JP5906576B2 - Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition - Google Patents
Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition Download PDFInfo
- Publication number
- JP5906576B2 JP5906576B2 JP2011077157A JP2011077157A JP5906576B2 JP 5906576 B2 JP5906576 B2 JP 5906576B2 JP 2011077157 A JP2011077157 A JP 2011077157A JP 2011077157 A JP2011077157 A JP 2011077157A JP 5906576 B2 JP5906576 B2 JP 5906576B2
- Authority
- JP
- Japan
- Prior art keywords
- silicone rubber
- curable composition
- based curable
- vinyl group
- rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、放射光X線散乱測定で構造解析したシリコーンゴム系硬化性組成物に関する。 The present invention relates to a silicone rubber-based curable composition whose structure has been analyzed by synchrotron radiation X-ray scattering measurement.
シリコーンゴムは、耐熱性、難燃性、化学的安定性、耐候性、耐放射線性、電気特性等に優れていることから、幅広い分野において様々な用途に使用されている。特に、シリコーンゴムは、生理的に不活性であると共に、生体に触れた場合の体組織に対する反応が少ないため、医療用各種カテーテル等、医療器具の材料としても利用されている。 Silicone rubber is excellent in heat resistance, flame retardancy, chemical stability, weather resistance, radiation resistance, electrical properties, and the like, and thus is used for various applications in a wide range of fields. In particular, silicone rubber is physiologically inactive and has little reaction to body tissue when touched by a living body. Therefore, silicone rubber is also used as a material for medical instruments such as various medical catheters.
医療用カテーテルは、胸腔や腹腔等の体腔、消化管や尿管等の管腔部、血管等に挿入し、体液の排出や、薬液、栄養剤及び造影剤等の注入点滴に用いられる管であり、生体適合性の他、耐傷付き性(耐引裂き性)、耐キンク性(引張り強度)、透明性、柔軟性(引張り伸び性)等が要求される。医療用カテーテルの具体的用途としては、例えば、術後の血液や膿等の排液除去用吸引器のドレナージチューブや、経皮的内視鏡下胃ろう造設術(PEG)等の術後の栄養摂取用チューブ等が挙げられる。また、カテーテル用の極細チューブ状のシリコーンゴムを製造するためには、シリコーンゴム材料であるシリコーンゴム組成物には押出し成形性が求められる。 A medical catheter is a tube that is inserted into a body cavity such as the thoracic cavity or abdominal cavity, a lumen such as the digestive tract or ureter, a blood vessel, etc. In addition to biocompatibility, scratch resistance (tear resistance), kink resistance (tensile strength), transparency, flexibility (tensile elongation), and the like are required. Specific uses of medical catheters include, for example, post-operative drainage tubes for drainage removal such as blood and pus, and postoperative procedures such as percutaneous endoscopic gastrostomy (PEG). For example, a tube for nutrient intake. Further, in order to produce ultrathin tube-like silicone rubber for catheters, the silicone rubber composition, which is a silicone rubber material, is required to have extrudability.
医療用カテーテルの材料としては、シリコーンゴムの他、軟質ポリ塩化ビニル等も一般的に使用されている。ポリ塩化ビニル等と比較して、シリコーンゴムは、生体適合性及び柔軟性の点において優れるものの、引裂き強度や引張り強度等の強度面、特に引裂き強度の向上が求められている。引裂き強度が充分でないと、施術中の針や刃物等による傷によってカテーテルが破けたり、或いは、引張り強度が充分でないと、カテーテルが折れ曲がって降伏して閉塞(キンク)し、排出されるべき体液や注入されるべき薬液等のカテーテル内の流通が滞ってしまう。 In addition to silicone rubber, soft polyvinyl chloride and the like are generally used as medical catheter materials. Although silicone rubber is superior in terms of biocompatibility and flexibility as compared with polyvinyl chloride and the like, it is required to improve strength such as tear strength and tensile strength, particularly tear strength. If the tear strength is not sufficient, the catheter may be torn due to a wound with a needle or blade during the operation, or if the tensile strength is not sufficient, the catheter will bend and yield and block (kink), Distribution of the drug solution or the like to be injected in the catheter is delayed.
そこで、シリコーンゴムの引裂き強度や引張り強度を高めるべく、様々な方法が提案されている(例えば、特許文献1〜7)。シリコーンゴムに高い引裂き性を付与するための具体的な方法としては、シリカ微粒子等の無機充填材の添加、架橋密度の疎密化(シリコーンゴムの系中に架橋密度が高い領域と低い領域とを分布させる)等が挙げられる。架橋密度の疎密化による引裂き性の向上は、架橋密度の高い領域が、引裂き応力に対する抗力として作用するためと考えられている。 Therefore, various methods have been proposed to increase the tear strength and tensile strength of silicone rubber (for example, Patent Documents 1 to 7). Specific methods for imparting high tearability to the silicone rubber include addition of inorganic fillers such as silica fine particles, and densification of the crosslink density (the areas of high and low crosslink density in the silicone rubber system). Distributed). It is considered that the improvement in tearability due to the densification of the crosslink density is due to the fact that the region having a high crosslink density acts as a resistance against tear stress.
例えば、特許文献1では、高粘度及び低ビニル基含有量のオルガノポリシロキサン(生ゴム(A))を主体とし、これに、低粘度及び高ビニル基含有量のオルガノポリシロキサン(シリコーンオイル(B))、ビニル基含有オルガノポリシロキサン共重合体(ビニル基含有シリコーンレジン(C))、オルガノ水素シロキサン(架橋剤(D))、白金又は白金化合物(硬化触媒(E))、及び微粉末シリカ(充填剤(F))を配合した硬化性シ
リコーンゴム組成物が開示されている。
For example, in Patent Document 1, an organopolysiloxane having a high viscosity and a low vinyl group content (raw rubber (A)) is mainly used, and an organopolysiloxane having a low viscosity and a high vinyl group content (silicone oil (B)). ), Vinyl group-containing organopolysiloxane copolymer (vinyl group-containing silicone resin (C)), organohydrogensiloxane (crosslinking agent (D)), platinum or platinum compound (curing catalyst (E)), and finely divided silica ( A curable silicone rubber composition containing a filler (F)) is disclosed.
