JP5906915B2 - Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same - Google Patents

Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same Download PDF

Info

Publication number
JP5906915B2
JP5906915B2 JP2012095759A JP2012095759A JP5906915B2 JP 5906915 B2 JP5906915 B2 JP 5906915B2 JP 2012095759 A JP2012095759 A JP 2012095759A JP 2012095759 A JP2012095759 A JP 2012095759A JP 5906915 B2 JP5906915 B2 JP 5906915B2
Authority
JP
Japan
Prior art keywords
aqueous electrolyte
carbonate
mass
less
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012095759A
Other languages
Japanese (ja)
Other versions
JP2013051195A (en
Inventor
重松 保行
保行 重松
大貫 正道
正道 大貫
島 邦久
邦久 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012095759A priority Critical patent/JP5906915B2/en
Publication of JP2013051195A publication Critical patent/JP2013051195A/en
Application granted granted Critical
Publication of JP5906915B2 publication Critical patent/JP5906915B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、二次電池用の非水系電解液及びそれを用いた二次電池に関するものであり、更に詳しくは、特定の成分を含有するリチウム二次電池用の非水系電解液及びそれを用いたリチウム二次電池に関するものである。   The present invention relates to a non-aqueous electrolyte for a secondary battery and a secondary battery using the same, and more specifically, a non-aqueous electrolyte for a lithium secondary battery containing a specific component and the use thereof. The present invention relates to a lithium secondary battery.

近代の急速な産業の発達による電子機器の小型化に伴い、二次電池の更なる高容量化が切望されるようになった。そこで、ニッケル・カドミウム電池やニッケル・水素電池に比べてエネルギー密度の高いリチウム二次電池が開発され、また、現在に至るまでこれの性能向上への取り組みも繰り返し行われてきた。
一方、近年では環境問題やエネルギー問題などの地球規模の課題を背景に、リチウム二次電池の車載用電源や定置型電源などの大型電源への応用にも大きな期待が集まっている。しかし、このような電池は一般に、長期に及ぶ充放電の繰り返しに対する安定性の確保が不可欠であり、さらには外気に晒される環境下での使用が見込まれているため、開発に当たっては氷点下のような低温環境下における電池特性、特に低温放電特性が重要視されている。
Along with the downsizing of electronic equipment due to the rapid development of modern industry, there has been a strong demand for higher capacity of secondary batteries. Therefore, lithium secondary batteries having higher energy density than nickel / cadmium batteries and nickel / hydrogen batteries have been developed, and efforts to improve performance have been repeated until now.
On the other hand, in recent years, with the background of global issues such as environmental problems and energy problems, great expectations have been placed on the application of lithium secondary batteries to large-scale power sources such as in-vehicle power sources and stationary power sources. However, in general, it is indispensable to ensure the stability of such batteries against repeated charging and discharging over a long period of time, and further, they are expected to be used in an environment exposed to the outside air. In particular, battery characteristics under particularly low temperature environments, particularly low temperature discharge characteristics, are regarded as important.

リチウム二次電池を構成する成分は主に正極、負極、セパレータ、および電解液に大別される。これらのうち、電解液には一般に、LiPF、LiBF、LiClO、LiCFSO、LiAsF、LiN(CFSO、LiCF(CFSO等の電解質を、エチレンカーボネート、プロピレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;酢酸メチル、プロピオン酸メチル等の鎖状エステル類等の非水系溶媒に溶解させた非水系電解液が用いられている。 Components constituting the lithium secondary battery are mainly classified into a positive electrode, a negative electrode, a separator, and an electrolytic solution. Of these, electrolytes generally include electrolytes such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6 , LiN (CF 3 SO 2 ) 2 , LiCF 3 (CF 2 ) 3 SO 3 , Cyclic carbonates such as ethylene carbonate and propylene carbonate, chain carbonates such as dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; chain esters such as methyl acetate and methyl propionate A non-aqueous electrolyte solution dissolved in a non-aqueous solvent such as a liquid is used.

リチウム二次電池の長期耐久性を向上させるための取り組みの一つとして、上記電解液に特定の化合物を加えることにより、電池の使用初期に不動態皮膜を負極上に形成し、主な劣化要因である溶媒の還元分解反応などの副反応を抑制させる取り組みがなされている。
このような化合物の例として、分子内にイソシアネート基を含有する化合物が挙げられる。特許文献1、特許文献2及び特許文献3には、それぞれ電解液にイソシアネート基を有する低分子化合物、鎖状のイソシアネート化合物やジイソシアネート化合物を加えることにより、サイクル安定性を向上させることが開示されている。
As one of the efforts to improve the long-term durability of lithium secondary batteries, by adding a specific compound to the above electrolyte, a passive film is formed on the negative electrode at the initial use of the battery, which is a major cause of deterioration. Efforts are being made to suppress side reactions such as reductive decomposition of solvents.
Examples of such compounds include compounds containing an isocyanate group in the molecule. Patent Document 1, Patent Document 2 and Patent Document 3 disclose that cycle stability is improved by adding a low-molecular compound having an isocyanate group, a chain isocyanate compound or a diisocyanate compound to the electrolyte solution, respectively. Yes.

また、特許文献4にはサイクル特性の改善に対し、電解液に加える化合物として特定のスルホン化合物とイソシアネート化合物を併用して用いることが提案されている。しかしながら、以上のようなイソシアネート化合物では、特に近年自動車用などの大型電池に要求される長期耐久性能を満たすことは難しい。また、低温放電特性も含めた十分な電池特性を達成する為に更なる改善が求められている。   Patent Document 4 proposes to use a specific sulfone compound and an isocyanate compound in combination as a compound to be added to the electrolytic solution for improving the cycle characteristics. However, with the isocyanate compounds as described above, it is difficult to satisfy the long-term durability performance required for large batteries for automobiles in recent years. Furthermore, further improvements are required to achieve sufficient battery characteristics including low temperature discharge characteristics.

一方、リチウム二次電池の中には、高分子マトリックスが形成する高次構造内に非水系電解液を含浸させるなどして電解液を固定化して用いる場合がある。これにより、電池の形状設計の自由度が高く、液漏れがほとんど生じないリチウム二次電池を提供することが可能となる。こうした所謂ゲルポリマー電解質においてもイソシアネート化合物を用いることがある。例えば特許文献5、6及び7には、ポリオールなどのイソシアネート基と結合可能なポリマーと組み合わせて硬化して高分子マトリックスを形成させることが開示さ
れている。
On the other hand, some lithium secondary batteries may be used by immobilizing the electrolytic solution by impregnating the non-aqueous electrolytic solution into the higher order structure formed by the polymer matrix. As a result, it is possible to provide a lithium secondary battery having a high degree of freedom in battery shape design and almost no liquid leakage. In such so-called gel polymer electrolytes, isocyanate compounds are sometimes used. For example, Patent Documents 5, 6 and 7 disclose that a polymer matrix is formed by curing in combination with a polymer capable of binding to an isocyanate group such as a polyol.

この架橋剤としての目的において、イソシアネート化合物は上述のような低分子量の脂肪族ジイソシアネートや脂環族ジイソシアネートなどを用いても良いが、それらを主原料として製造されるポリイソシアネートを用いても良い。通常、ポリイソシアネートを硬化させて得られる硬化樹脂は機械的特性、例えば可撓性や、耐薬品性等に優れており、塗料、接着剤、シーリング材、防水材、フォーム、エラストマーなどに広く利用され、同様の理由から、ゲル電解質ポリマーにおいても好適に用いられる。   For the purpose of the crosslinking agent, the isocyanate compound may be a low molecular weight aliphatic diisocyanate or alicyclic diisocyanate as described above, or may be a polyisocyanate produced using these as a main raw material. Usually, cured resins obtained by curing polyisocyanates have excellent mechanical properties such as flexibility and chemical resistance, and are widely used in paints, adhesives, sealing materials, waterproof materials, foams, elastomers, etc. For the same reason, it is also preferably used in gel electrolyte polymers.

ポリイソシアネートには、カルボジイミド、ウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートなどの骨格を有するものが知られている。ビウレット型ポリイソシアネートに関しては、特許文献8や特許文献9などに開示がある。イソシアヌレート型ポリイソシアネートに関しては、特許文献10や特許文献11などに開示がある。アロファネート型ポリイソシアネートに関しては、特許文献12などに開示がある。   As polyisocyanates, those having a skeleton such as carbodiimide, uretdione, oxadiaditrione, biuret, urethane, allophanate, isocyanurate and the like are known. The biuret type polyisocyanate is disclosed in Patent Document 8, Patent Document 9, and the like. The isocyanurate type polyisocyanate is disclosed in Patent Document 10 and Patent Document 11. The allophanate type polyisocyanate is disclosed in Patent Document 12 and the like.

しかしながら、電解液を固化すると、高分子マトリックスがイオンの移動の妨げとなって、電池の抵抗を著しく増加し、例えば大電流が必要とされる電池などには向いていない。従って、電池の用途によっては、イソシアネート化合物と、それと硬化する化合物を電解液中に共存させること、そしてそれらを硬化して電解液を固化することは好ましくない場合がある。   However, when the electrolyte solution is solidified, the polymer matrix hinders the movement of ions, and the resistance of the battery is remarkably increased. For example, it is not suitable for a battery that requires a large current. Therefore, depending on the use of the battery, it may not be preferable to coexist an isocyanate compound and a compound that cures with the isocyanate compound in the electrolytic solution, and to cure them to solidify the electrolytic solution.

特開2005−259641号公報JP 2005-259641 A 特開2006−164759号公報JP 2006-164759 A 特開2007−242411号公報JP 2007-242411 A 特開2010−225522号公報JP 2010-225522 A 特開2005−158703号公報JP 2005-158703 A 特開2005−294020号公報JP 2005-294020 A 特開2004−214041号公報JP 2004-214041 A 特開昭63−174961号広報JP-A 63-174961 特開平8−225511号広報JP-A-8-225511 特開昭63−57577号公報JP-A-63-57577 特開昭57−47319号公報JP 57-47319 A 特開平7−304724号公報JP-A-7-304724

本発明は、かかる背景技術に鑑みてなされたものであり、長期耐久性と負荷特性に優れた二次電池用非水系電解液を提供することにある。
本発明者は、上記課題に鑑み鋭意研究した結果、電解質及び非水溶媒からなる非水電解液中に、分子内に下記一般式(1)で示される部分構造を1つ以上、及びイソシアネート基を2つ以上有する化合物を特定量含むことにより、著しく長期耐久性と負荷特性に優れた非水系電解液二次電池が実現できることを見出し、本発明を完成させるに至った。
This invention is made | formed in view of this background art, and is providing the nonaqueous electrolyte solution for secondary batteries excellent in long-term durability and load characteristics.
As a result of intensive studies in view of the above problems, the present inventor has found that in a non-aqueous electrolyte solution composed of an electrolyte and a non-aqueous solvent, one or more partial structures represented by the following general formula (1) in the molecule and an isocyanate group By including a specific amount of a compound having 2 or more, it was found that a non-aqueous electrolyte secondary battery with extremely excellent long-term durability and load characteristics can be realized, and the present invention has been completed.

即ち、本発明の要旨は、金属イオンを吸蔵・放出しうる正極及び負極と、セパレータとを備える非水系電解液二次電池用の非水系電解液であって、
前記非水系電解液が電解質及び非水溶媒とともに、分子内に下記一般式(1)で示される部分構造を1つ以上、及びイソシアネート基を2つ以上有する化合物を0.01質量%以上、1.0質量%以下含むことを特徴とする、非水系電解液二次電池用非水系電解液である。
That is, the gist of the present invention is a non-aqueous electrolyte solution for a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions, and a separator,
Wherein together with the non-aqueous electrolyte is an electrolyte and a nonaqueous solvent, the following formula in the molecule (1) a partial structure of one or more indicated, and a compound having two or more isocyanate groups 0.01% by mass or more, 1 It is a non-aqueous electrolyte solution for non-aqueous electrolyte secondary batteries characterized by containing 0.0 mass% or less .

Figure 0005906915
Figure 0005906915

ここで、Rは任意の元素若しくは基を表す。
また、本発明の別の要旨は、金属イオンを吸蔵・放出しうる正極と負極と、セパレータとを備える非水系電解液二次電池であって、該非水系電解液が上記非水系電解液であることを特徴とする非水系電解液二次電池を提供するものである。
本発明の優れた効果の1つはイソシアネート基を2つ以上有することにある。こうした化合物を電解液に配合することにより、負極表面上にこの部分構造に由来する不動態皮膜が形成されると共に、その皮膜が負極表面上に強固に結着する。この結果、溶媒の還元分解を効果的に抑制すると共に、その効果が長期にわたって持続することが可能となる。また、分子内に式(1)で示される部分構造が含まれることによって、上述の皮膜は比較的リチウムイオン伝導性の高い皮膜となるので電荷移動抵抗が低く、優れた低温放電特性を得ることが可能となる。以上のように、電解液が固化しないように本発明の化合物を電解液に配合することによって、開示されている他のイソシアネート化合物を用いるよりも、優れた耐久性と負荷特性を達成することが可能となる。
Here, R represents an arbitrary element or group.
Another gist of the present invention is a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of inserting and extracting metal ions, and a separator, wherein the non-aqueous electrolyte is the non-aqueous electrolyte. A non-aqueous electrolyte secondary battery is provided.
One of the excellent effects of the present invention is to have two or more isocyanate groups. By blending such a compound into the electrolytic solution, a passive film derived from this partial structure is formed on the negative electrode surface, and the film is firmly bound on the negative electrode surface. As a result, reductive decomposition of the solvent can be effectively suppressed, and the effect can be maintained for a long time. In addition, since the partial structure represented by the formula (1) is included in the molecule, the above-described film becomes a film having a relatively high lithium ion conductivity, so that the charge transfer resistance is low, and excellent low-temperature discharge characteristics are obtained. Is possible. As described above, by blending the compound of the present invention in the electrolytic solution so that the electrolytic solution does not solidify, it is possible to achieve superior durability and load characteristics than using other disclosed isocyanate compounds. It becomes possible.

本発明によれば、電極表面に抵抗の小さい不動態皮膜を形成させて、電池内の物質の化学的安定性を向上させ、長期に及ぶ優れたサイクル特性と低温放電特性を兼ね備えた二次電池用の非水系電解液及び二次電池を提供することが可能である。   According to the present invention, a passive film having a low resistance is formed on the electrode surface, the chemical stability of the substance in the battery is improved, and a secondary battery having excellent cycle characteristics and low-temperature discharge characteristics over a long period of time. It is possible to provide a non-aqueous electrolyte solution and a secondary battery for use.

以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定はされない。その要旨の範囲内で種々変形して実施することができる。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail. However, the description of constituent elements described below is an example (representative example) of an embodiment of the present invention, and is not specified by these contents. Various modifications can be made within the scope of the gist.

<1−1.電解質>
本発明の非水系電解液に用いられる電解質には制限はなく、目的とする非水系電解液二次電池に電解質として用いられる公知のものを任意に採用して含有させることができる。本発明の非水系電解液を非水系電解液二次電池に用いる場合には、電解質はリチウム塩が好ましい。
<1-1. Electrolyte>
There is no restriction | limiting in the electrolyte used for the non-aqueous electrolyte of this invention, The well-known thing used as an electrolyte can be arbitrarily employ | adopted and contained in the target non-aqueous electrolyte secondary battery. When the non-aqueous electrolyte solution of the present invention is used in a non-aqueous electrolyte secondary battery, the electrolyte is preferably a lithium salt.

電解質の具体例としては、例えば、LiClO、LiAsF、LiPF、Li2CO、LiBF等の無機リチウム塩;
LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF)、LiBF(C)、LiBF(CF、LiBF(C、LiBF(CFSO、LiBF(CSO等の含フッ素有機リチウム塩;
Specific examples of the electrolyte include inorganic lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , Li 2 CO 3 , and LiBF 4 ;
LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 3 (CF 3 ), LiBF 3 ( Fluorine-containing organic compounds such as C 2 F 5 ), LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (C 2 F 5 SO 2 ) 2 Lithium salt;

リチウムビス(オキサラト)ボレート、リチウムジフルオロ(オキサラト)ボレート、
リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロ(オキサラト)ホスフェート等の含ジカルボン酸錯体リチウム塩;
KPF、NaPF、NaBF、CFSONa等のナトリウム塩又はカリウム塩;
等が挙げられる。
Lithium bis (oxalato) borate, lithium difluoro (oxalato) borate,
Dicarboxylic acid complex lithium salts such as lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate;
Sodium salts or potassium salts such as KPF 6 , NaPF 6 , NaBF 4 , CF 3 SO 3 Na;
Etc.

これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO又はリチウムビス(オキサラト)ボレートが好ましく、さらにはLiPF又はLiBFが好ましい。
電解質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。中でも、特定の無機リチウム塩の2種を併用したり、無機リチウム塩と含フッ素有機リチウム塩とを併用すると、連続充電時のガス発生が抑制され、若しくは高温保存後の劣化が抑制されるので好ましい。
Of these, LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 or lithium bis (oxalato) borate are preferable, and LiPF 6 or LiBF 4 is preferred.
One type of electrolyte may be used alone, or two or more types of electrolytes may be used in any combination and ratio. In particular, when two types of specific inorganic lithium salts are used in combination, or when an inorganic lithium salt and a fluorine-containing organic lithium salt are used in combination, gas generation during continuous charging is suppressed, or deterioration after high-temperature storage is suppressed. preferable.

本発明の非水系電解液の最終的な組成中におけるリチウム塩の濃度は、本発明の効果を著しく損なわない限り任意であるが、通常0.5mol/L以上、好ましくは0.6mol/L以上、より好ましくは0.8mol/L以上、また、通常3mol/L以下、好ましくは2mol/L以下、より好ましくは1.5mol/L以下の範囲である。上記範囲であれば、荷電粒子であるリチウムが少なすぎず、かつ電解液の粘度を適切な範囲とし、電解液の電気伝導率を十分に確保することができる。   The concentration of the lithium salt in the final composition of the non-aqueous electrolyte of the present invention is arbitrary as long as the effects of the present invention are not significantly impaired, but usually 0.5 mol / L or more, preferably 0.6 mol / L or more. More preferably, it is 0.8 mol / L or more, usually 3 mol / L or less, preferably 2 mol / L or less, more preferably 1.5 mol / L or less. If it is the said range, lithium which is a charged particle is not too little, and the viscosity of electrolyte solution can be made into a suitable range, and the electrical conductivity of electrolyte solution can fully be ensured.

<1−2.非水系溶媒>
本発明の非水系電解液が含有する非水系溶媒は、電池として使用した際に、電池特性に対して悪影響を及ぼさない溶媒であれば特に制限されないが、以下に掲げる非水系電解液に用いられる溶媒の内の1種以上であることが好ましい。通常使用される非水系溶媒の例としては、鎖状及び環状カーボネート、鎖状及び環状カルボン酸エステル、鎖状及び環状エーテル、含リン有機溶媒、含硫黄有機溶媒等が挙げられる。
<1-2. Non-aqueous solvent>
The non-aqueous solvent contained in the non-aqueous electrolyte of the present invention is not particularly limited as long as it is a solvent that does not adversely affect battery characteristics when used as a battery, but is used in the following non-aqueous electrolytes. One or more of the solvents are preferable. Examples of commonly used non-aqueous solvents include linear and cyclic carbonates, linear and cyclic carboxylic acid esters, linear and cyclic ethers, phosphorus-containing organic solvents, sulfur-containing organic solvents, and the like.

鎖状カーボネートの種類に制限は無く、通常使用されるものの例としては、ジアルキルカーボネートが好ましく、構成するアルキル基の炭素数は、それぞれ1〜5が好ましく、特に好ましくは1〜4である。具体的には、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、メチル−n−プロピルカーボネート、エチル−n−プロピルカーボネート、ジ−n−プロピルカーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートが、工業的な入手性や非水系電解液二次電池における種々の特性が良い点で好ましい。   There is no restriction | limiting in the kind of chain carbonate, As an example of what is used normally, a dialkyl carbonate is preferable and carbon number of the alkyl group to comprise is preferable 1-5, respectively, Most preferably, it is 1-4. Specific examples include dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate and the like. Among these, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate are preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.

環状カーボネートの種類に制限は無く、通常使用されるものしては、環状カーボネートを構成するアルキレン基の炭素数は2〜6が好ましく、特に好ましくは2〜4である。具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート(2−エチルエチレンカーボネート、シス及びトランス−2,3−ジメチルエチレンカーボネート)等が挙げられる。これらの中でも、エチレンカーボネート又はプロピレンカーボネートが、非水系電解液二次電池における種々の特性が良い点で好ましい。   There is no restriction | limiting in the kind of cyclic carbonate, As what is normally used, carbon number of the alkylene group which comprises cyclic carbonate has preferable 2-6, Most preferably, it is 2-4. Specific examples include ethylene carbonate, propylene carbonate, butylene carbonate (2-ethylethylene carbonate, cis and trans-2,3-dimethylethylene carbonate). Among these, ethylene carbonate or propylene carbonate is preferable in that various characteristics in the non-aqueous electrolyte secondary battery are good.

鎖状カルボン酸エステルの種類も制限は無く、通常使用されるものの例としては、酢酸メチル、酢酸エチル、酢酸−n−プロピル、酢酸−i−プロピル、酢酸−n−ブチル、酢酸−i−ブチル、酢酸−t−ブチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸−n−プロピル、プロピオン酸−i−プロピル、プロピオン酸−n−ブチル、プロピオン酸−i−ブチル、プロピオン酸−t−ブチル等が挙げられる。これらの中でも、酢酸メチル、酢酸エチル、プロピオン酸メチル又はプロピオン酸エチルが、工業的な入手性
や非水系電解液二次電池における種々の特性が良い点で好ましい。
The type of chain carboxylate ester is not limited, and examples of commonly used ones include methyl acetate, ethyl acetate, acetic acid-n-propyl, acetic acid-i-propyl, acetic acid-n-butyl, acetic acid-i-butyl. , Acetate-t-butyl, methyl propionate, ethyl propionate, propionate-n-propyl, propionate-i-propyl, propionate-n-butyl, propionate-i-butyl, propionate-t-butyl, etc. Is mentioned. Among these, methyl acetate, ethyl acetate, methyl propionate, or ethyl propionate are preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.

また、環状カルボン酸エステルの種類も制限はないが、通常使用されるものの例としては、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等が挙げられる。これらの中でも、γ−ブチロラクトンが、工業的な入手性や非水系電解液二次電池における種々の特性が良い点で好ましい。
鎖状エーテルの種類も制限はないが、通常使用されるものの例としては、ジメトキシメタン、ジメトキシエタン、ジエトキシメタン、ジエトキシエタン、エトキシメトキシメタン、エトキシメトキシエタン等が挙げられる。これらの中でも、ジメトキシエタン又はジエトキシエタンが、工業的な入手性や非水系電解液二次電池における種々の特性が良い点で好ましい。
Also, the type of cyclic carboxylic acid ester is not limited, but examples of commonly used ones include γ-butyrolactone, γ-valerolactone, δ-valerolactone, and the like. Among these, γ-butyrolactone is preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.
The type of chain ether is not limited, but examples of commonly used ones include dimethoxymethane, dimethoxyethane, diethoxymethane, diethoxyethane, ethoxymethoxymethane, and ethoxymethoxyethane. Among these, dimethoxyethane or diethoxyethane is preferable in terms of industrial availability and various characteristics in the non-aqueous electrolyte secondary battery.

また、環状エーテルの種類も制限はないが、通常使用されるものの例としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられる。
含リン有機溶媒の種類にも特に制限はないが、通常使用されるものの例としては、リン酸トリメチル、リン酸トリエチル、リン酸トリフェニル等のリン酸エステル類;
亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリフェニル等の亜リン酸エステル類;トリメチルホスフィンオキシド、トリエチルホスフィンオキシド、トリフェニルホスフィンオキシド等のホスフィンオキシド類;等が挙げられる。
Moreover, although there is no restriction | limiting in the kind of cyclic ether, Tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran etc. are mentioned as an example of what is used normally.
Although there is no restriction | limiting in particular also in the kind of phosphorus-containing organic solvent, As an example of what is used normally, phosphate esters, such as a trimethyl phosphate, a triethyl phosphate, and a triphenyl phosphate;
Phosphites such as trimethyl phosphite, triethyl phosphite and triphenyl phosphite; phosphine oxides such as trimethyl phosphine oxide, triethyl phosphine oxide and triphenyl phosphine oxide; and the like.

