JP5907489B2 - Hydrogels derived from chitosan derivatives - Google Patents

Hydrogels derived from chitosan derivatives Download PDF

Info

Publication number
JP5907489B2
JP5907489B2 JP2012555972A JP2012555972A JP5907489B2 JP 5907489 B2 JP5907489 B2 JP 5907489B2 JP 2012555972 A JP2012555972 A JP 2012555972A JP 2012555972 A JP2012555972 A JP 2012555972A JP 5907489 B2 JP5907489 B2 JP 5907489B2
Authority
JP
Japan
Prior art keywords
chitosan
acid
hydrogel
aqueous solution
chitosan derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012555972A
Other languages
Japanese (ja)
Other versions
JPWO2012105685A1 (en
Inventor
孝行 武井
孝行 武井
幸衛 川上
幸衛 川上
中原 秀樹
秀樹 中原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Publication of JPWO2012105685A1 publication Critical patent/JPWO2012105685A1/en
Application granted granted Critical
Publication of JP5907489B2 publication Critical patent/JP5907489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/225Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/28Polysaccharides or their derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、新規なヒドロゲルに関し、特に、創傷被覆材等として有用なキトサン誘導体由来のヒドロゲルに関する。   The present invention relates to a novel hydrogel, and particularly to a hydrogel derived from a chitosan derivative useful as a wound dressing or the like.

創傷被覆材には創傷治療を促進する性質が求められる。創傷部位に湿潤環境を提供できるヒドロゲル状の創傷被覆材は、創傷部位の肉芽組織形成および再表皮化を促し、治癒を促進することが報告されている。   Wound dressings are required to promote wound treatment. Hydrogel wound dressings that can provide a moist environment to the wound site have been reported to promote granulation tissue formation and re-epidermalization at the wound site and promote healing.

キトサンは抗菌性ならびに創傷治癒効果を有する天然多糖類であり、その特性故、これまでキトサンは創傷被覆材材料として広く使用されてきた。しかしながら、キトサンは生理的pHにおいて難水溶性であるため、ヒドロゲル状のキトサン創傷被覆材を作製することは困難である。一方、生理的pHにおいて水溶性を示すキトサン誘導体が報告されているが、このキトサン誘導体からヒドロゲルを調製するためには、グルタルアルデヒドなどの架橋剤を使用しなければならなく、ゲル中に残存した架橋剤の生体毒性が問題である。   Chitosan is a natural polysaccharide having antibacterial and wound healing effects, and due to its properties, chitosan has been widely used as a wound dressing material. However, since chitosan is poorly water-soluble at physiological pH, it is difficult to produce a hydrogel-like chitosan wound dressing. On the other hand, a chitosan derivative that is water-soluble at physiological pH has been reported, but in order to prepare a hydrogel from this chitosan derivative, a cross-linking agent such as glutaraldehyde must be used, and it remained in the gel. The biotoxicity of the crosslinking agent is a problem.

特表2009−520705号公報(特許文献1)には、キトサンとトレハロースのような二糖類またはグリセロールのようなポリオールとを混合することにより、熱でゲル化するキトサン組成物が記載されており、この熱ゲル化特性は凍結乾燥後も再構成される旨言及されている。特表2001−513367号公報(特許文献2)には、キトサン(誘導体)と、グリセロールのようなポリオールまたは糖の塩(例えば、一リン酸二塩基塩)とを混合することにより、30〜60℃でゲル化する組成物が記載されている。特表2003−503367号公報(特許文献3)には、キトサンとポリエチレングリコールのようなポリアルキレンオキシドとから構成されるヒドロゲルが記載されている。特開2008−174671号公報(特許文献4)には、キトサンにフェノール性水酸基を導入したキトサン誘導体が開示され、これを該フェノール性水酸基が酸化される環境に供することによりゲル化する旨記載されている。特表2010−533154号公報(特許文献5)には、キトサンのカルボキシアルキルアミドから成り美容的および皮膚科的用途に向けられたヒドロゲルが記載されている。   JP-T-2009-520705 (Patent Document 1) describes a chitosan composition that gels with heat by mixing chitosan and a disaccharide such as trehalose or a polyol such as glycerol. It is mentioned that this thermal gelation property is reconstituted after lyophilization. Japanese Patent Application Publication No. 2001-513367 (Patent Document 2) discloses a mixture of chitosan (derivative) and a polyol such as glycerol or a salt of sugar (for example, monophosphate dibasic salt). Compositions that gel at 0C are described. JP-T-2003-503367 (Patent Document 3) describes a hydrogel composed of chitosan and a polyalkylene oxide such as polyethylene glycol. Japanese Patent Application Laid-Open No. 2008-174671 (Patent Document 4) discloses a chitosan derivative in which a phenolic hydroxyl group is introduced into chitosan and describes that it is gelled by subjecting it to an environment in which the phenolic hydroxyl group is oxidized. ing. JP 2010-533154 (Patent Document 5) describes a hydrogel composed of a carboxyalkylamide of chitosan and intended for cosmetic and dermatological uses.

上述の文献は、キトサンまたはキトサン誘導体を用いるヒドロゲルに関するものであるが、いずれも、単にヒドロゲルが形成されることを示しているにすぎず、個々の用途に適合した形状のキトサン由来のヒドロゲルを調製し得るような技術はどの文献にも開示されていない。   The above references relate to hydrogels using chitosan or chitosan derivatives, but all merely show that hydrogels are formed and prepare chitosan-derived hydrogels in a shape adapted to the particular application. No such technique is disclosed in any document.

特表2009−520705号公報Special table 2009-520705 gazette 特表2001−513367号公報JP-T-2001-513367 特表2003−503367号公報Japanese translation of PCT publication No. 2003-503367 特開2008−174671号公報JP 2008-174671 A 特表2010−533154号公報Special table 2010-533154 gazette

本発明の目的は、生体に有害な添加剤を使用することなく、しかも、簡単に任意の形状に成形することができ創傷被覆材等として有用なキトサン由来のヒドロゲルを得る新しい技術を提供することにある。   An object of the present invention is to provide a new technology for obtaining a hydrogel derived from chitosan that can be easily formed into an arbitrary shape without using an additive harmful to a living body and is useful as a wound dressing or the like. It is in.

本発明者は、検討を重ねた結果、生理的pHにおいて溶解可能なキトサン誘導体に注目し、このキトサン誘導体を含有する水溶液は、凍結および融解するだけでヒドロゲルを形成することを見出し、本発明を導き出した。   As a result of repeated studies, the present inventors have focused on chitosan derivatives that are soluble at physiological pH, and found that an aqueous solution containing the chitosan derivatives forms a hydrogel only by freezing and thawing. Derived.

かくして、本発明は、キトサンのグルコサミン単位のアミノ基にアルドン酸が脱水縮合により結合して成るキトサン誘導体に由来するヒドロゲルの調製方法であって、前記キトサン誘導体を含有する水溶液を所定の形状の型に流し込む工程、その型内で、キトサン誘導体含有水溶液を凍結する工程、および、凍結したキトサン誘導体含有水溶液を融解して、所定の形状に応じた形状のゲルを得る工程、を含むことを特徴とするキトサン由来のヒドロゲルの調製方法を提供するものである。   Thus, the present invention provides a method for preparing a hydrogel derived from a chitosan derivative in which aldonic acid is bonded to the amino group of the glucosamine unit of chitosan by dehydration condensation, and the aqueous solution containing the chitosan derivative is formed into a mold having a predetermined shape. And a step of freezing the chitosan derivative-containing aqueous solution in the mold, and a step of melting the frozen chitosan derivative-containing aqueous solution to obtain a gel having a shape corresponding to a predetermined shape. A method for preparing a hydrogel derived from chitosan is provided.

本発明は、さらに、上記の方法によって得られることを特徴とするヒドロゲル(ヒドロゲル構造体)を提供する。本発明は、さらに、ポリビニルアルコール(PVA)を混合した上記のヒドロゲルを提供する。   The present invention further provides a hydrogel (hydrogel structure) obtained by the above method. The present invention further provides the above hydrogel mixed with polyvinyl alcohol (PVA).

特定構造のキトサン誘導体から、架橋剤など生体に有害な添加剤を使用することなく、創傷部に湿潤環境を提供して創傷被覆材など医療用に適した各種の形状のヒドロゲルを調製することができる。   It is possible to prepare hydrogels of various shapes suitable for medical use such as wound dressings by providing a moist environment to the wound area from chitosan derivatives having a specific structure without using harmful additives such as cross-linking agents. it can.