また、高分子材料をX線散乱測定により解析した例としてアクリル繊維の小角X線散乱測定を実施した例があるが(特許文献8)、まだシリコーンゴム組成物に関しては十分にX線散乱測定による構造解析が行われていない。 In addition, as an example of analyzing a polymer material by X-ray scattering measurement, there is an example in which small-angle X-ray scattering measurement of acrylic fiber is performed (Patent Document 8), but the silicone rubber composition is still sufficiently measured by X-ray scattering measurement. No structural analysis has been performed.
しかしながら、シリコーンゴム中でのシリカ微粒子等の無機充填剤の凝集構造と引張り強度及び引裂き強度との相関は未だに明らかになっていない。本発明は、引張り強度及び引裂き強度に優れたシリコーンゴムが得られる、シリコーンゴム系硬化性組成物を提供することを目的とするものである。 However, the correlation between the aggregate structure of inorganic fillers such as silica fine particles in silicone rubber and the tensile strength and tear strength has not yet been clarified. An object of the present invention is to provide a silicone rubber-based curable composition from which a silicone rubber excellent in tensile strength and tear strength can be obtained.
このような目的は、下記(1)〜(5)に記載の本発明により達成される。
(1)シリコーンゴム系硬化性組成物であって、
放射光X線散乱測定から求められる未延伸時の無機充填剤の凝集サイズが20〜25nmであり、該シリコーンゴム系硬化性組成物がビニル基含有直鎖状オルガノポリシロキサン、およびヘキサメチルジシラザン処理したシリカビーズを含み、
前記ビニル基含有直鎖状オルガノポリシロキサンが、所定の末端ビニル基ポリオルガノシロキサンであることを特徴とするシリコーンゴム系硬化性組成物。
(2)シリコーンゴム系硬化組成物の、前記放射光X線散乱測定から求められる延伸時の配向係数の最大値が0.25〜0.35である(1)記載のシリコーンゴム系硬化性組成物。
(3)前記シリコーンゴム系硬化組成物が、JIS K6252加硫ゴム及び熱可塑性ゴム−引裂強さの求め方において、40N/m以上である(1)ないし(2)記載のシリコーンゴム系硬化性組成物。
(4)(2)記載のシリコーンゴム系硬化性組成物を、前記延伸が高速引張試験機を用いて1〜20mm/secの延伸速度で切断まで延伸すると同時に放射光X線散乱測定を行うシリコーンゴム系硬化性組成物の測定方法。
(5)(1)記載のシリコーンゴム系硬化性組成物の製造方法であって、
オクタメチルシクロテトラシロキサンと、2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサンと、をカリウムシリコネートの存在下で反応させた後、1,3−ジビニルテトラメチルジシロキサンを添加して、数平均分子量(Mn)が277,734、重量平均分子量(Mw)が573,906、又は、ビニル基含有量が0.13モル%となる、上記式で示される末端ビニル基ポリオルガノシロキサンを得る工程と、
前記末端ビニル基ポリオルガノシロキサンにヘキサメチルジシラザン処理したシリカビーズを添加する工程と、を含む、シリコーンゴム系硬化性組成物の製造方法。
Such an object is achieved by the present invention described in the following (1) to ( 5 ).
(1) A silicone rubber-based curable composition,
Aggregate size of the unstretched when inorganic fillers obtained from synchrotron radiation X-ray scattering measurement is 20-25 nm, the silicone rubber based curable composition is a vinyl group-containing linear organopolysiloxanes, and hexamethyl disilazane treated Silica beads,
The vinyl group-containing linear organopolysiloxane, a silicone rubber based curable composition characterized by Ru predetermined terminal vinyl groups polyorganosiloxane der.
(2) The silicone rubber curable composition according to (1), wherein the silicone rubber curable composition has a maximum value of an orientation coefficient during stretching determined from the synchrotron radiation X-ray scattering measurement of 0.25 to 0.35. object.
(3) The silicone rubber-based curable composition according to (1) or (2), wherein the silicone rubber-based curable composition is 40 N / m or more in terms of JIS K6252 vulcanized rubber and thermoplastic rubber-tear strength. Composition.
(4) Silicone which performs synchrotron radiation X-ray scattering measurement at the same time that the silicone rubber-based curable composition according to (2) is stretched to cut at a stretching speed of 1 to 20 mm / sec using a high-speed tensile tester. Method for measuring rubber-based curable composition .
(5) A method for producing a silicone rubber-based curable composition according to (1),
After reacting octamethylcyclotetrasiloxane with 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane in the presence of potassium siliconate, 1,3-divinyl By adding tetramethyldisiloxane, the number average molecular weight (Mn) is 277,734, the weight average molecular weight (Mw) is 573,906, or the vinyl group content is 0.13 mol%. Obtaining a terminal vinyl group polyorganosiloxane,
Adding a silica bead treated with hexamethyldisilazane to the terminal vinyl group polyorganosiloxane, and a method for producing a silicone rubber-based curable composition.
本発明のシリコーンゴム系硬化性組成物を硬化して得られるシリコーンゴムは、引裂き強度に優れるものである。従って、本発明のシリコーンゴム系硬化性組成物を用いてなる成形体及び該成形体で構成される医療用チューブは引裂き強度等の機械的強度が高い。すなわち、本発明によれば、耐傷付き性に優れたシリコーンゴム製医療用カテーテルを提供することが可能である。 The silicone rubber obtained by curing the silicone rubber-based curable composition of the present invention is excellent in tear strength. Therefore, the molded body using the silicone rubber-based curable composition of the present invention and the medical tube composed of the molded body have high mechanical strength such as tear strength. That is, according to the present invention, it is possible to provide a medical catheter made of silicone rubber having excellent scratch resistance.
本発明のシリコーンゴム系硬化性組成物は、ビニル基含有直鎖状オルガノポリシロキサンと、直鎖状オルガノハイドロジェンポリシロキサンと、トリメチルシリル基を有するシランカップリング剤によって表面処理されたシリカフィラーと、を含有することを特徴とする。 The silicone rubber-based curable composition of the present invention is a vinyl group-containing linear organopolysiloxane, a linear organohydrogenpolysiloxane, a silica filler surface-treated with a silane coupling agent having a trimethylsilyl group, It is characterized by containing.
