JP5907981B2 - Method for producing catalyzed particulate filter and catalyzed particle filter - Google Patents

Method for producing catalyzed particulate filter and catalyzed particle filter Download PDF

Info

Publication number
JP5907981B2
JP5907981B2 JP2013537014A JP2013537014A JP5907981B2 JP 5907981 B2 JP5907981 B2 JP 5907981B2 JP 2013537014 A JP2013537014 A JP 2013537014A JP 2013537014 A JP2013537014 A JP 2013537014A JP 5907981 B2 JP5907981 B2 JP 5907981B2
Authority
JP
Japan
Prior art keywords
catalyst
filter
washcoat
catalyst composition
zeolite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013537014A
Other languages
Japanese (ja)
Other versions
JP2014508631A5 (en
JP2014508631A (en
Inventor
ヨハンセン・ケルド
Original Assignee
ハルドール・トプサー・アクチエゼルスカベット
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハルドール・トプサー・アクチエゼルスカベット filed Critical ハルドール・トプサー・アクチエゼルスカベット
Publication of JP2014508631A publication Critical patent/JP2014508631A/en
Publication of JP2014508631A5 publication Critical patent/JP2014508631A5/ja
Application granted granted Critical
Publication of JP5907981B2 publication Critical patent/JP5907981B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • B01J29/7615Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0246Coatings comprising a zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0248Coatings comprising impregnated particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Nanotechnology (AREA)
  • Filtering Materials (AREA)

Description

本発明は、多機能の触媒化ディーゼル微粒子フィルターに関する。より詳細には、本発明は、公知の選択接触還元(SCR)法による窒素酸化物の除去における活性及び排気ガス中に含有される炭化水素及び一酸化炭素を水及び二酸化炭素に酸化転化し、かつ、該SCRにおいて還元剤として使用された過剰アンモニアを窒素に転化するための酸化活性の両方を有する、触媒化微粒子フィルターの製造方法に関する。   The present invention relates to a multifunctional catalyzed diesel particulate filter. More particularly, the present invention provides activity in the removal of nitrogen oxides by known selective catalytic reduction (SCR) processes and oxidative conversion of hydrocarbons and carbon monoxide contained in exhaust gas to water and carbon dioxide, The present invention also relates to a method for producing a catalyzed particulate filter having both oxidation activity for converting excess ammonia used as a reducing agent in the SCR to nitrogen.

本発明は、さらに、触媒化微粒子フィルターであって、そのインレット/分散側及びフィルター壁においてSCR触媒で触媒化され、そして、フィルターのアウトレット/透過側においてアンモニアスリップ触媒で酸化触媒と一緒に触媒化される、該触媒化微粒子フィルターを提供する。   The present invention further provides a catalyzed particulate filter catalyzed with an SCR catalyst at its inlet / dispersion side and filter wall and catalyzed with an oxidation catalyst at an outlet / permeation side of the filter with an ammonia slip catalyst. The catalyzed particulate filter is provided.

ディーゼル排気は、非燃焼炭化水素に加えて、窒素酸化物(NOx)及び粒状物質を含む。NOx、炭化水素及び粒状物質は、健康及び環境上の危険を示す材料及び化学化合物であり、排気ガスを粒子フィルター及びいくつかの触媒ユニットを通過させることにより、エンジン排気ガスから低減するか又は除去されなければならない。   Diesel exhaust contains nitrogen oxides (NOx) and particulate matter in addition to non-burning hydrocarbons. NOx, hydrocarbons and particulate matter are materials and chemical compounds that represent health and environmental hazards and are reduced or removed from engine exhaust by passing the exhaust through a particulate filter and several catalytic units. It must be.

典型的に、これらのフィルターはハニカムウォールフローフィルターであり、その際、粒状物質は該ハニカムフィルターの隔壁上又はそれらの中に捕捉される。   Typically, these filters are honeycomb wall flow filters, where particulate matter is trapped on or within the honeycomb filter partition walls.

当技術分野において開示されている排気ガス浄化システムは、粒子フィルターに加えて、窒素へのアンモニアとの反応による、NOxの選択還元において活性な触媒ユニット以外に、及びディーゼル酸化触媒を含む。   Exhaust gas purification systems disclosed in the art include in addition to a particulate filter, in addition to a catalytic unit active in the selective reduction of NOx by reaction with ammonia to nitrogen, and a diesel oxidation catalyst.