本発明において用いられるキトサン誘導体に用いられるアルドン酸の化学構造式を例示する。The chemical structural formula of aldonic acid used for the chitosan derivative used in this invention is illustrated. 本発明において用いられるキトサン誘導体を合成する反応スキームを例示する。A reaction scheme for synthesizing a chitosan derivative used in the present invention is illustrated. 本発明において用いられるキトサン誘導体におけるグルコン酸の導入率を測定するに際して、キトサン誘導体水溶液に加えた水酸化ナトリウム水溶液の量と導電率の関係を示す。When measuring the introduction rate of gluconic acid in the chitosan derivative used in the present invention, the relationship between the amount of sodium hydroxide aqueous solution added to the chitosan derivative aqueous solution and the conductivity is shown. 本発明において用いられるキトサン誘導体の水溶性を評価するために測定したキトサン誘導体水溶液のpHと濁度の関係を示す。The relationship between the pH of a chitosan derivative aqueous solution measured in order to evaluate the water solubility of the chitosan derivative used in this invention and turbidity is shown. 本発明に従うキトサン誘導体から得られる成型ゲルをその鋳型とともに例示する。A molded gel obtained from a chitosan derivative according to the present invention is illustrated along with its template. 本発明に従うキトサン誘導体から得られる成型ゲルに関する強度評価として、(a)歪み(%)と応力(mN/mm)を測定した圧縮強度の結果と、(b)ゲルの含水率(%)の結果を示す。As strength evaluation regarding the molded gel obtained from the chitosan derivative according to the present invention, (a) the result of compressive strength obtained by measuring strain (%) and stress (mN / mm 2 ), and (b) the moisture content (%) of the gel Results are shown. 本発明に従うキトサン誘導体から得られる成型ゲルに関して、(a)水分保持力に関する離水率(%)の結果と、(b)〜(d)耐酵素分解性に関するリゾチーム水溶液に浸した写真を示す。(A) Results of water separation rate (%) relating to water retention and (b) to (d) photographs immersed in an aqueous lysozyme solution relating to enzyme degradation resistance, for a molded gel obtained from a chitosan derivative according to the present invention. 本発明に従うキトサン誘導体から得られる成型ゲルの創傷治癒促進評価として、(a)本発明に係るヒドロゲルと5(重量/容量)%のポリビニルアルコールゲル(対照)とを埋植したマウス背部皮下を撮影した写真と、(b)創傷部の経時変化を撮影した写真と、(c)創傷面積の経時変化の結果を示す。As a wound healing promotion evaluation of a molded gel obtained from the chitosan derivative according to the present invention, (a) a subcutaneous image of the back of a mouse in which the hydrogel according to the present invention and 5 (weight / volume) polyvinyl alcohol gel (control) were implanted was photographed. And (b) a photograph of the change over time of the wound part, and (c) a result of the change over time of the wound area. 本発明において用いられるキトサン誘導体の細胞毒性の評価実験の結果を示す。(a)グルコン酸修飾キトサン、(b)トレオン酸修飾キトサン。The result of the evaluation experiment of the cytotoxicity of the chitosan derivative used in this invention is shown. (A) Gluconic acid-modified chitosan, (b) Threonic acid-modified chitosan. 本発明において用いられる別のキトサン誘導体の水溶性を評価するために測定したキトサン誘導体水溶液のpHと濁度の関係を示す。The relationship between pH and turbidity of a chitosan derivative aqueous solution measured in order to evaluate the water solubility of another chitosan derivative used in the present invention is shown.

本発明において用いられるキトサン誘導体を合成するのに用いられるキトサンとは、キチンの脱アセチル化物である。よく知られているように、キチンのキトサンへの変換(脱アセチル化反応)は完全には進まず、糖鎖上に一部N−アセチルグルコサミンを含み、市販のキトサンの脱アセチル化度は通常50〜100%の範囲にあり、特に70〜90%程度のものが多い。
本発明に関連して用いるキトサンとは、特に言及しない限り、脱アセチル化度が50〜100%のものを意味し、したがって、脱アセチル化度が100%でないものも包含する。
The chitosan used for synthesizing the chitosan derivative used in the present invention is a deacetylated product of chitin. As is well known, the conversion of chitin to chitosan (deacetylation reaction) does not proceed completely, and part of the sugar chain contains N-acetylglucosamine, and the degree of deacetylation of commercially available chitosan is usually It is in the range of 50 to 100%, especially about 70 to 90%.
The chitosan used in the context of the present invention means those having a degree of deacetylation of 50 to 100% unless otherwise specified, and therefore also includes those having a degree of deacetylation that is not 100%.

本発明において用いられるキトサン誘導体を合成するのに用いられるアルドン酸とは、単糖を酸化して得られる誘導体のうち、アルドースの1位のホルミル基がカルボシキル基に変わったカルボン酸の総称であり、例えば、下記の一般式(I)で表すことができる。   The aldonic acid used for synthesizing the chitosan derivative used in the present invention is a generic name of carboxylic acids in which the formyl group at the 1-position of aldose is changed to a carboxyl group among the derivatives obtained by oxidizing a monosaccharide. For example, it can be represented by the following general formula (I).

上記式中、nは2から4の整数である。 In the above formula, n is an integer of 2 to 4.

本発明において用いられるキトサン誘導体の合成に用いられるのに好ましいアルドン酸としては、グルコン酸が挙げられ、その他に、トレオン酸やキシロン酸も好適に使用することができる。さらに、ガラクトン酸、マンノン酸、リキソン酸、エリトロン酸、リボン酸、アラビノン酸、アロン酸、アルトロン酸、グロン酸、イドン酸、タロン酸などアルドン酸として知られたカルボン酸はいずれも使用可能である。図1には、これらのアルドン酸の幾つかの化学構造式をFischer投影式に準じて示している。   A preferred aldonic acid used for the synthesis of the chitosan derivative used in the present invention includes gluconic acid, and threonic acid and xylonic acid can also be suitably used. In addition, any carboxylic acid known as aldonic acid such as galactonic acid, mannonic acid, lyxonic acid, erythronic acid, ribbon acid, arabinonic acid, aronic acid, altronic acid, gulonic acid, idonic acid, and taronic acid can be used. . FIG. 1 shows some chemical structural formulas of these aldonic acids according to the Fischer projection formula.

以上の説明から理解されるように、本発明において用いられるキトサン誘導体は、一般に、下記の式(II)に示されるようにグルコサミン単位のアミノ基にアルドン酸が結合している部位とアセチルグルコサミン単位の残存している部位とから成る繰り返し単位(反復単位)を有するものとして表すことができる。   As understood from the above description, the chitosan derivative used in the present invention generally has a site where an aldonic acid is bonded to an amino group of a glucosamine unit and an acetylglucosamine unit as shown in the following formula (II). It can be expressed as having a repeating unit (repeating unit) consisting of the remaining site.

上記式中、nは2から4の整数である。 In the above formula, n is an integer of 2 to 4.

したがって、アルドン酸がグルコン酸の場合、本発明において用いられるキトサン誘導体は、一般に、下記の式(III)で示される繰り返し単位を有するものとして表すことができる。   Therefore, when the aldonic acid is gluconic acid, the chitosan derivative used in the present invention can be generally expressed as having a repeating unit represented by the following formula (III).

本発明において用いられるキトサン誘導体は、アルドン酸をキトサンに縮合脱水反応させてキトサンのグルコサミン単位の2位のアミノ基にアルドン酸を結合(導入)することにより合成することができる。アルドン酸は、一般に、適当な塩(例えばNa塩)として反応させる。図2には、アルドン酸としてグルコン酸を用いた場合についての反応スキームが示されている。   The chitosan derivative used in the present invention can be synthesized by condensing and dehydrating aldonic acid to chitosan and binding (introducing) aldonic acid to the amino group at the 2-position of the glucosamine unit of chitosan. The aldonic acid is generally reacted as a suitable salt (eg, Na salt). FIG. 2 shows a reaction scheme for the case where gluconic acid is used as aldonic acid.

この縮合脱水反応は、縮合剤(脱水縮合剤)を用い酸性条件下に室温で実施することができる。このキトサンとアルドン酸との縮合脱水反応における縮合剤として好適なものとして、アルドン酸のカルボキシル基を活性化する機能を果たす1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)および副反応を抑制する機能を果たすN−ヒドロキシこはく酸イミド(NHS)が挙げられるが、これらに限定されるものではない。   This condensation dehydration reaction can be carried out at room temperature under acidic conditions using a condensing agent (dehydration condensing agent). 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) which functions as a condensing agent in the condensation dehydration reaction between chitosan and aldonic acid and which functions to activate the carboxyl group of aldonic acid And N-hydroxysuccinimide (NHS) that functions to suppress side reactions, but is not limited thereto.