含硫黄有機溶媒の種類にも特に制限はないが、通常使用されるものの例としては、エチレンサルファイト、1,3−プロパンスルトン、1,4−ブタンスルトン、メタンスルホン酸メチル、ブスルファン、スルホラン、スルホレン、ジメチルスルホン、ジフェニルスルホン、メチルフェニルスルホン、ジブチルジスルフィド、ジシクロヘキシルジスルフィド、テトラメチルチウラムモノスルフイド、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等が挙げられる。   The type of sulfur-containing organic solvent is not particularly limited, but examples of commonly used solvents include ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methyl methanesulfonate, busulfan, sulfolane, and sulfolene. Dimethylsulfone, diphenylsulfone, methylphenylsulfone, dibutyldisulfide, dicyclohexyldisulfide, tetramethylthiuram monosulfide, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide and the like.

これらの中でも、鎖状及び環状カーボネート又は鎖状及び環状カルボン酸エステルが、非水系電解液二次電池における種々の特性が良い点で好ましく、それらのなかでも、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、γ−ブチロラクトンがより好ましく、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、酢酸エチル、プロピオン酸メチル、γ−ブチロラクトンが更に好ましい。   Among these, chain and cyclic carbonates or chain and cyclic carboxylic acid esters are preferable in terms of various characteristics in the non-aqueous electrolyte secondary battery, and among them, ethylene carbonate, propylene carbonate, dimethyl carbonate, More preferred are ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, ethyl propionate, and γ-butyrolactone, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, ethyl acetate, methyl propionate, γ- Butyrolactone is more preferred.

これらは単独で用いても、2種類以上を併用してもよいが、2種以上の化合物を併用することが好ましい。例えば、環状カーボネート類の高誘電率溶媒と、鎖状カーボネート類や鎖状エステル類等の低粘度溶媒とを併用するのが好ましい。非水系溶媒の好ましい組合せの一つは、環状カーボネート類と鎖状カーボネート類を主体とする組合せである。なかでも、非水系溶媒全体に占める環状カーボネート類と鎖状カーボネート類との合計が、通常80容量%以上、好ましくは85容量%以上、より好ましくは90容量%以上であり、かつ環状カーボネート類と鎖状カーボネート類との合計に対する環状カーボネート類の容量が通常5容量%以上、好ましくは10容量%以上、より好ましくは15%容量以上であり、通常50%容量以下、好ましくは40%以下、より好ましくは35%以下のものである。これらの非水系溶媒の組み合わせを用いると、これを用いて作製された電池のサイクル特性と高温保存特性(特に、高温保存後の残存容量及び高負荷放電容量)のバランスがよくなるので好ましい。   These may be used alone or in combination of two or more, but it is preferable to use two or more compounds in combination. For example, it is preferable to use a high dielectric constant solvent of cyclic carbonates in combination with a low viscosity solvent such as chain carbonates or chain esters. One preferred combination of non-aqueous solvents is a combination mainly composed of cyclic carbonates and chain carbonates. Among them, the total of the cyclic carbonates and the chain carbonates in the whole non-aqueous solvent is usually 80% by volume or more, preferably 85% by volume or more, more preferably 90% by volume or more, and the cyclic carbonates The capacity of the cyclic carbonates relative to the total of the chain carbonates is usually 5% by volume or more, preferably 10% by volume or more, more preferably 15% or more by volume, usually 50% capacity or less, preferably 40% or less, more Preferably it is 35% or less. Use of a combination of these non-aqueous solvents is preferable because the balance between cycle characteristics and high-temperature storage characteristics (particularly, remaining capacity and high-load discharge capacity after high-temperature storage) of a battery produced using the non-aqueous solvent is improved.

環状カーボネート類と鎖状カーボネート類の好ましい組み合わせの具体例としては、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとジエチルカーボネ
ート、エチレンカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネート等が挙げられる。
Specific examples of preferred combinations of cyclic carbonates and chain carbonates include ethylene carbonate and dimethyl carbonate, ethylene carbonate and diethyl carbonate, ethylene carbonate and ethyl methyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate And ethyl methyl carbonate, ethylene carbonate, diethyl carbonate, and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate.

これらのエチレンカーボネートと鎖状カーボネート類との組み合わせに、更にプロピレンカーボネートを加えた組み合わせも、好ましい組み合わせとして挙げられる。プロピレンカーボネートを含有する場合には、エチレンカーボネートとプロピレンカーボネートの容量比は、99:1〜40:60が好ましく、特に好ましくは95:5〜50:50である。更に、非水系溶媒全体に占めるプロピレンカーボネートの量を、通常0.1容量%以上、好ましくは1容量%、より好ましくは2容量%以上、通常10容量%以下、好ましくは8容量%以下、より好ましくは5容量%以下とすると、エチレンカーボネートと鎖状カーボネート類との組み合わせの特性を維持したまま、更に放電負荷特性が優れるので好ましい。   A combination in which propylene carbonate is further added to the combination of these ethylene carbonates and chain carbonates is also a preferable combination. In the case of containing propylene carbonate, the volume ratio of ethylene carbonate to propylene carbonate is preferably 99: 1 to 40:60, particularly preferably 95: 5 to 50:50. Furthermore, the amount of propylene carbonate in the whole non-aqueous solvent is usually 0.1% by volume or more, preferably 1% by volume, more preferably 2% by volume or more, usually 10% by volume or less, preferably 8% by volume or less, more Preferably, it is preferably 5% by volume or less because the discharge load characteristics are further excellent while maintaining the combination characteristics of ethylene carbonate and chain carbonates.

これらの中で、非対称鎖状カーボネート類を含有するものが更に好ましく、特に、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジエチルカーボネートとエチルメチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネートとエチルメチルカーボネートといったエチレンカーボネートと対称鎖状カーボネート類と非対称鎖状カーボネート類を含有するもの、或いは更にプロピレンカーボネートを含有するものが、サイクル特性と放電負荷特性のバランスが良いので好ましい。中でも、非対称鎖状カーボネート類がエチルメチルカーボネートであるものが好ましく、また、ジアルキルカーボネートを構成するアルキル基の炭素数は1〜2が好ましい。   Among these, those containing asymmetric chain carbonates are more preferable, particularly ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate, ethylene carbonate, diethyl carbonate and ethyl methyl carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl. Those containing ethylene carbonate such as methyl carbonate, symmetric chain carbonates and asymmetric chain carbonates, or further containing propylene carbonate are preferred because of a good balance between cycle characteristics and discharge load characteristics. Among these, those in which the asymmetric chain carbonate is ethyl methyl carbonate are preferable, and the alkyl group constituting the dialkyl carbonate preferably has 1 to 2 carbon atoms.

好ましい混合溶媒の他の例は、鎖状エステルを含有するものである。特に、上記、環状カーボネート類と鎖状カーボネート類の混合溶媒に、鎖状エステルを含有するものが、電池の放電負荷特性向上の観点から好ましく、鎖状エステルとしては、酢酸エチル、プロピオン酸メチルが、特に好ましい。非水系溶媒に占める鎖状エステルの容量は、通常容量5%以上、好ましくは8容量%以上、より好ましくは15容量%以上であり、通常50容量%以下、好ましくは35容量%以下、より好ましくは30容量%以下、更に好ましくは25容量%以下である。   Another example of a preferable mixed solvent is one containing a chain ester. In particular, those containing a chain ester in the mixed solvent of cyclic carbonates and chain carbonates are preferable from the viewpoint of improving the discharge load characteristics of the battery. Examples of the chain esters include ethyl acetate and methyl propionate. Is particularly preferred. The volume of the chain ester in the non-aqueous solvent is usually 5% or more, preferably 8% or more, more preferably 15% or more, usually 50% or less, preferably 35% or less, more preferably Is 30% by volume or less, more preferably 25% by volume or less.

他の好ましい非水系溶媒の例は、エチレンカーボネート、プロピレンカーボネート及びブチレンカーボネート、γ−ブチロラクトン及びγ−バレロラクトンよりなる群から選ばれた1種の有機溶媒、又は該群から選ばれた2以上の有機溶媒からなる混合溶媒を全体の60容量%以上を占めるものである。こうした混合溶媒は引火点が50℃以上となることが好ましく、中でも70℃以上となることが特に好ましい。この溶媒を用いた非水系電解液は、高温で使用しても溶媒の蒸発や液漏れが少なくなる。中でも、非水系溶媒に占めるエチレンカーボネートとγ−ブチロラクトンとの合計が、通常80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとγ−ブチロラクトンとの容量比が5:95〜45:55であるもの、又はエチレンカーボネートとプロピレンカーボネートとの合計が、通常80容量%以上、好ましくは90容量%以上であり、かつエチレンカーボネートとプロピレンカーボネートの容量比が30:70〜80:20であるものを用いると、一般にサイクル特性と放電負荷特性等のバランスがよくなる。   Examples of other preferable non-aqueous solvents include one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate and butylene carbonate, γ-butyrolactone and γ-valerolactone, or two or more selected from the group A mixed solvent composed of an organic solvent occupies 60% by volume or more of the whole. Such a mixed solvent preferably has a flash point of 50 ° C. or higher, and particularly preferably 70 ° C. or higher. A non-aqueous electrolyte using this solvent reduces evaporation of the solvent and leakage even when used at high temperatures. Among them, the total of ethylene carbonate and γ-butyrolactone in the non-aqueous solvent is usually 80% by volume or more, preferably 90% by volume or more, and the volume ratio of ethylene carbonate and γ-butyrolactone is 5:95 to 45%. Or a total of ethylene carbonate and propylene carbonate is usually 80% by volume or more, preferably 90% by volume or more, and the volume ratio of ethylene carbonate to propylene carbonate is 30:70 to 80:20 Use of a certain material generally improves the balance between cycle characteristics and discharge load characteristics.

<1−3.分子内に一般式(1)で示される部分構造を1つ以上、及びイソシアネート基を2つ以上有する化合物>
本発明に用いられる電解液に配合する化合物は、分子内に下記一般式(1)で示される
部分構造を1つ以上、及びイソシアネート基を2つ以上有するもの(以下、イソシアネート化合物と略称する場合がある)であることを特徴とする。
<1-3. Compound having at least one partial structure represented by formula (1) and two or more isocyanate groups in the molecule>
The compound blended in the electrolytic solution used in the present invention has one or more partial structures represented by the following general formula (1) and two or more isocyanate groups in the molecule (hereinafter referred to as an isocyanate compound). Is).

Figure 0005906915
Figure 0005906915

ここで、Rは任意の元素若しくは基を表す。
さらには、有機物としての安定性から、一般式(1)の構造の両端のうち、一方は炭素原子と結合していることが好ましく、もう一方は窒素原子若しくは酸素原子と結合していることが好ましい。また、Rは水素若しくはイソシアネート基を有する基であることが好ましい。製造上の容易性から、本発明の化合物はウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有することがさらに好ましい。各々の骨格は分子内に2つ以上含まれていても良い。
Here, R represents an arbitrary element or group.
Furthermore, from the stability as an organic substance, it is preferable that one of the ends of the structure of the general formula (1) is bonded to a carbon atom, and the other is bonded to a nitrogen atom or an oxygen atom. preferable. R is preferably a group having hydrogen or an isocyanate group. From the viewpoint of ease of production, the compound of the present invention more preferably has one or more skeletons selected from uretdione, oxadiaditrione, biuret, urethane, allophanate and isocyanurate. Two or more of each skeleton may be contained in the molecule.

本発明の化合物は、イソシアネート基を分子内に2つ以上有していることを特徴としており、好ましくは3以上、また、通常15以下、好ましくは10以下、より好ましくは8
以下である。分子内中のイソシアネート基の数が上記範囲にあることにより、皮膜の安定性を高めることができ、また、官能基の増加による正極の電荷移動抵抗の増加を防ぐことができる。
The compound of the present invention is characterized by having two or more isocyanate groups in the molecule, preferably 3 or more, and usually 15 or less, preferably 10 or less, more preferably 8
It is as follows. When the number of isocyanate groups in the molecule is in the above range, the stability of the film can be increased, and the increase in charge transfer resistance of the positive electrode due to the increase in functional groups can be prevented.

製造上、原料を反応させてこうした多官能化を進めていくと必然的に高分子量化するが、従来の単純な分子構造で、分子量の低い従来のイソシアネート化合物よりも高い効果が現れるのは数平均分子量が通常200以上、好ましくは300以上、また、通常10000以下、好ましくは5000以下、より好ましくは3000以下、更に好ましくは2000以下である。数平均分子量が上記範囲にあることにより、電解液への溶解が確保できる傾向にある。また、上記と同じ理由により、平均官能基数は2以上、好ましくは3以上、また、通常12以下、好ましくは10以下、より好ましくは8以下である。   In the manufacturing process, when the polyfunctionalization is promoted by reacting raw materials, the molecular weight is inevitably increased. However, there are several cases where the conventional simple compound has a higher molecular weight than conventional isocyanate compounds with a low molecular weight. The average molecular weight is usually 200 or more, preferably 300 or more, and usually 10,000 or less, preferably 5000 or less, more preferably 3000 or less, and still more preferably 2000 or less. When the number average molecular weight is in the above range, dissolution in the electrolytic solution tends to be ensured. For the same reason as above, the average number of functional groups is 2 or more, preferably 3 or more, and usually 12 or less, preferably 10 or less, more preferably 8 or less.

本発明の化合物のイソシアネート基の末端は、製造時の原料のコスト面や製造の容易性、生成して結着した皮膜の耐久性から、アルキレン基と結合していることが好ましく、その炭素数は好ましくは4以上、また、好ましくは12以下、より好ましくは8以下である。
本発明で用いるイソシアネート化合物は、ブロック剤でブロックして保存安定性を高めた、所謂ブロックイソシアネートも含まれる。ブロック剤には、アルコール類、フェノール類、有機アミン類、オキシム類、ラクタム類を挙げることができ、具体的には、n−ブタノール、フェノール、トリブチルアミン、ジエチルエタノールアミン、メチルエチルケトキシム、ε−カプロラクタム等を挙げることができる。
イソシアネート化合物に基づく反応を促進し、より高い効果を得る目的で、ジブチルスズジラウレート等のような金属触媒や、1,8−ジアザビシクロ[5.4.0]ウンデセン−7のようなアミン系触媒等を併用することも好ましい。
The terminal of the isocyanate group of the compound of the present invention is preferably bonded to an alkylene group from the viewpoint of cost of raw materials during production, ease of production, and durability of the film formed and bound, Is preferably 4 or more, preferably 12 or less, more preferably 8 or less.
The isocyanate compound used in the present invention also includes so-called blocked isocyanate, which is blocked with a blocking agent to enhance storage stability. Examples of the blocking agent include alcohols, phenols, organic amines, oximes, and lactams. Specific examples include n-butanol, phenol, tributylamine, diethylethanolamine, methyl ethyl ketoxime, and ε-caprolactam. Etc.
For the purpose of accelerating the reaction based on the isocyanate compound and obtaining a higher effect, a metal catalyst such as dibutyltin dilaurate or an amine catalyst such as 1,8-diazabicyclo [5.4.0] undecene-7 is used. Use in combination is also preferred.

本発明の化合物は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。また、未反応の原料である脂肪族ジイソシアネートなどが含まれていても良い。こうしたモノマー成分には作業者の安全衛生上好ましくないものがあり、適宜人体に悪影響を及ぼさない範囲に除去して用いることが好ましい。さらに、本発明の化合
物には、モノイソシアネート化合物が含まれていても良い。特にアルキルモノイソシアネート類の添加は、低温放電特性を改善させる効果がある。
The compound of this invention may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio. Moreover, the aliphatic unisocyanate etc. which are unreacted raw materials may be contained. Some of these monomer components are undesirable in terms of worker safety and health, and it is preferable to use them by removing them within a range that does not adversely affect the human body. Furthermore, the compound of the present invention may contain a monoisocyanate compound. In particular, the addition of alkyl monoisocyanates has the effect of improving the low-temperature discharge characteristics.

本発明の非水系電解液の組成中におけるイソシアネート化合物の濃度は、0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.1質量%以上、また、3質量%未満、好ましくは2.7質量%以下、より好ましくは2.5質量%以下、更に好ましくは1.5質量%以下、最も好ましくは0.8質量%以下の範囲である。上記範囲であれば、電池内の化学的及び物理的安定性を十分に高めることができるとともに、皮膜形成による過度な抵抗増加を抑制することができる。   The concentration of the isocyanate compound in the composition of the non-aqueous electrolyte solution of the present invention is 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.1% by mass or more, and less than 3% by mass, Preferably it is 2.7 mass% or less, More preferably, it is 2.5 mass% or less, More preferably, it is 1.5 mass% or less, Most preferably, it is the range of 0.8 mass% or less. If it is the said range, while being able to fully improve the chemical and physical stability in a battery, the excessive increase in resistance by film formation can be suppressed.

<1−4.助剤>
本発明の非水系電解液には、上述の電解質、非水溶媒、(A)及び(B)の化合物以外に、目的に応じて適宜助剤を配合しても良い。助剤としては、以下に示される不飽和結合を有する環状カーボネート、フッ素原子を有する環状カーボネート、フッ素原子を有する不飽和環状カーボネート、過充電防止剤、その他の助剤、等が挙げられる。
<1-4. Auxiliary>
In addition to the above-described electrolyte, non-aqueous solvent, and the compounds (A) and (B), an auxiliary may be appropriately added to the non-aqueous electrolyte of the present invention depending on the purpose. Examples of the auxiliary agent include cyclic carbonates having an unsaturated bond shown below, cyclic carbonates having fluorine atoms, unsaturated cyclic carbonates having fluorine atoms, overcharge inhibitors, and other auxiliary agents.

(不飽和結合を有する環状カーボネート)
不飽和結合を有する環状カーボネート(以下、「不飽和環状カーボネート」と略記する場合がある)も、負極表面に皮膜を形成するため、電池の寿命を向上させる効果を有する。
前記不飽和環状カーボネートとしては、炭素−炭素二重結合及び/又は炭素−炭素三重結合を有する環状カーボネートであれば、特に制限はなく、任意の不飽和カーボネートを用いることができる。なお、芳香環を有する環状カーボネートも、不飽和環状カーボネートに包含されることとする。
(Cyclic carbonate having an unsaturated bond)
The cyclic carbonate having an unsaturated bond (hereinafter sometimes abbreviated as “unsaturated cyclic carbonate”) also has an effect of improving the battery life because it forms a film on the negative electrode surface.
The unsaturated cyclic carbonate is not particularly limited as long as it is a cyclic carbonate having a carbon-carbon double bond and / or a carbon-carbon triple bond, and any unsaturated carbonate can be used. The cyclic carbonate having an aromatic ring is also included in the unsaturated cyclic carbonate.

不飽和環状カーボネートとしては、ビニレンカーボネート類、芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類、フェニルカーボネート類、ビニルカーボネート類、アリルカーボネート類、カテコールカーボネート類、エチニルカーボネート類、プロパルギルカーボネート等が挙げられる。
ビニレンカーボネート類としては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、フェニルビニレンカーボネート、4,5−ジフェニルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート等が挙げられる。
Examples of the unsaturated cyclic carbonate include vinylene carbonates, ethylene carbonates substituted with a substituent having an aromatic ring, a carbon-carbon double bond or a carbon-carbon triple bond, phenyl carbonates, vinyl carbonates, allyl carbonates, Catechol carbonates, ethynyl carbonates, propargyl carbonate and the like can be mentioned.
As vinylene carbonates, vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, phenyl vinylene carbonate, 4,5-diphenyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate, 4 , 5-diallyl vinylene carbonate and the like.

芳香環や炭素−炭素二重結合又は炭素−炭素三重結合を有する置換基で置換されたエチレンカーボネート類の具体例としては、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、フェニルエチレンカーボネート、4,5−ジフェニルエチレンカーボネート、4−フェニル−5−ビニルエチレンカーボネート、4−アリル−5−フェニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−メチル−5−アリルエチレンカーボネート、エチニルエチレンカーボネート、プロパルギルエチレンカーボネート等が挙げられる。   Specific examples of the ethylene carbonate substituted with a substituent having an aromatic ring, a carbon-carbon double bond or a carbon-carbon triple bond include vinyl ethylene carbonate, 4,5-divinylethylene carbonate, 4-methyl-5- Vinylethylene carbonate, 4-allyl-5-vinylethylene carbonate, phenylethylene carbonate, 4,5-diphenylethylene carbonate, 4-phenyl-5-vinylethylene carbonate, 4-allyl-5-phenylethylene carbonate, allylethylene carbonate, Examples include 4,5-diallyl ethylene carbonate, 4-methyl-5-allyl ethylene carbonate, ethynyl ethylene carbonate, propargyl ethylene carbonate, and the like.

中でも、特に本発明の化合物と併用するのに好ましい不飽和環状カーボネートとしては、ビニレンカーボネート、メチルビニレンカーボネート、4,5−ジメチルビニレンカーボネート、ビニルビニレンカーボネート、4,5−ビニルビニレンカーボネート、アリルビニレンカーボネート、4,5−ジアリルビニレンカーボネート、ビニルエチレンカーボネート、4,5−ジビニルエチレンカーボネート、4−メチル−5−ビニルエチレンカーボネート、アリルエチレンカーボネート、4,5−ジアリルエチレンカーボネート、4−
メチル−5−アリルエチレンカーボネート、4−アリル−5−ビニルエチレンカーボネート、エチニルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
Among them, particularly preferable unsaturated cyclic carbonates for use in combination with the compound of the present invention include vinylene carbonate, methyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, vinyl vinylene carbonate, 4,5-vinyl vinylene carbonate, allyl vinylene carbonate. 4,5-diallyl vinylene carbonate, vinyl ethylene carbonate, 4,5-divinyl ethylene carbonate, 4-methyl-5-vinyl ethylene carbonate, allyl ethylene carbonate, 4,5-diallyl ethylene carbonate, 4-
Since methyl-5-allylethylene carbonate, 4-allyl-5-vinylethylene carbonate, and ethynylethylene carbonate form a stable interface protective film, they are more preferably used.

不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上、250以下である。上記範囲内であれば、非水系電解液に対する不飽和環状カーボネートの溶解性を確保しやすく、本発明の効果が十分に発現しやすい。不飽和環状カーボネートの分子量は、より好ましくは80以上、150以下である。不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。   The molecular weight of the unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is in the said range, it will be easy to ensure the solubility of the unsaturated cyclic carbonate with respect to non-aqueous electrolyte solution, and the effect of this invention will fully be easy to be expressed. The molecular weight of the unsaturated cyclic carbonate is more preferably 80 or more and 150 or less. The production method of the unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method.

不飽和環状カーボネートは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併有してもよい。また、不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。不飽和環状カーボネートの配合量は、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗の増加を抑制することができる。   An unsaturated cyclic carbonate may be used individually by 1 type, or may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The blending amount of the unsaturated cyclic carbonate is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more in 100% by mass of the non-aqueous electrolyte solution. 5% by mass or less, preferably 4% by mass or less, more preferably 3% by mass or less. Within the above range, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved, and further, the decrease in the discharge capacity retention rate due to the decrease in the high temperature storage characteristics can be suppressed, while the resistance due to excessive film formation is reduced. Increase can be suppressed.