SCRで使用するために排気ガス中に噴射された過剰アンモニアを除去するために、公知の多数の排気ガス浄化システムは、アンモニアの窒素への転化に触媒作用を及ぼす下流の触媒ユニット(いわゆる、アンモニアスリップ触媒)を追加的に含む。   In order to remove excess ammonia injected into the exhaust gas for use in the SCR, many known exhaust gas purification systems employ downstream catalyst units (so-called ammonia catalysts) that catalyze the conversion of ammonia to nitrogen. Slip catalyst).

上述の反応に触媒作用を及ぼす触媒で被覆された多機能のディーゼル微粒子フィルターは、当技術分野において既知である。   Multifunctional diesel particulate filters coated with a catalyst that catalyzes the reaction described above are known in the art.

既知の多機能フィルターにおいては、異なる触媒は、フィルターの異なる区域でセグメント又は区域被覆される。   In known multifunction filters, different catalysts are segmented or zone coated in different areas of the filter.

フィルターへの異なる触媒のセグメント又は区域被覆は高価であり、そして製造プロセスが困難である。   Different catalyst segment or zone coatings on the filter are expensive and difficult to manufacture.

米国特許出願公開第2010/0175372号明細書(特許文献1)は、一実施形態において、フィルターの分散側にSCR触媒で触媒作用を与え、そして、透過側には、アンモニア酸化触媒及びディーゼル酸化触媒で触媒作用を与えた該フィルターによる、ディーゼル排気ガス処理システムを開示している。SCR触媒は、フィルター基板全体上にウォッシュコートされ、その後、アウトレットフィルターチャネルにおいてアンモニア酸化触媒が適用される。ディーゼル酸化触媒は、アウトレットチャネルにおいて、アンモニア酸化触媒の外層(overlayer)として適用される。   US 2010/0175372, in one embodiment, catalyzes the SCR catalyst on the dispersion side of the filter and, on the permeate side, an ammonia oxidation catalyst and a diesel oxidation catalyst. A diesel exhaust gas treatment system is disclosed with the filter catalyzed in FIG. The SCR catalyst is washcoated over the entire filter substrate and then an ammonia oxidation catalyst is applied in the outlet filter channel. The diesel oxidation catalyst is applied as an overlayer of the ammonia oxidation catalyst in the outlet channel.

米国特許出願公開第2010/0175372号明細書US Patent Application Publication No. 2010/0175372

公知の技術と比較すると、本発明は、アンモニアでの窒素酸化物の選択還元のための、そして炭化水素、一酸化炭素及び過剰アンモニアを除去するための異なる触媒で触媒化された微粒子フィルターを製造するためのより簡単な方法を提案する。   Compared with known techniques, the present invention produces a particulate filter catalyzed with different catalysts for selective reduction of nitrogen oxides with ammonia and for removing hydrocarbons, carbon monoxide and excess ammonia. We propose a simpler way to do this.

したがって、本発明は、次の工程を含む触媒化微粒子フィルターを製造する方法を提供する。
a)分散側及び透過側を有する多孔質フィルター本体を提供する工程;
b)窒素酸化物の選択接触還元において活性な第一の触媒組成物の粒子と共に、一酸化炭素、炭化水素及びアンモニアの酸化において活性な第二の触媒組成物の粒子及び該第二の触媒組成物と組み合わせて、アンモニアの窒素への選択酸化において活性な第三の触媒粒子組成物を一緒に含有する触媒ウォッシュコートを提供する工程であって、該第一の触媒組成物の粒子が、該微粒子フィルターの平均細孔径よりも小さい最頻粒度を有し、そして、第二及び第三の触媒組成物が、該微粒子フィルターの平均細孔径よりも大きい最頻粒度有する、該工程;
c)該ウォッシュコートを該透過側のアウトレット端中へ導入することにより、該フィルター本体を該触媒ウォッシュコートで被覆する工程;及び
d)該被覆されたフィルター本体を乾燥及び熱処理して、触媒化微粒子フィルターを得る工程。
Accordingly, the present invention provides a method for producing a catalyzed particulate filter comprising the following steps.
a) providing a porous filter body having a dispersion side and a permeation side;
b) Particles of the second catalyst composition active in the oxidation of carbon monoxide, hydrocarbons and ammonia together with particles of the first catalyst composition active in the selective catalytic reduction of nitrogen oxides and the second catalyst composition Providing a catalyst washcoat containing, in combination with a catalyst, a third catalyst particle composition that is active in the selective oxidation of ammonia to nitrogen, the particles of the first catalyst composition comprising: has a modal particle size smaller than the average pore size of the particulate filter, and, second and third catalyst composition has modal particle size larger than the average pore size of said particulate filter, said process;
c) coating the filter body with the catalyst washcoat by introducing the washcoat into the permeate outlet end; and d) drying and heat treating the coated filter body to catalyze A step of obtaining a particulate filter.