シリコーンゴムの機械的強度、特に引張り強度の向上を目的として、シリコーン系硬化性組成物にシリカフィラーを添加させることはしばしばなされており、特定のシリカカップリング剤で表面処理したシリカフィラーを添加することによって、引裂き強度を大幅に向上できることが期待できる。 In order to improve the mechanical strength of silicone rubber, especially tensile strength, silica filler is often added to the silicone-based curable composition, and silica filler surface-treated with a specific silica coupling agent is added. Therefore, it can be expected that the tear strength can be greatly improved.
引裂き強度が向上する理由は、次のように考えられる。すなわち、シリカフィラーの分散性の向上により、シリカフィラーとゴムマトリックスとの界面が増大し、シリカフィラーから作用を受けるゴム分子鎖が増大する。これにより、シリカフィラーによる補強効果が増し、機械強度が向上する。このシリカフィラーの作用を受けるゴム分子鎖は、シリカフィラーとの相互作用により分子運動性が低下し、分子運動性の高い部分に比べて、固い構造となる。シリコーンゴムの引裂き挙動において、初期のクラックが生長・伝播する際に、固い構造に引裂き応力が加わると、抗力として作用し、結果的に引裂き強度が増大する。 The reason why the tear strength is improved is considered as follows. That is, by improving the dispersibility of the silica filler, the interface between the silica filler and the rubber matrix increases, and the number of rubber molecular chains affected by the silica filler increases. Thereby, the reinforcement effect by a silica filler increases and mechanical strength improves. The rubber molecular chain subjected to the action of the silica filler has a lower molecular mobility due to the interaction with the silica filler, and has a harder structure than a portion having a high molecular mobility. In the tearing behavior of silicone rubber, if a tearing stress is applied to a hard structure when an initial crack grows and propagates, it acts as a drag, resulting in an increase in tearing strength.
このようにシリカフィラーの分散性は機械的強度に大きな影響を及ぼすと考えられるために今回小角X線散乱測定を行いシリカフィラーの平均凝集サイズを解析することにより、シリカフィラーの分散性と機械的強度の相関を調べたところシリカフィラーの分散性が向上すると機械的強度、特に引裂き強度が大幅に増大する結果が得られた。 Thus, the dispersibility of the silica filler is considered to have a great influence on the mechanical strength. Therefore, the dispersibility and mechanical properties of the silica filler are analyzed by analyzing the average agglomerated size of the silica filler by conducting a small-angle X-ray scattering measurement this time. As a result of investigating the correlation between the strengths, it was found that the mechanical strength, particularly the tear strength, greatly increased when the dispersibility of the silica filler was improved.
本発明のシリコーンゴム系硬化性組成物は、例えば、140〜180℃で5〜15分間加熱(1次硬化)した後、200℃で4時間ポストベーク(2次硬化)することによってシリコーンゴムを得ることができる。 For example, the silicone rubber-based curable composition of the present invention is heated (primary curing) at 140 to 180 ° C. for 5 to 15 minutes and then post-baked (secondary curing) at 200 ° C. for 4 hours. Can be obtained.
シリコーンゴム系硬化性組成物を170℃、10MPaで10分間プレスし、1mmのシート状に成形すると共に、1次硬化し、続いて、200℃で4時間加熱し、2次硬化して得られたシート状シリコーンゴムを用いて、JIS K6252(2001)のクレセント形試験片を作製し、JIS K6252(2001)のクレセント形試験片の引裂き強さを測定する。 A silicone rubber-based curable composition is obtained by pressing at 170 ° C. and 10 MPa for 10 minutes, forming into a 1 mm sheet, and primary curing, followed by heating at 200 ° C. for 4 hours and secondary curing. A crescent-type test piece of JIS K6252 (2001) is prepared using the sheet-like silicone rubber, and the tear strength of the crescent-type test piece of JIS K6252 (2001) is measured.
前記のシート状シリコーンゴムを中心周長50mm、幅1mmのリングカッターを用いて打ち抜いたリング状シリコーンゴムを作成する。 A ring-shaped silicone rubber is produced by punching the sheet-shaped silicone rubber with a ring cutter having a center circumference of 50 mm and a width of 1 mm.
前記のリング状シリコーンゴムを高速引張試験機を用いて1〜20mm/secの間の延伸速度で切断まで延伸すると同時に放射光X線散乱測定を行う。ここで、述べる放射光X線散乱測定はとは、小角X線散乱と広角X線散乱を含んでいる。 The ring-shaped silicone rubber is stretched to cut at a stretching speed of 1 to 20 mm / sec using a high-speed tensile tester, and at the same time, a synchrotron radiation X-ray scattering measurement is performed. Here, the synchrotron radiation X-ray scattering measurement includes small-angle X-ray scattering and wide-angle X-ray scattering.
まず、小角X線散乱(small angle X-ray scattering)とは、X線を物質に照射して散乱するX線のうち、散乱角が小さいものを測定することにより物質の構造情報を得る手法であり、内部構造の大きさや形状、規則性、分散性を評価するものである。散乱角の小さいところほど対応する構造の大きさは大きいことを示す。 First, small angle X-ray scattering is a method of obtaining structural information of a substance by measuring X-rays that are scattered by irradiating the substance with X-rays and having a small scattering angle. Yes, the size, shape, regularity, and dispersibility of the internal structure are evaluated. The smaller the scattering angle, the larger the size of the corresponding structure.
また、広角X線散乱(wide angle X-ray scattering)とは、X線を物質に照射して散乱するX線のうち、散乱角が大きいものを測定することにより物質の構造情報を得る手法であり、小角X線散乱よりも小さな構造情報が得られる。結晶構造解析などに用いられる他に、試料の配向度の情報も得られる。 In addition, wide angle X-ray scattering is a method for obtaining structural information of a substance by measuring X-rays that are scattered by irradiating the substance with X-rays and having a large scattering angle. Yes, structural information smaller than small-angle X-ray scattering can be obtained. In addition to being used for crystal structure analysis, information on the degree of orientation of the sample can also be obtained.
また、シリカフィラーの凝集・分散状態と機械的強度の相関を詳細に調べるために未延伸の状態で小角X線散乱測定をするだけでなく、延伸と同時に小角X線散乱測定を行った。 Further, in order to examine the correlation between the aggregation / dispersion state of the silica filler and the mechanical strength in detail, not only the small-angle X-ray scattering measurement was performed in an unstretched state but also the small-angle X-ray scattering measurement was performed simultaneously with the stretching.