キトサンへのグルコン酸等のアルドン酸の導入率は、キトサンに対するアルドン酸の相対的な使用量および縮合剤の使用量を変えることにより調整することができ、アルドン酸の相対的使用量および縮合剤の使用量を多くすることにより当該導入率を高くすることができる。アルドン酸導入率は最大50%程度まで可能であるが、得られるキトサン誘導体(アルドン酸修飾キトサン)をヒドロゲルとして用いる本発明においては、後述するように、キトサンへのアルドン酸導入率は、脱アセチル化度75〜85%のキトサンを用いて、通常10〜30%とすることが好ましい。   The rate of introduction of aldonic acid such as gluconic acid into chitosan can be adjusted by changing the relative amount of aldonic acid and the amount of condensing agent used relative to chitosan. The introduction rate can be increased by increasing the amount of use. Although the aldonic acid introduction rate can be up to about 50%, in the present invention using the obtained chitosan derivative (aldonic acid-modified chitosan) as a hydrogel, the aldonic acid introduction rate into chitosan is deacetylated as described later. Using chitosan having a degree of conversion of 75 to 85%, it is usually preferably 10 to 30%.

ここで、グルコン酸等のアルドン酸の(キトサンへの)導入率とは、下記の式(A)で表されるものである。
アルドン酸導入率(%)=[Y/(X+Y)]×100 (A)
X=キトサン導入体中に含まれるグルコサミン単位の物質量(モル数)、Y=キトサン誘導体中に含まれるアルドン酸導入グルコサミン単位の物質量(モル数)。
Here, the introduction rate (to chitosan) of aldonic acids such as gluconic acid is represented by the following formula (A).
Aldonic acid introduction rate (%) = [Y / (X + Y)] × 100 (A)
X = substance amount (number of moles) of glucosamine units contained in the chitosan-introduced body, Y = substance amount (number of moles) of aldonic acid-introduced glucosamine units contained in the chitosan derivative.

この導入率は、キトサン誘導体(アルドン酸修飾キトサン)を適当な濃度の塩酸水溶液に溶解させた水溶液に、その塩酸と当モル濃度の水酸化ナトリウム水溶液を加えた際の導電率の変化を測定することにより算出することができる。   This rate of introduction measures the change in conductivity when a chitosan derivative (aldonic acid-modified chitosan) is dissolved in an aqueous hydrochloric acid solution of an appropriate concentration and the hydrochloric acid and an equimolar aqueous sodium hydroxide solution are added. This can be calculated.

この測定法を、アルドン酸としてグルコン酸を用いて得られるグルコン酸修飾キトサン(以下、GCと省略することがある)について、図3に沿って詳述すると次のようになる:グルコン酸修飾キトサンを溶解した0.1M塩酸水溶液中に0.1M水酸化ナトリウムを加えていくと、中和反応により溶液中のH+が減少し、それに伴って水溶液の導電率は低下する(図3A−B)。その中和反応が完了すると、グルコサミン単位中のプロトン化したアミノ基の脱プロトン化がはじまり、その脱プロトン化が完了するまで導電率は変化しない(図3B−C)。脱プロトン化が完了すると水溶液中のOHが増加することから導電率も増加する(図1C−D)。ここで、図3中のB−Cで水溶液に加えた水酸化ナトリウムの物質量は、グルコサミン単位中のプロトン化したアミノ基の物質量に相当する。また、この塩酸水溶液中ではほとんどのグルコサミン単位中のアミノ基がプロトン化していることを考慮すると、図1中のBCで水溶液に加えた水酸化ナトリウムの物質量は、グルコン酸が修飾されていないグルコサミン単位の物質量に相当する。したがって、この測定法によりグルコン酸修飾および未修飾キトサン中のグルコサミン単位の物質量を算出し、それらを比較することでグルコン酸の導入率を求めることができる。This measurement method will be described in detail with reference to FIG. 3 with respect to gluconic acid-modified chitosan obtained by using gluconic acid as aldonic acid (hereinafter sometimes abbreviated as GC): Gluconic acid-modified chitosan When 0.1 M sodium hydroxide is added to a 0.1 M hydrochloric acid aqueous solution in which is dissolved, H + in the solution decreases due to the neutralization reaction, and the conductivity of the aqueous solution decreases accordingly (FIGS. 3A-B). ). When the neutralization reaction is completed, deprotonation of the protonated amino group in the glucosamine unit begins, and the conductivity does not change until the deprotonation is completed (FIGS. 3B-C). When the deprotonation is completed, OH in the aqueous solution increases, so that the conductivity increases (FIGS. 1C-D). Here, the amount of sodium hydroxide added to the aqueous solution in BC in FIG. 3 corresponds to the amount of protonated amino group in the glucosamine unit. In addition, in consideration of the fact that amino groups in most glucosamine units are protonated in this aqueous hydrochloric acid solution, the amount of sodium hydroxide added to the aqueous solution with BC in FIG. 1 is not modified with gluconic acid. Corresponds to the amount of glucosamine units. Therefore, the amount of glucosamine units in gluconic acid-modified and unmodified chitosan is calculated by this measurement method, and the introduction rate of gluconic acid can be determined by comparing them.

本発明において用いられるキトサン誘導体(アルドン酸修飾キトサン)は、酸性領域で水溶性を有するとともに、アルドン酸の導入率が増加するに従い、水溶性を呈する領域がpHの高い領域にまで拡がる特性を有する。例えば、脱アセチル化度75〜85%のキトサンを用いて、アルドン酸の導入率が10〜30%の場合には、本発明のキトサン誘導体は、pH7の中性付近(生理的pH域)においても良好な水溶性を呈することが見出されている。そして、驚くべきことに、このような生理的pH値のキトサン誘導体水溶液を凍結した後、融解するだけでヒドロゲルが形成されることが見出された。   The chitosan derivative (aldonic acid-modified chitosan) used in the present invention is water-soluble in the acidic region and has a property that the region exhibiting water-solubility extends to a region having a high pH as the introduction rate of aldonic acid increases. . For example, when chitosan having a deacetylation degree of 75 to 85% is used and the introduction rate of aldonic acid is 10 to 30%, the chitosan derivative of the present invention is in the vicinity of neutral pH 7 (physiological pH range). Have also been found to exhibit good water solubility. Surprisingly, it has been found that a hydrogel is formed only by freezing and then thawing an aqueous chitosan derivative solution having such a physiological pH value.

かくして、本発明に従えば、キトサン誘導体(アルドン酸修飾キトサン)を含有する水溶液を所定の形状の型(鋳型)に流し込んで凍結させ、その後、融解することにより、所定の形状に応じた形状のゲルを得ることができる。凍結は、例えば、−20℃、また、融解は、一般に、室温下に行われるが、凍結および融解の温度や時間は特に限定されるものではなく、必要に応じて調整すればよい。   Thus, according to the present invention, an aqueous solution containing a chitosan derivative (aldonic acid-modified chitosan) is poured into a mold (template) having a predetermined shape, frozen, and then melted to obtain a shape corresponding to the predetermined shape. A gel can be obtained. Freezing is, for example, −20 ° C., and thawing is generally performed at room temperature, but the temperature and time for freezing and thawing are not particularly limited, and may be adjusted as necessary.

本発明に従いキトサン誘導体を凍結・融解することによりヒドロゲルを形成する詳細なメカニズムは未だ充分には解明されていないが、疎水結合や水素結合を介してキトサン誘導体(アルドン酸修飾キトサン)分子が互いに絡み合った構造が凍結により固定化された後、融解により該構造が幾分緩むことによりゲル化するものと推測される。   Although the detailed mechanism for forming hydrogels by freezing and thawing chitosan derivatives according to the present invention has not yet been fully elucidated, chitosan derivative (aldonic acid-modified chitosan) molecules are entangled with each other through hydrophobic bonds and hydrogen bonds. After the structure is fixed by freezing, it is presumed that the structure is gelled by being loosened somewhat by melting.

さらに、本発明者は、鋭意研究を重ねた結果、上記のキトサン誘導体にポリビニルアルコール(PVA)を混合して同様の操作を行うことにより諸特性の向上したヒドロゲルが形成することをも見出した。すなわち、前記キトサン誘導体を含有する水溶液(鋳型に流し込む水溶液)にポリビニルアルコールを混合し、凍結・融解することにより、キトサン誘導体にポリビニルアルコールが混合されたヒドロゲルが得られる。   Furthermore, as a result of intensive studies, the present inventor has also found that a hydrogel having improved various properties is formed by mixing polyvinyl alcohol (PVA) with the chitosan derivative and performing the same operation. That is, by mixing polyvinyl alcohol with an aqueous solution containing the chitosan derivative (an aqueous solution poured into a mold), and freezing and thawing, a hydrogel in which polyvinyl alcohol is mixed with the chitosan derivative is obtained.