(フッ素原子を有する環状カーボネート)
フッ素原子を有する環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
環状カーボネート誘導体類の具体例としては、フルオロエチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、4−フルオロ−4−メチルエチレンカーボネート、4,5−ジフルオロ−4−メチルエチレンカーボネート、4−フルオロ−5−メチルエチレンカーボネート、4,4−ジフルオロ−5−メチルエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4−(ジフルオロメチル)−エチレンカーボネート、4−(トリフルオロメチル)−エチレンカーボネート、4−(フルオロメチル)−4−フルオロエチレンカーボネート、4−(フルオロメチル)−5−フルオロエチレンカーボネート、4−フルオロ−4,5−ジメチルエチレンカーボネート、4,5−ジフルオロ−4,5−ジメチルエチレンカーボネート、4,4−ジフルオロ−5,5−ジメチルエチレンカーボネート、
中でも、特に本発明の化合物と併用するのに好ましいフッ素化環状カーボネートとしては、フルオロエチレンカーボネート、4−(フルオロメチル)−エチレンカーボネート、4,4−ジフルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネートは、界面保護被膜を形成するので、より好適に用いられる。
(Cyclic carbonate having a fluorine atom)
The number of fluorine atoms contained in the cyclic carbonate having fluorine atoms is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 atoms.
Specific examples of the cyclic carbonate derivatives include fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4-fluoro-4-methylethylene carbonate, 4,5-difluoro-4-methylethylene. Carbonate, 4-fluoro-5-methylethylene carbonate, 4,4-difluoro-5-methylethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4- (difluoromethyl) -ethylene carbonate, 4- (trifluoromethyl) ) -Ethylene carbonate, 4- (fluoromethyl) -4-fluoroethylene carbonate, 4- (fluoromethyl) -5-fluoroethylene carbonate, 4-fluoro-4,5-dimethylethylene carbonate, 4,5 Difluoro-4,5-dimethylethylene carbonate, 4,4-difluoro-5,5-dimethylethylene carbonate,
Among them, particularly preferred fluorinated cyclic carbonates for use in combination with the compound of the present invention include fluoroethylene carbonate, 4- (fluoromethyl) -ethylene carbonate, 4,4-difluoroethylene carbonate, and 4,5-difluoroethylene carbonate. Since an interface protective film is formed, it is more preferably used.

フッ素化環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。上記範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現しやすい。フッ素化環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。   The molecular weight of the fluorinated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is the said range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the fluorinated cyclic carbonate is not particularly limited, and any known method can be selected and produced. The molecular weight is more preferably 100 or more, and more preferably 200 or less.

フッ素化環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化環状カーボネートの配合量は、通常、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.
1質量%以上、より好ましくは0.2質量%以上であり、また、通常90質量%以下、好ましくは85質量%以下、より好ましくは80質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な抵抗増加を抑制することができる。
A fluorinated cyclic carbonate may be used individually by 1 type, and may have 2 or more types together by arbitrary combinations and ratios. Moreover, the compounding quantity of a fluorinated cyclic carbonate is not restrict | limited in particular, Unless the effect of this invention is impaired remarkably, it is arbitrary. The compounding amount of the fluorinated cyclic carbonate is usually 0.01% by mass or more, preferably 0.1% in 100% by mass of the non-aqueous electrolyte.
1 mass% or more, More preferably, it is 0.2 mass% or more, and is 90 mass% or less normally, Preferably it is 85 mass% or less, More preferably, it is 80 mass% or less. Within the above range, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved, and further, the decrease in the discharge capacity retention rate due to the decrease in the high temperature storage characteristics can be suppressed, while the excessive increase in resistance is suppressed. be able to.

特にフッ素化環状カーボネートを溶媒的に用いる場合の配合量は、非水系電解液100質量%中、通常5質量%以上、好ましくは7質量%以上、より好ましくは10質量%以上であり、また、通常90質量%以下、好ましくは70質量%以下、より好ましくは50質量%以下である。上記範囲内にあることにより、電池を高電圧動作させた際に非水系電解液の副分解反応を抑制でき、電池耐久性を高めることができると共に、非水系電解液の電気伝導率の極端な低下を防ぐことができる。   In particular, when fluorinated cyclic carbonate is used as a solvent, the blending amount is usually 5% by mass or more, preferably 7% by mass or more, more preferably 10% by mass or more, in 100% by mass of the nonaqueous electrolytic solution. Usually, it is 90 mass% or less, Preferably it is 70 mass% or less, More preferably, it is 50 mass% or less. By being in the above range, when the battery is operated at a high voltage, the secondary decomposition reaction of the non-aqueous electrolyte can be suppressed, the battery durability can be enhanced, and the electrical conductivity of the non-aqueous electrolyte is extremely low. Decline can be prevented.

(フッ素化不飽和環状カーボネート)
フッ素化環状カーボネートとして、不飽和結合とフッ素原子とを有する環状カーボネート(以下、「フッ素化不飽和環状カーボネート」と略記する場合がある)を用いることも好ましい。フッ素化不飽和環状カーボネートが有するフッ素原子の数は1以上があれば、特に制限されない。中でもフッ素原子が通常6以下、好ましくは4以下であり、1個又は2個のものが最も好ましい。
(Fluorinated unsaturated cyclic carbonate)
As the fluorinated cyclic carbonate, it is also preferable to use a cyclic carbonate having an unsaturated bond and a fluorine atom (hereinafter sometimes abbreviated as “fluorinated unsaturated cyclic carbonate”). The number of fluorine atoms contained in the fluorinated unsaturated cyclic carbonate is not particularly limited as long as it is 1 or more. Among them, the number of fluorine atoms is usually 6 or less, preferably 4 or less, and most preferably 1 or 2 atoms.

フッ素化不飽和環状カーボネートとしては、フッ素化ビニレンカーボネート誘導体、芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体等が挙げられる。
フッ素化ビニレンカーボネート誘導体としては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−フェニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート等が挙げられる。
Examples of the fluorinated unsaturated cyclic carbonate include fluorinated vinylene carbonate derivatives, fluorinated ethylene carbonate derivatives substituted with an aromatic ring or a substituent having a carbon-carbon double bond.
Fluorinated vinylene carbonate derivatives include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-phenyl vinylene carbonate, 4-allyl-5-fluoro vinylene carbonate, 4-fluoro-5- And vinyl vinylene carbonate.

芳香環又は炭素−炭素二重結合を有する置換基で置換されたフッ素化エチレンカーボネート誘導体としては、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネート、4−フルオロ−4−フェニルエチレンカーボネート、4−フルオロ−5−フェニルエチレンカーボネート、4,4−ジフルオロ−5−フェニルエチレンカーボネート、4,5−ジフルオロ−4−フェニルエチレンカーボネート等が挙げられる。   Examples of the fluorinated ethylene carbonate derivative substituted with an aromatic ring or a substituent having a carbon-carbon double bond include 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5. -Vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4,4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate 4,5-difluoro-4-allylethylene carbonate, 4-fluoro-4,5-divinylethylene carbonate, 4-fluoro-4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate 4,5-diflu B-4,5-diallylethylene carbonate, 4-fluoro-4-phenylethylene carbonate, 4-fluoro-5-phenylethylene carbonate, 4,4-difluoro-5-phenylethylene carbonate, 4,5-difluoro-4- Examples thereof include phenylethylene carbonate.

中でも、特に本発明の化合物と併用するのに好ましいフッ素化不飽和環状カーボネートとしては、4−フルオロビニレンカーボネート、4−フルオロ−5−メチルビニレンカーボネート、4−フルオロ−5−ビニルビニレンカーボネート、4−アリル−5−フルオロビニレンカーボネート、4−フルオロ−4−ビニルエチレンカーボネート、4−フルオロ−4−アリルエチレンカーボネート、4−フルオロ−5−ビニルエチレンカーボネート、4−フルオロ−5−アリルエチレンカーボネート、4,4−ジフルオロ−4−ビニルエチレンカーボネート、4,4−ジフルオロ−4−アリルエチレンカーボネート、4,5−ジフルオロ−4−ビニルエチレンカーボネート、4,5−ジフルオロ−4−アリルエチレンカーボネート、4−フルオロ−4,5−ジビニルエチレンカーボネート、4−フルオロ−
4,5−ジアリルエチレンカーボネート、4,5−ジフルオロ−4,5−ジビニルエチレンカーボネート、4,5−ジフルオロ−4,5−ジアリルエチレンカーボネートが、安定な界面保護被膜を形成するので、より好適に用いられる。
Among them, particularly preferred fluorinated unsaturated cyclic carbonates for use in combination with the compounds of the present invention include 4-fluoro vinylene carbonate, 4-fluoro-5-methyl vinylene carbonate, 4-fluoro-5-vinyl vinylene carbonate, 4- Allyl-5-fluorovinylene carbonate, 4-fluoro-4-vinylethylene carbonate, 4-fluoro-4-allylethylene carbonate, 4-fluoro-5-vinylethylene carbonate, 4-fluoro-5-allylethylene carbonate, 4, 4-difluoro-4-vinylethylene carbonate, 4,4-difluoro-4-allylethylene carbonate, 4,5-difluoro-4-vinylethylene carbonate, 4,5-difluoro-4-allylethylene carbonate, 4-fluoro- , 5-vinyl ethylene carbonate, 4-fluoro -
Since 4,5-diallylethylene carbonate, 4,5-difluoro-4,5-divinylethylene carbonate, 4,5-difluoro-4,5-diallylethylene carbonate forms a stable interface protective film, it is more preferable. Used.

フッ素化不飽和環状カーボネートの分子量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。分子量は、好ましくは、50以上であり、また、250以下である。上記範囲であれば、非水系電解液に対するフッ素化環状カーボネートの溶解性を確保しやすく、本発明の効果が発現しやすい。フッ素化不飽和環状カーボネートの製造方法は、特に制限されず、公知の方法を任意に選択して製造することが可能である。分子量は、より好ましくは100以上であり、また、より好ましくは200以下である。   The molecular weight of the fluorinated unsaturated cyclic carbonate is not particularly limited and is arbitrary as long as the effects of the present invention are not significantly impaired. The molecular weight is preferably 50 or more and 250 or less. If it is the said range, it will be easy to ensure the solubility of the fluorinated cyclic carbonate with respect to a non-aqueous electrolyte solution, and the effect of this invention will be easy to be expressed. The production method of the fluorinated unsaturated cyclic carbonate is not particularly limited, and can be produced by arbitrarily selecting a known method. The molecular weight is more preferably 100 or more, and more preferably 200 or less.

フッ素化不飽和環状カーボネートは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併有してもよい。また、フッ素化不飽和環状カーボネートの配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。フッ素化不飽和環状カーボネートの配合量は、通常、非水系電解液100質量%中、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、通常5質量%以下、好ましくは4質量%以下、より好ましくは3質量%以下である。上記範囲であれば、非水系電解液二次電池のサイクル特性の向上を図ることができ、さらに高温保存特性の低下に伴う放電容量維持率の低下を抑制できる一方、過度な皮膜形成による抵抗増加を抑制することができる。   A fluorinated unsaturated cyclic carbonate may be used individually by 1 type, and may have 2 or more types by arbitrary combinations and ratios. Moreover, the compounding quantity of a fluorinated unsaturated cyclic carbonate is not restrict | limited in particular, As long as the effect of this invention is not impaired remarkably, it is arbitrary. The blending amount of the fluorinated unsaturated cyclic carbonate is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.2% by mass or more in 100% by mass of the non-aqueous electrolyte. Moreover, it is 5 mass% or less normally, Preferably it is 4 mass% or less, More preferably, it is 3 mass% or less. Within the above range, the cycle characteristics of the non-aqueous electrolyte secondary battery can be improved, and further, the decrease in the discharge capacity retention rate due to the decrease in the high temperature storage characteristics can be suppressed, while the resistance increase due to excessive film formation Can be suppressed.

(過充電防止剤)
本発明の非水系電解液において、非水系電解液二次電池が過充電等の状態になった際に電池の破裂・発火を効果的に抑制するために、過充電防止剤を用いることができる。
過充電防止剤としては、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物;2−フルオロビフェニル、o−シクロヘキシルフルオロベンゼン、p−シクロヘキシルフルオロベンゼン等の上記芳香族化合物の部分フッ素化物;2,4−ジフルオロアニソール、2,5−ジフルオロアニソール、2,6−ジフルオロアニソール、3,5−ジフルオロアニソール等の含フッ素アニソール化合物等が挙げられる。中でも、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン、ジフェニルエーテル、ジベンゾフラン等の芳香族化合物が好ましい。これらは1種を単独で用いても、2種以上を併用してもよい。2種以上併用する場合は、特に、シクロヘキシルベンゼンとt−ブチルベンゼン又はt−アミルベンゼンとの組み合わせ、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化体、シクロヘキシルベンゼン、t−ブチルベンゼン、t−アミルベンゼン等の酸素を含有しない芳香族化合物から選ばれる少なくとも1種と、ジフェニルエーテル、ジベンゾフラン等の含酸素芳香族化合物から選ばれる少なくとも1種を併用するのが過充電防止特性と高温保存特性のバランスの点から好ましい。
(Overcharge prevention agent)
In the non-aqueous electrolyte solution of the present invention, an overcharge inhibitor can be used in order to effectively suppress battery explosion / ignition when the non-aqueous electrolyte secondary battery is in an overcharged state or the like. .
As an overcharge inhibitor, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, dibenzofuran; 2-fluorobiphenyl, Partially fluorinated products of the above aromatic compounds such as o-cyclohexylfluorobenzene and p-cyclohexylfluorobenzene; 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoroanisole, 3,5-difluoroanisole and the like And a fluorine-containing anisole compound. Of these, aromatic compounds such as biphenyl, alkylbiphenyl, terphenyl, terphenyl partially hydrogenated, cyclohexylbenzene, t-butylbenzene, t-amylbenzene, diphenyl ether, and dibenzofuran are preferable. These may be used alone or in combination of two or more. When two or more kinds are used in combination, in particular, a combination of cyclohexylbenzene and t-butylbenzene or t-amylbenzene, biphenyl, alkylbiphenyl, terphenyl, partially hydrogenated terphenyl, cyclohexylbenzene, t-butylbenzene, Using at least one selected from aromatic compounds not containing oxygen, such as t-amylbenzene, and at least one selected from oxygen-containing aromatic compounds such as diphenyl ether, dibenzofuran, and the like is an overcharge prevention property and a high temperature storage property. From the standpoint of balance.

過充電防止剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。過充電防止剤は、非水系電解液100質量%中、通常0.1質量%以上であり、また、通常5質量%以下である。また、好ましくは0.2質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、また、好ましくは3質量%以下、より好ましくは2質量%以下である。上記範囲でれば、過充電防止効果を十分に図ることができ、一方、高温保存特性等の電池特性を確保することができる。   The amount of the overcharge inhibitor is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The overcharge inhibitor is usually 0.1% by mass or more and usually 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. Further, it is preferably 0.2% by mass or more, more preferably 0.3% by mass or more, further preferably 0.5% by mass or more, and preferably 3% by mass or less, more preferably 2% by mass or less. is there. If it is the said range, the overcharge prevention effect can fully be aimed at, On the other hand, battery characteristics, such as a high temperature storage characteristic, can be ensured.

<その他の助剤>
本発明の非水系電解液には、公知のその他の助剤を用いることができる。その他の助剤
としては、モノフルオロリン酸リチウム、ジフルオロリン酸リチウム、テトラフルオロホウ酸リチウム、リチウムビス(フルオロスルホニル)イミド、リチウムビス(トリフルオロメタンスルホニル)イミド、フルオロスルホン酸リチウム、トリフルオロメタンスルホン酸リチウム、リチウムビス(オキサラト)ボレート、リチウムジフルオロオキサラトボレート、リチウムトリス(オキサラト)ホスフェート、リチウムジフルオロビス(オキサラト)ホスフェート、リチウムテトラフルオロオキサラトホスフェートなどのリチウム塩が挙げられる。これらの助剤を添加することにより、サイクル特性や低温放電特性を向上させることができる。
<Other auxiliaries>
Other known auxiliary agents can be used in the non-aqueous electrolyte solution of the present invention. Other auxiliary agents include lithium monofluorophosphate, lithium difluorophosphate, lithium tetrafluoroborate, lithium bis (fluorosulfonyl) imide, lithium bis (trifluoromethanesulfonyl) imide, lithium fluorosulfonate, trifluoromethanesulfonic acid Examples of the lithium salt include lithium, lithium bis (oxalato) borate, lithium difluorooxalatoborate, lithium tris (oxalato) phosphate, lithium difluorobis (oxalato) phosphate, and lithium tetrafluorooxalatophosphate. By adding these auxiliaries, cycle characteristics and low-temperature discharge characteristics can be improved.

また、高温保存後の容量維持特性やサイクル特性を向上させることができる助剤として、エリスリタンカーボネート、スピロ−ビス−ジメチレンカーボネート、メトキシエチル−メチルカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;2,4,8,10−テトラオキサスピロ[5.5]ウンデカン、3,9−ジビニル−2,4,8,10−テトラオキサスピロ[5.5]ウンデカン等のスピロ化合物;エチレンサルファイト、1,3−プロパンスルトン、1−フルオロ−1,3−プロパンスルトン、2−フルオロ−1,3−プロパンスルトン、3−フルオロ−1,3−プロパンスルトン、1−プロペン−1,3−スルトン、1−フルオロ−1−プロペン−1,3−スルトン、2−フルオロ−1−プロペン−1,3−スルトン、3−フルオロ−1−プロペン−1,3−スルトン、1,4−ブタンスルトン、1−ブテン−1,4−スルトン、3−ブテン−1,4−スルトン、フルオロスルホン酸メチル、フルオロスルホン酸エチル、メタンスルホン酸メチル、メタンスルホン酸エチル、ブスルファン、スルホレン、ジフェニルスルホン、N,N−ジメチルメタンスルホンアミド、N,N−ジエチルメタンスルホンアミド等の含硫黄化合物;1−メチル−2−ピロリジノン、1−メチル−2−ピペリドン、3−メチル−2−オキサゾリジノン、1,3−ジメチル−2−イミダゾリジノン及びN−メチルスクシンイミド、スクシノニトリル、アジポニトリル、ピメロニトリル等の含窒素化合物;ヘプタン、オクタン、ノナン、デカン、シクロヘプタン等の炭化水素化合物、フルオロベンゼン、ジフルオロベンゼン、ヘキサフルオロベンゼン、ベンゾトリフルオライド等の含フッ素芳香族化合物等が挙げられる。これらの助剤は1種を単独で用いても、2種以上を併用してもよい。   Further, as an auxiliary capable of improving capacity maintenance characteristics and cycle characteristics after high temperature storage, carbonate compounds such as erythritan carbonate, spiro-bis-dimethylene carbonate, methoxyethyl-methyl carbonate; succinic anhydride, anhydrous glutar Carboxylic anhydrides such as acid, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; Spiro compounds such as 2,4,8,10-tetraoxaspiro [5.5] undecane and 3,9-divinyl-2,4,8,10-tetraoxaspiro [5.5] undecane; ethylene sulfite; 1,3-propane sultone, 1-fluoro-1,3-propa Sultone, 2-fluoro-1,3-propane sultone, 3-fluoro-1,3-propane sultone, 1-propene-1,3-sultone, 1-fluoro-1-propene-1,3-sultone, 2- Fluoro-1-propene-1,3-sultone, 3-fluoro-1-propene-1,3-sultone, 1,4-butane sultone, 1-butene-1,4-sultone, 3-butene-1,4- Sulfur, methyl fluorosulfonate, ethyl fluorosulfonate, methyl methanesulfonate, ethyl methanesulfonate, busulfan, sulfolene, diphenylsulfone, N, N-dimethylmethanesulfonamide, N, N-diethylmethanesulfonamide, etc. Compound: 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone, 3-methyl-2-oxazo Ninone-containing compounds such as dinone, 1,3-dimethyl-2-imidazolidinone and N-methylsuccinimide, succinonitrile, adiponitrile, and pimelonitrile; hydrocarbon compounds such as heptane, octane, nonane, decane, cycloheptane, fluorobenzene And fluorine-containing aromatic compounds such as difluorobenzene, hexafluorobenzene and benzotrifluoride. These auxiliary agents may be used alone or in combination of two or more.

その他の助剤の配合量は、特に制限されず、本発明の効果を著しく損なわない限り任意である。その他の助剤は、非水系電解液100質量%中、通常0.01質量%以上であり、また、通常5質量%以下である。その他の助剤の配合量は、好ましくは0.1質量%以上、より好ましくは0.2質量%以上であり、また、好ましくは3質量%以下、より好ましくは1質量%以下である。上記範囲であれば、助剤の効果を十分に発揮しつつ、電池への悪影響を抑制することができる。   The blending amount of other auxiliary agents is not particularly limited, and is arbitrary as long as the effects of the present invention are not significantly impaired. The other auxiliary agent is usually 0.01% by mass or more and usually 5% by mass or less in 100% by mass of the non-aqueous electrolyte solution. The blending amount of other auxiliaries is preferably 0.1% by mass or more, more preferably 0.2% by mass or more, and preferably 3% by mass or less, more preferably 1% by mass or less. If it is the said range, the bad influence to a battery can be suppressed, fully exhibiting the effect of an adjuvant.

以上に記載してきた非水系電解液は、本発明に記載の非水系電解液電池の内部に存在するものも含まれる。具体的には、リチウム塩や溶媒、助剤等の非水系電解液の構成要素を別途合成し、実質的に単離されたものから非水系電解液を調製し、下記に記載する方法にて別途組み立てた電池内に注液して得た非水系電解液電池内の非水系電解液である場合や、本発明の非水系電解液の構成要素を個別に電池内に入れておき、電池内にて混合させることにより本発明の非水系電解液と同じ組成を得る場合、更には、本発明の非水系電解液を構成する化合物を該非水系電解液電池内で発生させて、本発明の非水系電解液と同じ組成を得る場合も含まれるものとする。   The non-aqueous electrolyte solution described above includes those existing inside the non-aqueous electrolyte battery according to the present invention. Specifically, the components of the non-aqueous electrolyte such as lithium salt, solvent, and auxiliary agent are separately synthesized, and the non-aqueous electrolyte is prepared from the substantially isolated one by the method described below. In the case of a nonaqueous electrolyte solution in a nonaqueous electrolyte battery obtained by pouring into a separately assembled battery, the components of the nonaqueous electrolyte solution of the present invention are individually placed in the battery, In order to obtain the same composition as the non-aqueous electrolyte solution of the present invention by mixing in a non-aqueous electrolyte battery, the compound constituting the non-aqueous electrolyte solution of the present invention is further generated in the non-aqueous electrolyte battery. The case where the same composition as the aqueous electrolyte is obtained is also included.

[2.非水系電解液二次電池]
本発明の非水系電解液二次電池は、イオンを吸蔵及び放出し得る負極及び正極と前記の
本発明非水系電解液とを備えるものである。
<2−1.電池構成>
本発明の非水系電解液二次電池は、非水系電解液以外の構成については、従来公知の非水系電解液二次電池と同様であり、通常は、本発明の非水系電解液が含浸されている多孔膜(セパレータ)を介して正極と負極とが積層され、これらがケース(外装体)に収納された形態を有する。従って、本発明の非水系電解液二次電池の形状は特に制限されるものではなく、円筒型、角形、ラミネート型、コイン型、大型等の何れであってもよい。
[2. Non-aqueous electrolyte secondary battery]
The non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode and a positive electrode that can occlude and release ions, and the non-aqueous electrolyte of the present invention.
<2-1. Battery configuration>
The non-aqueous electrolyte secondary battery of the present invention is the same as the conventionally known non-aqueous electrolyte secondary battery except for the non-aqueous electrolyte, and is usually impregnated with the non-aqueous electrolyte of the present invention. The positive electrode and the negative electrode are laminated via a porous film (separator), and these are housed in a case (exterior body). Therefore, the shape of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

<2−2.非水系電解液>
非水系電解液としては、上述の本発明の非水系電解液を用いる。なお、本発明の趣旨を逸脱しない範囲において、本発明の非水系電解液に対し、その他の非水系電解液を配合して用いることも可能である。
<2−3.負極>
以下に負極に使用される負極活物質について述べる。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、特に制限はない。具体例としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。これらは1種を単独で用いてもよく、また2種以上を任意に組み合わせて併用してもよい。
<2-2. Non-aqueous electrolyte>
As the non-aqueous electrolyte, the above-described non-aqueous electrolyte of the present invention is used. In addition, in the range which does not deviate from the meaning of this invention, it is also possible to mix | blend and use other nonaqueous electrolyte solutions with respect to the nonaqueous electrolyte solution of this invention.
<2-3. Negative electrode>
The negative electrode active material used for the negative electrode is described below. The negative electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. Specific examples include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like. These may be used individually by 1 type, and may be used together combining 2 or more types arbitrarily.