さらにシリカフィラーの凝集・分散状態だけでなく、シリコーンゴムを構成するビニル基含有直鎖状オルガノポリシロキサン(A)と、直鎖状オルガノハイドロジェンポリシロキサン(B)が特に延伸時にどのような形態となっているかを明らかにするために延伸と同時に広角X線散乱測定を行った。 Further, not only the aggregation / dispersion state of the silica filler, but also any form of the vinyl group-containing linear organopolysiloxane (A) and the linear organohydrogenpolysiloxane (B) constituting the silicone rubber, particularly during stretching In order to clarify whether or not, wide-angle X-ray scattering measurement was performed simultaneously with stretching.
小角X線散乱測定および広角X線散乱測定は市販の汎用X線装置でも測定可能である。例えば株式会社リガク製のナノスケールX線構造評価装置 NANO-Viewerを用いて行うことができる。
また、高速延伸と同時に測定を行うためには極短時間での測定が必要である。そのためには大型放射光施設SPring-8(スプリングエイト)において、放射光X線による小角X線散乱測定および広角X線散乱測定を行なうことにより、シリコーンゴム系硬化性組成物の構造解析を行うことができる。
The small-angle X-ray scattering measurement and the wide-angle X-ray scattering measurement can be measured with a commercially available general-purpose X-ray apparatus. For example, it can be performed using a nanoscale X-ray structure evaluation apparatus NANO-Viewer manufactured by Rigaku Corporation.
Moreover, in order to perform measurement simultaneously with high-speed stretching, measurement in an extremely short time is necessary. To that end, the structural analysis of the silicone rubber-based curable composition is performed by performing small-angle X-ray scattering measurement and wide-angle X-ray scattering measurement by synchrotron radiation X-ray at SPring-8 (Spring Eight), a large synchrotron radiation facility. Can do.
SPring-8とは、兵庫県の播磨科学公園都市内にある世界最高性能の放射光を生み出すことができる大型放射光施設のことであり、放射光とは、電子を光とほぼ等しい速度まで加速し、磁石によって進行方向を曲げた時に発生する、細く強力な電磁波のことである。 SPring-8 is a large-scale synchrotron radiation facility in the city of Harima Science Park in Hyogo Prefecture that can generate the world's highest performance synchrotron radiation, which accelerates electrons to a speed almost equal to that of light. It is a thin and powerful electromagnetic wave that is generated when the traveling direction is bent by a magnet.
小角X線散乱測定および広角X線散乱測定ではX線の強度が強いほど短時間での測定が可能となるが、SPring-8で利用可能な放射光X線は市販の汎用X線装置によるX線の1億倍もの輝度を持つので、極短時間の測定でも十分な強度が得られるために延伸過程での構造解析が可能である。 Small-angle X-ray scattering measurement and wide-angle X-ray scattering measurement can be performed in a shorter time as the X-ray intensity is stronger. Since it has a brightness of 100 million times that of the line, sufficient strength can be obtained even in extremely short time measurements, so structural analysis during the stretching process is possible.
放射光X線散乱の測定条件を以下に示す。
小角X線散乱の測定条件は波長1.50Å、カメラ長6mであり検出器にはII+CCD(Image Intensifier+Charge Coupled Device)を用いた。
広角X線散乱の測定条件は波長0.832Å、カメラ長200mmであり検出器にはII+CCD(Image Intensifier+Charge Coupled Device)を用いた。
The measurement conditions of synchrotron radiation X-ray scattering are shown below.
The measurement conditions for small-angle X-ray scattering were a wavelength of 1.50 mm and a camera length of 6 m, and II + CCD (Image Intensifier + Charge Coupled Device) was used as a detector.
The measurement conditions for wide-angle X-ray scattering were a wavelength of 0.832 mm, a camera length of 200 mm, and an II + CCD (Image Intensifier + Charge Coupled Device) was used as the detector.
X線散乱測定データの強度補正として、ダーク補正(暗電流によって生じるノイズを除去する)、バックグラウンド補正(空気など測定試料以外のものによる散乱を除去する)、透過率補正(サンプル間の透過率の違いを考慮する)を行った。 As intensity correction of X-ray scattering measurement data, dark correction (removes noise caused by dark current), background correction (removes scattering caused by objects other than the measurement sample such as air), transmittance correction (transmittance between samples) Taking into account the difference between
シリコーンゴム系硬化性組成物中でのシリカフィラーの凝集サイズは株式会社リガク製の粒径・空孔径解析ソフトウェアNANO-Solverを用いて解析した。 The aggregate size of the silica filler in the silicone rubber-based curable composition was analyzed using a particle size / hole size analysis software NANO-Solver manufactured by Rigaku Corporation.
前記の解析方法によるシリコーンゴム系硬化性組成物中でのシリカフィラーの凝集サイズは30nm以下であることが好ましい。更に好ましくは25nm以下であり、最も好ましくは20nm以下である。30nmを超えるシリカフィラーの凝集サイズでは分散性が良いとは言えず、機械的強度の向上は期待できない。また、シリカフィラーの粒径が7〜14nm程度であるのでシリカフィラーの凝集サイズは粒径である7〜14nm以下とはならない。 The aggregate size of the silica filler in the silicone rubber-based curable composition by the above analysis method is preferably 30 nm or less. More preferably, it is 25 nm or less, and most preferably 20 nm or less. When the silica filler is larger than 30 nm, it cannot be said that the dispersibility is good and the mechanical strength cannot be improved. Further, since the silica filler has a particle size of about 7 to 14 nm, the aggregate size of the silica filler does not become the particle size of 7 to 14 nm or less.
配向の度合いは配向係数を用いて評価する。配向係数は2次元の広角X線散乱測定の結果から計算ことができる。以下の数式1を用いて計算する。
ここで、fは配向係数、Iは散乱強度、φは円周方向角度であり、添え字hklは結晶面のミラー指数をそれぞれ示す。
The degree of orientation is evaluated using the orientation coefficient. The orientation factor can be calculated from the results of two-dimensional wide-angle X-ray scattering measurements. It calculates using the following numerical formula 1.
Here, f is the orientation coefficient, I is the scattering intensity, φ is the angle in the circumferential direction, and the subscript hkl indicates the mirror index of the crystal plane.