キトサン誘導体にポリビニルアルコールが混合されたヒドロゲルを得る場合、ヒドロゲル中のポリビニルアルコール配合量は、キトサン誘導体/ポリビニルアルコール[(重量/容量)%比]が、1/10以上2/5未満であることが好ましく、より好ましくは1/5であり、例えば、キトサン誘導体[1(重量/容量)%]とポリビニルアルコール[5(重量/容量)%]という配合比率で形成することができる。また、本発明に適用されるポリビニルアルコールの分子量は、ゲルの形成しやすさから、6.6×10Da(ダルトン)以上2.5×10Da(ダルトン)以下のものを使用することが好ましく、例えば、1.5×10Daのものを使用することができる。分子量が6.6×10Daより小さい場合には、ゲル化しても高い強度が得られず、2.5×10Daより大きい場合には水溶液の粘度が高くポリビニルアルコールとキトサン誘導体の混合が困難であるためである。When obtaining a hydrogel in which polyvinyl alcohol is mixed with a chitosan derivative, the amount of polyvinyl alcohol in the hydrogel is such that the chitosan derivative / polyvinyl alcohol [(weight / volume)% ratio] is 1/10 or more and less than 2/5. It is preferably 1/5. For example, it can be formed at a blending ratio of chitosan derivative [1 (weight / volume)%] and polyvinyl alcohol [5 (weight / volume)%]. The molecular weight of the polyvinyl alcohol applied to the present invention should be 6.6 × 10 4 Da (Dalton) or more and 2.5 × 10 5 Da (Dalton) or less because of the ease of gel formation. For example, a material having a density of 1.5 × 10 5 Da can be used. When the molecular weight is smaller than 6.6 × 10 4 Da, high strength cannot be obtained even when gelled, and when it is larger than 2.5 × 10 5 Da, the viscosity of the aqueous solution is high and the mixture of polyvinyl alcohol and chitosan derivative is mixed. This is because it is difficult.

このようにして得られたヒドロゲルは、ポリビニルアルコールの寄与によって、高い生体適合性を維持しつつ、極めて優れた強度、水分保持力、耐酵素分解性等の特性を有するものとなる(後述の実施例参照)。このため、本発明に係るヒドロゲルは、強度、水分保持力、耐酵素分解性が要求されるような用途に使用する場合には、ポリビニルアルコールを混合することが好ましく、例えば、創傷被覆材として使用する場合には、生体適合性を維持しつつ、ゲル強度の低下を防止するとともに、より長期間にわたり創傷を湿潤状態に維持することが可能となる。   The hydrogel thus obtained has extremely excellent properties such as strength, moisture retention, and enzyme degradation resistance while maintaining high biocompatibility due to the contribution of polyvinyl alcohol. See example). For this reason, the hydrogel according to the present invention is preferably mixed with polyvinyl alcohol when used in applications requiring strength, moisture retention, and enzyme degradation resistance, for example, used as a wound dressing. In this case, while maintaining biocompatibility, it is possible to prevent the gel strength from decreasing and to maintain the wound in a moist state for a longer period of time.

本発明のキトサン誘導体から形成されるゲルは、一般に、弾性のある硬質のヒドロゲルである。用いる型(鋳型)の形状に従い、シート状のものや球形のものなど、用途に応じて各種の形状に成形することができる。また、上記の説明から理解されるように、ゲル化に際して架橋剤を全く用いておらず、生体に有害な添加剤の使用を回避している。
以下、本発明の特徴をさらに具体的に説明するため、グルコン酸をはじめとして、幾つかのアルドン酸を用いた場合の実施例を示すが、本発明はこれらの実施例によって制限されるものではない。
The gel formed from the chitosan derivative of the present invention is generally an elastic hard hydrogel. According to the shape of the mold (mold) to be used, it can be formed into various shapes such as a sheet shape or a spherical shape depending on the application. Further, as understood from the above description, no cross-linking agent is used at the time of gelation, and the use of additives harmful to the living body is avoided.
Hereinafter, in order to describe the characteristics of the present invention more specifically, examples in the case of using several aldonic acids including gluconic acid will be shown, but the present invention is not limited by these examples. Absent.

グルコン酸修飾キトサン(GC)の合成
2−モルホリノエタンスルホン酸を23.5mMの濃度で溶解させた蒸留水300ml(pH4.0)にキトサン3.0g(商品名「キトサンLL」、脱アセチル化度80%、焼津水産化学工業株式会社製)を溶解させ、1M塩酸水溶液を加えることによりpHを4.0に調整した。表1に示すとおり、この水溶液にグルコン酸ナトリウム(以下、GAと省略)、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミド塩酸塩(以下、EDCと省略)およびN−ヒドロキシこはく酸イミド(以下、NHSと省略)を溶解させ、室温で24時間攪拌することで、キトサンのグルコサミン単位の2位のアミノ基にグルコン酸を導入した(図2参照)。
Synthesis of gluconic acid-modified chitosan (GC) 3.0 g of chitosan (trade name “chitosan LL”, deacetylation degree) in 300 ml of distilled water (pH 4.0) in which 2-morpholinoethanesulfonic acid was dissolved at a concentration of 23.5 mM 80%, manufactured by Yaizu Suisan Chemical Co., Ltd.) was dissolved, and the pH was adjusted to 4.0 by adding a 1M aqueous hydrochloric acid solution. As shown in Table 1, sodium gluconate (hereinafter abbreviated as GA), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (hereinafter abbreviated as EDC) and N-hydroxysuccinimide were added to this aqueous solution. (Hereafter, abbreviated as NHS) was dissolved and stirred at room temperature for 24 hours to introduce gluconic acid into the amino group at the 2-position of the glucosamine unit of chitosan (see FIG. 2).

続いて、1M水酸化ナトリウム水溶液を加えることにより反応溶液のpHを8.0に調整した後、99.5%エタノールを加えることでグルコン酸修飾キトサンおよび未反応のグルコン酸ナトリウムを沈殿させ、遠心操作により沈殿物を回収した。その後、沈殿物を透析膜に封入し、1週間蒸留水に浸すことでグルコン酸ナトリウムを除去した。この際、1日に2回蒸留水を交換した。続いて、透析膜内の沈殿物および水溶液を回収し、99.5%エタノールを加えることでグルコン酸修飾キトサンを沈殿させ、その沈殿物を回収した。その後、凍結・乾燥処理を行い、保管した。   Subsequently, the pH of the reaction solution was adjusted to 8.0 by adding 1 M aqueous sodium hydroxide solution, and then 99.5% ethanol was added to precipitate gluconate-modified chitosan and unreacted sodium gluconate, followed by centrifugation. The precipitate was recovered by operation. Thereafter, the precipitate was sealed in a dialysis membrane, and sodium gluconate was removed by immersing in distilled water for 1 week. At this time, distilled water was changed twice a day. Subsequently, the precipitate and the aqueous solution in the dialysis membrane were recovered, 99.5% ethanol was added to precipitate gluconic acid-modified chitosan, and the precipitate was recovered. Thereafter, it was frozen and dried and stored.

反応結果を下記の表1に示す。グルコン酸導入率は、既述のように、0.1M塩酸水溶液40mlにグルコン酸修飾キトサン乾燥粉末0.2gを溶解させ、その水溶液に0.1M水酸化ナトリウム水溶液を加えた際の導電率の変化を測定することで算出した。   The reaction results are shown in Table 1 below. As described above, the gluconic acid introduction rate is obtained by dissolving 0.2 g of gluconic acid-modified chitosan dry powder in 40 ml of 0.1 M hydrochloric acid aqueous solution and adding 0.1 M sodium hydroxide aqueous solution to the aqueous solution. Calculated by measuring the change.

グルコン酸導入率18.7%の場合の生成物および未修飾のキトサンについてFT−IR測定を行ったところ、いずれも、3400cm−1および1590cm−1にピークが認められたが、そのピーク高さの差は、グルコン酸を導入した生成物の方が大きかった。FT−IR測定において、3400cm−1のピーク高さは分子中のヒドロキシル基数に依存し、1590cm−1のピーク高さはグルコサミン単位のアミノ基数に依存する。3400cm−1のピーク高さと1590cm−1のピーク高さの差は、理論上、グルコン酸修飾キトサンの方が、未修飾キトサンよりも大きくなる。実際に、3400cm−1のピーク高さと1590cm−1のピーク高さの差は、グルコン酸修飾キトサンの方が、未修飾キトサンよりも大きかったことからキトサンにグルコン酸を導入したグルコン酸修飾キトサンの生成が確認された。Was subjected to chitosan FT-IR measured on the products and unmodified For gluconate introduction rate 18.7%, both, the peak was observed at 3400 cm -1 and 1590 cm -1, the peak height The difference was greater for the product in which gluconic acid was introduced. In FT-IR measurement, the peak height of 3400 cm -1 is dependent on the hydroxyl groups in the molecule, the peak height of 1590 cm -1 is dependent on the number of amino groups of glucosamine units. Difference between the peak height of the peak height and 1590 cm -1 in 3400 cm -1 are theoretically towards gluconate modified chitosan is greater than unmodified chitosan. Indeed, the difference between the peak height of the peak height and 1590 cm -1 in 3400 cm -1, the direction of gluconic acid modified chitosan is gluconic acid modified chitosan of chitosan since larger than unmodified chitosan was introduced gluconate Generation was confirmed.

