric hybrid power source for vehicles
JP5284386B2 (en) * 2011-02-21 2013-09-11 株式会社日立産機システム Wind power generation equipment

Also Published As

Publication number Publication date
CN102840106B (en) 2015-04-29
US8698343B2 (en) 2014-04-15
EP2538076B1 (en) 2015-12-30
JP2013029099A (en) 2013-02-07
IN2012DE00382A (en) 2015-05-15
EP2538076A2 (en) 2012-12-26
EP2538076A3 (en) 2014-11-26
US20120326446A1 (en) 2012-12-27
CN102840106A (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP5284386B2 (en) Wind power generation equipment
KR101588363B1 (en) Water-cooled wind power generation device, and generator cooling method for wind power generation device
ES2872343T3 (en) Wind turbine generator and wind turbine
US8227932B2 (en) Wind generator having an outside air-circulation flow path in a tower thereof
JP5912518B2 (en) Stationary equipment
WO2010069954A1 (en) Wind turbine comprising a cooling circuit
EP2182618A1 (en) Arrangement for cooling of an electrical machine
KR20020021156A (en) Wind energy facility with a closed cooling circuit
JP2009531579A (en) Thermal management system for wind turbine
BRPI1003617B1 (en) device to generate electricity using wind energy
US20130214538A1 (en) Air Cooled Power Feeders for Wind Turbine Applications
JP6383562B2 (en) Wind power generation equipment
US10590916B2 (en) Multisiphon passive cooling system
EP2391823A2 (en) Wind turbine with cooler top
KR101434443B1 (en) Apparatus for nacelle air cooling using by heat exchanger
JP6230424B2 (en) Wind power generator
CN103650076B (en) Gas-insulating type delta transformer
US20130202421A1 (en) Passive Liquid Cooling System for Inverters Utilized for Wind Turbine Applications
EP2832992B1 (en) Wind turbine comprising a cooling system
WO2017207537A1 (en) A heat exchanger for an electrical machine
KR101488003B1 (en) Converter cooling system
WO2013013491A1 (en) A single shaft coupled double-aerogenerator
EP2493059A1 (en) A generator, in particular for a wind turbine
CN210033733U (en) Cable ventilation cooling system in wind generating set pylon
EP2846038A1 (en) Cooling system of a wind turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140218

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160401

R150 Certificate of patent or registration of utility model

Ref document number: 5912518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150