配向係数は1のときに延伸方向に完全に配向、0のときにランダム配向、-0.5のときに延伸方向と垂直な方向に配向していることを示している。 When the orientation coefficient is 1, the orientation is completely oriented in the stretching direction, when it is 0, the orientation is random, and when it is -0.5, the orientation is oriented in the direction perpendicular to the stretching direction.
シリカフィラーの分散性の向上により、シリカフィラーとゴムマトリックスとの界面が増大し、シリカフィラーから作用を受けるゴム分子鎖が増大することが考えられるが、そのためにゴム分子鎖は延伸により配向しにくいことが考えられる。 By improving the dispersibility of the silica filler, it is considered that the interface between the silica filler and the rubber matrix increases, and the rubber molecular chains affected by the silica filler increase. However, the rubber molecular chains are not easily oriented by stretching. It is possible.
前記の解析方法による延伸下でのシリコーンゴム系硬化性組成物中でのゴム分子鎖の配向係数の最大値は0.45以下であることが好ましい。更に好ましくは0.35以下であり、最も好ましくは0.3以下である。0.45を超える配向係数ではフィラーの分散性が悪いためにフィラーと作用していないゴム分子鎖が配向していることが示唆される。 The maximum value of the orientation coefficient of the rubber molecular chain in the silicone rubber-based curable composition under stretching by the above analysis method is preferably 0.45 or less. More preferably, it is 0.35 or less, and most preferably is 0.3 or less. When the orientation coefficient exceeds 0.45, the dispersibility of the filler is poor, suggesting that the rubber molecular chains not acting with the filler are oriented.
前記の配向とはシリコーンゴム系硬化性組成物におけるゴム分子鎖が延伸により液晶相、もしくは中間相(メゾ相)または光学的異方相を形成していることを示す。 The above-mentioned orientation means that the rubber molecular chain in the silicone rubber-based curable composition forms a liquid crystal phase, an intermediate phase (meso phase) or an optically anisotropic phase by stretching.
以上のように、本発明のシリコーンゴム系硬化性組成物を硬化させることで得られるシリコーンゴムは、優れた引張り強度及び引裂き強度を呈する。従って、本発明のシリコーンゴム系硬化性組成物を用いることによって、耐傷付き性及び耐キンク性に優れたシリコーンゴム製カテーテルを得ることができる。 As described above, the silicone rubber obtained by curing the silicone rubber-based curable composition of the present invention exhibits excellent tensile strength and tear strength. Therefore, by using the silicone rubber-based curable composition of the present invention, a silicone rubber catheter having excellent scratch resistance and kink resistance can be obtained.
以下、本発明のシリコーンゴム系硬化性組成物の一形態を実施例により説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, although an example explains one form of a silicone rubber system curable composition of the present invention, the present invention is not limited to these examples.
実施例及び比較例において使用した原材料は以下の通りである。
(A):ビニル基含有直鎖状オルガノポリシロキサン、ビニル基含有量0.13モル%、以下の合成スキームにより合成。
(B):直鎖状オルガノハイドロジェンポリシロキサン、モメンティブ製「TC25D」
(C1):ヘキサメチルジシラザンで表面処理したシリカフィラー、日本アエロジル製「アエロジルRX300」、比表面積300m2/g、一次平均粒径7nm、炭素含有量3.5重量%
(C2):ジメチルジクロロシランで表面処理したシリカフィラー、日本アエロジル製「アエロジルR974」、比表面積200m2/g、一次平均粒径12nm
(D)白金:モメンティブ製「TC−25A」
The raw materials used in the examples and comparative examples are as follows.
(A): Vinyl group-containing linear organopolysiloxane, vinyl group content 0.13 mol%, synthesized by the following synthesis scheme.
(B): Linear organohydrogenpolysiloxane, “TC25D” manufactured by Momentive
(C1): Silica filler surface-treated with hexamethyldisilazane, “Aerosil RX300” manufactured by Nippon Aerosil, specific surface area 300 m 2 / g, primary average particle size 7 nm, carbon content 3.5% by weight
(C2): Silica filler surface-treated with dimethyldichlorosilane, “Aerosil R974” manufactured by Nippon Aerosil, specific surface area 200 m 2 / g, primary average particle size 12 nm
(D) Platinum: "TC-25A" manufactured by Momentive
[ビニル基含有直鎖状オルガノポリシロキサン(A)の合成]
下記化学式(1)に従って、第1のビニル基含有直鎖状オルガノポリシロキサン(A)を合成した。
具体的には、Arガス置換した、冷却管及び攪拌翼を有する300mLセパラブルフラスコに、オクタメチルシクロテトラシロキサン 74.7g(252mmol)、2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサン 0.086g(0.25mmol)及びカリウムシリコネート 0.1gを入れ、昇温し、120℃で30分間攪拌した。粘度の上昇が確認できた。
その後、155℃まで昇温し、3時間攪拌を続けた。3時間後、1,3−ジビニルテトラメチルジシロキサン 0.1g(0.6mmol)を添加し、さらに、155℃で4時間攪拌した。
4時間後、トルエン250mLで希釈した後、水で3回洗浄した。洗浄後の有機層をメタノール1.5Lで数回洗浄することで、再沈精製し、オリゴマーとポリマーを分離した。得られたポリマーを60℃で一晩減圧乾燥し、第2のビニル基含有直鎖状オルガノポリシロキサンを得た(Mn=277,734、Mw=573,906、IV値(dl/g)=0.89)。
[Synthesis of vinyl group-containing linear organopolysiloxane (A)]
A first vinyl group-containing linear organopolysiloxane (A) was synthesized according to the following chemical formula (1).
Specifically, 74.7 g (252 mmol) of octamethylcyclotetrasiloxane, 2,4,6,8-tetramethyl 2,4,6 was placed in a 300 mL separable flask having a cooling tube and a stirring blade that was purged with Ar gas. , 8-tetravinylcyclotetrasiloxane 0.086 g (0.25 mmol) and potassium siliconate 0.1 g were added, the temperature was raised, and the mixture was stirred at 120 ° C. for 30 minutes. An increase in viscosity was confirmed.
Thereafter, the temperature was raised to 155 ° C., and stirring was continued for 3 hours. After 3 hours, 0.1 g (0.6 mmol) of 1,3-divinyltetramethyldisiloxane was added, and the mixture was further stirred at 155 ° C. for 4 hours.