グルコン酸修飾キトサンの水溶性評価
2−モルホリノエタンスルホン酸を50mMの濃度で溶解させた蒸留水50ml(pH4.0)にグルコン酸修飾キトサン乾燥粉末を0.5g溶解させ、1M塩酸水溶液を加えることによりpHを4.0に調整した。続いて、0.1Mまたは1.0M水酸化ナトリウム水溶液を加えることでpHを上昇させ、その際の溶液の濁度(波長600nm)を測定した。その結果、グルコン酸導入率が増加するにつれ、濁度が上昇しはじめるpHはアルカリ側にシフトし、導入率10.5%および18.7%のキトサン誘導体を溶解させた水溶液はpH7付近の中性領域においてもほとんど白濁せず、生理的pHにおいても溶解可能であることが示された(図4参照)。更に測定を行ったところ、導入率10〜30%において生理的pH域における白濁は認められず、キトサン誘導体(グルコン酸修飾キトサン)が水溶性を有することが明らかとなった。
Evaluation of water solubility of gluconate-modified chitosan 0.5 g of dry gluconate-modified chitosan powder is dissolved in 50 ml of distilled water (pH 4.0) in which 2-morpholinoethanesulfonic acid is dissolved at a concentration of 50 mM, and 1M hydrochloric acid aqueous solution is added. The pH was adjusted to 4.0. Subsequently, the pH was raised by adding a 0.1 M or 1.0 M sodium hydroxide aqueous solution, and the turbidity (wavelength 600 nm) of the solution at that time was measured. As a result, as the gluconic acid introduction rate increases, the pH at which turbidity begins to rise shifts to the alkali side, and aqueous solutions in which chitosan derivatives with introduction rates of 10.5% and 18.7% are dissolved are in the vicinity of pH 7. Even in the sex region, it was hardly clouded, and it was shown that it was soluble even at physiological pH (see FIG. 4). Further measurement revealed that no white turbidity was observed in the physiological pH range at an introduction rate of 10 to 30%, and that the chitosan derivative (gluconic acid-modified chitosan) was water-soluble.

グルコン酸修飾キトサンの細胞毒性評価
L929繊維芽細胞を1.0×10−4cells/wellの密度で96wellプレートに播種し、24時間培養した。実施例1で合成したグルコン酸修飾キトサン誘導体を濃度を変えて溶解した最少必須培地(Minimum Essential Medium)(pH7.0)をwellに加え、さらに24時間培養した。続いて、cell counting kit 8(同仁化学)を用いて、細胞の生存率を測定した。なお、キトサン誘導体を含まない培地で培養した細胞の生存率を100%とした。
その結果を図9の(a)に示す。測定誤差の範囲内で、ほぼ100%を示しており、グルコン酸修飾キトサン誘導体は、キトサンと同様に、細胞毒性がきわめて低いことが理解される。
Cytotoxicity evaluation of gluconic acid-modified chitosan L929 fibroblasts were seeded in a 96-well plate at a density of 1.0 × 10 −4 cells / well and cultured for 24 hours. A minimum essential medium (pH 7.0) in which the gluconic acid-modified chitosan derivative synthesized in Example 1 was dissolved at different concentrations was added to the wells, and further cultured for 24 hours. Subsequently, the cell viability was measured using cell counting kit 8 (Dojin Chemical). The survival rate of cells cultured in a medium not containing a chitosan derivative was taken as 100%.
The result is shown in FIG. It shows almost 100% within the measurement error range, and it is understood that the gluconic acid-modified chitosan derivative has extremely low cytotoxicity like chitosan.

凍結・融解によるヒドロゲルの調製
実施例1で合成したグルコン酸導入率18.7%のキトサン誘導体乾燥粉末0.1gを蒸留水10mlに加え、0.1M塩酸水溶液を加えることにより、粉末を完全に溶解させた。続いて、0.1Mまたは1.0M水酸化ナトリウム水溶液を加えることでpHを7.0に調整し、得られた水溶液を断面が星形状の金属鋳型に入れて、−20℃で12時間凍結した。その後、室温での静置により溶解させたところ、金属鋳型の形状に応じた星形状のゲルの生成が確認された(図5参照)。なお、対照として、グルコン酸を導入していないキトサンについても同様にゲル化を試みたが、ゲル化は起らなかった。
Preparation of hydrogel by freezing and thawing 0.1 g of dry powder of chitosan derivative synthesized in Example 1 having a gluconic acid introduction rate of 18.7% was added to 10 ml of distilled water, and 0.1 M hydrochloric acid aqueous solution was added to completely remove the powder. Dissolved. Subsequently, the pH is adjusted to 7.0 by adding a 0.1 M or 1.0 M aqueous sodium hydroxide solution, and the obtained aqueous solution is placed in a star-shaped metal mold and frozen at −20 ° C. for 12 hours. did. Then, when it was made to melt | dissolve by standing at room temperature, the production | generation of the star-shaped gel according to the shape of a metal casting_mold | template was confirmed (refer FIG. 5). As a control, gelation of chitosan into which gluconic acid was not introduced was attempted in the same manner, but gelation did not occur.

ヒドロゲルの細胞接着性評価
実施例1で合成したグルコン酸導入率18.7%のグルコン酸修飾キトサンの1%(w/v)水溶液(pH7.0)を48wellプレートに注ぎ、その底面の半分を当該キトサン誘導体から成るポリマー溶液で覆った。続いて、−20℃で凍結(24時間)後、室温で融解(2時間)することで、ポリマー溶液をゲル化させた。その48wellプレートにL929繊維芽細胞を播種し、培養24時間後に細胞形態を顕微鏡観察したところ、ゲルによる細胞接着性は非常に低いことが認められた。
Evaluation of cell adhesion of hydrogel 1% (w / v) aqueous solution (pH 7.0) of gluconic acid-modified chitosan synthesized in Example 1 having a gluconic acid introduction rate of 18.7% was poured into a 48-well plate, and half of the bottom surface was poured. It was covered with a polymer solution comprising the chitosan derivative. Subsequently, the polymer solution was gelled by freezing at -20 ° C. (24 hours) and then thawing at room temperature (2 hours). When the L929 fibroblasts were seeded in the 48-well plate and the cell morphology was observed microscopically after 24 hours of culture, it was found that the cell adhesion by the gel was very low.

ポリビニルアルコールを混合したヒドロゲルの調製
グルコン酸導入率19.3%のキトサン誘導体乾燥粉末をpH4.0の生理食塩水に溶
解して2(重量/容量)%のキトサン誘導体溶液を得た。また、別の生理食塩水にポリビニルアルコール粉末(分子量1.5×10Da、シグマ・アルドリッチ製)を加えて加熱することで溶解して10(重量/容量)%のポリビニルアルコール溶液を得た。キトサン誘導体溶液とポリビニルアルコール溶液を1:1(体積比)で混合し、その中に0.1Mまたは1.0Mの水酸化ナトリウム水溶液を加えることで、水溶液のpHを7.0に調整し、得られた水溶液1mlを内径11mmの円筒容器に入れて−30℃で24時間凍結した。その後、室温(20℃)で2時間静置して融解させることにより、ポリビニルアルコールを混合したヒドロゲルの生成が確認された。
Preparation of Hydrogel Mixed with Polyvinyl Alcohol Chitosan derivative dry powder having a gluconic acid introduction rate of 19.3% was dissolved in physiological saline at pH 4.0 to obtain a 2 (weight / volume)% chitosan derivative solution. Also, polyvinyl alcohol powder (molecular weight 1.5 × 10 5 Da, manufactured by Sigma-Aldrich) was added to another physiological saline and heated to dissolve to obtain a 10% (weight / volume) polyvinyl alcohol solution. . The chitosan derivative solution and the polyvinyl alcohol solution were mixed at 1: 1 (volume ratio), and 0.1M or 1.0M aqueous sodium hydroxide solution was added therein, thereby adjusting the pH of the aqueous solution to 7.0, 1 ml of the obtained aqueous solution was put into a cylindrical container having an inner diameter of 11 mm and frozen at −30 ° C. for 24 hours. Then, the production | generation of the hydrogel which mixed polyvinyl alcohol was confirmed by leaving still and melting at room temperature (20 degreeC) for 2 hours.