(負極活物質)
負極活物質としては、炭素質材料、合金系材料、リチウム含有金属複合酸化物材料等が挙げられる。
負極活物質として用いられる炭素質材料としては、
(1)天然黒鉛、
(2)人造炭素質物質並びに人造黒鉛質物質を400〜3200℃の範囲で1回以上熱処理した炭素質材料、
(3)負極活物質層が少なくとも2種以上の異なる結晶性を有する炭素質からなり、かつ/又はその異なる結晶性の炭素質が接する界面を有している炭素質材料、
(4)負極活物質層が少なくとも2種以上の異なる配向性を有する炭素質からなり、かつ/又はその異なる配向性の炭素質が接する界面を有している炭素質材料、
から選ばれるものが、初期不可逆容量、高電流密度充放電特性のバランスがよく好ましい。また、(1)〜(4)の炭素質材料は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Negative electrode active material)
Examples of the negative electrode active material include carbonaceous materials, alloy materials, lithium-containing metal composite oxide materials, and the like.
As a carbonaceous material used as a negative electrode active material,
(1) natural graphite,
(2) a carbonaceous material obtained by heat-treating an artificial carbonaceous material and an artificial graphite material at least once in the range of 400 to 3200 ° C;
(3) a carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different crystallinities and / or has an interface in contact with the different crystalline carbonaceous materials,
(4) A carbonaceous material in which the negative electrode active material layer is made of carbonaceous materials having at least two or more different orientations and / or has an interface in contact with the carbonaceous materials having different orientations,
Is preferably a good balance between initial irreversible capacity and high current density charge / discharge characteristics. Moreover, the carbonaceous materials (1) to (4) may be used alone or in combination of two or more in any combination and ratio.

上記(2)の人造炭素質物質並びに人造黒鉛質物質としては、天然黒鉛、石炭系コークス、石油系コークス、石炭系ピッチ、石油系ピッチ及びこれらピッチを酸化処理したもの、ニードルコークス、ピッチコークス及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等の有機物の熱分解物、炭化可能な有機物及びこれらの炭化物、又は炭化可能な有機物をベンゼン、トルエン、キシレン、キノリン、n−へキサン等の低分子有機溶媒に溶解させた溶液及びこれらの炭化物等が挙げられる。   Examples of the artificial carbonaceous material and artificial graphite material of (2) above include natural graphite, coal-based coke, petroleum-based coke, coal-based pitch, petroleum-based pitch, those obtained by oxidizing these pitches, needle coke, pitch coke and Carbon materials that are partially graphitized, furnace black, acetylene black, organic pyrolysis products such as pitch-based carbon fibers, carbonizable organic materials and their carbides, or carbonizable organic materials are benzene, toluene, xylene, quinoline And a solution dissolved in a low-molecular organic solvent such as n-hexane, and carbides thereof.

負極活物質として用いられる合金系材料としては、リチウムを吸蔵・放出可能であれば、リチウム単体、リチウム合金を形成する単体金属及び合金、又はそれらの酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の化合物のいずれであってもよく、特に制限されない。リチウム合金を形成する単体金属及び合金としては、13族及び14族の金属・半金属元素(即ち炭素を除く)を含む材料であることが好ましく、より好ましくはアルミニウム、ケイ素及びスズ(以下、「特定金属元素」と略記する場合がある)の単体金属及びこれら原子を含む合金又は化合物である。これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   As an alloy material used as the negative electrode active material, as long as lithium can be occluded / released, lithium alone, simple metals and alloys forming lithium alloys, or oxides, carbides, nitrides, silicides, sulfides thereof Any of compounds such as products or phosphides may be used and is not particularly limited. The single metal and alloy forming the lithium alloy are preferably materials containing group 13 and group 14 metal / metalloid elements (that is, excluding carbon), more preferably aluminum, silicon and tin (hereinafter referred to as “ Simple metals) and alloys or compounds containing these atoms (sometimes abbreviated as “specific metal elements”). These may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.

特定金属元素から選ばれる少なくとも1種の原子を有する負極活物質としては、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素からなる合金、1種又は2種以上の特定金属元素とその他の1種又は2種以上の金属元素とからなる合金、並びに、1種又は2種以上の特定金属元素を含有する化合物、及びその化合物の酸化物、炭化物、窒化物、ケイ化物、硫化物若しくはリン化物等の複合化合物が挙げられる。負極活物質としてこれらの金属単体、合金又は金属化合物を用いることで、電池の高容量化が可能である。   As a negative electrode active material having at least one kind of atom selected from a specific metal element, a metal simple substance of any one specific metal element, an alloy composed of two or more specific metal elements, one type or two or more specific types Alloys comprising metal elements and one or more other metal elements, as well as compounds containing one or more specific metal elements, and oxides, carbides, nitrides and silicides of the compounds And composite compounds such as sulfides or phosphides. By using these simple metals, alloys or metal compounds as the negative electrode active material, the capacity of the battery can be increased.

また、これらの複合化合物が、金属単体、合金又は非金属元素等の数種の元素と複雑に結合した化合物も挙げられる。具体的には、例えばケイ素やスズでは、これらの元素と負極として動作しない金属との合金を用いることができる。例えば、スズの場合、スズとケイ素以外で負極として作用する金属と、さらに負極として動作しない金属と、非金属元素との組み合わせで5〜6種の元素を含むような複雑な化合物も用いることができる。   In addition, a compound in which these complex compounds are complexly bonded to several kinds of elements such as a simple metal, an alloy, or a nonmetallic element is also included. Specifically, for example, in silicon and tin, an alloy of these elements and a metal that does not operate as a negative electrode can be used. For example, in the case of tin, a complex compound containing 5 to 6 kinds of elements in combination with a metal that acts as a negative electrode other than tin and silicon, a metal that does not operate as a negative electrode, and a nonmetallic element may be used. it can.

これらの負極活物質の中でも、電池にしたときに単位質量当りの容量が大きいことから、いずれか1種の特定金属元素の金属単体、2種以上の特定金属元素の合金、特定金属元素の酸化物、炭化物、窒化物等が好ましく、特に、ケイ素及び/又はスズの金属単体、合金、酸化物や炭化物、窒化物等が、単位質量当りの容量及び環境負荷の観点から好ましい。   Among these negative electrode active materials, since the capacity per unit mass is large when a battery is formed, any one simple metal of a specific metal element, an alloy of two or more specific metal elements, oxidation of a specific metal element In particular, silicon and / or tin metal simple substance, alloy, oxide, carbide, nitride and the like are preferable from the viewpoint of capacity per unit mass and environmental load.

負極活物質として用いられるリチウム含有金属複合酸化物材料としては、リチウムを吸蔵・放出可能であれば、特に制限されないが、高電流密度充放電特性の点からチタン及びリチウムを含有する材料が好ましく、より好ましくはチタンを含むリチウム含有複合金属酸化物材料が、さらに好ましくはリチウムとチタンの複合酸化物(以下、「リチウムチタン複合酸化物」と略記する場合がある)が挙げられる。即ちスピネル構造を有するリチウムチタン複合酸化物を、非水系電解液二次電池用負極活物質に含有させて用いると、出力抵抗が大きく低減するので特に好ましい。   The lithium-containing metal composite oxide material used as the negative electrode active material is not particularly limited as long as it can occlude and release lithium, but a material containing titanium and lithium is preferable from the viewpoint of high current density charge / discharge characteristics, A lithium-containing composite metal oxide material containing titanium is more preferable, and a composite oxide of lithium and titanium (hereinafter sometimes abbreviated as “lithium titanium composite oxide”) is more preferable. That is, it is particularly preferable to use a lithium titanium composite oxide having a spinel structure in a negative electrode active material for a non-aqueous electrolyte secondary battery because the output resistance is greatly reduced.

また、リチウムチタン複合酸化物のリチウムやチタンが、他の金属元素、例えば、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素で置換されているものも好ましい。上記金属酸化物が、一般式(A)で表されるリチウムチタン複合酸化物であり、一般式(A)中、0.7≦x≦1.5、1.5≦y≦2.3、0≦z≦1.6であることが、リチウムイオンのドープ・脱ドープの際の構造が安定であることから好ましい。   In addition, lithium or titanium of the lithium titanium composite oxide is at least selected from the group consisting of other metal elements such as Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. Those substituted with one element are also preferred. The metal oxide is a lithium titanium composite oxide represented by the general formula (A). In the general formula (A), 0.7 ≦ x ≦ 1.5, 1.5 ≦ y ≦ 2.3, It is preferable that 0 ≦ z ≦ 1.6 because the structure upon doping and dedoping of lithium ions is stable.

LixTiyMzO4 (A)
[一般式(A)中、Mは、Na、K、Co、Al、Fe、Ti、Mg、Cr、Ga、Cu、Zn及びNbからなる群より選ばれる少なくとも1種の元素を表わす。]
上記の一般式(A)で表される組成の中でも、
(a)1.2≦x≦1.4、1.5≦y≦1.7、z=0
(b)0.9≦x≦1.1、1.9≦y≦2.1、z=0
(c)0.7≦x≦0.9、2.1≦y≦2.3、z=0
の構造が、電池性能のバランスが良好なため特に好ましい。
上記化合物の特に好ましい代表的な組成は、(a)ではLi4/3Ti5/3O4、(b)ではLi1Ti2O4、(c)ではLi4/5Ti11/5O4である。また、Z≠0の構造については、例えば、Li4/3Ti4/3Al1/3O4が好ましいものとして挙げられる。
LixTiyMzO4 (A)
[In the general formula (A), M represents at least one element selected from the group consisting of Na, K, Co, Al, Fe, Ti, Mg, Cr, Ga, Cu, Zn, and Nb. ]
Among the compositions represented by the general formula (A),
(A) 1.2 ≦ x ≦ 1.4, 1.5 ≦ y ≦ 1.7, z = 0
(B) 0.9 ≦ x ≦ 1.1, 1.9 ≦ y ≦ 2.1, z = 0
(C) 0.7 ≦ x ≦ 0.9, 2.1 ≦ y ≦ 2.3, z = 0
This structure is particularly preferable because of a good balance of battery performance.
Particularly preferred representative compositions of the above compounds are Li4 / 3Ti5 / 3O4 in (a), Li1Ti2O4 in (b), and Li4 / 5Ti11 / 5O4 in (c). As for the structure of Z ≠ 0, for example, Li4 / 3Ti4 / 3Al1 / 3O4 is preferable.

<炭素質材料の物性>
負極活物質として炭素質材料を用いる場合、以下の物性を有するものであることが望ま
しい。
<Physical properties of carbonaceous materials>
When using a carbonaceous material as a negative electrode active material, it is desirable to have the following physical properties.

(X線パラメータ)
炭素質材料の学振法によるX線回折で求めた格子面(002面)のd値(層間距離)が、0.335nm以上であることが好ましく、また、通常0.360nm以下であり、0.350nm以下が好ましく、0.345nm以下がさらに好ましい。また、学振法によるX線回折で求めた炭素質材料の結晶子サイズ(Lc)は、1.0nm以上であることが好ましく、中でも1.5nm以上であることがさらに好ましい。
(X-ray parameters)
The d value (interlayer distance) of the lattice plane (002 plane) determined by X-ray diffraction by the Gakushin method of carbonaceous materials is preferably 0.335 nm or more, and is usually 0.360 nm or less. 350 nm or less is preferable, and 0.345 nm or less is more preferable. Further, the crystallite size (Lc) of the carbonaceous material obtained by X-ray diffraction by the Gakushin method is preferably 1.0 nm or more, and more preferably 1.5 nm or more.

(体積基準平均粒径)
炭素質材料の体積基準平均粒径は、レーザー回折・散乱法により求めた体積基準の平均粒径(メジアン径)であり、通常1μm以上であり、3μm以上が好ましく、5μm以上がさらに好ましく、7μm以上が特に好ましく、また、通常100μm以下であり、50μm以下が好ましく、40μm以下がより好ましく、30μm以下がさらに好ましく、25μm以下が特に好ましい。
(Volume-based average particle size)
The volume-based average particle diameter of the carbonaceous material is a volume-based average particle diameter (median diameter) obtained by a laser diffraction / scattering method, and is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and 7 μm. The above is particularly preferable, and is usually 100 μm or less, preferably 50 μm or less, more preferably 40 μm or less, further preferably 30 μm or less, and particularly preferably 25 μm or less.

体積基準平均粒径が上記範囲であれば、不可逆容量の増大による、初期の電池容量の損失を抑制できるとともに、塗布による電極作製の工程を含む場合に、均一な電極塗布が可能となる。
体積基準平均粒径の測定は、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約10mL)に炭素粉末を分散させて、レーザー回折・散乱式粒度分布計(堀場製作所社製LA−700)を用いて行なうことができる。該測定で求められるメジアン径を、本発明の炭素質材料の体積基準平均粒径と定義する。
When the volume-based average particle size is in the above range, the loss of the initial battery capacity due to the increase in irreversible capacity can be suppressed, and uniform electrode application is possible when the electrode preparation step by application is included.
The volume-based average particle size is measured by dispersing carbon powder in a 0.2% by weight aqueous solution (about 10 mL) of polyoxyethylene (20) sorbitan monolaurate, which is a surfactant, and laser diffraction / scattering particle size distribution. This can be performed using a meter (LA-700 manufactured by Horiba, Ltd.). The median diameter determined by the measurement is defined as the volume-based average particle diameter of the carbonaceous material of the present invention.

(ラマンR値、ラマン半値幅)
炭素質材料のラマンR値は、アルゴンイオンレーザーラマンスペクトル法を用いて測定した値であり、通常0.01以上であり、0.03以上が好ましく、0.1以上がさらに好ましく、また、通常1.5以下であり、1.2以下が好ましく、1以下がさらに好ましく、0.5以下が特に好ましい。
(Raman R value, Raman half width)
The Raman R value of the carbonaceous material is a value measured using an argon ion laser Raman spectrum method, and is usually 0.01 or more, preferably 0.03 or more, more preferably 0.1 or more, and usually 1.5 or less, preferably 1.2 or less, more preferably 1 or less, and particularly preferably 0.5 or less.

また、炭素質材料の1580cm−1付近のラマン半値幅は特に制限されないが、通常10cm−1以上であり、15cm−1以上が好ましく、また、通常100cm−1以下であり、80cm−1以下が好ましく、60cm−1以下がさらに好ましく、40cm−1以下が特に好ましい。
ラマンR値及びラマン半値幅は、炭素質材料表面の結晶性を示す指標であるが、炭素質材料は、化学的安定性の観点から適度な結晶性が有する一方、充放電によってLiが入り込む層間のサイトを消失しない程度の結晶性であることが好ましい。なお、集電体に塗布した後のプレスによって負極を高密度化する場合には、電極板と平行方向に結晶が配向しやすくなるため、それを考慮することが好ましい。
Further, the Raman half-width in the vicinity of 1580 cm −1 of the carbonaceous material is not particularly limited, but is usually 10 cm −1 or more, preferably 15 cm −1 or more, and usually 100 cm −1 or less, and 80 cm −1 or less. Preferably, it is more preferably 60 cm-1 or less, and particularly preferably 40 cm-1 or less.
The Raman R value and the Raman half-value width are indices indicating the crystallinity of the surface of the carbonaceous material, but the carbonaceous material has an appropriate crystallinity from the viewpoint of chemical stability, while the interlayer in which Li enters by charge / discharge. It is preferable that the crystallinity is such that it does not disappear. In the case where the density of the negative electrode is increased by press after applying to the current collector, it is preferable to take account of this because crystals tend to be oriented in a direction parallel to the electrode plate.

ラマンR値又はラマン半値幅が上記範囲であると、炭素質材料と非水系電解液との反応を抑制することができるとともに、サイトの消失による負荷特性の低下を抑制することができる。
ラマンスペクトルの測定は、ラマン分光器(日本分光社製ラマン分光器)を用いて、試料を測定セル内へ自然落下させて充填し、セル内のサンプル表面にアルゴンイオンレーザー光を照射しながら、セルをレーザー光と垂直な面内で回転させることにより行なう。得られるラマンスペクトルについて、1580cm−1付近のピークPAの強度IAと、1360cm−1付近のピークPBの強度IBとを測定し、その強度比R(R=IB/IA)を算出する。該測定で算出されるラマンR値を、本発明の炭素質材料のラマンR値と定義する。また、得られるラマンスペクトルの1580cm−1付近のピークPAの半値幅
を測定し、これを本発明の炭素質材料のラマン半値幅と定義する。
When the Raman R value or the Raman half-value width is in the above range, the reaction between the carbonaceous material and the nonaqueous electrolytic solution can be suppressed, and the deterioration of the load characteristics due to the disappearance of the site can be suppressed.
The measurement of the Raman spectrum, using a Raman spectrometer (manufactured by JASCO Corporation Raman spectrometer), the sample is naturally dropped into the measurement cell and filled, and while irradiating the sample surface in the cell with argon ion laser light, This is done by rotating the cell in a plane perpendicular to the laser beam. For the obtained Raman spectrum, the intensity IA of the peak PA near 1580 cm −1 and the intensity IB of the peak PB near 1360 cm −1 are measured, and the intensity ratio R (R = IB / IA) is calculated. The Raman R value calculated by the measurement is defined as the Raman R value of the carbonaceous material of the present invention. Further, the half width of the peak PA near 1580 cm −1 of the obtained Raman spectrum is measured, and this is defined as the Raman half width of the carbonaceous material of the present invention.

また、上記のラマン測定条件は、次の通りである。
・アルゴンイオンレーザー波長 :514.5nm
・試料上のレーザーパワー :15〜25mW
・分解能 :10〜20cm−1
・測定範囲 :1100cm−1〜1730cm−1
・ラマンR値、ラマン半値幅解析:バックグラウンド処理
・スムージング処理 :単純平均、コンボリューション5ポイント
Moreover, said Raman measurement conditions are as follows.
Argon ion laser wavelength: 514.5nm
・ Laser power on the sample: 15-25mW
・ Resolution: 10-20cm-1
Measurement range: 1100 cm-1 to 1730 cm-1
・ Raman R value, Raman half width analysis: Background processing
-Smoothing processing: Simple average, 5 points of convolution

(BET比表面積)
炭素質材料のBET比表面積は、BET法を用いて測定した比表面積の値であり、通常0.1m2・g−1以上であり、0.7m2・g−1以上が好ましく、1.0m2・g−1以上がさらに好ましく、1.5m2・g−1以上が特に好ましく、また、通常100m2・g−1以下であり、25m2・g−1以下が好ましく、15m2・g−1以下がさらに好ましく、10m2・g−1以下が特に好ましい。
(BET specific surface area)
The BET specific surface area of the carbonaceous material is a value of the specific surface area measured using the BET method, and is usually 0.1 m 2 · g −1 or more, preferably 0.7 m 2 · g −1 or more, and 1.0 m 2. g-1 or more is more preferable, 1.5 m2 · g-1 or more is particularly preferable, and usually 100 m2 · g-1 or less, preferably 25 m2 · g-1 or less, more preferably 15 m2 · g-1 or less. 10 m 2 · g −1 or less is particularly preferable.

BET比表面積の値が上記範囲であると、電極表面へのリチウムの析出を抑制することができる一方、非水系電解液との反応によるガス発生を抑制することができる。
BET法による比表面積の測定は、表面積計(大倉理研製全自動表面積測定装置)を用いて、試料に対して窒素流通下350℃で15分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用いて、ガス流動法による窒素吸着BET1点法によって行う。該測定で求められる比表面積を、本発明の炭素質材料のBET比表面積と定義する。
When the value of the BET specific surface area is in the above range, precipitation of lithium on the electrode surface can be suppressed, while gas generation due to reaction with the non-aqueous electrolyte can be suppressed.
The specific surface area was measured by the BET method using a surface area meter (a fully automated surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 350 ° C. for 15 minutes under nitrogen flow, Using a nitrogen helium mixed gas accurately adjusted so that the value of the relative pressure becomes 0.3, the nitrogen adsorption BET one-point method by the gas flow method is used. The specific surface area determined by the measurement is defined as the BET specific surface area of the carbonaceous material of the present invention.

(円形度)
炭素質材料の球形の程度として円形度を測定した場合、以下の範囲に収まることが好ましい。なお、円形度は、「円形度=(粒子投影形状と同じ面積を持つ相当円の周囲長)/(粒子投影形状の実際の周囲長)」で定義され、円形度が1のときに理論的真球となる。炭素質材料の粒径が3〜40μmの範囲にある粒子の円形度は1に近いほど望ましく、また、0.1以上が好ましく、中でも0.5以上が好ましく、0.8以上がより好ましく、0.85以上がさらに好ましく、0.9以上が特に好ましい。
(Roundness)
When the circularity is measured as the degree of the sphere of the carbonaceous material, it is preferably within the following range. The circularity is defined as “circularity = (peripheral length of an equivalent circle having the same area as the particle projection shape) / (actual perimeter of the particle projection shape)”, and is theoretical when the circularity is 1. Become a true sphere. The circularity of the particles having a particle size of 3 to 40 μm in the range of the carbonaceous material is desirably closer to 1, and is preferably 0.1 or more, more preferably 0.5 or more, and more preferably 0.8 or more, 0.85 or more is more preferable, and 0.9 or more is particularly preferable.

炭素質材料の円形度が大きいほど、充填性が向上し、粒子間の抵抗を抑えることができるため、高電流密度充放電特性は向上する。従って、円形度が上記範囲のように高いほど好ましい。
円形度の測定は、フロー式粒子像分析装置(シスメックス社製FPIA)を用いて行う。試料約0.2gを、界面活性剤であるポリオキシエチレン(20)ソルビタンモノラウレートの0.2質量%水溶液(約50mL)に分散させ、28kHzの超音波を出力60Wで1分間照射した後、検出範囲を0.6〜400μmに指定し、粒径が3〜40μmの範囲の粒子について測定する。該測定で求められる円形度を、本発明の炭素質材料の円形度と定義する。
The greater the degree of circularity of the carbonaceous material, the better the filling property and the resistance between particles, so that the high current density charge / discharge characteristics are improved. Therefore, it is preferable that the circularity is as high as the above range.
The circularity is measured using a flow type particle image analyzer (FPIA manufactured by Sysmex Corporation). About 0.2 g of a sample was dispersed in a 0.2% by mass aqueous solution (about 50 mL) of polyoxyethylene (20) sorbitan monolaurate as a surfactant, and irradiated with 28 kHz ultrasonic waves at an output of 60 W for 1 minute. The detection range is specified as 0.6 to 400 μm, and the particle size is measured in the range of 3 to 40 μm. The circularity determined by the measurement is defined as the circularity of the carbonaceous material of the present invention.

円形度を向上させる方法は、特に制限されないが、球形化処理を施して球形にしたものが、電極体にしたときの粒子間空隙の形状が整うので好ましい。球形化処理の例としては、せん断力、圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダーもしくは、粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。   The method for improving the circularity is not particularly limited, but a sphere-shaped sphere is preferable because the shape of the interparticle void when the electrode body is formed is preferable. Examples of spheroidizing treatment include a method of mechanically approaching a sphere by applying a shearing force and a compressive force, a mechanical / physical processing method of granulating a plurality of fine particles by the binder or the adhesive force of the particles themselves, etc. Is mentioned.

(タップ密度)
炭素質材料のタップ密度は、通常0.1g・cm−3以上であり、0.5g・cm−3以上が好ましく、0.7g・cm−3以上がさらに好ましく、1g・cm−3以上が特に好ましく、また、2g・cm−3以下が好ましく、1.8g・cm−3以下がさらに好ましく、1.6g・cm−3以下が特に好ましい。タップ密度が上記範囲であると、電池容量を確保することができるとともに、粒子間の抵抗の増大を抑制することができる。
(Tap density)
The tap density of the carbonaceous material is usually 0.1 g · cm −3 or more, preferably 0.5 g · cm −3 or more, more preferably 0.7 g · cm −3 or more, and 1 g · cm −3 or more. Particularly preferable, 2 g · cm −3 or less is preferable, 1.8 g · cm −3 or less is more preferable, and 1.6 g · cm −3 or less is particularly preferable. When the tap density is in the above range, battery capacity can be ensured and increase in resistance between particles can be suppressed.