After 4 hours, the mixture was diluted with 250 mL of toluene and then washed with water three times. The washed organic layer was washed several times with 1.5 L of methanol, and purified by reprecipitation to separate the oligomer and polymer. The obtained polymer was dried under reduced pressure at 60 ° C. overnight to obtain a second vinyl group-containing linear organopolysiloxane (Mn = 277,734, Mw = 573,906, IV value (dl / g) = 0.89).
[実施例1]
(シリコーンゴム系硬化性組成物の調製)
(A1)第1のビニル基含有直鎖状オルガノポリシロキサン100重量部に、(C1)シリカフィラー70重量部を添加し、混練してマスターバッチを調製した。
続いて、(D)白金0.5重量部を混合し均一になるまで混練した後、(B)直鎖状オルガノハイドロジェンポリシロキサン2.0重量部を加えて混練し、シリコーンゴム系硬化性組成物を調製した。
表1に各原材料の重量比を示す。
[Example 1]
(Preparation of silicone rubber-based curable composition)
(A1) To 100 parts by weight of the first vinyl group-containing linear organopolysiloxane, 70 parts by weight of (C1) silica filler was added and kneaded to prepare a master batch.
Subsequently, (D) 0.5 parts by weight of platinum was mixed and kneaded until uniform, then (B) 2.0 parts by weight of linear organohydrogenpolysiloxane was added and kneaded, and silicone rubber-based curability was added. A composition was prepared.
Table 1 shows the weight ratio of each raw material.
(シリコーンゴム系硬化性組成物の評価)
<引裂き強度及び引裂きストローク>
得られたシリコーンゴム系硬化性組成物を、170℃、10MPaで10分間プレスし、1mmのシート状に成形すると共に、1次硬化した。
続いて、200℃で4時間加熱し、2次硬化した。
得られたシート状シリコーンゴムを用いて、JIS K6252(2001)に準拠してクレセント形試験片を作製し、JIS K6252(2001)によるクレセント形試験片の引裂き強さ及び試験片が切断に至るまでの伸び(ストローク)を測定した。ただし、試験片の厚みは、1mmとした。結果を表1に示す。
(Evaluation of silicone rubber-based curable composition)
<Tear strength and tear stroke>
The obtained silicone rubber-based curable composition was pressed at 170 ° C. and 10 MPa for 10 minutes, molded into a 1 mm sheet, and primary cured.
Subsequently, it was heated at 200 ° C. for 4 hours and secondarily cured.
Using the obtained sheet-like silicone rubber, a crescent-type test piece is prepared according to JIS K6252 (2001), and the tear strength of the crescent-type test piece and the test piece are cut according to JIS K6252 (2001). The elongation (stroke) of was measured. However, the thickness of the test piece was 1 mm. The results are shown in Table 1.
<引張り強度及び引張り伸び率>
得られたシリコーンゴム系硬化性組成物を、170℃、10MPaで10分間プレスし、1mmのシート状に成形すると共に、1次硬化した。
続いて、200℃で4時間加熱し、2次硬化した。
得られたシート状シリコーンゴムを用いて、JIS K6251(2004)に準拠して、ダンベル状3号形試験片を作製し、JIS K6251(2004)によるダンベル状3号形試験片の引張り強さ及び切断時伸び(ひずみ)を測定した。ただし、試験片の厚みは、1mmとした。結果を表1に示す。
<Tensile strength and tensile elongation>
The obtained silicone rubber-based curable composition was pressed at 170 ° C. and 10 MPa for 10 minutes, molded into a 1 mm sheet, and primary cured.
Subsequently, it was heated at 200 ° C. for 4 hours and secondarily cured.
Using the obtained sheet-like silicone rubber, a dumbbell-shaped No. 3 test piece was prepared according to JIS K6251 (2004), and the tensile strength of the dumbbell-shaped No. 3 test piece according to JIS K6251 (2004) and The elongation (strain) at the time of cutting was measured. However, the thickness of the test piece was 1 mm. The results are shown in Table 1.
<フィラー凝集サイズ>
得られたシート状シリコーンゴムを用いて中心周長50mm、幅1mmのリングカッターを用いて打ち抜いたリング状シリコーンゴムを作成した。
得られたリング状シリコーンゴムを高速引張試験機を用いて延伸速度1mm/secで延伸するとともに、小角X線散乱測定を放射光施設SPring-8にて行った。
小角X線散乱の測定条件は波長1.50Å、カメラ長6mであり検出器にはII+CCD(Image Intensifier+Charge Coupled Device)を用いた。1回の測定におけるX線の照射時間は50ミリ秒であり、3秒に1回の間隔で測定を行った。
測定試料の散乱強度を正確に知るためにX線散乱測定データの強度補正として、ダーク補正(暗電流によって生じるノイズを除去する)、バックグラウンド補正(空気など測定試料以外のものによる散乱を除去する)、透過率補正(サンプル間の透過率の違いを考慮する)を行った。
上記補正を行ったX線散乱測定データからシリカフィラーの凝集サイズを株式会社リガク製の粒径・空孔径解析ソフトウェアNANO-Solverを用いて解析した。結果を表1に示す。
<Filler aggregation size>
Using the obtained sheet-shaped silicone rubber, a ring-shaped silicone rubber was prepared by punching with a ring cutter having a center circumference of 50 mm and a width of 1 mm.
The obtained ring-shaped silicone rubber was stretched at a stretching speed of 1 mm / sec using a high-speed tensile testing machine, and small-angle X-ray scattering measurement was performed at the synchrotron radiation facility SPring-8.
The measurement conditions for small-angle X-ray scattering were a wavelength of 1.50 mm and a camera length of 6 m, and II + CCD (Image Intensifier + Charge Coupled Device) was used as a detector. The X-ray irradiation time in one measurement was 50 milliseconds, and the measurement was performed once every 3 seconds.
In order to know the scattering intensity of the measurement sample accurately, as the intensity correction of the X-ray scattering measurement data, dark correction (to remove noise caused by dark current) and background correction (to remove scattering caused by things other than the measurement sample such as air) ) And transmittance correction (considering the difference in transmittance between samples).
From the X-ray scattering measurement data subjected to the above correction, the aggregate size of the silica filler was analyzed using a particle size / hole size analysis software NANO-Solver manufactured by Rigaku Corporation. The results are shown in Table 1.