ヒドロゲルの特性評価
既述の実施例に従って調製したグルコン酸修飾キトサン(GC)由来のヒドロゲルおよびGCにポリビニルアルコール(PVA)を混合して得られたヒドロゲルについて、下記のように幾つかの特性を評価した。
(1)力学強度(圧縮強度)
円筒容器から円盤状となったゲルを取り出し、その圧縮強度を測定した。この円盤状ゲルを圧縮した際の歪み(%)と応力(mN/mm)を測定した結果を図6(a)に示す。同図(a)に示すように、本発明に係るヒドロゲルは単独でも十分な圧縮強度を有するが、さらにポリビニルアルコールを混合することで、1(重量/容量)%GC(グルコン酸修飾キトサン)の5倍、2(重量/容量)%GCの3倍まで圧縮強度が飛躍的に向上することがわかった。さらに、ゲルの含水率(%)を(ゲル湿潤重量/ゲル乾燥重量)の比率として算出した結果を図6(b)に示す。一般にゲルの力学強度が高くなるほどゲルの含水率が低くなることから、同図(b)に示すように、本発明に係るヒドロゲルは単独でも十分に低いゲルの含水率を有するが、さらにポリビニルアルコールを混合することで、1(重量/容量)%GCに対して1/4まで、2(重量/容量)%GCに対して1/3までゲルの含水率が低下したことから、ゲルの力学強度が飛躍的に向上することがわかった。
Evaluation of properties of hydrogel Several properties of hydrogel derived from gluconic acid-modified chitosan (GC) prepared according to the above-mentioned examples and obtained by mixing GC with polyvinyl alcohol (PVA) were evaluated as follows. did.
(1) Mechanical strength (compressive strength)
The disc-shaped gel was taken out from the cylindrical container, and its compressive strength was measured. FIG. 6A shows the results of measuring strain (%) and stress (mN / mm 2 ) when this disk-shaped gel is compressed. As shown in FIG. 5A, the hydrogel according to the present invention alone has sufficient compressive strength, but by further mixing polyvinyl alcohol, 1 (weight / volume)% GC (gluconic acid modified chitosan) It was found that the compressive strength was dramatically improved up to 5 times and 2 (weight / volume)% GC. Furthermore, the result of having calculated the moisture content (%) of the gel as a ratio of (gel wet weight / gel dry weight) is shown in FIG. 6 (b). In general, the higher the mechanical strength of the gel, the lower the moisture content of the gel. Therefore, the hydrogel according to the present invention alone has a sufficiently low moisture content of the gel, as shown in FIG. The water content of the gel decreased to 1/4 with respect to 1 (weight / volume)% GC and 1/3 with respect to 2 (weight / volume)% GC. It was found that the strength improved dramatically.

(2)水分保持力
50ml遠沈管の管口に、孔径40μmのメッシュで構成されるセルストレーナー(日本BD製)を設置し、このセルストレーナー内に上記の円盤状ゲル(体積:2ml)を入れ、1200rpmで15分間遠心した。遠心後に遠沈管内に溜まった水の重量から、離水率(%)を(遠心後に遠沈管内にたまった水重量/遠心前のゲル中の水重量)の比率として算出した結果を図7(a)に示す。同図(a)に示すように、本発明に係るヒドロゲルは単独でも十分に高い水分保持力を有するが、さらにポリビニルアルコールを混合することで、1(重量/容量)%GCに対して1/10まで、2(重量/容量)%GCに対して1/15まで離水率が抑えられたことから、水分保持力が飛躍的に向上することがわかった。
(2) Install a cell strainer (manufactured by Japan BD) consisting of a mesh with a pore size of 40 μm in the mouth of a 50 ml centrifuge tube with a water retention capacity, and put the disk-shaped gel (volume: 2 ml) into this cell strainer. Centrifugation was performed at 1200 rpm for 15 minutes. FIG. 7 shows the results of calculating the water separation rate (%) as a ratio of (water weight accumulated in the centrifuge tube after centrifugation / water weight in the gel before centrifugation) from the weight of the water accumulated in the centrifuge tube after centrifugation. Shown in a). As shown in FIG. 5A, the hydrogel according to the present invention has a sufficiently high water retention ability by itself, but by further mixing polyvinyl alcohol, 1 / (weight / volume)% GC Since the water separation rate was suppressed to 1/15 with respect to 2 (weight / volume)% GC up to 10, it was found that the moisture retention was dramatically improved.

(3)耐酵素分解性
本発明に係るヒドロゲルの耐酵素分解性を確認するために、リゾチーム(ヒト体内にも存在するキトサン分解酵素)を含有するリゾチーム水溶液に、本発明に係るヒドロゲルを浸してゲル形状の経時的な変化を観察した。リゾチーム水溶液に浸した直後の写真と24時間後の写真を図7(b)および(c)に示す。特にポリビニルアルコールを混合したヒドロゲルは、同図(d)に示すように、リゾチーム水溶液に浸してから24時間後にも、リゾチーム水溶液に浸した直後と同じような明確なゲル形状を維持していた。このように、本発明に係るヒドロゲルは単独でも十分な耐酵素分解性を有するが、さらにポリビニルアルコールを混合することで、耐酵素分解性が飛躍的に向上することがわかった。
(3) Enzymatic degradation resistance In order to confirm the enzymatic degradation resistance of the hydrogel according to the present invention, the hydrogel according to the present invention is immersed in an aqueous lysozyme solution containing lysozyme (a chitosan degrading enzyme also present in the human body). The change in gel shape over time was observed. FIGS. 7 (b) and 7 (c) show a photograph immediately after immersion in a lysozyme aqueous solution and a photograph after 24 hours. In particular, as shown in FIG. 4D, the hydrogel mixed with polyvinyl alcohol maintained a clear gel shape similar to that immediately after the immersion in the lysozyme aqueous solution even after 24 hours from the immersion in the lysozyme aqueous solution. As described above, the hydrogel according to the present invention alone has sufficient enzyme degradation resistance, but it has been found that the enzyme degradation resistance is dramatically improved by further mixing polyvinyl alcohol.

ヒドロゲルの創傷治癒促進評価
グルコン酸修飾キトサン(GC)にポリビニルアルコール(PVA)を混合した本発明に係るヒドロゲルの免疫賦活能(創傷治癒促進効果)を確認するために、マウス背部皮下にゲルを1週間埋植して経過観察した。本発明に係るヒドロゲルと、5(重量/容量)%のポリビニルアルコールゲル(対照)とを埋植したマウス背部皮下を撮影した写真を図8(a)に示す。同図(a)に示すように、1週間経過後には、本発明に係るヒドロゲルの近傍では、過剰な白血球(免疫細胞)が集積していたが、対照である5(重量/容量)%ポリビニルアルコールゲルの近傍では、白血球の集積は見られなかった。本発明に係るヒドロゲルは、ポリビニルアルコールを混合した後も、キトサンが本来的に有する免疫賦活能を維持していることがわかった。
Evaluation of promotion of wound healing by hydrogel In order to confirm the immunostimulatory ability (wound healing promoting effect) of the hydrogel according to the present invention in which polyvinyl alcohol (PVA) is mixed with gluconic acid-modified chitosan (GC), the gel is subcutaneously applied to the back of the mouse. Implanted weekly and followed up. The photograph which image | photographed the mouse | mouth back part of the mouse | mouth which implanted the hydrogel based on this invention and 5 (weight / volume)% polyvinyl alcohol gel (control) is shown to Fig.8 (a). As shown in FIG. 5A, after 1 week, excessive white blood cells (immune cells) were accumulated in the vicinity of the hydrogel according to the present invention, but 5 (weight / volume)% polyvinyl as a control. In the vicinity of the alcohol gel, accumulation of leukocytes was not observed. It has been found that the hydrogel according to the present invention maintains the immunostimulatory ability inherent in chitosan even after mixing with polyvinyl alcohol.