上記及び以下で使用される場合、“インレット端”という語は、未ろ過のガスに接触するフィルターの端部及びチャネルを意味し、そして“アウトレット端”という語は、ろ過されたガスがフィルター本体を出るフィルターの端部及びチャネルを意味する。   As used above and below, the term “inlet end” refers to the end and channel of the filter in contact with the unfiltered gas, and the term “outlet end” refers to the filtered gas flowing through the filter body. Means the end and channel of the filter exiting.

“分散側”及び“透過側”という語は、ここで使用される際、微粒子を含有する排気ガスに面するフィルターの流路、及びろ過された排気ガスに面する流路をそれぞれ示す。   The terms “dispersion side” and “permeation side” as used herein refer to the flow path of the filter facing the exhaust gas containing particulates and the flow path facing the filtered exhaust gas, respectively.

本発明方法の主たる利点とは、フィルターが、異なる反応に触媒作用を及ぼす三種類の触媒処方を含む単一のウォッシュコートで被覆できることである。ウォッシュコートを、透過側のアウトレット端中へ導入する場合、SCR触媒粒子は、多孔質のフィルター壁中へそして透過側へ拡散し、そしてその一方で、炭化水素/一酸化炭素酸化触媒及びアンモニア酸化触媒粒子は、フィルター透過側における隔壁の細孔の外側に保持される。それにより、多機能の触媒化フィルターの製造は、より簡単でかつ安価な製造セットアップという観点でずっと改善される。   The main advantage of the process of the present invention is that the filter can be coated with a single washcoat containing three different catalyst formulations that catalyze different reactions. When the washcoat is introduced into the permeate outlet end, the SCR catalyst particles diffuse into the porous filter wall and to the permeate side, while the hydrocarbon / carbon monoxide oxidation catalyst and ammonia oxidation. The catalyst particles are held outside the pores of the partition walls on the filter permeation side. Thereby, the production of multifunctional catalyzed filters is much improved in terms of a simpler and cheaper production setup.

触媒粒子の混合物の形態の、異なる種類の触媒でフィルターを被覆することのさらなる利点は、改善された熱伝達及び低温始動時の暖機に見られる。その結果、還元剤の噴射及びSCRNOx反応除去が、始動後に、これまで知られているよりも早く開始することが可能である。 A further advantage of coating the filter with different types of catalysts in the form of a mixture of catalyst particles is found in improved heat transfer and warm-up at cold start. As a result, NOx reactions removal of injection and SCR reducing agent, after the start, it is possible to start earlier than heretofore known.

本発明の一実施形態によれば、NOxの選択接触還元において活性な、ウォッシュコート中の第一の触媒粒子は、ゼオライト、シリカリン酸アルミニウム、イオン交換ゼオライト又は鉄及び/又は銅で促進されたシリカリン酸アルミニウムの少なくとも一つ、一種又は多種の卑金属酸化物、及びチタニア担体、アルミナ担体、ジルコニア担体又はシリカ担体上の酸化タングステンと混合される酸化セリウムの少なくとも一つの触媒担体を含む。   According to one embodiment of the present invention, the first catalyst particles in the washcoat that are active in the selective catalytic reduction of NOx are zeolites, silica aluminum phosphates, ion exchange zeolites or iron and / or copper promoted silica phosphorus. At least one aluminum oxide, one or more base metal oxides, and at least one catalyst support of cerium oxide mixed with tungsten oxide on a titania support, alumina support, zirconia support or silica support.

本発明における使用に好ましいゼオライトは、ベータゼオライト又は菱沸石ゼオライトである。   Preferred zeolites for use in the present invention are beta zeolites or chabazite zeolites.

本発明における使用に好ましい菱沸石構造を有するシリカリン酸アルミナは、銅で促進されたSAPO 34である。   A preferred silica phosphate alumina having a chabazite structure for use in the present invention is SAPO 34 promoted with copper.