<最大配向係数>
得られたリング状シリコーンゴムを高速引張試験機を用いて延伸速度1mm/secで延伸するとともに、広角X線散乱測定を放射光施設SPring-8にて行った。
広角X線散乱の測定条件は波長0.832Å、カメラ長200mmであり検出器にはII+CCD(Image Intensifier+Charge Coupled Device)を用いた。一回の測定におけるX線の照射時間は70msecであり、3秒に1回の間隔で測定を行った。
広角X線散乱測定の結果も小角X線散乱測定と同様に強度補正を行った後に、以下の数式を用いて配向係数を計算した。配向係数は延伸直前に最大の値となり、この値を最大配向係数と呼ぶ。最大配向係数の結果を表1に示す。
ここで、fは配向係数、Iは散乱強度、φは円周方向角度であり、添え字hklは結晶面のミラー指数をそれぞれ示す。
<Maximum orientation coefficient>
The obtained ring-shaped silicone rubber was stretched at a stretching speed of 1 mm / sec using a high-speed tensile tester, and wide-angle X-ray scattering measurement was performed at the synchrotron radiation facility SPring-8.
The measurement conditions for wide-angle X-ray scattering were a wavelength of 0.832 mm, a camera length of 200 mm, and an II + CCD (Image Intensifier + Charge Coupled Device) was used as the detector. The X-ray irradiation time in one measurement was 70 msec, and the measurement was performed once every 3 seconds.
The result of the wide angle X-ray scattering measurement was also corrected for intensity in the same manner as the small angle X-ray scattering measurement, and then the orientation coefficient was calculated using the following formula. The orientation coefficient becomes the maximum value immediately before stretching, and this value is called the maximum orientation coefficient. The results of the maximum orientation coefficient are shown in Table 1.
Here, f is the orientation coefficient, I is the scattering intensity, φ is the angle in the circumferential direction, and the subscript hkl indicates the mirror index of the crystal plane.
(*1):シリカフィラーの比表面積
(*2):シリカフィラーの一次平均粒径
(*3):未延伸時のフィラー凝集サイズ
(* 1): Specific surface area of silica filler (* 2): Primary average particle size of silica filler (* 3): Filler aggregation size when unstretched
[比較例1]
(C1)シリカフィラーの代わりに、(C2)シリカフィラーを用いたこと以外は、実施例1と同様にして、シリコーンゴム系硬化性組成物を調製した。
また、実施例1同様、得られたシリコーンゴム系硬化性組成物を用いて作製した試験片について評価を行った。結果を表1に示す。
[Comparative Example 1]
A silicone rubber-based curable composition was prepared in the same manner as in Example 1 except that (C2) silica filler was used instead of (C1) silica filler.
Moreover, the test piece produced using the obtained silicone rubber-type curable composition was evaluated similarly to Example 1. FIG. The results are shown in Table 1.
[結果]
表1に示すように、トリメチルシリル基含有シランカップリング剤で処理されたシリカフィラー(C1)を用いた実施例1のシリコーンゴム系硬化性組成物を硬化させたシリコーンゴムは、引裂き強度が28N/mm以上、引張り強度が7.5MPa以上であり、引裂き強度及び引張り強度に優れていた。特に、実施例1のシリコーンゴムの引裂き強度は、トリメチルシリル基含有シランカップリング剤で処理されていないシリカフィラー(C2))を用いた比較例1のシリコーンゴムと比較して、大幅に向上した。また、ストローク及び切断時伸びについても、実施例1のシリコーンゴムは、比較例1のシリコーンゴムと比較して、著しい向上がみられ、シリカを高充填しても高い伸びを示すことがわかった。
[result]
As shown in Table 1, the silicone rubber obtained by curing the silicone rubber-based curable composition of Example 1 using the silica filler (C1) treated with the trimethylsilyl group-containing silane coupling agent has a tear strength of 28 N / The tensile strength was 7.5 MPa or more, and the tear strength and tensile strength were excellent. In particular, the tear strength of the silicone rubber of Example 1 was significantly improved as compared with the silicone rubber of Comparative Example 1 using a silica filler (C2) that was not treated with a trimethylsilyl group-containing silane coupling agent. Moreover, also about the elongation at the time of a stroke and a cutting | disconnection, compared with the silicone rubber of the comparative example 1, the silicone rubber of Example 1 showed remarkable improvement, and it turned out that it shows high elongation even if it is highly filled with silica. .
X線散乱解析の結果から実施例1のシリコーンゴム系硬化性組成物を硬化させたシリコーンゴムは、比較例1のシリコーンゴムよりもフィラー凝集サイズが小さく、延伸時にもゴム分子鎖が配向しにくいことがわかった。これは実施例1のシリコーンゴムよりも比較例1のシリコーンゴムの方がフィラーの分散性が良いということが推察される。分散性の向上はシリカフィラーとゴムマトリクスとの界面の増加をあらわし、その結果、シリカフィラーによる補強効果が増大したためであると考えられる。
From the results of X-ray scattering analysis, the silicone rubber obtained by curing the silicone rubber-based curable composition of Example 1 has a smaller filler aggregation size than the silicone rubber of Comparative Example 1, and the rubber molecular chains are less likely to be oriented during stretching. I understood it. It is presumed that the silicone rubber of Comparative Example 1 has better filler dispersibility than the silicone rubber of Example 1. The improvement in dispersibility represents an increase in the interface between the silica filler and the rubber matrix. As a result, it is considered that the reinforcing effect by the silica filler is increased.
Claims (5)
放射光X線散乱測定から求められる未延伸時の無機充填剤の凝集サイズが20〜25nmであり、該シリコーンゴム系硬化性組成物がビニル基含有直鎖状オルガノポリシロキサン、およびヘキサメチルジシラザン処理したシリカビーズを含み、
前記ビニル基含有直鎖状オルガノポリシロキサンが、下記式で示される末端ビニル基ポリオルガノシロキサンであることを特徴とするシリコーンゴム系硬化性組成物。
Aggregate size of the unstretched when inorganic fillers obtained from synchrotron radiation X-ray scattering measurement is 20-25 nm, the silicone rubber based curable composition is a vinyl group-containing linear organopolysiloxanes, and hexamethyl disilazane treated Silica beads,
The vinyl group-containing linear organopolysiloxane, a silicone rubber based curable composition characterized by Ru terminal vinyl groups polyorganosiloxane der represented by the following formula.