さらに、本発明に係るヒドロゲルを、ストレプトゾトシンの投与により糖尿病にしたラット(血中グルコース濃度:>300mg/dl)の皮膚全層欠損モデルに適用した。雄性Wistarラット(糖尿病、7週齢)背部に4つの皮膚全層欠損創(直径1cm)を作製し、本発明に係るヒドロゲルと、本発明に係るヒドロゲルに塩基性線維芽細胞増殖因子(bFGF)を添加したものと、対照としてガーゼおよびビューゲル(登録商標)の計4ケースの経時変化を検証した。創傷部の経時変化を撮影した写真を図8(b)に示す。また、創傷面積の経時変化を図8(c)に示す。   Furthermore, the hydrogel according to the present invention was applied to a skin full-thickness model of rats (blood glucose concentration:> 300 mg / dl) rendered diabetic by administration of streptozotocin. Male Wistar rats (diabetic, 7 weeks old) have four skin full-thickness wounds (1 cm in diameter) on the back, hydrogel according to the present invention, and basic fibroblast growth factor (bFGF) in the hydrogel according to the present invention. The changes over time in a total of 4 cases of gauze and Buegel (registered trademark) were verified. The photograph which image | photographed the time-dependent change of a wound part is shown in FIG.8 (b). Moreover, the time-dependent change of a wound area is shown in FIG.8 (c).

図8(b)および(c)の結果から、本発明に係るヒドロゲルは、市販されているガーゼおよびビューゲルよりも、創傷治癒を著しく促進することがわかった。さらに、本発明に係るヒドロゲルに塩基性線維芽細胞増殖因子(bFGF)を添加することで、特に創傷治癒の初期における創傷治癒が有意に促進されることがわかった。   From the results of FIGS. 8 (b) and (c), it was found that the hydrogel according to the present invention significantly promotes wound healing than commercially available gauze and view gel. Furthermore, it was found that the addition of basic fibroblast growth factor (bFGF) to the hydrogel according to the present invention significantly promotes wound healing, particularly in the early stage of wound healing.

トレオン酸修飾キトサンおよびキシロン酸修飾キトサンの合成、水溶性評価およびヒドロゲルの調製
実施例1に記載の方法と同様の方法により、アルドン酸としてトレオン酸およびキシロン酸を用いて、トレオン酸修飾キトサンおよびキシロン酸修飾キトサンを合成した。反応結果を下記の表3に示す。それぞれのアルドン酸の導入率は、実施例1に記載の場合と同様に、キトサン誘導体(アルドン酸修飾キトサン)を塩酸水溶液に溶解させた水溶液に、その塩酸と当モル濃度の水酸化ナトリウム水溶液を加えた際の導電率の変化を測定することにより求めた。
Synthesis of Threonic Acid-Modified Chitosan and Xylonic Acid-Modified Chitosan, Evaluation of Water Solubility and Preparation of Hydrogel Using the same method as described in Example 1, using threonic acid and xylonic acid as aldonic acid, threonic acid-modified chitosan and xylon Acid-modified chitosan was synthesized. The reaction results are shown in Table 3 below. In the same manner as described in Example 1, the introduction rate of each aldonic acid was determined by adding the hydrochloric acid and an equimolar aqueous sodium hydroxide solution to an aqueous solution in which a chitosan derivative (aldonic acid-modified chitosan) was dissolved in the aqueous hydrochloric acid solution. It was determined by measuring the change in conductivity when added.

次に、以上のようにして合成したトレオン酸修飾キトサンおよびキシロン酸修飾キトサンについて、実施例2と同様の手法により、pHに対する濁度の変化を測定することにより、水溶性を評価した。その結果を図10に示す。図に示されるように、トレオン酸修飾キトサンおよびキシロン酸修飾キトサンのいずれも、グルコン酸修飾キトサンと同様に、無処理のキトサンに比べて、pH7付近の中性領域(生理的pH域)においても水溶性が高いことが認められる。
さらに、合成したトレオン酸修飾キトサンおよびキシロン酸修飾キトサンを実施例4と同様の手法により、−20℃で12時間凍結した後、室温で融解したところ、ゲル化していることが確認された。
Next, the water solubility of the threonic acid-modified chitosan and the xylonic acid-modified chitosan synthesized as described above was evaluated by measuring the change in turbidity with respect to pH by the same method as in Example 2. The result is shown in FIG. As shown in the figure, both the threonic acid-modified chitosan and the xylonic acid-modified chitosan are similar to the gluconic acid-modified chitosan in the neutral region (physiological pH region) around pH 7 as compared with the untreated chitosan. It is recognized that the water solubility is high.
Furthermore, it was confirmed that the synthesized threonic acid-modified chitosan and xylonic acid-modified chitosan were frozen at −20 ° C. for 12 hours by the same method as in Example 4 and then melted at room temperature.

トレオン酸修飾キトサンおよびキシロン酸修飾キトサンの細胞毒性評価
L929繊維芽細胞を1.0×10cells/wellの密度で96wellプレートに播種し、24時間培養した。実施例9で合成したトレオン酸修飾キトサンおよびキシロン酸修飾キトサンのそれぞれを溶解した最少必須培地(pH7.0)をwellに加え、さらに24時間培養した。続いて、cell counting kit 8(同仁化学)を用いて、細胞の生存率を測定した。キトサン誘導体を含まない培地で培養した細胞の生存率を100%とした。トレオン酸修飾キトサン誘導体の場合の測定結果を図9の(b)に示す。グルコン修飾キトサンと同様に、トレオン酸修飾キトサンおよびキシロン酸修飾キトサンの細胞毒性は低いことが認められた。
Cytotoxicity evaluation of threonate-modified chitosan and xylonic acid-modified chitosan L929 fibroblasts were seeded in a 96-well plate at a density of 1.0 × 10 4 cells / well and cultured for 24 hours. A minimum essential medium (pH 7.0) in which each of threonic acid-modified chitosan and xylonic acid-modified chitosan synthesized in Example 9 was dissolved was added to the wells, and further cultured for 24 hours. Subsequently, the cell viability was measured using cell counting kit 8 (Dojin Chemical). The survival rate of cells cultured in a medium containing no chitosan derivative was taken as 100%. The measurement results in the case of a threonic acid-modified chitosan derivative are shown in FIG. Similar to glucone-modified chitosan, threonic acid-modified chitosan and xylonic acid-modified chitosan were found to have low cytotoxicity.

ヒドロゲルの細胞接着性評価
実施例9で合成したトレオン酸修飾キトサンおよびキシロン酸修飾キトサンの1%(w/v)水溶液(pH7.0)を48wellプレートに注ぎ、その底面の半分をそれらのアルドン酸修飾キトサンから成るポリマー溶液で覆った。続いて−20℃で凍結(24時間)後、室温で融解(2時間)することで、ポリマー溶液をゲル化させた。その48wellプレートにL929繊維芽細胞を播種し、培養24時間後に細胞形態を顕微鏡観察した。トレオン酸修飾キトサン由来のゲルおよびキシロン酸由来のゲルのいずれの場合においても、ゲルによる細胞接着性は低かった。
Evaluation of cell adhesion of hydrogel A 1% (w / v) aqueous solution (pH 7.0) of threonic acid-modified chitosan and xylonic acid-modified chitosan synthesized in Example 9 was poured into a 48-well plate, and half of the bottom surface thereof was their aldonic acid. Covered with a polymer solution consisting of modified chitosan. Subsequently, the polymer solution was gelled by freezing at -20 ° C. (24 hours) and then thawing at room temperature (2 hours). The 48-well plate was seeded with L929 fibroblasts, and the cell morphology was observed under a microscope after 24 hours of culture. In both cases of the gel derived from threonic acid-modified chitosan and the gel derived from xylonic acid, the cell adhesion by the gel was low.

Claims (6)

キトサンのグルコサミン単位のアミノ基にアルドン酸が脱水縮合により結合して成るキトサン誘導体に由来するヒドロゲルの調製方法であって、前記キトサン誘導体を含有する水溶液を所定の形状の型に流し込む工程、前記型内で前記キトサン誘導体含有水溶液を凍結する工程、および、前記凍結したキトサン誘導体含有水溶液を融解して、前記所定の形状に応じた形状のゲルを得る工程、を含むことを特徴とするヒドロゲルの調製方法。   A method for preparing a hydrogel derived from a chitosan derivative formed by binding aldonic acid to an amino group of a glucosamine unit of chitosan by dehydration condensation, the step of pouring an aqueous solution containing the chitosan derivative into a mold of a predetermined shape, A hydrogel preparation comprising: freezing the chitosan derivative-containing aqueous solution therein; and thawing the frozen chitosan derivative-containing aqueous solution to obtain a gel having a shape corresponding to the predetermined shape. Method. キトサン誘導体として、脱アセチル化度75〜85%のキトサンを使用して、アルドン酸のキトサンへの導入率が10〜30%であるものを用いる請求項1に記載のヒドロゲルの調製方法。   The method for preparing a hydrogel according to claim 1, wherein the chitosan derivative is chitosan having a deacetylation degree of 75 to 85% and the introduction rate of aldonic acid into chitosan is 10 to 30%. アルドン酸がグルコン酸である請求項2に記載のヒドロゲルの調製方法。   The method for preparing a hydrogel according to claim 2, wherein the aldonic acid is gluconic acid. アルドン酸がトレオン酸である請求項2に記載のヒドロゲルの調製方法。   The method for preparing a hydrogel according to claim 2, wherein the aldonic acid is threonic acid. アルドン酸がキシロン酸である請求項2に記載のヒドロゲルの調製方法。   The method for preparing a hydrogel according to claim 2, wherein the aldonic acid is xylonic acid. 前記キトサン誘導体を含有する水溶液にポリビニルアルコールが混合されている請求項1に記載のヒドロゲルの調製方法。
The method for preparing a hydrogel according to claim 1, wherein polyvinyl alcohol is mixed in the aqueous solution containing the chitosan derivative.
JP2012555972A 2011-02-04 2012-02-03 Hydrogels derived from chitosan derivatives Active JP5907489B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011022562 2011-02-04
JP2011022562 2011-02-04
JP2011265167 2011-12-02
JP2011265167 2011-12-02
PCT/JP2012/052487 WO2012105685A1 (en) 2011-02-04 2012-02-03 Hydrogel produced from chitosan derivative