タップ密度の測定は、目開き300μmの篩を通過させて、20cm3のタッピングセルに試料を落下させてセルの上端面まで試料を満たした後、粉体密度測定器(例えば、セイシン企業社製タップデンサー)を用いて、ストローク長10mmのタッピングを1000回行なって、その時の体積と試料の質量からタップ密度を算出する。該測定で算出されるタップ密度を、本発明の炭素質材料のタップ密度として定義する。   The tap density is measured by passing a sieve having a mesh opening of 300 μm, dropping the sample onto a 20 cm 3 tapping cell and filling the sample to the upper end surface of the cell, and then measuring a powder density measuring instrument (for example, a tap manufactured by Seishin Enterprise Co., Ltd.). Using a denser, tapping with a stroke length of 10 mm is performed 1000 times, and the tap density is calculated from the volume at that time and the mass of the sample. The tap density calculated by the measurement is defined as the tap density of the carbonaceous material of the present invention.

(配向比)
炭素質材料の配向比は、通常0.005以上であり、0.01以上が好ましく、0.015以上がさらに好ましく、また、通常0.67以下である。配向比が、上記範囲であると、優れた高密度充放電特性を確保することができる。なお、上記範囲の上限は、炭素質材料の配向比の理論上限値である。
配向比は、試料を加圧成型してからX線回折により測定する。試料0.47gを直径17mmの成型機に充填し58.8MN・m−2で圧縮して得た成型体を、粘土を用いて測定用試料ホルダーの面と同一面になるようにセットしてX線回折を測定する。得られた炭素の(110)回折と(004)回折のピーク強度から、(110)回折ピーク強度/(004)回折ピーク強度で表わされる比を算出する。該測定で算出される配向比を、本発明の炭素質材料の配向比と定義する。
(Orientation ratio)
The orientation ratio of the carbonaceous material is usually 0.005 or more, preferably 0.01 or more, more preferably 0.015 or more, and usually 0.67 or less. When the orientation ratio is in the above range, excellent high-density charge / discharge characteristics can be ensured. The upper limit of the above range is the theoretical upper limit value of the orientation ratio of the carbonaceous material.
The orientation ratio is measured by X-ray diffraction after pressure-molding the sample. Set the molded body obtained by filling 0.47 g of the sample into a molding machine with a diameter of 17 mm and compressing it with 58.8MN · m-2 so that it is flush with the surface of the sample holder for measurement. X-ray diffraction is measured. From the (110) diffraction and (004) diffraction peak intensities of the obtained carbon, a ratio represented by (110) diffraction peak intensity / (004) diffraction peak intensity is calculated. The orientation ratio calculated by the measurement is defined as the orientation ratio of the carbonaceous material of the present invention.

X線回折測定条件は次の通りである。なお、「2θ」は回折角を示す。
・ターゲット:Cu(Kα線)グラファイトモノクロメーター
・スリット :
発散スリット=0.5度
受光スリット=0.15mm
散乱スリット=0.5度
・測定範囲及びステップ角度/計測時間:
(110)面:75度≦2θ≦80度 1度/60秒
(004)面:52度≦2θ≦57度 1度/60秒
The X-ray diffraction measurement conditions are as follows. “2θ” indicates a diffraction angle.
・ Target: Cu (Kα ray) graphite monochromator ・ Slit:
Divergence slit = 0.5 degree Light receiving slit = 0.15 mm
Scattering slit = 0.5 degree / measurement range and step angle / measurement time:
(110) plane: 75 degrees ≦ 2θ ≦ 80 degrees 1 degree / 60 seconds (004) plane: 52 degrees ≦ 2θ ≦ 57 degrees 1 degree / 60 seconds

(アスペクト比(粉))
炭素質材料のアスペクト比は、通常1以上、また、通常10以下であり、8以下が好ましく、5以下がさらに好ましい。アスペクト比が、上記範囲であると、極板化時のスジ引きを抑制し、さらに均一な塗布が可能となるため、優れた高電流密度充放電特性を確保することができる。なお、上記範囲の下限は、炭素質材料のアスペクト比の理論下限値である。
(Aspect ratio (powder))
The aspect ratio of the carbonaceous material is usually 1 or more and usually 10 or less, preferably 8 or less, and more preferably 5 or less. When the aspect ratio is in the above range, streaking at the time of forming an electrode plate is suppressed, and further uniform coating becomes possible, so that excellent high current density charge / discharge characteristics can be ensured. The lower limit of the above range is the theoretical lower limit value of the aspect ratio of the carbonaceous material.

アスペクト比の測定は、炭素質材料の粒子を走査型電子顕微鏡で拡大観察して行う。厚さ50μm以下の金属の端面に固定した任意の50個の黒鉛粒子を選択し、それぞれについて試料が固定されているステージを回転、傾斜させて、3次元的に観察した時の炭素質材料粒子の最長となる径Aと、それと直交する最短となる径Bを測定し、A/Bの平均値を求める。該測定で求められるアスペクト比(A/B)を、本発明の炭素質材料のアスペクト比と定義する。   The aspect ratio is measured by magnifying and observing the carbonaceous material particles with a scanning electron microscope. Carbonaceous material particles when three-dimensional observation is performed by selecting arbitrary 50 graphite particles fixed to the end face of a metal having a thickness of 50 μm or less and rotating and tilting the stage on which the sample is fixed. The longest diameter A and the shortest diameter B orthogonal thereto are measured, and the average value of A / B is obtained. The aspect ratio (A / B) obtained by the measurement is defined as the aspect ratio of the carbonaceous material of the present invention.

(副材混合)
副材混合とは、負極電極中及び/又は負極活物質中に性質の異なる炭素質材料が2種以
上含有していることである。ここでいう性質とは、X線回折パラメータ、メジアン径、アスペクト比、BET比表面積、配向比、ラマンR値、タップ密度、真密度、細孔分布、円形度、灰分量の群から選ばれる1つ以上の特性を示す。
これらの副材混合の、特に好ましい例としては、体積基準粒度分布がメジアン径を中心としたときに左右対称とならないこと、ラマンR値が異なる炭素質材料を2種以上含有していること、及びX線パラメータが異なること等が挙げられる。
副材混合の効果の1例として、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素質材料を導電材として含有されることにより、電気抵抗を低減させることが挙げられる。
(Mixed with secondary materials)
The sub-material mixing means that two or more types of carbonaceous materials having different properties are contained in the negative electrode and / or the negative electrode active material. The properties referred to here are selected from the group consisting of X-ray diffraction parameters, median diameter, aspect ratio, BET specific surface area, orientation ratio, Raman R value, tap density, true density, pore distribution, circularity, and ash content. Shows more than one characteristic.
As a particularly preferred example of mixing these secondary materials, the volume-based particle size distribution is not symmetrical when centered on the median diameter, containing two or more carbonaceous materials having different Raman R values, And X-ray parameters are different.
As an example of the effect of the admixture of secondary materials, carbonaceous material such as graphite (natural graphite, artificial graphite), carbon black such as acetylene black, and amorphous carbon such as needle coke is contained as a conductive material. Reducing electrical resistance.

副材混合として導電材を混合する場合には、1種を単独で混合してもよく、2種以上を任意の組み合わせ及び比率で混合してもよい。また、導電材の炭素質材料に対する混合比率は、通常0.1質量%以上、0.5質量%以上がこのましく、0.6質量%以上が更に好ましく、また、通常45質量%以下であり、40質量%以下が好ましい。混合比が上記範囲であると、電気抵抗低減効果を確保することができるとともに、初期不可逆容量の増大を抑制することができる。   When mixing a conductive material as a secondary material mixture, one type may be mixed alone, or two or more types may be mixed in any combination and ratio. The mixing ratio of the conductive material to the carbonaceous material is usually 0.1% by mass or more and 0.5% by mass or more, more preferably 0.6% by mass or more, and usually 45% by mass or less. Yes, 40 mass% or less is preferable. When the mixing ratio is in the above range, the effect of reducing electric resistance can be secured and an increase in initial irreversible capacity can be suppressed.

<2−4.負極の構成と作製法負極>
電極の製造は、本発明の効果を著しく損なわない限り、公知のいずれの方法を用いることができる。例えば、負極活物質に、バインダー、溶媒、必要に応じて、増粘剤、導電材、充填材等を加えてスラリーとし、これを集電体に塗布、乾燥した後にプレスすることによって形成することができる。
また、合金系材料を用いる場合には、蒸着法、スパッタ法、メッキ法等の手法により、上述の負極活物質を含有する薄膜層(負極活物質層)を形成する方法も用いられる。
<2-4. Structure of Negative Electrode and Preparation Method Negative Electrode>
Any known method can be used for producing the electrode as long as the effects of the present invention are not significantly impaired. For example, it is formed by adding a binder, a solvent, and, if necessary, a thickener, a conductive material, a filler, etc. to a negative electrode active material to form a slurry, which is applied to a current collector, dried and then pressed. Can do.
In the case of using an alloy-based material, a method of forming a thin film layer (negative electrode active material layer) containing the above-described negative electrode active material by a technique such as vapor deposition, sputtering, or plating is also used.

(集電体)
負極活物質を保持させる集電体としては、公知のものを任意に用いることができる。負極の集電体としては、例えば、アルミニウム、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられるが、加工し易さとコストの点から特に銅が好ましい。
また、集電体の形状は、集電体が金属材料の場合は、例えば、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられる。中でも、好ましくは金属薄膜、より好ましくは銅箔であり、さらに好ましくは圧延法による圧延銅箔と、電解法による電解銅箔があり、どちらも集電体として用いることができる。
集電体の厚さは、電池容量の確保、取扱い性の観点から、通常1μm以上、好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下である。
(Current collector)
As the current collector for holding the negative electrode active material, a known material can be arbitrarily used. Examples of the current collector for the negative electrode include metal materials such as aluminum, copper, nickel, stainless steel, and nickel-plated steel. Copper is particularly preferable from the viewpoint of ease of processing and cost.
In addition, the shape of the current collector may be, for example, a metal foil, a metal cylinder, a metal coil, a metal plate, a metal thin film, an expanded metal, a punch metal, a foam metal, or the like when the current collector is a metal material. Among them, a metal thin film is preferable, a copper foil is more preferable, and a rolled copper foil by a rolling method and an electrolytic copper foil by an electrolytic method are more preferable, and both can be used as a current collector.
The thickness of the current collector is usually 1 μm or more, preferably 5 μm or more, and usually 100 μm or less, preferably 50 μm or less, from the viewpoint of securing battery capacity and handling properties.

(集電体と負極活物質層との厚さの比)
集電体と負極活物質層の厚さの比は特に制限されないが、「(非水系電解液注液直前の片面の負極活物質層厚さ)/(集電体の厚さ)」の値が、150以下が好ましく、20以下がさらに好ましく、10以下が特に好ましく、また、0.1以上が好ましく、0.4以上がさらに好ましく、1以上が特に好ましい。集電体と負極活物質層の厚さの比が、上記範囲であると、電池容量を確保することができるとともに、高電流密度充放電時における集電体の発熱を抑制することができる。
(Thickness ratio between current collector and negative electrode active material layer)
The ratio of the thickness of the current collector to the negative electrode active material layer is not particularly limited, but the value of “(the thickness of the negative electrode active material layer on one side immediately before the nonaqueous electrolyte injection) / (thickness of the current collector)” However, 150 or less is preferable, 20 or less is more preferable, 10 or less is particularly preferable, 0.1 or more is preferable, 0.4 or more is more preferable, and 1 or more is particularly preferable. When the ratio of the thickness of the current collector to the negative electrode active material layer is in the above range, battery capacity can be secured and heat generation of the current collector during high current density charge / discharge can be suppressed.

(結着剤)
負極活物質を結着するバインダーとしては、非水系電解液や電極製造時に用いる溶媒に対して安定な材料であれば、特に制限されない。
具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、ポリイミド、セルロース、ニトロセルロース
等の樹脂系高分子;SBR(スチレン・ブタジエンゴム)、イソプレンゴム、ブタジエンゴム、フッ素ゴム、NBR(アクリロニトリル・ブタジエンゴム)、エチレン・プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物;EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・スチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder for binding the negative electrode active material is not particularly limited as long as it is a material that is stable with respect to the non-aqueous electrolyte solution and the solvent used in manufacturing the electrode.
Specific examples include resin-based polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, aromatic polyamide, polyimide, cellulose, and nitrocellulose; SBR (styrene-butadiene rubber), isoprene rubber, butadiene rubber, fluorine rubber, Rubber polymers such as NBR (acrylonitrile / butadiene rubber) and ethylene / propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof; EPDM (ethylene / propylene / diene terpolymer), styrene / Thermoplastic elastomeric polymers such as ethylene / butadiene / styrene copolymers, styrene / isoprene / styrene block copolymers or hydrogenated products thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate , Soft resinous polymers such as ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer; polyvinylidene fluoride, polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymer, etc. And a polymer composition having ion conductivity of alkali metal ions (particularly lithium ions). These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.

負極活物質に対するバインダーの割合は、0.1質量%以上が好ましく、0.5質量%以上がさらに好ましく、0.6質量%以上が特に好ましく、また、20質量%以下が好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましく、8質量%以下が特に好ましい。負極活物質に対するバインダーの割合が、上記範囲を上回ると、バインダー量が電池容量に寄与しないバインダー割合が増加して、電池容量の低下を招く場合がある。また、上記範囲を下回ると、負極電極の強度低下を招く場合がある。   The ratio of the binder to the negative electrode active material is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, particularly preferably 0.6% by mass or more, and preferably 20% by mass or less, 15% by mass. The following is more preferable, 10% by mass or less is further preferable, and 8% by mass or less is particularly preferable. When the ratio of the binder with respect to a negative electrode active material exceeds the said range, the binder ratio from which the amount of binders does not contribute to battery capacity may increase, and the fall of battery capacity may be caused. On the other hand, below the above range, the strength of the negative electrode may be reduced.

特に、SBRに代表されるゴム状高分子を主要成分に含有する場合には、負極活物質に対するバインダーの割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。また、ポリフッ化ビニリデンに代表されるフッ素系高分子を主要成分に含有する場合には負極活物質に対する割合は、通常1質量%以上であり、2質量%以上が好ましく、3質量%以上がさらに好ましく、また、通常15質量%以下であり、10質量%以下が好ましく、8質量%以下がさらに好ましい。   In particular, when a rubbery polymer typified by SBR is contained as a main component, the ratio of the binder to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, and 0 .6% by mass or more is more preferable, usually 5% by mass or less, preferably 3% by mass or less, and more preferably 2% by mass or less. When the main component contains a fluorine-based polymer typified by polyvinylidene fluoride, the ratio to the negative electrode active material is usually 1% by mass or more, preferably 2% by mass or more, and more preferably 3% by mass or more. It is preferably 15% by mass or less, preferably 10% by mass or less, and more preferably 8% by mass or less.

(スラリー形成溶媒)
スラリーを形成するための溶媒としては、負極活物質、バインダー、並びに必要に応じて使用される増粘剤及び導電材を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。
水系溶媒としては、水、アルコール等が挙げられ、有機系溶媒としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、テトラヒドロフラン(THF)、トルエン、アセトン、ジエチルエーテル、ジメチルアセトアミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等が挙げられる。
特に水系溶媒を用いる場合、増粘剤に併せて分散剤等を含有させ、SBR等のラテックスを用いてスラリー化することが好ましい。なお、これらの溶媒は、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Slurry forming solvent)
The solvent for forming the slurry is not particularly limited as long as it is a solvent capable of dissolving or dispersing the negative electrode active material, the binder, and the thickener and conductive material used as necessary. Alternatively, either an aqueous solvent or an organic solvent may be used.
Examples of the aqueous solvent include water and alcohol. Examples of the organic solvent include N-methylpyrrolidone (NMP), dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, N, N- Examples include dimethylaminopropylamine, tetrahydrofuran (THF), toluene, acetone, diethyl ether, dimethylacetamide, hexamethylphosphalamide, dimethyl sulfoxide, benzene, xylene, quinoline, pyridine, methylnaphthalene, hexane, and the like.
In particular, when an aqueous solvent is used, it is preferable to add a dispersant or the like in addition to the thickener and slurry it using a latex such as SBR. In addition, these solvents may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and a ratio.

(増粘剤)
増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限されないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Thickener)
A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios.

さらに増粘剤を用いる場合には、負極活物質に対する増粘剤の割合は、通常0.1質量%以上であり、0.5質量%以上が好ましく、0.6質量%以上がさらに好ましく、また、通常5質量%以下であり、3質量%以下が好ましく、2質量%以下がさらに好ましい。負極活物質に対する増粘剤の割合が、上記範囲であると、電池容量の低下や抵抗の増大を抑制できるとともに、適度な塗布性を確保することができる。   Further, when using a thickener, the ratio of the thickener to the negative electrode active material is usually 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more, Moreover, it is 5 mass% or less normally, 3 mass% or less is preferable, and 2 mass% or less is more preferable. When the ratio of the thickener to the negative electrode active material is within the above range, it is possible to suppress a decrease in battery capacity and an increase in resistance, and it is possible to ensure appropriate applicability.

(電極密度)
負極活物質を電極化した際の電極構造は特に制限されないが、集電体上に存在している負極活物質の密度は、1g・cm−3以上が好ましく、1.2g・cm−3以上がさらに好ましく、1.3g・cm−3以上が特に好ましく、また、2.2g・cm−3以下が好ましく、2.1g・cm−3以下がより好ましく、2.0g・cm−3以下がさらに好ましく、1.9g・cm−3以下が特に好ましい。集電体上に存在している負極活物質の密度が、上記範囲であると、負極活物質粒子の破壊を防止して、初期不可逆容量の増加や、集電体/負極活物質界面付近への非水系電解液の浸透性低下による高電流密度充放電特性悪化を抑制することができる一方、電池容量の低下や抵抗の増大を抑制することができる。
(Electrode density)
The electrode structure when the negative electrode active material is made into an electrode is not particularly limited, but the density of the negative electrode active material present on the current collector is preferably 1 g · cm −3 or more, and 1.2 g · cm −3 or more. Is more preferably 1.3 g · cm −3 or more, preferably 2.2 g · cm −3 or less, more preferably 2.1 g · cm −3 or less, and 2.0 g · cm −3 or less. Further preferred is 1.9 g · cm −3 or less. When the density of the negative electrode active material existing on the current collector is in the above range, the negative electrode active material particles are prevented from being destroyed, and an increase in initial irreversible capacity or to the vicinity of the current collector / negative electrode active material interface. While the deterioration of the high current density charge / discharge characteristics due to the reduced permeability of the non-aqueous electrolyte solution can be suppressed, the decrease in battery capacity and the increase in resistance can be suppressed.

(負極板の厚さ)
負極板の厚さは用いられる正極板に合わせて設計されるものであり、特に制限されないが、芯材の金属箔厚さを差し引いた合材層の厚さは通常15μm以上、好ましくは20μm以上、より好ましくは30μm以上、また、通常300μm以下、好ましくは280μm以下、より好ましくは250μm以下が望ましい。
(Thickness of negative electrode plate)
The thickness of the negative electrode plate is designed according to the positive electrode plate to be used, and is not particularly limited. However, the thickness of the composite layer obtained by subtracting the thickness of the metal foil of the core is usually 15 μm or more, preferably 20 μm or more. More preferably, it is 30 μm or more, and usually 300 μm or less, preferably 280 μm or less, more preferably 250 μm or less.

(負極板の表面被覆)
また、上記負極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩等が挙げられる。
(Surface coating of negative electrode plate)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said negative electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate and carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate.

<2−5.正極>
(正極活物質)
正極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、リチウムと少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、リチウム遷移金属複合酸化物、リチウム含有遷移金属リン酸化合物が挙げられる。
<2-5. Positive electrode>
(Positive electrode active material)
The positive electrode active material is not particularly limited as long as it can electrochemically occlude and release lithium ions. For example, a material containing lithium and at least one transition metal is preferable. Specific examples include lithium transition metal composite oxides and lithium-containing transition metal phosphate compounds.

リチウム遷移金属複合酸化物の遷移金属としてはV、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、LiCoO2等のリチウム・コバルト複合酸化物、LiNiO2等のリチウム・ニッケル複合酸化物、LiMnO2、LiMn2O4、Li2MnO4等のリチウム・マンガン複合酸化物、これらのリチウム遷移金属複合酸化物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Si等の他の金属で置換したもの等が挙げられる。置換されたものの具体例としては、例えば、LiNi0.5Mn0.5O2、LiNi0.85Co0.10Al0.05O2、LiNi0.33Co0.33Mn0.33O2、LiMn1.8Al0.2O4、LiMn1.5Ni0.5O4等が挙げられる。   V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable as the transition metal of the lithium transition metal composite oxide. Specific examples include lithium-cobalt composite oxides such as LiCoO2 and lithium- Nickel composite oxides, lithium manganese composite oxides such as LiMnO2, LiMn2O4, Li2MnO4, and some of transition metal atoms that are the main components of these lithium transition metal composite oxides are Al, Ti, V, Cr, Mn, Fe, Examples include those substituted with other metals such as Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, and Si. Specific examples of the substituted ones include, for example, LiNi0.5Mn0.5O2, LiNi0.85Co0.10Al0.05O2, LiNi0.33Co0.33Mn0.33O2, LiMn1.8Al0.2O4, LiMn1.5Ni0.5O4, and the like.

リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO4、Li3F
e2(PO4)3、LiFeP2O7等のリン酸鉄類、LiCoPO4等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の金属で置換したもの等が挙げられる。
As the transition metal of the lithium-containing transition metal phosphate compound, V, Ti, Cr, Mn, Fe, Co, Ni, Cu and the like are preferable. Specific examples include, for example, LiFePO4, Li3F.
e2 (PO4) 3, iron phosphates such as LiFeP2O7, cobalt phosphates such as LiCoPO4, and some of the transition metal atoms that are the main components of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si and the like substituted with other metals.

(表面被覆)
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Surface coating)
Moreover, you may use what the substance of the composition different from this adhered to the surface of the said positive electrode active material. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.

これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸添加、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により該正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。   For example, these surface adhering substances are dissolved or suspended in a solvent, impregnated and added to the positive electrode active material, and dried. After the surface adhering substance precursor is dissolved or suspended in a solvent and impregnated and added to the positive electrode active material, It can be made to adhere to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and firing simultaneously. In addition, when making carbon adhere, the method of making carbonaceous adhere mechanically later in the form of activated carbon etc. can also be used, for example.

表面付着物質の量としては、該正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、さらに好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での電解液の酸化反応を抑制することができ、電池寿命を向上させることができる。上記範囲であると、リチウムイオンの出入りの阻害に伴う抵抗を抑制することができる一方、上記効果を十分に発現することができる。
本発明においては、正極活物質の表面に、これとは異なる組成の物質が付着したものをも「正極活物質」という。
The amount of the surface adhering substance is by mass with respect to the positive electrode active material, preferably 0.1 ppm or more, more preferably 1 ppm or more, still more preferably 10 ppm or more, and the upper limit, preferably 20% or less, more preferably, as the lower limit. Is used at 10% or less, more preferably 5% or less. The surface adhering substance can suppress the oxidation reaction of the electrolytic solution on the surface of the positive electrode active material, and can improve the battery life. Within the above range, the resistance associated with the inhibition of the entry and exit of lithium ions can be suppressed, while the above effect can be sufficiently exhibited.
In the present invention, a material in which a material having a different composition is attached to the surface of the positive electrode active material is also referred to as “positive electrode active material”.

(形状)
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられるが、中でも一次粒子が凝集して、二次粒子を形成して成り、その二次粒子の形状が球状ないし楕円球状であるものが好ましい。通常、電気化学素子はその充放電に伴い、電極中の活物質が膨張収縮をするため、そのストレスによる活物質の破壊や導電パス切れ等の劣化がおきやすい。そのため一次粒子のみの単一粒子活物質であるよりも、一次粒子が凝集して、二次粒子を形成したものである方が膨張収縮のストレスを緩和して、劣化を防ぐため好ましい。また、板状等軸配向性の粒子であるよりも球状ないし楕円球状の粒子の方が、電極の成形時の配向が少ないため、充放電時の電極の膨張収縮も少なく、また電極を作成する際の導電材との混合においても、均一に混合されやすいため好ましい。
(shape)
Examples of the shape of the positive electrode active material particles include a lump shape, a polyhedron shape, a sphere shape, an oval sphere shape, a plate shape, a needle shape, and a column shape, which are conventionally used. It is preferable that the secondary particles have a spherical shape or an elliptical shape. In general, an electrochemical element expands and contracts as the active material in the electrode expands and contracts as it is charged and discharged. Therefore, the active material is easily damaged due to the stress or the conductive path is broken. Therefore, it is preferable that the primary particles are aggregated to form secondary particles, rather than a single particle active material having only primary particles, in order to relieve expansion and contraction stress and prevent deterioration. In addition, spherical or oval spherical particles are less oriented during molding of the electrode than plate-like equiaxed particles, so that the expansion and contraction of the electrode during charging and discharging is small, and the electrode is produced. The mixing with the conductive material is also preferable because it is easy to mix uniformly.