本発明のさらに別の実施形態によれば、炭化水素、一酸化炭素及びアンモニアの酸化において活性な第二の触媒組成物は、アルミナ、チタニア、セリア、シリカ及びジルコニアの少なくとも一つ上に担持された白金及びパラジウムの混合物を含む。   According to yet another embodiment of the invention, a second catalyst composition active in the oxidation of hydrocarbons, carbon monoxide and ammonia is supported on at least one of alumina, titania, ceria, silica and zirconia. A mixture of platinum and palladium.

本発明のさらなる実施形態において、アンモニアの窒素への選択酸化において活性な第三の触媒組成物は、銅及び/又は鉄促進ゼオライト又は菱沸石構造を有する銅及び/又は鉄促進シリカリン酸アルミナを含み、好ましくは、促進ゼオライトはベータゼオライト又は菱沸石ゼオライトである。   In a further embodiment of the present invention, the third catalyst composition active in the selective oxidation of ammonia to nitrogen comprises copper and / or iron-promoted zeolite or copper and / or iron-promoted silica phosphate having a chabazite structure. Preferably, the promoted zeolite is beta zeolite or chabazite zeolite.

本発明において使用するためのウォッシュコートを形成するために、通常粒子の形態の第一、第二及び第三の触媒組成物は、要求される粒度に粉砕されるか又は凝集化され、そして、任意に、バインダー、増粘剤、発泡剤又はその他の処理助剤の添加と共に、水又は有機溶媒中で懸濁される。   To form a washcoat for use in the present invention, the first, second and third catalyst compositions, usually in the form of particles, are ground or agglomerated to the required particle size, and Optionally, it is suspended in water or an organic solvent with the addition of binders, thickeners, blowing agents or other processing aids.

ウォッシュコートは、第一、第二及び第三の触媒粒子を、単一の懸濁物として懸濁させることによるか、又は三つの異なる懸濁物を調製し、ここで、第一は、SCR触媒粒子、第二は炭化水素/一酸化炭素/アンモニア酸化触媒粒子、及び第三は選択アンモニア酸化触媒粒子であり、そして要求される第一、第二及び第三の触媒粒子を有するウォッシュコートを製造するような体積比でそれら三つの懸濁物を混合することにより製造される。   The washcoat is either by suspending the first, second and third catalyst particles as a single suspension or preparing three different suspensions, where the first is the SCR Catalyst particles, second is hydrocarbon / carbon monoxide / ammonia oxidation catalyst particles, and third is selective ammonia oxidation catalyst particles, and a washcoat having the required first, second and third catalyst particles It is produced by mixing these three suspensions in a volume ratio as produced.

すでに上述したように、フィルターをウォッシュコートで被覆する間に、隔壁中にSCR触媒粒子を効率的に拡散させるために、そして、酸化触媒組成物が透過側から分散側へ拡散するのを防止するために、SCR触媒は、フィルターの平均細孔径よりも小さい平均粒度を有し、そして、アンモニア及び炭化水素/一酸化炭素酸化触媒組成物は、該平均細孔径よりも大きい平均粒度を有する。   As already mentioned above, in order to efficiently diffuse the SCR catalyst particles into the partition walls while coating the filter with washcoat, and to prevent the oxidation catalyst composition from diffusing from the permeate side to the dispersion side. Thus, the SCR catalyst has an average particle size that is smaller than the average pore size of the filter, and the ammonia and hydrocarbon / carbon monoxide oxidation catalyst composition has an average particle size that is greater than the average pore size.

本発明の好ましい実施形態によれば、フィルターは、複数の長手方向経路が、長手方向の多孔質壁により分割され、該経路の分散側が、開放インレット端及び栓で塞がれる(pluged with plugs)アウトレット端を有し、そして該経路の透過側が、栓で塞がれるインレット端及び開放アウトレット端を有する、ウォールフローモノリスの形態である。   According to a preferred embodiment of the present invention, the filter has a plurality of longitudinal paths divided by a longitudinal porous wall and the dispersed side of the path is plugged with open inlet ends and plugs. It is in the form of a wall flow monolith having an outlet end and the permeate side of the path having an inlet end plugged and an open outlet end.

フィルター本体は、フィルターを介した真空吸引の適用、ウォッシュコートの加圧又は浸漬被覆を含む慣用法によってウォッシュコートされる。   The filter body is washcoated by conventional methods including application of vacuum suction through the filter, pressurization of the washcoat or dip coating.

真空ウォッシュコートプロセスを用いる場合、真空は、分散側のインレット端上に作り出される。   When using a vacuum washcoat process, a vacuum is created on the inlet end of the dispersion side.

浸漬被覆プロセスを用いる場合、フィルターは、最初に、透過側のアウトレット端が、ウォッシュコートの浴中に漬けられ、そしてそれに続いて浸される。このプロセスにおいて、透過側のインレット端は、被覆の間栓で塞がれていなくて(unplugged)もよい。   When using a dip coating process, the filter is first dipped in the permeate outlet end in a bath of washcoat and subsequently dipped. In this process, the inlet end on the permeate side may be unplugged with a plug between the covers.

本発明はさらに、本発明の上述の実施形態のいずれかに従って製造される、触媒化微粒子フィルターを提供する。   The present invention further provides a catalyzed particulate filter made according to any of the above-described embodiments of the present invention.

本発明における使用に適したフィルター材料の例は、シリコンカーバイド、チタン酸アルミニウム、コージライト、アルミナ、ムライト又はそれらの組合せである。   Examples of filter materials suitable for use in the present invention are silicon carbide, aluminum titanate, cordierite, alumina, mullite or combinations thereof.

フィルター上の第一の触媒の量は、典型的に、20〜180g/lであり、そしてフィルター上の第二及び第三の触媒組成物の組み合わせた量は、典型的に、10〜80g/lである。フィルターに投入される(loading)全触媒は、典型的に、40〜200g/lの範囲である。   The amount of the first catalyst on the filter is typically 20-180 g / l, and the combined amount of the second and third catalyst compositions on the filter is typically 10-80 g / l. l. The total catalyst loading into the filter is typically in the range of 40-200 g / l.

そのように製造されたフィルターの利点とは、別個にフィルター及び触媒ユニットを備える公知の排気ガス浄化システムと比較して、低減された圧力損失及び改善された燃料節約である。   The advantage of a filter so manufactured is a reduced pressure drop and improved fuel savings compared to known exhaust gas purification systems with separate filters and catalyst units.

約60%の多孔率及び約18μmの壁の平均細孔径を有する、慣用的な高い多孔率の、栓で塞がれた(plugged)SiCウォールフローフィルターが適用される。   A conventional high porosity, plugged SiC wall flow filter with a porosity of about 60% and an average pore size of about 18 μm wall is applied.

第一の触媒の懸濁物を、2%銅で促進された100gのシリカリン酸アルミニウムのSAPO−34を、フィルター1リットル当たり200mlの脱塩水中で混合及び分散させることによって製造する。分散剤Zephrym PD−7000及び消泡剤を添加する。懸濁物をビーズミル中で粉砕する。懸濁物の平均粒度は5〜10μmであり、そして、ウォールフローフィルターの壁中の細孔の平均細孔径よりも小さい。   A suspension of the first catalyst is made by mixing and dispersing 100 g of aluminum silica phosphate SAPO-34 promoted with 2% copper in 200 ml of demineralized water per liter of filter. Add the dispersant Zephrym PD-7000 and antifoam. The suspension is ground in a bead mill. The average particle size of the suspension is 5-10 μm and is smaller than the average pore size of the pores in the wall of the wall flow filter.

第一の工程において、第二の触媒組成物の懸濁物を、フィルター壁の平均細孔径よりも大きい平均粒度のアルミナ粒子上に堆積させた白金パラジウム(モル比3:1)の混合物から製造する。混合物の懸濁物を、20gのこの粉末を、フィルター1リットル当たり40mlの脱塩水中で混合することによって製造する。第二の工程において、第三の触媒組成物の懸濁物を、1.0%銅を有する、フィルター壁の平均細孔径よりも大きい最頻粒度を有するベータゼオライト粉末から、製造する。該懸濁物は、20gの銅ベータゼオライト粉末を、フィルター1リットル当たり40mlの脱塩水に混合及び分散させることにより製造される。分散剤Zephrym PD−7000及び消泡剤を添加する。二つの工程からの懸濁物は、次いで、混合され、そしてさらに分散される。最終的な懸濁物の最頻粒度は、ウォールフローフィルターの壁中の細孔の平均細孔径よりも大きい。   In the first step, a suspension of the second catalyst composition is produced from a mixture of platinum palladium (3: 1 molar ratio) deposited on alumina particles having an average particle size larger than the average pore size of the filter wall. To do. A suspension of the mixture is prepared by mixing 20 g of this powder in 40 ml of demineralized water per liter of filter. In the second step, a suspension of the third catalyst composition is made from beta zeolite powder having a mode particle size greater than the average pore size of the filter wall with 1.0% copper. The suspension is made by mixing and dispersing 20 g of copper beta zeolite powder in 40 ml of demineralized water per liter of filter. Add the dispersant Zephrym PD-7000 and antifoam. The suspension from the two steps is then mixed and further dispersed. The mode particle size of the final suspension is greater than the average pore size of the pores in the walls of the wall flow filter.

組み合わされた第二の触媒及び第三の触媒組成物の懸濁物は、その後、第一のSCR触媒組成物の懸濁物中へ混合され、それにより、最終的なウォッシュコート触媒懸濁物が得られる。   The combined second catalyst and third catalyst composition suspension is then mixed into the first SCR catalyst composition suspension, thereby providing the final washcoat catalyst suspension. Is obtained.

最終的な触媒懸濁物は、標準的なウォッシュコート法により、フィルター透過側のアウトレット端からフィルター上にウォッシュコートされる。被覆されたフィルターは、それから乾燥され、そして750℃でか焼される。   The final catalyst suspension is washcoated onto the filter from the outlet end on the filter permeate side by standard washcoat techniques. The coated filter is then dried and calcined at 750 ° C.

Claims (9)

触媒化微粒子フィルターの製造方法であって、
a)分散側及び透過側を有する多孔質フィルター本体を提供する工程;
b)窒素酸化物の選択接触還元において活性な第一の触媒組成物の粒子と共に、一酸化炭素及び炭化水素及びアンモニアの酸化において活性な第二の触媒組成物の粒子及び該第二の触媒組成物と組み合わせて、アンモニアの窒素への選択酸化において活性な第三の触媒粒子組成物を一緒に含有する触媒ウォッシュコートを提供する工程であって、該第一の触媒組成物の粒子が、該微粒子フィルターの平均細孔径よりも小さい最頻粒度を有し、そして、第二及び第三の触媒組成物が、該微粒子フィルターの平均細孔径よりも大きい最頻粒度有する、該工程;
c)該ウォッシュコートを該透過側のアウトレット端中へ導入することにより、該フィルター本体を該触媒ウォッシュコートで被覆する工程;及び
d)該被覆されたフィルター本体を乾燥及び熱処理して、触媒化微粒子フィルターを得る工程、
を含む、上記の方法。
A method for producing a catalyzed particulate filter comprising:
a) providing a porous filter body having a dispersion side and a permeation side;
b) Particles of the second catalyst composition active in the oxidation of carbon monoxide and hydrocarbons and ammonia together with particles of the first catalyst composition active in the selective catalytic reduction of nitrogen oxides and the second catalyst composition Providing a catalyst washcoat containing, in combination with a catalyst, a third catalyst particle composition that is active in the selective oxidation of ammonia to nitrogen, the particles of the first catalyst composition comprising: The step having a mode size smaller than the average pore size of the particulate filter and the second and third catalyst compositions having a mode size greater than the average pore size of the particulate filter;
c) coating the filter body with the catalyst washcoat by introducing the washcoat into the permeate outlet end; and d) drying and heat treating the coated filter body to catalyze Obtaining a particulate filter,
Including the above method.
前記第一の触媒組成物が、鉄及び/又は銅促進ゼオライト、シリカリン酸アルミナ、イオン交換ゼオライト又はシリカリン酸アルミナの少なくとも一つ、一種又は多種の卑金属酸化物、及びチタニア担体、アルミナ担体、ジルコニア担体又はシリカ担体及びそれらの混合物上の酸化タングステンと混合される酸化セリウムのうちの少なくとも一つの触媒担体を含む、請求項1に記載の方法。   The first catalyst composition comprises at least one of iron and / or copper-promoted zeolite, silica phosphate alumina, ion exchange zeolite or silica phosphate alumina, one or more base metal oxides, and a titania support, an alumina support, a zirconia support. 2. The process of claim 1 comprising at least one catalyst support of cerium oxide mixed with tungsten oxide on a silica support and mixtures thereof. 前記ゼオライトがベータゼオライト又は菱沸石ゼオライトである、請求項2に記載の方法。   The method of claim 2, wherein the zeolite is beta zeolite or chabazite zeolite. 前記菱沸石構造を有するシリカリン酸アルミナが、銅で促進されたSAPO 34触媒である、請求項2に記載の方法。   The method of claim 2, wherein the silica phosphate alumina having a chabazite structure is a copper-promoted SAPO 34 catalyst. 前記第二の触媒組成物が、アルミナ、チタニア、セリア、シリカ及びジルコニア担体の少なくとも一つ上に担持された白金及びパラジウムの混合物を含む、請求項1〜4のいずれか一つに記載の方法。   5. A method according to any one of claims 1 to 4, wherein the second catalyst composition comprises a mixture of platinum and palladium supported on at least one of alumina, titania, ceria, silica and zirconia support. . 前記第三の触媒組成物が、菱沸石構造を有する、銅及び/又は鉄促進ゼオライト又は銅及び/又は鉄促進シリカリン酸アルミナを含む、請求項1又は5に記載の方法。   The method according to claim 1 or 5, wherein the third catalyst composition comprises copper and / or iron-promoted zeolite or copper and / or iron-promoted silica phosphate having a chabazite structure. 前記フィルターが、長手方向の多孔質壁により分割される複数の長手方向経路、開放インレット端及び栓で塞がれるアウトレット端を有する該経路の分散側、及び栓で塞がれるインレット端及び開放アウトレット端を有する該経路の透過側を有する、ウォールフローモノリスの形態である、請求項1〜6のいずれか一つに記載の方法。   The filter has a plurality of longitudinal channels divided by a longitudinal porous wall, a distributed side of the channel having an open inlet end and an outlet end plugged with a plug, and an inlet end and an open outlet plugged with a plug 7. A method according to any one of the preceding claims, in the form of a wall flow monolith having the permeate side of the path having an end. 前記ウォッシュコートが、前記透過側のアウトレット端から導入される、請求項1〜7のいずれか一つに記載の方法。   The method according to claim 1, wherein the washcoat is introduced from an outlet end on the permeate side. 前記ウォッシュコートが、前記透過側のインレット端が栓で塞がれる前に適用される、請求項1〜6のいずれか一つに記載の方法。   The method according to claim 1, wherein the washcoat is applied before the permeate inlet end is plugged.
JP2013537014A 2010-11-02 2011-07-01 Method for producing catalyzed particulate filter and catalyzed particle filter Active JP5907981B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA201000991 2010-11-02
DKPA201000991 2010-11-02
DKPA201001111 2010-12-09
DKPA201001111 2010-12-09
PCT/EP2011/003258 WO2012059145A1 (en) 2010-11-02 2011-07-01 Method for the preparation of a catalysed particulate filter and catalysed particulate filter

Publications (3)

Publication Number Publication Date
JP2014508631A JP2014508631A (en) 2014-04-10
JP2014508631A5 JP2014508631A5 (en) 2014-10-23
JP5907981B2 true JP5907981B2 (en) 2016-04-26

Family

ID=44545618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013537014A Active JP5907981B2 (en) 2010-11-02 2011-07-01 Method for producing catalyzed particulate filter and catalyzed particle filter

Country Status (14)

Country Link
US (1) US9339844B2 (en)
EP (1) EP2635375B1 (en)
JP (1) JP5907981B2 (en)
KR (1) KR101852378B1 (en)
CN (1) CN103328098B (en)
BR (1) BR112013010767A2 (en)
CA (1) CA2815712C (en)
CL (1) CL2013001188A1 (en)
ES (1) ES2531289T3 (en)
MX (1) MX2013004637A (en)
PL (1) PL2635375T3 (en)
RU (1) RU2564854C2 (en)
WO (1) WO2012059145A1 (en)
ZA (1) ZA201303123B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722000B2 (en) * 2011-03-29 2014-05-13 Basf Corporation Multi-component filters for emissions control
RU2609005C2 (en) * 2011-07-13 2017-01-30 Хальдор Топсеэ А/С Method for coating catalysed particulate filter and particulate filter
CN103796757B (en) * 2011-07-13 2016-08-17 赫多特普索化工设备公司 Catalysed particulate filter and the method for coated particle filter
US8980209B2 (en) 2012-12-12 2015-03-17 Basf Corporation Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
KR102194065B1 (en) 2012-12-12 2020-12-22 바스프 코포레이션 Catalyst compositions, catalytic articles, systems and processes using large particle molecular sieves
GB201302686D0 (en) * 2013-02-15 2013-04-03 Johnson Matthey Plc Filter comprising three-way catalyst
GB2520776A (en) * 2013-12-02 2015-06-03 Johnson Matthey Plc Wall-flow filter comprising catalytic washcoat
JP6633080B2 (en) * 2014-12-23 2020-01-22 エクソンモービル リサーチ アンド エンジニアリング カンパニーExxon Research And Engineering Company Adsorption material and usage
US9739223B2 (en) 2015-11-18 2017-08-22 Ford Global Technologies, Llc System and method for bypassing a particulate filter
WO2018065353A1 (en) * 2016-10-03 2018-04-12 Umicore Ag & Co. Kg Catalyst article and method for the abatement of ammonia and nitrogen oxides
WO2018180593A1 (en) * 2017-03-27 2018-10-04 株式会社キャタラー Catalyst for exhaust gas purification
GB201901560D0 (en) 2019-02-05 2019-03-27 Magnesium Elektron Ltd Zirconium based dispersion for use in coating filters

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2059841C1 (en) 1993-08-24 1996-05-10 Малое предприятие "Технология" Filter for cleaning exhaust gases in internal combustion engine
JPH09173866A (en) 1995-12-28 1997-07-08 Nippon Soken Inc Diesel exhaust gas purifying filter
US20080256936A1 (en) 2007-04-17 2008-10-23 Geo2 Technologies, Inc. Selective Catalytic Reduction Filter and Method of Using Same
CN101091916A (en) 2006-06-22 2007-12-26 福特环球技术公司 Catalyst composition for diesel particulate filter
DE502007003465D1 (en) * 2007-02-23 2010-05-27 Umicore Ag & Co Kg Catalytically activated diesel particulate filter with ammonia barrier effect
CA2679599C (en) * 2007-02-27 2016-01-05 Basf Catalysts Llc Bifunctional catalysts for selective ammonia oxidation
US20090196812A1 (en) * 2008-01-31 2009-08-06 Basf Catalysts Llc Catalysts, Systems and Methods Utilizing Non-Zeolitic Metal-Containing Molecular Sieves Having the CHA Crystal Structure
DE102008055890A1 (en) * 2008-11-05 2010-05-12 Süd-Chemie AG Particulate reduction with combined SCR and NH3 slip catalyst
US8844274B2 (en) 2009-01-09 2014-09-30 Ford Global Technologies, Llc Compact diesel engine exhaust treatment system
US8815189B2 (en) * 2010-04-19 2014-08-26 Basf Corporation Gasoline engine emissions treatment systems having particulate filters
KR101870412B1 (en) * 2010-11-02 2018-06-25 할도르 토프쉐 에이/에스 Method for the preparation of a catalysed particulate filter and catalysed particulate filter

Also Published As

Publication number Publication date
ES2531289T3 (en) 2015-03-12
EP2635375A1 (en) 2013-09-11
CL2013001188A1 (en) 2013-10-04
EP2635375B1 (en) 2014-12-24
RU2013125287A (en) 2014-12-10
RU2564854C2 (en) 2015-10-10
US9339844B2 (en) 2016-05-17
CN103328098A (en) 2013-09-25
WO2012059145A1 (en) 2012-05-10
US20130216439A1 (en) 2013-08-22
KR101852378B1 (en) 2018-04-26
CN103328098B (en) 2015-06-17
PL2635375T3 (en) 2015-06-30
CA2815712C (en) 2016-11-08
KR20130115288A (en) 2013-10-21
ZA201303123B (en) 2014-07-30
CA2815712A1 (en) 2012-05-10
MX2013004637A (en) 2013-06-05
JP2014508631A (en) 2014-04-10
BR112013010767A2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6182233B2 (en) Catalytic particulate filter manufacturing method and catalytic particulate filter
JP5907981B2 (en) Method for producing catalyzed particulate filter and catalyzed particle filter
JP5863815B2 (en) Catalytic particulate filter manufacturing method and catalytic particulate filter
WO2013007467A1 (en) Catalysed particulate filter and methods for coating particulate filter
JP6395603B2 (en) Catalyst fine particle filter and method for producing fine particle filter
JP6395602B2 (en) Catalyst fine particle filter and coating method of fine particle filter
EP2731718A1 (en) Method for coating a catalysed particulate filter and a particulate filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160322

R150 Certificate of patent or registration of utility model

Ref document number: 5907981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250