Publications (2)

Publication Number Publication Date
JPWO2012105685A1 JPWO2012105685A1 (en) 2014-07-03
JP5907489B2 true JP5907489B2 (en) 2016-04-26

Family

ID=46602885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012555972A Active JP5907489B2 (en) 2011-02-04 2012-02-03 Hydrogels derived from chitosan derivatives

Country Status (2)

Country Link
JP (1) JP5907489B2 (en)
WO (1) WO2012105685A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201405902PA (en) 2012-03-21 2014-10-30 Engene Inc Dually derivatized chitosan nanoparticles and methods of making and using the same for gene transfer in vivo
AU2014328439B2 (en) * 2013-09-25 2018-06-28 Engene, Inc. Dually derivatized chitosan nanoparticles and methods of making and using the same for gene transfer in vivo
CN104307030B (en) * 2014-11-07 2016-07-27 广东泰宝医疗科技股份有限公司 A kind of method that Quaternary Ammonium Salt of Chitosan medical hemostatic dressing is prepared in low temperature plasma catalysis
CN104861216B (en) * 2015-04-28 2017-03-15 武汉纺织大学 A kind of preparation method of ultraviolet light 3D printing hydrogel matrix
JP6737194B2 (en) * 2017-01-30 2020-08-05 東洋インキScホールディングス株式会社 Wound dressing gel and method for producing the same
JP7311094B2 (en) * 2019-02-12 2023-07-19 株式会社みやびコスメティックス Liquid agent for soaking gel composition
WO2023167123A1 (en) 2022-03-01 2023-09-07 国立大学法人 鹿児島大学 Method for preparing medical hydrogel
CN115897236B (en) * 2023-02-24 2023-05-26 潍坊医学院附属医院 Antibacterial dressing and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109502A (en) * 1998-10-05 2000-04-18 Maruho Co Ltd Complex chitosan compound and its use
CN101195031A (en) * 2007-12-20 2008-06-11 上海交通大学 Gluconic acid modified chitosan nucleophilic NO donator and synthesizing method thereof
JP2008220388A (en) * 2006-02-14 2008-09-25 Koyo Chemical Kk Sponge hemostatic material made of amorphous partial deacetylated chitin salt, and method of manufacturing the same
JP2011006571A (en) * 2009-06-25 2011-01-13 Dic Corp Adhesive and laminate film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000109502A (en) * 1998-10-05 2000-04-18 Maruho Co Ltd Complex chitosan compound and its use
JP2008220388A (en) * 2006-02-14 2008-09-25 Koyo Chemical Kk Sponge hemostatic material made of amorphous partial deacetylated chitin salt, and method of manufacturing the same
CN101195031A (en) * 2007-12-20 2008-06-11 上海交通大学 Gluconic acid modified chitosan nucleophilic NO donator and synthesizing method thereof
JP2011006571A (en) * 2009-06-25 2011-01-13 Dic Corp Adhesive and laminate film

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
JPN6012012724; Jae Hyung PARK, et al.: 'Synthesis and Characterization of Sugar-Bearing Chitosan Derivatives: Aqueous Solubility and Biodegr' Biomacromolecules Vol.4, 2003, p.1087-1091 *
JPN6012012725; 化学大辞典2縮刷版 , 19870215, p.732, 共立出版株式会社 *
JPN6012012726; 化学大辞典3縮刷版 , 19930601, p.149, 共立出版株式会社 *
JPN6012012728; 化学大辞典6縮刷版 , 19870215, p.562, 共立出版株式会社 *
JPN6012012729; Shingo NAKAMURA, et al.: 'Effect of controlled release of fibroblast growth factor-2 from chitosan/fucoidan micro complex-hydr' Journal of Biomedical Materials Research Part A Vol.85A Iss.3, 2007, p.619-627 *
JPN6012012731; 牟田智也、他: '部分脱アセチル化キチンスポンジ止血材の局所止血効果の検討-非晶質キチン・グルコン酸塩を用いて-' 日本バイオマテリアル学会大会予稿集 Vol.32, 2010, p.349 *
JPN6012012734; 牟田智也, 他: '部分脱アセチル化キチンスポンジ止血材の局所止血効果の検討 非晶質キチン・グルコン酸塩を用いて' 中部日本整形外科災害外科学会雑誌 Vol.53 No.6, 2010, p.1423-1424 *
JPN6012012736; 黒住誠司, 他: 'キチン類スポンジ止血材の開発' キチン・キトサン研究 Vol.15 No.2, 2009, p.102-103 *
JPN6012012738; 黒住誠司, 他: 'キチン類スポンジ止血材の開発' キチン・キトサン研究 Vol.14 No.2, 2008, p.158-159 *
JPN6012012739; 黒住誠司, 他: '非晶質キチン, キトサンを用いた止血材開発に関する研究' キチン・キトサン研究 Vol.13 No.2, 2007, p.94-95 *

Also Published As

Publication number Publication date
WO2012105685A1 (en) 2012-08-09
JPWO2012105685A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5907489B2 (en) Hydrogels derived from chitosan derivatives
Zheng et al. Self-healing polysaccharide-based injectable hydrogels with antibacterial activity for wound healing
Seidi et al. Chitosan-based blends for biomedical applications
Teng et al. Recent development of alginate-based materials and their versatile functions in biomedicine, flexible electronics, and environmental uses
Kumar et al. Application of xanthan gum as polysaccharide in tissue engineering: A review
Yang et al. Polysaccharide-based multifunctional hydrogel bio-adhesives for wound healing: A review
LogithKumar et al. A review of chitosan and its derivatives in bone tissue engineering
Wu et al. Chitosan-based composite hydrogels for biomedical applications
EP2310448B1 (en) Three-dimensional nanocomposite materials consisting of a polysaccharidic matrix and metallic nanoparticles, preparation and use thereof
Jayakumar et al. Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications
Zhao et al. Natural polymer-based hydrogels: From polymer to biomedical applications
US20080063617A1 (en) Cosmetics formulations
Berillo et al. Preparation and physicochemical characteristics of cryogel based on gelatin and oxidised dextran
Yin et al. Smart pH-sensitive hydrogel based on the pineapple peel-oxidized hydroxyethyl cellulose and the Hericium erinaceus residue carboxymethyl chitosan for use in drug delivery
CN1954817A (en) Preparation method of injection type pH and glucose sensitive hydrogel
CN105713106A (en) Double-crosslinked sodium alginate hydrogel and preparation method and application thereof
CN107019706A (en) A kind of cis-platinum aldehyde radical hyaluronic acid nanometer compound and preparation method thereof
Qamar et al. Carrageenan‐based Hybrids with Biopolymers and Nano‐structured Materials for Biomimetic Applications
CN110180023B (en) Preparation method of high-strength biomass tissue engineering scaffold material
Paiva et al. Crosslinking methods in polysaccharide-based hydrogels for drug delivery systems
Mehrabi et al. Evaluation of inherent properties of the carboxymethyl cellulose (CMC) for potential application in tissue engineering focusing on bone regeneration
Liang Advances in drug delivery applications of modified bacterial cellulose-based materials
Oliveira et al. Hydrogels dressings based on guar gum and chitosan: Inherent action against resistant bacteria and fast wound closure
CN107915850B (en) Selenium-containing chitosan hydrogel and preparation method, degradation method and application thereof
Sudha et al. Advances in guar gum-based materials in biomedical applications with special reference to tissue engineering applications

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150129

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20150129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150227

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160314

R150 Certificate of patent or registration of utility model

Ref document number: 5907489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250