(タップ密度)
正極活物質のタップ密度は、好ましくは0.5g/cm3以上、より好ましくは1.0g/cm3以上、さらに好ましくは1.5g/cm3以上、最も好ましくは1.7g/cm3以上である。該正極活物質のタップ密度が上記範囲であると、正極活物質層形成時に必要な分散媒量及び導電材や結着剤の必要量を抑えることができ、、結果正極活物質の充填率及び電池容量を確保することができる。。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、好ましくは2.7g/cm3以下、より好ましくは2.5g/cm3以下である。上記範囲であると負荷特性の低下を抑制することができる。
なお、本発明では、タップ密度は、正極活物質粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
(Tap density)
The tap density of the positive electrode active material is preferably 0.5 g / cm 3 or more, more preferably 1.0 g / cm 3 or more, still more preferably 1.5 g / cm 3 or more, and most preferably 1.7 g / cm 3 or more. When the tap density of the positive electrode active material is within the above range, it is possible to suppress the amount of dispersion medium and the necessary amount of conductive material and binder required at the time of forming the positive electrode active material layer. Battery capacity can be secured. . By using a complex oxide powder having a high tap density, a high-density positive electrode active material layer can be formed. In general, the tap density is preferably as large as possible, and there is no particular upper limit, but it is preferably 2.7 g / cm 3 or less, more preferably 2.5 g / cm 3 or less. When it is within the above range, it is possible to suppress a decrease in load characteristics.
In the present invention, the tap density is defined as the powder packing density (tap density) g / cc when 5 to 10 g of the positive electrode active material powder is put in a 10 ml glass measuring cylinder and tapped 200 times with a stroke of about 20 mm. Ask.

(メジアン径d50)
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは1.2μm以上、さらに好ましくは1.5μm以上、最も好ましくは2μm以上であり、上限は、好ましくは20μm以下、より好ましくは18μm以下、さらに好ましくは16μm以下、最も好ましくは15μm以下である。上記範囲であると、高タップ密度品が得られ、電池性能の低下を抑制できる一方、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化して、薄膜状に塗布する際に生じるスジを引く等の問題を防止することができる。ここで、異なるメジアン径d50をもつ該正極活物質を2種類以上混合することで、正極作成時の充填性をさらに向上させることができる。
なお、本発明では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA−920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
(Median diameter d50)
The median diameter d50 of the positive electrode active material particles (secondary particle diameter when primary particles are aggregated to form secondary particles) is preferably 0.3 μm or more, more preferably 1.2 μm or more, and even more preferably. Is 1.5 μm or more, most preferably 2 μm or more, and the upper limit is preferably 20 μm or less, more preferably 18 μm or less, still more preferably 16 μm or less, and most preferably 15 μm or less. Within the above range, a high tap density product can be obtained and the battery performance can be prevented from decreasing. On the other hand, when forming a positive electrode for a battery, that is, when slurrying an active material, a conductive material, a binder, etc. with a solvent, It is possible to prevent problems such as drawing streaks. Here, by mixing two or more kinds of the positive electrode active materials having different median diameters d50, it is possible to further improve the filling property when forming the positive electrode.
In the present invention, the median diameter d50 is measured by a known laser diffraction / scattering particle size distribution measuring device. When LA-920 manufactured by HORIBA is used as a particle size distribution meter, a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. Measured.

(平均一次粒子径)
一次粒子が凝集して二次粒子を形成している場合には、該正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、さらに好ましくは0.2μm以上であり、上限は、好ましくは2μm以下、より好ましくは1.6μm以下、さらに好ましくは1.3μm以下、最も好ましくは1μm以下である。上記範囲であると、粉体充填性及び比表面積を確保し、電池性能の低下を抑制することができる一方、適度な結晶性が得られることによって、充放電の可逆性を確保することができる。
なお、本発明では、一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
(Average primary particle size)
When primary particles are aggregated to form secondary particles, the average primary particle diameter of the positive electrode active material is preferably 0.05 μm or more, more preferably 0.1 μm or more, and still more preferably 0.8 μm. The upper limit is preferably 2 μm or less, more preferably 1.6 μm or less, still more preferably 1.3 μm or less, and most preferably 1 μm or less. When it is in the above range, powder filling property and specific surface area can be secured and deterioration of battery performance can be suppressed, while reversibility of charge and discharge can be secured by obtaining appropriate crystallinity. .
In the present invention, the primary particle diameter is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10000 times, the longest value of the intercept by the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for any 50 primary particles and obtained by taking the average value. It is done.

(BET比表面積)
正極活物質のBET比表面積は、好ましくは0.4m2/g以上、より好ましくは0.5m2/g以上、さらに好ましくは0.6m2/g以上であり、上限は50m2/g以下、好ましくは40m2/g以下、さらに好ましくは30m2/g以下である。BET比表面積が上記範囲であると、電池性能を確保できるとともに、正極活性物質の塗布性を良好に保つことができる。
なお、本発明では、BET比表面積は、表面積計(例えば、大倉理研製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
(BET specific surface area)
The BET specific surface area of the positive electrode active material is preferably 0.4 m 2 / g or more, more preferably 0.5 m 2 / g or more, still more preferably 0.6 m 2 / g or more, and the upper limit is 50 m 2 / g or less, preferably 40 m 2. / G or less, more preferably 30 m2 / g or less. When the BET specific surface area is in the above range, the battery performance can be secured and the applicability of the positive electrode active material can be kept good.
In the present invention, the BET specific surface area is determined by using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken), preliminarily drying the sample at 150 ° C. for 30 minutes under nitrogen flow, and then atmospheric pressure. This is defined as a value measured by a nitrogen adsorption BET one-point method using a gas flow method, using a nitrogen-helium mixed gas accurately adjusted so that the value of the relative pressure of nitrogen to 0.3 is 0.3.

(正極活物質の製造法)
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、リン酸等のリン原料物質と、組成式(1)におけるMの原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、Li2CO3、LiNO3等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
(Method for producing positive electrode active material)
As a manufacturing method of the positive electrode active material, a general method is used as a manufacturing method of the inorganic compound. In particular, various methods are conceivable for producing a spherical or elliptical active material. For example, a phosphorus raw material such as phosphoric acid and a raw material M of the composition formula (1) are dissolved in a solvent such as water. Or, pulverize and disperse, adjust the pH while stirring, create and recover a spherical precursor, dry it if necessary, and then add Li source such as LiOH, Li2CO3, LiNO3 and calcinate at high temperature To obtain an active material.

正極の製造のために、組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質を単独で用いてもよく、異なる組成の1種以上とを、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiMn2O4若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiCoO2若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。ここで、組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質は、正極活物質全体の30質量%以上であることが好ましく、50質量%以上であることがより好ましい。組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質の使用割合が少なくなると、電池容量が小さくなる場合がある。なお、「組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質」と「組成式(1)の正極活物質及び/又は前記表面付着物質で被覆された組成式(1)の正極活物質以外の正極活物質」を総称して「正極活物質」という。   For the production of the positive electrode, the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhesion material may be used alone, or one or more of different compositions And may be used in any combination or ratio. Preferred combinations in this case include LiMn2O4 or a combination with a part of this Mn substituted with another transition metal or the like, or LiCoO2 or a part of this Co substituted with another transition metal or the like Combinations are listed. Here, the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhesion material is preferably 30% by mass or more of the whole positive electrode active material, More preferably, it is at least mass%. When the usage rate of the positive electrode active material of the composition formula (1) and / or the positive electrode active material of the composition formula (1) coated with the surface adhering material decreases, the battery capacity may be reduced. The “positive electrode active material of composition formula (1) and / or the positive electrode active material of composition formula (1) coated with the surface adhering material” and “the positive electrode active material of composition formula (1) and / or the surface adhering”. The “positive electrode active material other than the positive electrode active material of the composition formula (1) coated with the material” is collectively referred to as “positive electrode active material”.

<2−6.正極の構成と作製法>
以下に、正極の構成について述べる。本発明において、正極は、正極活物質と結着剤とを含有する正極活物質層を、集電体上に形成して作製することができる。正極活物質を用いる正極の製造は、常法により行うことができる。即ち、正極活物質と結着剤、並びに必要に応じて導電材及び増粘剤等を乾式で混合してシート状にしたものを正極集電体に圧着するか、又はこれらの材料を液体媒体に溶解又は分散させてスラリーとして、これを正極集電体に塗布し、乾燥することにより、正極活物質層を集電体上に形成されることにより正極を得ることができる。
<2-6. Structure and manufacturing method of positive electrode>
The structure of the positive electrode will be described below. In the present invention, the positive electrode can be produced by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector. Manufacture of the positive electrode using a positive electrode active material can be performed by a conventional method. That is, a positive electrode active material and a binder, and if necessary, a conductive material and a thickener mixed in a dry form into a sheet form are pressure-bonded to the positive electrode current collector, or these materials are liquid media A positive electrode can be obtained by forming a positive electrode active material layer on the current collector by applying it to a positive electrode current collector and drying it as a slurry by dissolving or dispersing in a slurry.

正極活物質の、正極活物質層中の含有量は、好ましくは80質量%以上、より好ましくは82質量%以上、特に好ましくは84質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは93質量%以下である。上記範囲であると、正極活物質層中の正極活物質の電気容量を確保できるとともに、正極の強度を保つことができる。
塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ハンドプレス、ローラープレス等により圧密化することが好ましい。正極活物質層の密度は、下限として好ましくは1.5g/cm3以上、より好ましくは2g/cm3、さらに好ましくは2.2g/cm3以上であり、上限としては、好ましくは3.5g/cm3以下、より好ましくは3g/cm3以下、さらに好ましくは2.8g/cm3以下の範囲である。この範囲を上回ると集電体/活物質界面付近への電解液の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
The content of the positive electrode active material in the positive electrode active material layer is preferably 80% by mass or more, more preferably 82% by mass or more, and particularly preferably 84% by mass or more. Moreover, an upper limit becomes like this. Preferably it is 95 mass% or less, More preferably, it is 93 mass% or less. Within the above range, the electric capacity of the positive electrode active material in the positive electrode active material layer can be secured, and the strength of the positive electrode can be maintained.
The positive electrode active material layer obtained by coating and drying is preferably consolidated by a hand press, a roller press or the like in order to increase the packing density of the positive electrode active material. The density of the positive electrode active material layer is preferably 1.5 g / cm 3 or more as a lower limit, more preferably 2 g / cm 3 or more, further preferably 2.2 g / cm 3 or more, and the upper limit is preferably 3.5 g / cm 3 or less. More preferably, it is 3 g / cm 3 or less, and still more preferably 2.8 g / cm 3 or less. If it exceeds this range, the permeability of the electrolyte solution to the vicinity of the current collector / active material interface decreases, and the charge / discharge characteristics particularly at a high current density decrease, and a high output may not be obtained. On the other hand, if it is lower, the conductivity between the active materials is lowered, the battery resistance is increased, and a high output may not be obtained.

(導電材)
導電材としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料;天然黒鉛、人造黒鉛等の黒鉛(グラファイト);アセチレンブラック等のカーボンブラック;ニードルコークス等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。導電材は、正極活物質層中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは1質量%以上であり、また上限は、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。上記範囲であると、十分な導電性と電池容量を確保することができる。
(Conductive material)
A known conductive material can be arbitrarily used as the conductive material. Specific examples include metal materials such as copper and nickel; graphite such as natural graphite and artificial graphite (graphite); carbon black such as acetylene black; and carbon materials such as amorphous carbon such as needle coke. In addition, these may be used individually by 1 type and may use 2 or more types together by arbitrary combinations and a ratio. The conductive material is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 1% by mass or more in the positive electrode active material layer, and the upper limit is usually 50% by mass or less, preferably It is used so as to contain 30% by mass or less, more preferably 15% by mass or less. Sufficient electrical conductivity and battery capacity can be ensured within the above range.

(結着剤)
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して溶解又は分散される材料であればよいが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリ
レート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子;SBR(スチレン−ブタジエンゴム)、NBR(アクリロニトリル−ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム等のゴム状高分子;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー状高分子;シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子;ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子;アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
(Binder)
The binder used in the production of the positive electrode active material layer is not particularly limited, and in the case of the coating method, any material that can be dissolved or dispersed in the liquid medium used during electrode production may be used. Resin polymers such as polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyimide, aromatic polyamide, cellulose, nitrocellulose; SBR (styrene-butadiene rubber), NBR (acrylonitrile-butadiene rubber), fluorine rubber, isoprene rubber , Rubber polymers such as butadiene rubber and ethylene-propylene rubber; styrene / butadiene / styrene block copolymer or hydrogenated product thereof, EPDM (ethylene / propylene / diene terpolymer), styrene / ethylene / butadiene / Ethylene copolymer, styrene Thermoplastic elastomeric polymer such as isoprene / styrene block copolymer or hydrogenated product thereof; syndiotactic-1,2-polybutadiene, polyvinyl acetate, ethylene / vinyl acetate copolymer, propylene / α-olefin copolymer Soft resinous polymers such as polymers; Fluoropolymers such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene, fluorinated polyvinylidene fluoride, polytetrafluoroethylene / ethylene copolymers; alkali metal ions (especially lithium ions) And a polymer composition having ion conductivity. In addition, these substances may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

正極活物質層中の結着剤の割合は、通常0.1質量%以上、好ましくは1質量%以上、さらに好ましくは3質量%以上であり、上限は、通常80質量%以下、好ましくは60質量%以下、さらに好ましくは40質量%以下、最も好ましくは10質量%以下である。上記範囲であると、正極の機械的強度を確保し、かつサイクル特性等の電池性能の悪化を抑制することができる一方電池容量や導電性の低下を抑制することができる。   The ratio of the binder in the positive electrode active material layer is usually 0.1% by mass or more, preferably 1% by mass or more, more preferably 3% by mass or more, and the upper limit is usually 80% by mass or less, preferably 60%. It is not more than mass%, more preferably not more than 40 mass%, most preferably not more than 10 mass%. Within the above range, the mechanical strength of the positive electrode can be ensured, and deterioration of battery performance such as cycle characteristics can be suppressed, while decrease in battery capacity and conductivity can be suppressed.

(スラリー形成溶媒)
スラリーを形成するための溶媒としては、正極活物質、導電材、結着剤、並びに必要に応じて使用される増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いてもよい。水系媒体としては、例えば、水、アルコールと水との混合媒等が挙げられる。有機系媒体としては、例えば、ヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、メチルナフタレン等の芳香族炭化水素類;キノリン、ピリジン等の複素環化合物;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、アクリル酸メチル等のエステル類;ジエチレントリアミン、N,N−ジメチルアミノプロピルアミン等のアミン類;ジエチルエーテル、プロピレンオキシド、テトラヒドロフラン(THF)等のエーテル類;N−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド等のアミド類;ヘキサメチルホスファルアミド、ジメチルスルホキシド等の非プロトン性極性溶媒等が挙げられる。
(Slurry forming solvent)
As the solvent for forming the slurry, the positive electrode active material, the conductive material, the binder, and a solvent capable of dissolving or dispersing the thickener used as necessary may be used. There is no restriction, and either an aqueous solvent or an organic solvent may be used. Examples of the aqueous medium include water, a mixed medium of alcohol and water, and the like. Examples of the organic medium include aliphatic hydrocarbons such as hexane; aromatic hydrocarbons such as benzene, toluene, xylene, and methylnaphthalene; heterocyclic compounds such as quinoline and pyridine; ketones such as acetone, methyl ethyl ketone, and cyclohexanone. Esters such as methyl acetate and methyl acrylate; amines such as diethylenetriamine and N, N-dimethylaminopropylamine; ethers such as diethyl ether, propylene oxide and tetrahydrofuran (THF); N-methylpyrrolidone (NMP) Amides such as dimethylformamide and dimethylacetamide; and aprotic polar solvents such as hexamethylphosphalamide and dimethylsulfoxide.

特に水系媒体を用いる場合、増粘剤と、スチレン−ブタジエンゴム(SBR)等のラテックスを用いてスラリー化するのが好ましい。増粘剤は、通常、スラリーの粘度を調製するために使用される。増粘剤としては、特に制限はないが、具体的には、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン及びこれらの塩等が挙げられる。これらは、1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。さらに増粘剤を添加する場合には、活物質に対する増粘剤の割合は、0.1質量%以上、好ましくは0.5質量%以上、より好ましくは0.6質量%以上であり、また、上限としては5質量%以下、好ましくは3質量%以下、より好ましくは2質量%以下の範囲である。上記範囲であると、良好な塗布性が得られるとともに、電池容量の低下や抵抗の増大を抑制することができる。   In particular, when an aqueous medium is used, it is preferable to make a slurry using a thickener and a latex such as styrene-butadiene rubber (SBR). A thickener is usually used to adjust the viscosity of the slurry. The thickener is not particularly limited, and specific examples include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, casein, and salts thereof. These may be used individually by 1 type, or may use 2 or more types together by arbitrary combinations and ratios. When a thickener is further added, the ratio of the thickener to the active material is 0.1% by mass or more, preferably 0.5% by mass or more, more preferably 0.6% by mass or more. The upper limit is 5% by mass or less, preferably 3% by mass or less, more preferably 2% by mass or less. When it is in the above range, good coatability can be obtained, and a decrease in battery capacity and an increase in resistance can be suppressed.

(集電体)
正極集電体の材質としては特に制限されず、公知のものを任意に用いることができる。具体例としては、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。中でも金属材
料、特にアルミニウムが好ましい。
(Current collector)
The material of the positive electrode current collector is not particularly limited, and a known material can be arbitrarily used. Specific examples include metal materials such as aluminum, stainless steel, nickel plating, titanium, and tantalum; and carbon materials such as carbon cloth and carbon paper. Of these, metal materials, particularly aluminum, are preferred.

集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属薄膜が好ましい。なお、薄膜は適宜メッシュ状に形成してもよい。薄膜の厚さは任意であるが、集電体としての強度及び取扱い性の観点から、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また上限は、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。   Examples of the shape of the current collector include metal foil, metal cylinder, metal coil, metal plate, metal thin film, expanded metal, punch metal, and foam metal in the case of a metal material. A thin film, a carbon cylinder, etc. are mentioned. Of these, metal thin films are preferred. In addition, you may form a thin film suitably in mesh shape. Although the thickness of the thin film is arbitrary, from the viewpoint of strength and handleability as a current collector, it is usually 1 μm or more, preferably 3 μm or more, more preferably 5 μm or more, and the upper limit is usually 1 mm or less, preferably 100 μm or less. More preferably, it is 50 μm or less.

また、集電体の表面に導電助剤が塗布されていることも、集電体と正極活物質層の電子接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
集電体と正極活物質層の厚さの比は特には限定されないが、(電解液注液直前の片面の正極活物質層の厚さ)/(集電体の厚さ)の値が20以下であることが好ましく、より好ましくは15以下、最も好ましくは10以下であり、下限は、0.5以上が好ましく、より好ましくは0.8以上、最も好ましくは1以上の範囲である。上記範囲であると、高電流密度充放電時の集電体の発熱を抑制し、電池容量を確保することができる。
Moreover, it is also preferable from the viewpoint of reducing the electronic contact resistance between the current collector and the positive electrode active material layer that a conductive additive is applied to the surface of the current collector. Examples of the conductive assistant include noble metals such as carbon, gold, platinum, and silver.
The ratio of the thickness of the current collector to the positive electrode active material layer is not particularly limited, but the value of (thickness of the positive electrode active material layer on one side immediately before electrolyte injection) / (thickness of the current collector) is 20 The lower limit is preferably 15 or less, most preferably 10 or less, and the lower limit is preferably 0.5 or more, more preferably 0.8 or more, and most preferably 1 or more. Within the above range, heat generation of the current collector during high current density charge / discharge can be suppressed, and battery capacity can be secured.

(電極面積)
本発明の非水系電解液を用いる場合、高出力かつ高温時の安定性を高める観点から、正極活物質層の面積は、電池外装ケースの外表面積に対して大きくすることが好ましい。具体的には、二次電池の外装の表面積に対する正極の電極面積の総和が面積比で15倍以上とすることが好ましく、さらに40倍以上とすることがより好ましい。外装ケースの外表面積とは、有底角型形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分の縦と横と厚さの寸法から計算で求める総面積をいう。有底円筒形状の場合には、端子の突起部分を除いた発電要素が充填されたケース部分を円筒として近似する幾何表面積である。正極の電極面積の総和とは、負極活物質を含む合材層に対向する正極合材層の幾何表面積であり、集電体箔を介して両面に正極合材層を形成してなる構造では、それぞれの面を別々に算出する面積の総和をいう。
(Electrode area)
When using the non-aqueous electrolyte of the present invention, it is preferable that the area of the positive electrode active material layer is larger than the outer surface area of the battery outer case from the viewpoint of increasing the stability at high output and high temperature. Specifically, the sum of the electrode areas of the positive electrode with respect to the surface area of the exterior of the secondary battery is preferably 15 times or more, and more preferably 40 times or more. The outer surface area of the outer case is the total area obtained by calculation from the vertical, horizontal, and thickness dimensions of the case part filled with the power generation element excluding the protruding part of the terminal in the case of a bottomed square shape. . In the case of a bottomed cylindrical shape, the geometric surface area approximates the case portion filled with the power generation element excluding the protruding portion of the terminal as a cylinder. The total electrode area of the positive electrode is the geometric surface area of the positive electrode mixture layer facing the mixture layer containing the negative electrode active material, and in the structure in which the positive electrode mixture layer is formed on both sides via the current collector foil. , The sum of the areas where each surface is calculated separately.

(正極板の厚さ)
正極板の厚さは特に限定されないが、高容量かつ高出力の観点から、芯材の金属箔厚さを差し引いた合材層の厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、上限としては、好ましくは500μm以下、より好ましくは450μm以下である。
(Thickness of positive plate)
The thickness of the positive electrode plate is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the composite layer obtained by subtracting the metal foil thickness of the core material is preferably as a lower limit with respect to one side of the current collector. Is 10 μm or more, more preferably 20 μm or more, and the upper limit is preferably 500 μm or less, more preferably 450 μm or less.

(正極板の表面被覆)
また、上記正極板の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(Positive electrode surface coating)
Moreover, you may use what adhered the substance of the composition different from this to the surface of the said positive electrode plate. Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, calcium sulfate And sulfates such as aluminum sulfate, carbonates such as lithium carbonate, calcium carbonate, and magnesium carbonate, and carbon.

<2−7.セパレータ>
正極と負極との間には、短絡を防止するために、通常はセパレータを介在させる。この場合、本発明の非水系電解液は、通常はこのセパレータに含浸させて用いる。
セパレータの材料や形状については特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。中でも、本発明の非水系電解液に対し
安定な材料で形成された、樹脂、ガラス繊維、無機物等が用いられ、保液性に優れた多孔性シート又は不織布状の形態の物等を用いるのが好ましい。
<2-7. Separator>
Usually, a separator is interposed between the positive electrode and the negative electrode in order to prevent a short circuit. In this case, the nonaqueous electrolytic solution of the present invention is usually used by impregnating the separator.
The material and shape of the separator are not particularly limited, and known ones can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Among them, a resin, glass fiber, inorganic material, etc. formed of a material that is stable with respect to the non-aqueous electrolyte solution of the present invention is used, and a porous sheet or a nonwoven fabric-like material having excellent liquid retention properties is used. Is preferred.

樹脂、ガラス繊維セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、芳香族ポリアミド、ポリテトラフルオロエチレン、ポリエーテルスルホン、ガラスフィルター等を用いることができる。中でも好ましくはガラスフィルター、ポリオレフィンであり、さらに好ましくはポリオレフィンである。これらの材料は1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。   As materials for the resin and glass fiber separator, for example, polyolefins such as polyethylene and polypropylene, aromatic polyamides, polytetrafluoroethylene, polyethersulfone, glass filters and the like can be used. Of these, glass filters and polyolefins are preferred, and polyolefins are more preferred. These materials may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and a ratio.

セパレータの厚さは任意であるが、通常1μm以上であり、5μm以上が好ましく、8μm以上がさらに好ましく、また、通常50μm以下であり、40μm以下が好ましく、30μm以下がさらに好ましい。セパレータが、上記範囲より薄過ぎると、絶縁性や機械的強度が低下する場合がある。また、上記範囲であると、絶縁性及び機械的強度を確保できる一方、レート特性等の電池性能及びエネルギー密度を確保することができる。   The thickness of the separator is arbitrary, but is usually 1 μm or more, preferably 5 μm or more, more preferably 8 μm or more, and usually 50 μm or less, preferably 40 μm or less, more preferably 30 μm or less. If the separator is too thin than the above range, the insulating properties and mechanical strength may decrease. Moreover, when it is the said range, while ensuring insulation and mechanical strength, battery performance and energy density, such as a rate characteristic, can be ensured.

さらに、セパレータとして多孔性シートや不織布等の多孔質のものを用いる場合、セパレータの空孔率は任意であるが、通常20%以上であり、35%以上が好ましく、45%以上がさらに好ましく、また、通常90%以下であり、8^5%以下が好ましく、75%以下がさらに好ましい。空孔率が、上記範囲であると、絶縁性及び機械的強度を確保できる一方、膜抵抗を抑え良好なレート特性を得ることができる。   Furthermore, when using a porous material such as a porous sheet or nonwoven fabric as the separator, the porosity of the separator is arbitrary, but is usually 20% or more, preferably 35% or more, more preferably 45% or more, Further, it is usually 90% or less, preferably 8 ^ 5% or less, and more preferably 75% or less. When the porosity is in the above range, insulation and mechanical strength can be secured, while film resistance can be suppressed and good rate characteristics can be obtained.

また、セパレータの平均孔径も任意であるが、通常0.5μm以下であり、0.2μm以下が好ましく、また、通常0.05μm以上である。平均孔径が、上記範囲であると、短絡を防止ししつつ、膜抵抗を抑え良好なレート特性を得ることができる。 一方、無機物の材料としては、例えば、アルミナや二酸化ケイ素等の酸化物、窒化アルミや窒化ケイ素等の窒化物、硫酸バリウムや硫酸カルシウム等の硫酸塩が用いられ、粒子形状もしくは繊維形状のものが用いられる。   Moreover, although the average pore diameter of a separator is also arbitrary, it is 0.5 micrometer or less normally, 0.2 micrometer or less is preferable, and it is 0.05 micrometer or more normally. When the average pore diameter is in the above range, the film resistance can be suppressed and good rate characteristics can be obtained while preventing a short circuit. On the other hand, as inorganic materials, for example, oxides such as alumina and silicon dioxide, nitrides such as aluminum nitride and silicon nitride, and sulfates such as barium sulfate and calcium sulfate are used. Used.

形態としては、不織布、織布、微多孔性フィルム等の薄膜形状のものが用いられる。薄膜形状では、孔径が0.01〜1μm、厚さが5〜50μmのものが好適に用いられる。上記の独立した薄膜形状以外に、樹脂製の結着剤を用いて上記無機物の粒子を含有する複合多孔層を正極及び/又は負極の表層に形成させてなるセパレータを用いることができる。例えば、正極の両面に90%粒径が1μm未満のアルミナ粒子を、フッ素樹脂を結着剤として多孔層を形成させることが挙げられる。   As the form, a thin film shape such as a non-woven fabric, a woven fabric, or a microporous film is used. In the thin film shape, those having a pore diameter of 0.01 to 1 μm and a thickness of 5 to 50 μm are preferably used. In addition to the above-mentioned independent thin film shape, a separator formed by forming a composite porous layer containing the inorganic particles on the surface layer of the positive electrode and / or the negative electrode using a resin binder can be used. For example, a porous layer may be formed by using alumina particles having a 90% particle size of less than 1 μm on both surfaces of the positive electrode and using a fluororesin as a binder.

<2−8.電池設計>
(電極群)
電極群は、上記の正極板と負極板とを上記のセパレータを介してなる積層構造のもの、及び上記の正極板と負極板とを上記のセパレータを介して渦巻き状に捲回した構造のもののいずれでもよい。電極群の体積が電池内容積に占める割合(以下、電極群占有率と称する)は、通常40%以上であり、50%以上が好ましく、また、通常90%以下であり、80%以下が好ましい。
電極群占有率が、上記範囲であると、電池容量を確保できるとともに内部圧力の上昇に伴う充放電繰り返し性能や高温保存等の特性低下を抑制し、さらにはガス放出弁の作動を防止することができる。
<2-8. Battery design>
(Electrode group)
The electrode group has a laminated structure in which the positive electrode plate and the negative electrode plate are interposed through the separator, and a structure in which the positive electrode plate and the negative electrode plate are wound in a spiral shape through the separator. Either is acceptable. The ratio of the volume of the electrode group to the internal volume of the battery (hereinafter referred to as the electrode group occupation ratio) is usually 40% or more, preferably 50% or more, and usually 90% or less, preferably 80% or less. .
When the electrode group occupancy is in the above range, the battery capacity can be secured and the deterioration of characteristics such as charge / discharge repetition performance and high temperature storage accompanying the increase in internal pressure can be suppressed, and further the operation of the gas release valve can be prevented. Can do.

(集電構造)
集電構造は、特に制限されないが、本発明の非水系電解液による高電流密度の充放電特性の向上をより効果的に実現するには、配線部分や接合部分の抵抗を低減する構造にすることが好ましい。この様に内部抵抗を低減させた場合、本発明の非水系電解液を使用した
効果は特に良好に発揮される。
電極群が上記の積層構造のものでは、各電極層の金属芯部分を束ねて端子に溶接して形成される構造が好適に用いられる。一枚の電極面積が大きくなる場合には、内部抵抗が大きくなるので、電極内に複数の端子を設けて抵抗を低減することも好適に用いられる。電極群が上記の捲回構造のものでは、正極及び負極にそれぞれ複数のリード構造を設け、端子に束ねることにより、内部抵抗を低くすることができる。
(Current collection structure)
The current collecting structure is not particularly limited, but in order to more effectively realize the high current density charge / discharge characteristics by the non-aqueous electrolyte solution of the present invention, a structure that reduces the resistance of the wiring part and the joint part is used. It is preferable. Thus, when internal resistance is reduced, the effect of using the non-aqueous electrolyte solution of this invention is exhibited especially favorable.
In the case where the electrode group has the above laminated structure, a structure formed by bundling the metal core portions of the electrode layers and welding them to the terminals is preferably used. When the area of one electrode increases, the internal resistance increases. Therefore, it is also preferable to provide a plurality of terminals in the electrode to reduce the resistance. When the electrode group has the winding structure described above, the internal resistance can be lowered by providing a plurality of lead structures for the positive electrode and the negative electrode, respectively, and bundling the terminals.

(外装ケース)
外装ケースの材質は用いられる非水系電解液に対して安定な物質であれば特に制限されない。具体的には、ニッケルめっき鋼板、ステンレス、アルミニウム又はアルミニウム合金、マグネシウム合金等の金属類、又は、樹脂とアルミ箔との積層フィルム(ラミネートフィルム)が用いられる。軽量化の観点から、アルミニウム又はアルミニウム合金の金属、ラミネートフィルムが好適に用いられる。
(Exterior case)
The material of the outer case is not particularly limited as long as it is a substance that is stable with respect to the non-aqueous electrolyte used. Specifically, a nickel-plated steel plate, stainless steel, aluminum, an aluminum alloy, a metal such as a magnesium alloy, or a laminated film (laminate film) of a resin and an aluminum foil is used. From the viewpoint of weight reduction, an aluminum or aluminum alloy metal or a laminate film is preferably used.

金属類を用いる外装ケースでは、レーザー溶接、抵抗溶接、超音波溶接により金属同士を溶着して封止密閉構造とするもの、若しくは、樹脂製ガスケットを介して上記金属類を用いてかしめ構造とするものが挙げられる。上記ラミネートフィルムを用いる外装ケースでは、樹脂層同士を熱融着することにより封止密閉構造とするもの等が挙げられる。シール性を上げるために、上記樹脂層の間にラミネートフィルムに用いられる樹脂と異なる樹脂を介在させてもよい。特に、集電端子を介して樹脂層を熱融着して密閉構造とする場合には、金属と樹脂との接合になるので、介在する樹脂として極性基を有する樹脂や極性基を導入した変成樹脂が好適に用いられる。   In an exterior case using metals, the metal is welded to each other by laser welding, resistance welding, or ultrasonic welding to form a sealed sealed structure, or a caulking structure using the above metals via a resin gasket. Things. Examples of the outer case using the laminate film include a case where a resin-sealed structure is formed by heat-sealing resin layers. In order to improve sealing performance, a resin different from the resin used for the laminate film may be interposed between the resin layers. In particular, when a resin layer is heat-sealed through a current collecting terminal to form a sealed structure, a metal and a resin are joined, so that a resin having a polar group or a modified group having a polar group introduced as an intervening resin is used. Resins are preferably used.

(保護素子)
保護素子として、異常発熱や過大電流が流れた時に抵抗が増大するPTC(Positive Temperature Coefficient)、温度ヒューズ、サーミスター、異常発熱時に電池内部圧力や内部温度の急激な上昇により回路に流れる電流を遮断する弁(電流遮断弁)等を使用することができる。上記保護素子は高電流の通常使用で作動しない条件のものを選択することが好ましく、保護素子がなくても異常発熱や熱暴走に至らない設計にすることがより好ましい。
(Protective element)
As a protective element, PTC (Positive Temperature Coefficient), thermal fuse, thermistor, whose resistance increases when abnormal heat or excessive current flows, cut off current flowing in the circuit due to sudden rise in battery internal pressure or internal temperature at abnormal heat generation A valve (current cutoff valve) or the like can be used. It is preferable to select a protective element that does not operate under normal use at a high current, and it is more preferable that the protective element is designed so as not to cause abnormal heat generation or thermal runaway even without the protective element.

(外装体)
本発明の非水系電解液二次電池は、通常、上記の非水系電解液、負極、正極、セパレータ等を外装体内に収納して構成される。この外装体は、特に制限されず、本発明の効果を著しく損なわない限り、公知のものを任意に採用することができる。具体的に、外装体の材質は任意であるが、通常は、例えばニッケルメッキを施した鉄、ステンレス、アルミニウム又はその合金、ニッケル、チタン等が用いられる。
また、外装体の形状も任意であり、例えば円筒型、角形、ラミネート型、コイン型、大型等のいずれであってもよい。
(Exterior body)
The non-aqueous electrolyte secondary battery of the present invention is usually configured by housing the non-aqueous electrolyte, the negative electrode, the positive electrode, the separator, and the like in an exterior body. This exterior body is not particularly limited, and any known one can be arbitrarily adopted as long as the effects of the present invention are not significantly impaired. Specifically, the material of the exterior body is arbitrary, but usually, for example, nickel-plated iron, stainless steel, aluminum or an alloy thereof, nickel, titanium, or the like is used.
The shape of the exterior body is also arbitrary, and may be any of a cylindrical shape, a square shape, a laminate shape, a coin shape, a large size, and the like.

以下、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明は、その要旨を超えない限り、これらの実施例に限定されるものではない。
≪第1の実施例≫
[二次電池の作製]
<正極の作製>
正極活物質としてニッケルマンガンコバルト酸リチウム(LiNi1/3Mn1/3Co1/3)90質量部を用い、カーボンブラック7質量部とポリフッ化ビニリデン3質量部を混合し、N−メチル−2−ピロリドンを加えスラリー化し、これを厚さ15μmのアルミニウム箔の両面に均一に塗布、乾燥した後、正極活物質層の密度が2.6g・c
−3になるようにプレスして正極とした。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, this invention is not limited to these Examples, unless the summary is exceeded.
<< First Example >>
[Production of secondary battery]
<Preparation of positive electrode>
Using 90 parts by mass of lithium nickel manganese cobaltate (LiNi 1/3 Mn 1/3 Co 1/3 O 2 ) as a positive electrode active material, 7 parts by mass of carbon black and 3 parts by mass of polyvinylidene fluoride were mixed, and N-methyl 2-Pyrrolidone was added to form a slurry, which was uniformly coated on both sides of an aluminum foil having a thickness of 15 μm and dried, and then the density of the positive electrode active material layer was 2.6 g · c.
The positive electrode was pressed to m- 3 .

<負極の作製>
アルゴンイオンレーザーラマンスペクトル法における1580cm−1のピーク強度に対する1360cm−1のピーク強度の比として定義されるラマンR値が0 .33であ
る黒鉛に、増粘剤としてカルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)と、バインダーとしてスチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)を加え、ディスパーザーで混合してスラリー化した。得られたスラリーを厚さ12μmの銅箔の片面に均一に塗布して乾燥し、その後、負極活物質層の密度が1.4g・cm−3になるようにプレスして負極とした。尚、乾燥後の負極において、黒鉛:カルボキシメチルセルロースナトリウム:スチレン−ブタジエンゴム=98:1:1の質量比となるように作成した。
<Production of negative electrode>
Raman R value, defined as the ratio of the peak intensity of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectroscopy is 0. Graphite No. 33, aqueous dispersion of sodium carboxymethylcellulose as a thickener (concentration of 1% by mass of sodium carboxymethylcellulose) and aqueous dispersion of styrene-butadiene rubber as a binder (concentration of styrene-butadiene rubber of 50% by mass) And mixed with a disperser to form a slurry. The obtained slurry was uniformly applied to one side of a 12 μm thick copper foil and dried, and then pressed so that the density of the negative electrode active material layer was 1.4 g · cm −3 to obtain a negative electrode. In addition, in the negative electrode after drying, it created so that it might become mass ratio of graphite: sodium carboxymethylcellulose: styrene-butadiene rubber = 98: 1: 1.

<非水系電解液二次電池の製造>
上記の正極、負極、及びポリエチレン製セパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<Manufacture of non-aqueous electrolyte secondary battery>
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode. The battery element thus obtained was wrapped in a cylindrical aluminum laminate film, injected with an electrolyte described later, and then vacuum sealed to produce a sheet-like non-aqueous electrolyte secondary battery. Furthermore, in order to improve the adhesion between the electrodes, the sheet-like battery was sandwiched between glass plates and pressurized.

[電池の評価]
<慣らし運転>
25℃の恒温槽中、シート状の非水系電解液二次電池を0.2Cで4.1Vまで定電流−定電圧充電した後、0.2Cで3.0Vまで放電した。これを5サイクル行って電池を安定させた。なお、1Cとは電池の全容量を1時間で放電させる場合の電流値のことである。
[Battery evaluation]
<Run-in operation>
In a constant temperature bath at 25 ° C., the sheet-like non-aqueous electrolyte secondary battery was charged at constant current-constant voltage to 4.1 V at 0.2 C, and then discharged to 3.0 V at 0.2 C. This was performed for 5 cycles to stabilize the battery. In addition, 1C is a current value when discharging the entire capacity of the battery in one hour.

<サイクル特性評価>
リチウム二次電池を、60℃において2Cに相当する定電流で充電後、2Cの定電流で放電する過程を1サイクルとして、500サイクル実施した。
本発明の化合物を含まない非水系電解液(基準電解液)を用いた時の電池の500サイクル目の放電容量を1とし、本発明の非水系電解液を用いた時の電池の500サイクル目の放電容量を比較した。すなわち、
(本発明の非水系電解液の500サイクル目の放電容量)÷(基準電解液の500サイクル目の放電容量)の計算式から求められる値の比較である。結果を表1に示す。
<Cycle characteristic evaluation>
The lithium secondary battery was charged with a constant current corresponding to 2C at 60 ° C., and then discharged with a constant current of 2C as one cycle, and 500 cycles were performed.
The discharge capacity at the 500th cycle of the battery when using the non-aqueous electrolyte solution (reference electrolyte solution) not containing the compound of the present invention is 1, and the 500th cycle of the battery when using the non-aqueous electrolyte solution of the present invention. The discharge capacities of were compared. That is,
It is the comparison of the value calculated | required from the formula of (discharge capacity of the 500th cycle of the non-aqueous electrolyte solution of this invention) / (discharge capacity of the 500th cycle of a reference | standard electrolyte solution). The results are shown in Table 1.

<低温放電特性評価>
初期容量の50%に相当する電気量だけ充電させた電池に対して、−30℃の環境下で0.3C、0.5C、1.0C、1.5C、2.0C、および2.5Cで各々10秒間放電させ、その10秒目の電圧を測定した。このようにして得られた電流−電圧曲線において、3Vになるときの電流値を算出し、この値を低温放電特性とした。ここでは基準電解液使用時の電流値を1とし、本発明の非水系電解液を用いた時の電池の電流値を比較した。すなわち、
(本発明の非水系電解液の電流値)÷(基準電解液の電流値)の計算式から求められる値の比較である。結果を表1に示す。
<Low-temperature discharge characteristics evaluation>
For a battery charged by an amount of electricity corresponding to 50% of the initial capacity, 0.3C, 0.5C, 1.0C, 1.5C, 2.0C, and 2.5C under an environment of −30 ° C. Each was discharged for 10 seconds, and the voltage at the 10th second was measured. In the current-voltage curve thus obtained, a current value at 3 V was calculated, and this value was used as a low temperature discharge characteristic. Here, the current value when using the reference electrolyte was set to 1, and the current values of the batteries when using the non-aqueous electrolyte of the present invention were compared. That is,
It is the comparison of the value calculated | required from the formula of (current value of the non-aqueous electrolyte solution of this invention) / (current value of a reference | standard electrolyte solution). The results are shown in Table 1.

[実施例1−1]
乾燥アルゴン雰囲気下、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合物(容量比3:3:4)に、十分に乾燥したLiPF6を非水電解
液全量で1モル/Lとなるように溶解させた(この電解液を「基準電解液」と称する場合がある)。基準電解液に、イソシアヌレート体の骨格を有するデュラネートTMTPA−100(旭化成ケミカルズ製)を0.5質量%となるように加え、非水系電解液を調製した。
[Example 1-1]
Under a dry argon atmosphere, fully dried LiPF6 was dissolved in a mixture of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate (volume ratio 3: 3: 4) so that the total amount of the non-aqueous electrolyte was 1 mol / L. (This electrolyte may be referred to as a “reference electrolyte”). Duranate TM TPA-100 (manufactured by Asahi Kasei Chemicals Co., Ltd.) having an isocyanurate skeleton was added to the reference electrolyte so as to be 0.5 mass% to prepare a non-aqueous electrolyte.

[実施例1−2]
デュラネートTMTPA−100に替えて、ビウレット体の骨格を有するデュラネートTM24A−100(旭化成ケミカルズ製)を用いたことを除き、実施例1−1と同様に電解液を調製した。
[実施例1−3]
化合物として、ウレタンの骨格を有するデュラネートTMD101(旭化成ケミカルズ製)を用いたことを除き、実施例1−1と同様に電解液を調製した。
[Example 1-2]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that Duranate TM 24A-100 (manufactured by Asahi Kasei Chemicals) having a biuret skeleton was used instead of Duranate TM TPA-100.
[Example 1-3]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that Duranate TM D101 (manufactured by Asahi Kasei Chemicals) having a urethane skeleton was used as the compound.

[実施例1−4]
デュラネートTMD101の非水系電解液全量に対する含有量を1.0質量%としたことを除き、実施例1−3と同様に電解液を調製した。
[実施例1−5]
デュラネートTMTPA−100の非水系電解液全量に対する含有量を1.0質量%としたことを除き、実施例1−1と同様に電解液を調製した。
[Example 1-4]
An electrolyte solution was prepared in the same manner as in Example 1-3, except that the content of Duranate TM D101 was 1.0% by mass with respect to the total amount of the non-aqueous electrolyte solution.
[Example 1-5]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that the content of Duranate TM TPA-100 with respect to the total amount of the non-aqueous electrolyte solution was 1.0% by mass.

参考例1
デュラネートTMTPA−100の非水系電解液全量に対する含有量を2.5質量%としたことを除き、実施例1−1と同様に電解液を調製した。
[比較例1−1]
本発明の化合物を含まない基準電解液を用いた以外は実施例1−1と同様に電解液を調製し、実施例1と同様の手法で電池の作製、サイクル試験および低温放電試験を行った。このようにして得られた結果を表1に示す。
[ Reference Example 1 ]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that the content of Duranate TM TPA-100 was 2.5% by mass with respect to the total amount of the non-aqueous electrolyte solution.
[Comparative Example 1-1]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that the reference electrolyte solution not containing the compound of the present invention was used, and a battery was produced, cycled, and low-temperature discharge tested in the same manner as in Example 1. . The results thus obtained are shown in Table 1.

[比較例1−2]
デュラネートTMTPA−100に替えて、1,6−ジイソシアナトヘキサン(HDI)を用いたことを除き、実施例1−1と同様に電解液を調製した。
[比較例1−3]
HDIの非水系電解液全量に対する含有量を1.0質量%としたことを除き、比較例1−2と同様に電解液を調製した。
[比較例1−4]
デュラネートTMTPA−100の非水系電解液全量に対する含有量を3.0質量%としたことを除き、実施例1−1と同様に電解液を調製した。
[Comparative Example 1-2]
An electrolyte solution was prepared in the same manner as in Example 1-1 except that 1,6-diisocyanatohexane (HDI) was used in place of Duranate TM TPA-100.
[Comparative Example 1-3]
An electrolyte solution was prepared in the same manner as Comparative Example 1-2, except that the content of HDI with respect to the total amount of the non-aqueous electrolyte solution was 1.0% by mass.
[Comparative Example 1-4]
An electrolyte solution was prepared in the same manner as in Example 1-1, except that the content of Duranate TM TPA-100 with respect to the total amount of the non-aqueous electrolyte solution was 3.0% by mass.

Figure 0005906915
Figure 0005906915

表1から、本発明の化合物と比較例の1,6−ジイソシアナトヘキサン(HDI)は配合量を増加するとサイクル特性は改善されるが、低温放電特性は低下する性質があることが分かる。しかしながら、比較例の化合物は、添加量を増加した場合に低温放電特性を著しく低下するのに比べ、本発明の化合物はその低下が明らかに小さいことが確認された。すなわち、本発明の化合物を用いれば、サイクル特性と低温放電特性の両性能をバランスよく配分した電池設計が可能となる。   From Table 1, it can be seen that the compound of the present invention and the comparative example 1,6-diisocyanatohexane (HDI) have the property that the cycle characteristics are improved when the blending amount is increased, but the low-temperature discharge characteristics are lowered. However, it was confirmed that the decrease of the compound of the present invention was clearly smaller than that of the compound of the comparative example, when the addition amount was increased, the low temperature discharge characteristics were remarkably decreased. That is, by using the compound of the present invention, it is possible to design a battery that distributes both the cycle characteristics and the low-temperature discharge characteristics in a balanced manner.

≪第2の実施例≫
本実施例では、第1の実施例とは異なる下記の電池構成及び基準電解液について評価を行った。
[二次電池の作製]
<正極の作製>
第一の正極活物質としてのマンガン酸リチウム(Li1.1Mn1.9Al0.1)72質量部、第二の正極活物質としてのリチウムニッケルマンガンコバルト複合酸化物(Li1.15Ni0.45Mn0.45Co0.10)18質量部、導電剤としてのカーボンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部とを、N−メチル−2−ピロリドン中で混合・スラリー化し、これを厚さ15μmのアルミニウム箔に均一に塗布、乾燥した後、ロールプレスを行い正極とした。
<< Second embodiment >>
In this example, the following battery configuration and reference electrolyte different from those in the first example were evaluated.
[Production of secondary battery]
<Preparation of positive electrode>
72 parts by mass of lithium manganate (Li 1.1 Mn 1.9 Al 0.1 O 4 ) as the first positive electrode active material, lithium nickel manganese cobalt composite oxide (Li 1. 15 Ni 0.45 Mn 0.45 Co 0.10 O 2 ), 18 parts by mass, 5 parts by mass of carbon black as a conductive agent, 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder, N -After mixing and slurrying in methyl-2-pyrrolidone, this was uniformly applied to an aluminum foil having a thickness of 15 μm and dried, and then roll-pressed to obtain a positive electrode.

<負極の作製>
グラファイト粉末93質量部に、カーボンブラックを1質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を6質量部とを、N−メチル−2−ピロリドン中で混合・スラリー化し、これを厚さ12μmの銅箔に均一に塗布して乾燥し、ロールプレスして負極とした。
<Production of negative electrode>
93 parts by mass of graphite powder, 1 part by mass of carbon black, and 6 parts by mass of polyvinylidene fluoride (PVdF) as a binder were mixed and slurried in N-methyl-2-pyrrolidone, and this was thickened. It was uniformly applied to 12 μm copper foil, dried, and roll-pressed to obtain a negative electrode.

<非水系電解液二次電池の製造>
上記の正極、負極、及びポリオレフィン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素をアルミニウムラミネートフィルムで包み込み、後述する電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。
<Manufacture of non-aqueous electrolyte secondary battery>
The positive electrode, the negative electrode, and the polyolefin separator were laminated in the order of the negative electrode, the separator, and the positive electrode. The battery element thus obtained was wrapped in an aluminum laminate film, injected with an electrolyte solution described later, and then vacuum sealed to produce a sheet-like non-aqueous electrolyte secondary battery.

[電池の評価]
<初期充放電>
25℃の恒温槽中、シート状の非水系電解液二次電池を0.1C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする。以下同様。)で4.2Vまで定電流−定電圧充電した後、0.1Cで3.0Vまで放電した。続いて0.3Cで4.2Vまで定電流−定電圧充電した後、0.3Cで3.0Vまで放電した。これを2サイクル、合計3サイクル行って非水系電解液二次電池を安定させた。その後電池を60℃に24時間保持しエージングを実施した。その後、0.3Cで充放電を行って、その放電容量を測定し、初期容量とした。
[Battery evaluation]
<Initial charge / discharge>
In a thermostatic bath at 25 ° C., the sheet-like non-aqueous electrolyte secondary battery is 4 at 0.1 C (the rated capacity due to the discharge capacity at 1 hour rate is 1 C. The same applies hereinafter). After constant current-constant voltage charge to 2 V, the battery was discharged to 3.0 V at 0.1 C. Subsequently, the battery was charged at a constant current-constant voltage to 4.2 V at 0.3 C, and then discharged to 3.0 V at 0.3 C. This was carried out for 2 cycles for a total of 3 cycles to stabilize the non-aqueous electrolyte secondary battery. Thereafter, the battery was kept at 60 ° C. for 24 hours to perform aging. Thereafter, charge and discharge were performed at 0.3 C, and the discharge capacity was measured to obtain an initial capacity.

<サイクル特性評価>
55℃において、1Cに相当する定電流で4.2Vまで定電流−定電圧充電した後、1Cの定電流で3.0Vまで放電する過程を1サイクルとして、30サイクル実施した。ここで、サイクル維持率を次の計算式から算出した。
(30サイクル目の放電容量)÷(1サイクル目の放電容量)
結果を表2に示す。
<Cycle characteristic evaluation>
At 55 ° C., a constant current-constant voltage charge to 4.2 V with a constant current corresponding to 1 C, and then a process of discharging to 3.0 V with a constant current of 1 C was performed as 30 cycles. Here, the cycle maintenance ratio was calculated from the following calculation formula.
(Discharge capacity at 30th cycle) / (Discharge capacity at 1st cycle)
The results are shown in Table 2.

[実施例2−1]
乾燥アルゴン雰囲気下、エチレンカーボネートとジエチルカーボネートとの混合物(容量比3:7)に、十分に乾燥したLiPF6を非水電解液全量で1モル/Lとなるように溶解させた(この電解液を「第二基準電解液」とする)。第二基準電解液に、デュラネートTMTPA−100ならびにフルオロエチレンカーボネート(FEC)をそれぞれ0.5質量%と2.0質量%となるように加え、非水系電解液を調製した。
[Example 2-1]
Under a dry argon atmosphere, fully dried LiPF6 was dissolved in a mixture of ethylene carbonate and diethyl carbonate (volume ratio 3: 7) so that the total amount of the non-aqueous electrolyte was 1 mol / L (this electrolyte was “Second reference electrolyte”. Duranate TM TPA-100 and fluoroethylene carbonate (FEC) were added to the second reference electrolyte so as to be 0.5% by mass and 2.0% by mass, respectively, to prepare a non-aqueous electrolyte.

[実施例2−2]
第二基準電解液に、デュラネートTMTPA−100ならびにビニレンカーボネート(VC)をそれぞれ0.5質量%と1.0質量%となるように加え、実施例2−1と同様に非水系電解液を調製した。
[実施例2−3]
第二基準電解液に、デュラネートTMTPA−100、FECならびにビニレンカーボネート(VC)をそれぞれ0.5質量%、1.0質量%、1.0質量%となるように加え、実施例2−1と同様に非水系電解液を調製した。
[Example 2-2]
To the second reference electrolyte, Duranate TM TPA-100 and vinylene carbonate (VC) were added so as to be 0.5% by mass and 1.0% by mass, respectively, and the non-aqueous electrolyte was added in the same manner as in Example 2-1. Prepared.
[Example 2-3]
To the second reference electrolyte solution, Duranate TM TPA-100, FEC and vinylene carbonate (VC) were added so as to be 0.5% by mass, 1.0% by mass and 1.0% by mass, respectively, and Example 2-1 A non-aqueous electrolyte solution was prepared in the same manner as described above.

[実施例2−4]
第二基準電解液に、デュラネートTMTPA−100、FECならびに無水コハク酸(SUC)をそれぞれ0.5質量%、1.0質量%、0.2質量%となるように加え、実施例2−1と同様に非水系電解液を調製した。
[実施例2−5]
第二基準電解液に、デュラネートTMTPA−100、VCならびにSUCをそれぞれ0.5質量%、1.0質量%、0.2質量%となるように加え、実施例2−1と同様に非水系電解液を調製した。
[Example 2-4]
To the second reference electrolyte solution, Duranate TM TPA-100, FEC and succinic anhydride (SUC) were added so as to be 0.5% by mass, 1.0% by mass and 0.2% by mass, respectively. A non-aqueous electrolyte solution was prepared in the same manner as in 1.
[Example 2-5]
To the second reference electrolyte, Duranate TM TPA-100, VC and SUC were added to 0.5% by mass, 1.0% by mass and 0.2% by mass, respectively, and the same as in Example 2-1. An aqueous electrolyte was prepared.

[比較例2−1]
本発明の化合物やその他の助剤を含まない第二基準電解液を用いた以外は実施例2−1と同様に電解液を調製し、電池の作製とサイクル試験を行った。
[比較例2−2]
デュラネートTMTPA−100を含有しないことを除いて実施例2−3と同様に電解液を調製し、電池の作製とサイクル試験を行った。このようにして得られた結果を表2に示す。
[Comparative Example 2-1]
An electrolyte solution was prepared in the same manner as in Example 2-1, except that the second reference electrolyte solution containing no compound of the present invention or other auxiliary agent was used, and a battery was manufactured and a cycle test was performed.
[Comparative Example 2-2]
An electrolyte solution was prepared in the same manner as in Example 2-3 except that it did not contain Duranate TM TPA-100, and a battery was manufactured and a cycle test was performed. The results thus obtained are shown in Table 2.

Figure 0005906915
Figure 0005906915

この結果より、電池構成が異なる場合に、そして電解質を構成する非水溶媒や助剤の種類と組成が異なる場合にも、前述した第一実施例と同様に、本発明構成によって、サイクル特性が改善できることが確認できた。   From this result, when the battery configuration is different, and also when the type and composition of the non-aqueous solvent and auxiliary agent constituting the electrolyte are different, the cycle characteristics are improved by the configuration of the present invention as in the first embodiment described above. It was confirmed that it could be improved.

≪第3の実施例≫
本実施例では、第1の実施例及び第2の実施例とは異なる下記の電池構成及び基準電解液について評価を行った。
[二次電池の作製]
<正極の作製>
正極活物質としてのリチウムコバルト酸化物(LiCoO2)94質量%と、導電材と
してアセチレンブラック3質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)3質量%とを、N−メチルピロリドン溶媒中で、ディスパーザーで混合してスラリー化した。これを厚さ21μmのアルミニウム箔の両面に均一に塗布、乾燥した後、プレスして正極とした。
<< Third embodiment >>
In this example, the following battery configuration and reference electrolyte different from those in the first and second examples were evaluated.
[Production of secondary battery]
<Preparation of positive electrode>
94% by mass of lithium cobalt oxide (LiCoO2) as a positive electrode active material, 3% by mass of acetylene black as a conductive material, and 3% by mass of polyvinylidene fluoride (PVdF) as a binder in an N-methylpyrrolidone solvent And mixed with a disperser to form a slurry. This was uniformly applied to both sides of a 21 μm thick aluminum foil, dried, and then pressed to obtain a positive electrode.

<負極の作製>
負極活物質としてグラファイト粉末100質量部に、増粘剤、バインダーとしてそれぞれ、カルボキシメチルセルロースナトリウムの水性ディスパージョン(カルボキシメチルセルロースナトリウムの濃度1質量%)1質量部、及び、スチレン−ブタジエンゴムの水性ディスパージョン(スチレン−ブタジエンゴムの濃度50質量%)1質量部を加え、ディスパーザーで混合してスラリー化した。このスラリーを厚さ12μmの銅箔の片面に均一に塗布、乾燥した後、プレスして負極とした。
<Production of negative electrode>
100 parts by weight of graphite powder as the negative electrode active material, 1 part by weight of aqueous dispersion of sodium carboxymethyl cellulose (concentration of 1% by weight of sodium carboxymethyl cellulose) as the thickener and binder, respectively, and aqueous dispersion of styrene-butadiene rubber 1 part by mass (concentration of styrene-butadiene rubber 50% by mass) was added and mixed with a disperser to form a slurry. This slurry was uniformly applied to one side of a 12 μm thick copper foil, dried, and then pressed to obtain a negative electrode.

<非水系電解液二次電池の製造>
上記の正極、負極、及びポリエチレン製のセパレータを、負極、セパレータ、正極、セパレータ、負極の順に積層して電池要素を作製した。この電池要素をアルミニウム(厚さ40μm)の両面を樹脂層で被覆したラミネートフィルムからなる袋内に正・負極の端子を突設させながら挿入した後、後述する非水系電解液を袋内に注入し、真空封止を行ない、シート状の非水系電解液電池を作製した。
<Manufacture of non-aqueous electrolyte secondary battery>
The positive electrode, the negative electrode, and the polyethylene separator were laminated in the order of the negative electrode, the separator, the positive electrode, the separator, and the negative electrode to produce a battery element. This battery element was inserted into a bag made of a laminate film in which both surfaces of aluminum (thickness 40 μm) were coated with a resin layer while projecting positive and negative terminals, and a nonaqueous electrolyte solution described later was injected into the bag. Then, vacuum sealing was performed to produce a sheet-like non-aqueous electrolyte battery.

[電池の評価]
<初期容量評価>
非水系電解液電池を、ガラス板で挟んで加圧した状態で、25℃において、0.2Cに
相当する電流で4.1Vまで定電流充電した後、0.2Cの定電流で3Vまで放電し、さらに0.2Cに相当する電流で4.33Vまで定電流−定電圧充電(以下適宜、「CCCV充電」という)(0.05Cカット)した後、0.2Cで3Vまで放電して電池を安定させた。次いで、0.2Cで4.33VまでCCCV充電(0.05Cカット)した後、0.2Cで3Vまで再度放電し、初期放電容量を求めた。ここで、1Cとは電池の基準容量を1時間で放電する電流値を表し、例えば、0.2Cとはその1/5の電流値を表す。
[Battery evaluation]
<Initial capacity evaluation>
A non-aqueous electrolyte battery is pressed between glass plates at 25 ° C. and charged at a constant current of up to 4.1 V at a current equivalent to 0.2 C, and then discharged to 3 V at a constant current of 0.2 C. The battery is further charged to a constant current-constant voltage charge (hereinafter referred to as “CCCV charge” where appropriate) (0.05C cut) to 4.33V at a current corresponding to 0.2C and then discharged to 3V at 0.2C. Stabilized. Next, after CCCV charge (0.05 C cut) to 4.33 V at 0.2 C, the battery was discharged again to 3 V at 0.2 C, and the initial discharge capacity was determined. Here, 1C represents a current value for discharging the reference capacity of the battery in one hour, and for example, 0.2C represents a current value of 1/5 thereof.

<高温保存特性評価試験>
再度、4.33VまでCCCV充電(0.05Cカット)を行った後、85℃、24時間の条件で高温保存を行った。電池を十分に冷却させた後、エタノール浴中に浸して体積を測定し、保存前後の体積変化から発生したガス量を求めた。次に、25℃において0.2Cで3Vまで放電させ、高温保存特性試験後の残存容量を測定し、初期放電容量に対する残存容量の割合を求め、これを高温保存後の残存容量(%)とした。再度、4.33VまでCCCV充電(0.05Cカット)を行い、0.2Cで3Vまで放電させ、高温保存特性試験後の0.2C放電容量を測定し、初期放電容量に対する0.2C放電容量の割合を求め、これを高温保存後の回復容量(%)とした。評価結果を表3に示す。なお、表中の数値は、比較例3−1を100%としたときの相対値である。
<High temperature storage characteristics evaluation test>
After performing CCCV charge (0.05C cut) to 4.33V again, high temperature preservation | save was performed on the conditions of 85 degreeC and 24 hours. After sufficiently cooling the battery, the volume was measured by immersion in an ethanol bath, and the amount of gas generated from the volume change before and after storage was determined. Next, discharge at 25 ° C. to 3 V at 0.2 C, measure the remaining capacity after the high temperature storage characteristics test, determine the ratio of the remaining capacity to the initial discharge capacity, this is the remaining capacity (%) after high temperature storage did. Again, CCCV charge (0.05C cut) to 4.33V, discharge to 3V at 0.2C, measure 0.2C discharge capacity after high temperature storage characteristics test, 0.2C discharge capacity relative to initial discharge capacity The ratio was determined as the recovery capacity (%) after high-temperature storage. The evaluation results are shown in Table 3. In addition, the numerical value in a table | surface is a relative value when Comparative Example 3-1 is set to 100%.

[実施例3−1]
乾燥アルゴン雰囲気下、エチレンカーボネートとモノフルオロエチレンカーボネートとジメチルカーボネートとの混合物(体積比15:15:70)に、十分に乾燥したLiPF6を非水電解液全量で1モル/Lとなるように溶解させた(この電解液を「第三基準電解液」とする)。第三基準電解液に、デュラネートTMTPA−100、VCならびにアジポニトリル(AdpCN)をそれぞれ0.3質量%、1.0質量%、1.0質量%となるように加え、非水系電解液を調製した。
[Example 3-1]
Under a dry argon atmosphere, fully dried LiPF6 was dissolved in a mixture of ethylene carbonate, monofluoroethylene carbonate and dimethyl carbonate (volume ratio 15:15:70) so that the total amount of the non-aqueous electrolyte was 1 mol / L. (This electrolyte is referred to as “third reference electrolyte”). Duranate TM TPA-100, VC, and adiponitrile (AdpCN) were added to the third reference electrolyte solution so as to be 0.3% by mass, 1.0% by mass, and 1.0% by mass, respectively, to prepare a non-aqueous electrolyte. did.

[実施例3−2]
デュラネートTMTPA−100の含有量を0.5質量%としたことを除き、実施例3−1と同様に電解液を調製した。
[比較例3−1]
デュラネートTMTPA−100を含有しないことを除いて実施例3−1と同様に電解液を調製し、電池の作製と高温保存特性評価を行った。このようにして得られた結果を表3に示す。
[Example 3-2]
An electrolyte solution was prepared in the same manner as in Example 3-1, except that the content of Duranate TM TPA-100 was 0.5 mass%.
[Comparative Example 3-1]
An electrolyte solution was prepared in the same manner as in Example 3-1, except that it did not contain Duranate TM TPA-100, and a battery was manufactured and high-temperature storage characteristics were evaluated. The results thus obtained are shown in Table 3.

この結果より、本発明構成によって、前述した第1の実施例及び第2の実施例におけるサイクル特性のみならず、高温保存時の電池の膨れと容量低下もまた抑制できることが確認できた。   From this result, it was confirmed that the configuration of the present invention can suppress not only the cycle characteristics in the first and second embodiments described above but also the swelling and capacity reduction of the battery during high temperature storage.

Figure 0005906915
Figure 0005906915

本発明の非水系電解液によれば、サイクル特性と低温放電特性に優れた非水系電解液二次電池を製造することができるので、非水系電解液二次電池が用いられる電子機器等のあらゆる分野において好適に利用できる。
本発明の非水系電解液や非水系電解液二次電池の用途は特に限定されず、公知の各種の用途に用いることが可能である。具体例としては、ノートパソコン、ペン入力パソコン、モバイルパソコン、電子ブックプレーヤー、携帯電話、携帯ファックス、携帯コピー、携帯プリンター、ヘッドフォンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、ポータブルCD、ミニディスク、トランシーバー、電子手帳、電卓、メモリーカード、携帯テープレコーダー、ラジオ、バックアップ電源、モーター、自動車、バイク、原動機付自転車、自転車、照明器具、玩具、ゲーム機器、時計、電動工具、ストロボ、カメラ等を挙げることができる。
According to the non-aqueous electrolyte solution of the present invention, a non-aqueous electrolyte secondary battery excellent in cycle characteristics and low-temperature discharge characteristics can be produced, so that any electronic device or the like in which the non-aqueous electrolyte secondary battery is used can be manufactured. It can be suitably used in the field.
The application of the non-aqueous electrolyte solution or the non-aqueous electrolyte secondary battery of the present invention is not particularly limited, and can be used for various known applications. Specific examples include notebook computers, pen input computers, mobile computers, electronic book players, mobile phones, mobile faxes, mobile copy, mobile printers, headphone stereos, video movies, LCD TVs, handy cleaners, portable CDs, minidiscs, and transceivers. , Electronic notebook, calculator, memory card, portable tape recorder, radio, backup power supply, motor, automobile, motorcycle, motorbike, bicycle, lighting equipment, toy, game equipment, clock, electric tool, strobe, camera, etc. Can do.

Claims (6)

金属イオンを吸蔵・放出しうる正極及び負極と、セパレータとを備える非水系電解液二次電池用の非水系電解液であって、
前記非水系電解液が電解質及び非水溶媒とともに、分子内に下記一般式(1)で示される部分構造を1つ以上、及びイソシアネート基を2つ以上有する化合物を0.01質量%以上、1.0質量%以下含むことを特徴とする、非水系電解液二次電池用非水系電解液。
Figure 0005906915
ここで、Rは任意の元素若しくは基を表す。
A non-aqueous electrolyte solution for a non-aqueous electrolyte secondary battery comprising a positive electrode and a negative electrode capable of occluding and releasing metal ions, and a separator,
Wherein together with the non-aqueous electrolyte is an electrolyte and a nonaqueous solvent, the following formula in the molecule (1) a partial structure of one or more indicated, and a compound having two or more isocyanate groups 0.01% by mass or more, 1 A non-aqueous electrolyte solution for a non-aqueous electrolyte secondary battery, comprising 0.0 mass% or less .
Figure 0005906915
Here, R represents an arbitrary element or group.
前記化合物の構造がウレトジオン、オキサジアジトリオン、ビウレット、ウレタン、アロファネート、イソシアヌレートから選ばれる一種以上の骨格を有することを特徴とする、請求項1に記載の非水系電解液。   2. The nonaqueous electrolytic solution according to claim 1, wherein the structure of the compound has one or more skeletons selected from uretdione, oxadiaditrione, biuret, urethane, allophanate, and isocyanurate. 前記化合物の数平均分子量が300以上5000以下であることを特徴とする、請求項1または2に記載の非水系電解液。   3. The non-aqueous electrolyte solution according to claim 1, wherein the compound has a number average molecular weight of 300 or more and 5000 or less. 該非水系電解液が、さらに不飽和環状カーボネート、フッ素化環状カーボネート及び含窒素化合物からなる群より選ばれる少なくとも1種以上を含有することを特徴とする請求項1〜3のいずれかに記載の非水系電解液。   The non-aqueous electrolyte further contains at least one selected from the group consisting of unsaturated cyclic carbonates, fluorinated cyclic carbonates and nitrogen-containing compounds. Aqueous electrolyte. 前記セパレータが、ポリエチレン及びポリプロピレンから選ばれる少なくとも1種を含有することを特徴とする、請求項1〜4のいずれか一項に記載の非水系電解液。   The said separator contains at least 1 sort (s) chosen from polyethylene and a polypropylene, The nonaqueous electrolyte solution as described in any one of Claims 1-4 characterized by the above-mentioned. 金属イオンを吸蔵及び放出可能な負極及び正極と、非水系電解液とを備える非水系電解液二次電池であって、該非水系電解液が請求項1〜5のいずれかに記載の非水系電解液であることを特徴とする非水系電解液二次電池。   A non-aqueous electrolyte secondary battery comprising a negative electrode and a positive electrode capable of inserting and extracting metal ions, and a non-aqueous electrolyte solution, wherein the non-aqueous electrolyte solution is a non-aqueous electrolyte according to any one of claims 1 to 5. A non-aqueous electrolyte secondary battery characterized by being a liquid.
JP2012095759A 2011-05-09 2012-04-19 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same Active JP5906915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012095759A JP5906915B2 (en) 2011-05-09 2012-04-19 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2011104377 2011-05-09
JP2011104377 2011-05-09
JP2011168647 2011-08-01
JP2011168647 2011-08-01
JP2012095759A JP5906915B2 (en) 2011-05-09 2012-04-19 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same

Publications (2)

Publication Number Publication Date
JP2013051195A JP2013051195A (en) 2013-03-14
JP5906915B2 true JP5906915B2 (en) 2016-04-20

Family

ID=48013060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012095759A Active JP5906915B2 (en) 2011-05-09 2012-04-19 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same

Country Status (1)

Country Link
JP (1) JP5906915B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201517358A (en) * 2013-06-25 2015-05-01 Hitachi Chemical Co Ltd Separator for electrochemical elements and lithium ion secondary battery
WO2015005694A1 (en) 2013-07-10 2015-01-15 주식회사 엘지화학 Electrode improving battery lifespan and lithium secondary battery having same
JP6284772B2 (en) * 2013-08-20 2018-02-28 三洋化成工業株式会社 Electrode protective film forming agent
KR101744245B1 (en) * 2013-10-31 2017-06-07 주식회사 엘지화학 High potential Lithium secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086470A (en) * 2001-09-10 2003-03-20 Nisshinbo Ind Inc Activated carbon for electrode, polarizable electrode for electric double-layer capacitor and electric double- layer capacitor
JP4578203B2 (en) * 2004-10-25 2010-11-10 旭化成ケミカルズ株式会社 Gel-like lithium ion conductor and process for producing the same
JP5390736B2 (en) * 2004-12-07 2014-01-15 富山薬品工業株式会社 Non-aqueous electrolyte for electrochemical devices
JP2007200695A (en) * 2006-01-26 2007-08-09 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and its manufacturing method
JP2007242411A (en) * 2006-03-08 2007-09-20 Sony Corp Battery and electrolyte composition

Also Published As

Publication number Publication date
JP2013051195A (en) 2013-03-14

Similar Documents

Publication Publication Date Title
JP6069843B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP6555400B2 (en) Lithium fluorosulfonate, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
JP6187566B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery
KR101929599B1 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery employing the same
JP6028785B2 (en) Non-aqueous electrolyte battery
JP6167470B2 (en) Non-aqueous electrolyte battery
JP5962028B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
WO2014003165A1 (en) Nonaqueous electrolytic solution and nonaqueous electrolytic solution cell using same
EP3113274A1 (en) Nonaqueous electrolyte solution and nonaqueous-electrolyte-solution secondary battery using same
JP6031856B2 (en) Non-aqueous electrolyte secondary battery
JP5655653B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP6079272B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6035776B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP6031868B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5834771B2 (en) Non-aqueous electrolyte and battery using the same
JP5906915B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP6236907B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6191395B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP6221632B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP5760809B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery
JP6064735B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160307

R150 Certificate of patent or registration of utility model

Ref document number: 5906915

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350