オクタメチルシクロテトラシロキサンと、2,4,6,8−テトラメチル2,4,6,8−テトラビニルシクロテトラシロキサンと、をカリウムシリコネートの存在下で反応させた後、1,3−ジビニルテトラメチルジシロキサンを添加して、数平均分子量(Mn)が277,734、重量平均分子量(Mw)が573,906、又は、ビニル基含有量が0.13モル%となる、上記式で示される末端ビニル基ポリオルガノシロキサンを得る工程と、 After reacting octamethylcyclotetrasiloxane with 2,4,6,8-tetramethyl 2,4,6,8-tetravinylcyclotetrasiloxane in the presence of potassium siliconate, 1,3-divinyl By adding tetramethyldisiloxane, the number average molecular weight (Mn) is 277,734, the weight average molecular weight (Mw) is 573,906, or the vinyl group content is 0.13 mol%. Obtaining a terminal vinyl group polyorganosiloxane,
前記末端ビニル基ポリオルガノシロキサンにヘキサメチルジシラザン処理したシリカビーズを添加する工程と、を含む、シリコーンゴム系硬化性組成物の製造方法。 Adding a silica bead treated with hexamethyldisilazane to the terminal vinyl group polyorganosiloxane, and a method for producing a silicone rubber-based curable composition.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011077157A JP5906576B2 (en) | 2011-03-31 | 2011-03-31 | Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition |
CN201280026197.5A CN103562320B (en) | 2011-03-31 | 2012-03-29 | The measuring method of organo-silicone rubber system solidification compound and organo-silicone rubber system solidification compound |
PCT/JP2012/058369 WO2012133656A1 (en) | 2011-03-31 | 2012-03-29 | Curable silicone rubber composition and measurement method for curable silicone rubber compositions |
US14/007,628 US9115268B2 (en) | 2011-03-31 | 2012-03-29 | Curable silicone rubber composition and measurement method for curable silicone rubber compositions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011077157A JP5906576B2 (en) | 2011-03-31 | 2011-03-31 | Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012211246A JP2012211246A (en) | 2012-11-01 |
JP5906576B2 true JP5906576B2 (en) | 2016-04-20 |
Family
ID=47265470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011077157A Active JP5906576B2 (en) | 2011-03-31 | 2011-03-31 | Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5906576B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013227473A (en) * | 2012-03-27 | 2013-11-07 | Sumitomo Bakelite Co Ltd | Silicone rubber-based curable composition |
JP2013227474A (en) * | 2012-03-27 | 2013-11-07 | Sumitomo Bakelite Co Ltd | Silicone rubber-based curable composition |
JP7338104B2 (en) * | 2019-12-12 | 2023-09-05 | Toyo Tire株式会社 | Method for evaluating the amount of bound rubber in vulcanized rubber |
CN113447393A (en) * | 2020-03-28 | 2021-09-28 | 北京橡院橡胶轮胎检测技术服务有限公司 | Method for quantitatively determining content of silicon dioxide in silicone rubber |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0791474B2 (en) * | 1990-09-07 | 1995-10-04 | 信越化学工業株式会社 | Silicone rubber composition and cured product |
JP2715830B2 (en) * | 1992-09-04 | 1998-02-18 | 信越化学工業株式会社 | Method for producing silicone rubber composition |
JP3077496B2 (en) * | 1994-02-17 | 2000-08-14 | 信越化学工業株式会社 | Silicone rubber composition |
JP3077503B2 (en) * | 1994-03-22 | 2000-08-14 | 信越化学工業株式会社 | Silicone rubber composition |
JP3106901B2 (en) * | 1994-04-13 | 2000-11-06 | 信越化学工業株式会社 | Curable silicone rubber composition and method for producing silicone rubber |
JP2002080721A (en) * | 2000-09-06 | 2002-03-19 | Ge Toshiba Silicones Co Ltd | Method for producing heat-curable silicone rubber composition |
-
2011
- 2011-03-31 JP JP2011077157A patent/JP5906576B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012211246A (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6065963B2 (en) | Silicone rubber-based curable composition, molded body, and medical tube | |
JP5906642B2 (en) | Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition | |
Chen et al. | Thermal stability, mechanical and optical properties of novel addition cured PDMS composites with nano-silica sol and MQ silicone resin | |
JP7047316B2 (en) | Silicone rubber-based curable compositions, silicone rubbers, moldings and medical tubes | |
JP5581721B2 (en) | Silicone rubber-based curable composition, method for producing the same, molded product, and medical tube | |
JP5854041B2 (en) | Silicone rubber-based curable composition, method for producing silicone rubber-based curable composition, method for producing silicone rubber, silicone rubber, molded article, and medical tube | |
JP5906576B2 (en) | Silicone rubber-based curable composition, method for measuring silicone rubber-based curable composition, and method for producing silicone rubber-based curable composition | |
CN110305339B (en) | Silk fibroin conductive hydrogel and preparation method thereof | |
JPWO2014017579A1 (en) | Silicone rubber-based curable composition | |
JP2012036288A (en) | Silicone rubber-based curable composition and medical tube | |
CN112175399B (en) | Flexible repairable conductive organic silicon composite material, preparation method thereof and application of strain sensor | |
JP5851336B2 (en) | Composite rubber material, molded body, and method for producing composite rubber material | |
JP7230326B2 (en) | Plastic movable parts and structures | |
JP7289609B2 (en) | Resin movable parts and medical equipment | |
JP2018070866A (en) | Silicone rubber-based curable composition and molded body | |
JP2018070867A (en) | Silicone rubber-based curable composition and molded body | |
JP2018053237A (en) | Silicone rubber-based curable composition and molded body | |
JP2013227473A (en) | Silicone rubber-based curable composition | |
JP2013227474A (en) | Silicone rubber-based curable composition | |
Surya et al. | Selectively etched halloysite nanotubes as performance booster of epoxidized natural rubber composites | |
JP2023033596A (en) | Molded product | |
JP2012211232A (en) | Silicone rubber-based curing composition | |
Panmanee et al. | Development of a new birthing model material based on silicone rubber/natural rubber blend | |
WO2012133656A1 (en) | Curable silicone rubber composition and measurement method for curable silicone rubber compositions | |
JP2021088688A (en) | Silicone rubber, and structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20141007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20141208 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150512 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150603 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20150603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151124 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160122 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160307 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 5906576 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |