JP5905740B2 - Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle - Google Patents
Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle Download PDFInfo
- Publication number
- JP5905740B2 JP5905740B2 JP2012041656A JP2012041656A JP5905740B2 JP 5905740 B2 JP5905740 B2 JP 5905740B2 JP 2012041656 A JP2012041656 A JP 2012041656A JP 2012041656 A JP2012041656 A JP 2012041656A JP 5905740 B2 JP5905740 B2 JP 5905740B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- fiber bundle
- emulsion
- water
- thermoplastic resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims description 270
- 239000004917 carbon fiber Substances 0.000 title claims description 270
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 247
- 229920005992 thermoplastic resin Polymers 0.000 title claims description 72
- 239000000835 fiber Substances 0.000 title description 64
- 239000002245 particle Substances 0.000 claims description 94
- 239000000839 emulsion Substances 0.000 claims description 89
- 229920000642 polymer Polymers 0.000 claims description 56
- 239000004952 Polyamide Substances 0.000 claims description 51
- 229920002647 polyamide Polymers 0.000 claims description 50
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 45
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 28
- 239000004094 surface-active agent Substances 0.000 claims description 21
- 239000004918 carbon fiber reinforced polymer Substances 0.000 claims description 20
- 238000001035 drying Methods 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 20
- 238000000465 moulding Methods 0.000 claims description 14
- 239000002736 nonionic surfactant Substances 0.000 claims description 12
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 11
- 239000004417 polycarbonate Substances 0.000 claims description 5
- 229920000515 polycarbonate Polymers 0.000 claims description 4
- 229920000728 polyester Polymers 0.000 claims description 3
- 229920000098 polyolefin Polymers 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 70
- 238000006116 polymerization reaction Methods 0.000 description 42
- 239000003795 chemical substances by application Substances 0.000 description 41
- 238000004513 sizing Methods 0.000 description 40
- 229920005989 resin Polymers 0.000 description 36
- 239000011347 resin Substances 0.000 description 36
- 229910052757 nitrogen Inorganic materials 0.000 description 35
- 238000000034 method Methods 0.000 description 31
- 229920006122 polyamide resin Polymers 0.000 description 29
- 239000006185 dispersion Substances 0.000 description 24
- 238000005452 bending Methods 0.000 description 21
- -1 etc.) Polymers 0.000 description 21
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 18
- 239000000843 powder Substances 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 15
- 230000001070 adhesive effect Effects 0.000 description 15
- 238000013507 mapping Methods 0.000 description 15
- 239000011159 matrix material Substances 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 12
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 239000011342 resin composition Substances 0.000 description 12
- 230000002776 aggregation Effects 0.000 description 11
- 125000004432 carbon atom Chemical group C* 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 11
- 239000004677 Nylon Substances 0.000 description 10
- 238000004220 aggregation Methods 0.000 description 10
- 239000000178 monomer Substances 0.000 description 10
- 229920001778 nylon Polymers 0.000 description 10
- 238000007598 dipping method Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 238000007664 blowing Methods 0.000 description 8
- 230000008859 change Effects 0.000 description 8
- 238000007654 immersion Methods 0.000 description 8
- 229920002292 Nylon 6 Polymers 0.000 description 7
- 239000010439 graphite Substances 0.000 description 7
- 229910002804 graphite Inorganic materials 0.000 description 7
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 6
- WNLRTRBMVRJNCN-UHFFFAOYSA-L adipate(2-) Chemical compound [O-]C(=O)CCCCC([O-])=O WNLRTRBMVRJNCN-UHFFFAOYSA-L 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 238000009835 boiling Methods 0.000 description 6
- 238000007334 copolymerization reaction Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 description 6
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 229920005672 polyolefin resin Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000009210 therapy by ultrasound Methods 0.000 description 6
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- 150000005215 alkyl ethers Chemical class 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 4
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000005507 spraying Methods 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000011259 mixed solution Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000259 polyoxyethylene lauryl ether Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 229930182556 Polyacetal Natural products 0.000 description 2
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000003125 aqueous solvent Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000007380 fibre production Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000011256 inorganic filler Substances 0.000 description 2
- 229910003475 inorganic filler Inorganic materials 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- NIDNOXCRFUCAKQ-UMRXKNAASA-N (1s,2r,3s,4r)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1[C@H]2C=C[C@@H]1[C@H](C(=O)O)[C@@H]2C(O)=O NIDNOXCRFUCAKQ-UMRXKNAASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 125000002723 alicyclic group Chemical group 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 230000003712 anti-aging effect Effects 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 1
- XCIXKGXIYUWCLL-UHFFFAOYSA-N cyclopentanol Chemical compound OC1CCCC1 XCIXKGXIYUWCLL-UHFFFAOYSA-N 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 229920001903 high density polyethylene Polymers 0.000 description 1
- 239000004700 high-density polyethylene Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012784 inorganic fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 238000013001 point bending Methods 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 239000012779 reinforcing material Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920002725 thermoplastic elastomer Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Reinforced Plastic Materials (AREA)
Description
本発明は、水分散性ポリマーが付与された炭素繊維束、及びその炭素繊維束より得られる炭素繊維製品に関する。 The present invention relates to a carbon fiber bundle provided with a water-dispersible polymer, and a carbon fiber product obtained from the carbon fiber bundle.
炭素繊維強化樹脂成形体は、強度、剛性、寸法安定性、導電性等に優れることから、事務機器用途、自動車用途、コンピュータ用途(ICトレイ、ノートパソコンの筐体(ハウジング)など)等の一般産業分野に広く展開され、その需要は年々増加しつつある。
特に、熱可塑性樹脂をマトリックスとする炭素繊維熱可塑性樹脂成形体は、コンパウンドペレットの射出成形、長繊維ペレットの長繊維射出成形、射出圧縮成形、押出成形、ランダムマットを使用したスタンピング成形などにより成形される。これらの成形法では、炭素繊維は比較的短い繊維形態で使用される。このため、炭素繊維強化熱可塑性樹脂成形体の強度・弾性率等の機械的特性は、炭素繊維束とマトリックス樹脂として使用される熱可塑性樹脂との親和性及び接着性で大きく変化する。
Carbon fiber reinforced resin moldings are excellent in strength, rigidity, dimensional stability, electrical conductivity, etc., so they are generally used in office equipment, automobiles, computers (IC trays, notebook PC housings, etc.), etc. Widely deployed in the industrial field, its demand is increasing year by year.
In particular, carbon fiber thermoplastic resin molded products using thermoplastic resin as a matrix are molded by injection molding of compound pellets, long fiber injection molding of long fiber pellets, injection compression molding, extrusion molding, stamping molding using a random mat, etc. Is done. In these molding methods, carbon fibers are used in a relatively short fiber form. For this reason, the mechanical properties such as strength and elastic modulus of the carbon fiber reinforced thermoplastic resin molded product vary greatly depending on the affinity and adhesiveness between the carbon fiber bundle and the thermoplastic resin used as the matrix resin.
炭素繊維強化熱可塑性樹脂成形体に使用するマトリックス樹脂としては、アクリロニトリル− ブタジエン− スチレン共重合体(ABS)、ポリアミド(ナイロン6、ナイロン66など)、ポリアセタール、ポリカーボネート、ポリプロピレン、高密度ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルイミド、ポリスチレン、ポリエーテルスルホン、ポリフェニレンスルフィド、ポリエーテルケトン、ポリエーテルエーテルケトンなどを挙げることができる。しかし、これらマトリックス樹脂は、一般に炭素繊維との親和性が低く、成形体の機械強度を十分に引き出すのが難しい状況である。 The matrix resin used for the carbon fiber reinforced thermoplastic resin molding is acrylonitrile-butadiene-styrene copolymer (ABS), polyamide (nylon 6, nylon 66, etc.), polyacetal, polycarbonate, polypropylene, high density polyethylene, polyethylene terephthalate. , Polybutylene terephthalate, polyetherimide, polystyrene, polyethersulfone, polyphenylene sulfide, polyetherketone, polyetheretherketone and the like. However, these matrix resins generally have a low affinity with carbon fibers, and it is difficult to sufficiently bring out the mechanical strength of the molded body.
炭素繊維束は、例えばポリアクリロニトリル(PAN)系の場合、直径7μm程度のフィラメントが集束して1000〜50000本程度の束状となっている。炭素繊維は極細フィラメントで、伸度が小さく、機械的摩擦などによって毛羽が発生し易い。このため、炭素繊維の集束性を向上させて取扱性を改善するために、サイジング剤が用いられるが、サイジング剤はマトリックス樹脂との親和性を高めるためにも利用されている。 In the case of a polyacrylonitrile (PAN) system, for example, the carbon fiber bundle is a bundle of about 1000 to 50000 bundles of filaments having a diameter of about 7 μm. Carbon fiber is a very fine filament, has a low elongation, and is susceptible to fluff due to mechanical friction. For this reason, a sizing agent is used in order to improve the bundling property of the carbon fiber and improve the handleability. However, the sizing agent is also used to increase the affinity with the matrix resin.
例えば、カルボキシル基を導入した変性ポリオレフィンを主体とするサイジング剤を付着させた炭素繊維に、ポリオレフィン樹脂を含浸させることで得られる成形体は、炭素繊維とマトリックス樹脂の界面接着性が著しく向上することが特許文献1に記載されている。また、特許文献2には、1〜20質量%の不飽和ジカルボン酸類で変性した変性ポリプロピレン樹脂又はその塩を必須成分とする水性エマルションからなる無機繊維用サイジング剤が提案されている。特許文献2によれば、このサイジング剤の使用によりガラス繊維強化ポリプロピレン樹脂の機械的特性の向上を図れることが記載されている。 For example, a molded product obtained by impregnating a polyolefin resin into a carbon fiber to which a sizing agent mainly composed of a modified polyolefin having a carboxyl group introduced is impregnated significantly improves the interfacial adhesion between the carbon fiber and the matrix resin. Is described in Patent Document 1. Patent Document 2 proposes a sizing agent for inorganic fibers comprising an aqueous emulsion containing a modified polypropylene resin modified with 1 to 20% by mass of unsaturated dicarboxylic acids or a salt thereof as an essential component. According to Patent Document 2, it is described that the mechanical properties of the glass fiber reinforced polypropylene resin can be improved by using this sizing agent.
しかしながら、特許文献1又は2に記載の変性ポリオレフィン樹脂には、未反応の不飽和カルボン酸モノマーが存在しているので、炭素繊維表面に形成されたサイジング層には未反応の不飽和カルボン酸モノマーが残存する。また、変性ポリオレフィン樹脂は、通常は人体に対する安全性や環境汚染防止の観点から水系エマルションやサスペンジョンの形態で炭素繊維束に付与されるため、サイジング層には、界面活性剤も存在する。これら不飽和カルボン酸モノマーや界面活性剤は、炭素繊維束とマトリックスとの接着を阻害するため、成形体の機械的特性において、炭素繊維の高い性能を十分に発揮できないことが多い。 However, since the unreacted unsaturated carboxylic acid monomer exists in the modified polyolefin resin described in Patent Document 1 or 2, the unreacted unsaturated carboxylic acid monomer is formed on the sizing layer formed on the surface of the carbon fiber. Remains. In addition, since the modified polyolefin resin is usually applied to the carbon fiber bundle in the form of an aqueous emulsion or suspension from the viewpoint of safety to the human body and prevention of environmental pollution, a surfactant is also present in the sizing layer. Since these unsaturated carboxylic acid monomers and surfactants inhibit the adhesion between the carbon fiber bundle and the matrix, in many cases, the high performance of the carbon fibers cannot be sufficiently exhibited in the mechanical properties of the molded body.
そこで、界面活性剤の使用量を極力落とした水系エマルションを用いて、変性ポリオレフィン樹脂を炭素繊維表面に付着させようとすると、変性ポリオレフィン樹脂が凝集してしまい、PAN系の炭素繊維束にサイジング剤である樹脂を均一に付着させることが困難となる。その結果、炭素繊維とマトリックスとの親和性・接着性を充分に高めることができないといった問題があった。 Therefore, if an attempt is made to attach the modified polyolefin resin to the carbon fiber surface using an aqueous emulsion in which the amount of the surfactant used is reduced as much as possible, the modified polyolefin resin aggregates and a sizing agent is added to the PAN-based carbon fiber bundle. It is difficult to uniformly attach the resin. As a result, there is a problem that the affinity / adhesion between the carbon fiber and the matrix cannot be sufficiently increased.
本発明は、熱可塑性樹脂との接着性に優れた、炭素繊維束を提供することを目的とする。 An object of this invention is to provide the carbon fiber bundle excellent in adhesiveness with a thermoplastic resin.
アルコールを含まないエマルションに未サイジングの炭素繊維束を浸漬させ、炭素繊維束に水分散性ポリマー粒子を均一付着させようとしても、水の大きな表面張力(20℃:72.7dyne/cm)のために濡れ広がることが出来ず、水分散性ポリマー粒子を炭素繊維表面に均一に付着させることができない。本発明者らはエマルションにアルコールを含有させ、エマルションの表面張力を低下させることにより、エマルションの炭素繊維束への濡れ性を高め、さらには水分散性ポリマー粒子の凝集を抑制することができることを見出して、本発明に至ったものである。 Even if an unsized carbon fiber bundle is immersed in an emulsion containing no alcohol and water-dispersible polymer particles are uniformly adhered to the carbon fiber bundle, the surface tension of water (20 ° C .: 72.7 dyne / cm) is high. The water dispersible polymer particles cannot be uniformly adhered to the carbon fiber surface. The inventors of the present invention can improve the wettability of the emulsion to the carbon fiber bundle and further suppress the aggregation of the water-dispersible polymer particles by containing an alcohol in the emulsion and reducing the surface tension of the emulsion. As a result, the present invention has been achieved.
すなわち本発明は、水とアルコールを含む溶液に水分散性ポリマー粒子を分散させたエマルションに、炭素繊維束を浸漬して乾燥させて得られる炭素繊維束であって、該エマルション中の界面活性剤の含有量が、水分散性ポリマー粒子100重量部に対して5重量部未満である炭素繊維束である。 That is, the present invention relates to a carbon fiber bundle obtained by immersing and drying a carbon fiber bundle in an emulsion in which water-dispersible polymer particles are dispersed in a solution containing water and alcohol, and the surfactant in the emulsion Is a carbon fiber bundle having a content of less than 5 parts by weight with respect to 100 parts by weight of the water-dispersible polymer particles.
本発明は、アルコールを含むエマルションに未サイジングの炭素繊維束を浸漬させ、炭素繊維束を構成する各モノフィラメントにエマルションを拡散させ、サイジング剤を付与した炭素繊維束を得るというものであり、エマルション中の界面活性剤の含有量を低減させることが可能である。なお、ここで言う未サイジングの炭素繊維束とは、エマルションに浸漬させる前の炭素繊維束を指している。 The present invention is to immerse an unsized carbon fiber bundle in an emulsion containing alcohol, diffuse the emulsion to each monofilament constituting the carbon fiber bundle, and obtain a carbon fiber bundle to which a sizing agent is added. It is possible to reduce the content of the surfactant. In addition, the unsized carbon fiber bundle said here has pointed out the carbon fiber bundle before being immersed in an emulsion.
本発明により、エマルション中の界面活性剤の使用量を極力抑えて、サイジング剤を付与した炭素繊維束を得ることができる。本発明の炭素繊維束は、熱可塑性樹脂との接着性に優れ、熱可塑性樹脂成形体の繊維強化材料として用いることで、機械強度に優れた繊維強化樹脂成形体を提供することができる。 According to the present invention, it is possible to obtain a carbon fiber bundle provided with a sizing agent while suppressing the amount of surfactant used in the emulsion as much as possible. The carbon fiber bundle of the present invention is excellent in adhesiveness with a thermoplastic resin, and can be used as a fiber reinforced material for a thermoplastic resin molded product, thereby providing a fiber reinforced resin molded product with excellent mechanical strength.
本発明の炭素繊維束は、水とアルコールを含む溶液に水分散性ポリマー粒子を分散させたエマルションに、炭素繊維束を浸漬して乾燥させて得られる炭素繊維束であって、該エマルションに含まれる界面活性剤が、水分散性ポリマー粒子100重量部に対して5重量部未満であるものである。
また、本発明の炭素繊維束の製造方法は、水とアルコールを含む溶液に水分散性ポリマー粒子を分散したエマルションに、炭素繊維束を浸漬して乾燥する炭素繊維束の製造方法であって、該エマルションに含まれる界面活性剤が、水分散性ポリマー粒子100重量部に対して5重量部未満である製造方法である。
The carbon fiber bundle of the present invention is a carbon fiber bundle obtained by immersing and drying a carbon fiber bundle in an emulsion in which water-dispersible polymer particles are dispersed in a solution containing water and alcohol, and is contained in the emulsion. The surfactant is less than 5 parts by weight with respect to 100 parts by weight of the water-dispersible polymer particles.
Further, the method for producing a carbon fiber bundle of the present invention is a method for producing a carbon fiber bundle in which a carbon fiber bundle is immersed and dried in an emulsion in which water-dispersible polymer particles are dispersed in a solution containing water and alcohol. In the production method, the surfactant contained in the emulsion is less than 5 parts by weight with respect to 100 parts by weight of the water-dispersible polymer particles.
[アルコールと表面張力]
例えばメチルアルコールの表面張力は20℃:22.6dyne/cmであり、エマルションに適宜アルコールを添加することで、アルコールを含むエマルションの表面張力を低下させることができる。本発明におけるアルコールを含むエマルションの表面張力はとくに限定はないが、好ましくは20℃において40dyne/cm以下であり、好ましくは35dyne/cm以下であり、更に好ましくは25dyne/cm以下である。
[Alcohol and surface tension]
For example, the surface tension of methyl alcohol is 20 ° C .: 22.6 dyne / cm. By appropriately adding alcohol to the emulsion, the surface tension of the emulsion containing alcohol can be reduced. The surface tension of the emulsion containing alcohol in the present invention is not particularly limited, but is preferably 40 dyne / cm or less at 20 ° C., preferably 35 dyne / cm or less, and more preferably 25 dyne / cm or less.
[アルコール]
本発明で使用するアルコールとしては、メタノール、エタノール、プロパノール、ブタノール、イソプロパノール、セロソルブ、アミノエタノールなどの炭素数1〜4の脂肪族アルコール類、シクロペンタノール、シクロヘキサノールなどの炭素数3〜6の脂環式アルコール類、エチレングリコール、プロピレングリコール、ジエチレングリコール及びトリエチレングリコールなどの炭素数2〜6のグリコール類、ポリビニルアルコール系重合体などを挙げることができる。本発明で使用するアルコールは単独で用いてもよいし、混合して用いても良い。炭素数1〜4の脂肪族アルコール類、炭素数3〜6の脂環式アルコール類と炭素数2〜6のグリコール類は水と任意の割合で混ぜて、エマルションにすることが出来る。
[alcohol]
Examples of the alcohol used in the present invention include aliphatic alcohols having 1 to 4 carbon atoms such as methanol, ethanol, propanol, butanol, isopropanol, cellosolve and aminoethanol, and 3 to 6 carbon atoms such as cyclopentanol and cyclohexanol. Examples thereof include alicyclic alcohols, glycols having 2 to 6 carbon atoms such as ethylene glycol, propylene glycol, diethylene glycol and triethylene glycol, and polyvinyl alcohol polymers. The alcohol used in the present invention may be used alone or in combination. An aliphatic alcohol having 1 to 4 carbon atoms, an alicyclic alcohol having 3 to 6 carbon atoms and a glycol having 2 to 6 carbon atoms can be mixed with water at an arbitrary ratio to form an emulsion.
炭素繊維束を構成する各モノフィラメントにまでエマルションを効率的に拡散させるために、エマルションの液状成分に占めるアルコールの含有量を適宜制御することが好ましい。例えば、炭素数1〜4の脂肪族アルコール類、炭素数3〜6の脂環式アルコール類、炭素数2〜6のグリコール類などの炭素数6以下の低級アルコールを使用する場合は、エマルションの液状成分に占めるアルコールの含有量を、20〜99重量%の範囲にすることが好ましい。エマルションの液状成分に占めるアルコールの含有量が20重量%よりも多いと、炭素繊維束を構成する各モノフィラメントにまでエマルションを効率的に拡散させることが出来るので、好ましい。一方、99重量%より少ないと、エマルションを構成するエマルションの凝集が無く、好ましい。エマルションの液状成分に占める低級アルコール含有量の好ましい範囲は、25〜90重量%、更には30〜80重量%、より更に好ましくは35〜70重量%である。 In order to efficiently diffuse the emulsion to the monofilaments constituting the carbon fiber bundle, it is preferable to appropriately control the alcohol content in the liquid component of the emulsion. For example, when using lower alcohols having 6 or less carbon atoms such as aliphatic alcohols having 1 to 4 carbon atoms, alicyclic alcohols having 3 to 6 carbon atoms, glycols having 2 to 6 carbon atoms, The alcohol content in the liquid component is preferably in the range of 20 to 99% by weight. When the alcohol content in the liquid component of the emulsion is more than 20% by weight, it is preferable because the emulsion can be efficiently diffused to each monofilament constituting the carbon fiber bundle. On the other hand, when it is less than 99% by weight, there is no aggregation of the emulsion constituting the emulsion, which is preferable. The preferable range of the lower alcohol content in the liquid component of the emulsion is 25 to 90% by weight, further 30 to 80% by weight, and still more preferably 35 to 70% by weight.
一方、アルコールとしてポリビニルアルコール系重合体を用いることも好ましい。ここでポリビニルアルコ−ル系重合体とは、ポリビニリアルコ−ルおよび変性ポリビニルアルコ−ル(例えばポリ酢酸ビニルと他のモノマーのブロック重合体をケン化したもの等)を意味する。好ましいポリビニルアルコール系重合体は、けん化度80モル%以上のポリビニルアルコール系重合体、ビニルアルコール単位が60モル%以上の共重合ポリビニルアルコールである。分子量は特に制限はないが約3000〜50万の範囲が好ましい。 On the other hand, it is also preferable to use a polyvinyl alcohol polymer as the alcohol. Here, the polyvinyl alcohol-based polymer means polyvinyl alcohol and modified polyvinyl alcohol (for example, saponified block polymer of polyvinyl acetate and other monomers). Preferred polyvinyl alcohol polymers are polyvinyl alcohol polymers having a saponification degree of 80 mol% or more, and copolymerized polyvinyl alcohols having a vinyl alcohol unit of 60 mol% or more. The molecular weight is not particularly limited but is preferably in the range of about 3000 to 500,000.
ポリビニルアルコール系重合体は、低級アルコールに比べて分子鎖内に多くの水酸基を持つ。このため、ポリビニルアルコール系重合体は水分散性ポリマー粒子をエマルション中に均一に分散させる機能を有し、低級アルコールに比べ、少量添加で炭素繊維束を構成する各モノフィラメントにまで水性エマルションを効率的に拡散させることが出来る。また、ポリビニルアルコール系重合体は、比較的低いガラス転移温度を持ち、室温での風合いも柔らかい。このため、炭素繊維束の収束剤としても優れた性能を発現することがある。ポリビニルアルコール系共重合体の分子量にもよるが、ポリビニルアルコール系重合体を使用する場合、ポリビニルアルコール系重合体の重量割合が、エマルションに対して0.01〜5wt%である事が好ましい。ポリビニルアルコール系重合体の重量割合が5wt%以下であると、エマルションが高粘度とならず、炭素繊維束を構成する各モノフィラメントにまでエマルションを効率的に拡散させることが出来るのに加え、溶液乾燥後の炭素繊維束の硬度が高くならないため、ワインダーへの巻取りが容易になるなど、ハンドリング性が向上するので、好ましい。一方、ポリビニルアルコール系重合体の重量割合が0.01wt%以上であると、収束剤としての機能が向上し、モノフィラメントの集合体である炭素繊維を束状に束ねることが容易となり、ハンドリング性が向上するため好ましい。より好ましいポリビニルアルコール系重合体の重量割合は、エマルションに対して0.05〜3.5wt%である。 Polyvinyl alcohol polymers have more hydroxyl groups in the molecular chain than lower alcohols. For this reason, the polyvinyl alcohol polymer has the function of uniformly dispersing the water-dispersible polymer particles in the emulsion, and the aqueous emulsion can be efficiently added to each monofilament constituting the carbon fiber bundle by adding a small amount compared to the lower alcohol. Can diffuse. Polyvinyl alcohol polymers have a relatively low glass transition temperature and are soft at room temperature. For this reason, the performance which was excellent also as a convergence agent of a carbon fiber bundle may be expressed. Although depending on the molecular weight of the polyvinyl alcohol copolymer, when the polyvinyl alcohol polymer is used, the weight ratio of the polyvinyl alcohol polymer is preferably 0.01 to 5 wt% with respect to the emulsion. When the weight ratio of the polyvinyl alcohol polymer is 5 wt% or less, the emulsion does not become highly viscous, and the emulsion can be efficiently diffused to each monofilament constituting the carbon fiber bundle, and the solution is dried. Since the hardness of the subsequent carbon fiber bundle does not increase, handling is improved, such as easy winding onto a winder, which is preferable. On the other hand, when the weight ratio of the polyvinyl alcohol-based polymer is 0.01 wt% or more, the function as a sizing agent is improved, and it becomes easy to bundle carbon fibers, which are aggregates of monofilaments, in a bundle. It is preferable because it improves. A more preferable weight ratio of the polyvinyl alcohol polymer is 0.05 to 3.5 wt% with respect to the emulsion.
[水分散性ポリマー粒子]
本発明で使用する水分散性ポリマーとは、水系溶媒に分散可能なポリマーをいう。また、水系溶媒とは、水と、水と水混和性のあるアルコール等の有機溶媒との混合液をいう。水分散性ポリマーとしては、アクリル、オレフィン、酢酸ビニル、ウレタン、スチレン、ポリエステル、熱可塑性エラストマーなどのゴム、ポリアミド、ポリカーボネートなどのポリマーを例示することが出来るが、これらの中でも特にポリエステル、ポリオレフィン、ポリアミド、およびポリカーボネートが好ましい。
[Water-dispersible polymer particles]
The water-dispersible polymer used in the present invention refers to a polymer that can be dispersed in an aqueous solvent. The aqueous solvent refers to a mixed solution of water and an organic solvent such as alcohol miscible with water. Examples of water-dispersible polymers include polymers such as rubbers such as acrylic, olefin, vinyl acetate, urethane, styrene, polyester, and thermoplastic elastomer, polyamide, and polycarbonate. Among these, polyester, polyolefin, and polyamide are particularly preferable. And polycarbonate are preferred.
水分散性ポリマー粒子の粒子径としては、特に限定はないが0.01〜10μmの範囲が好ましい。水分散性ポリマー粒子の粒子径が0.01μm以上であると、エマルションの粘度が高くならないため、エマルションの拡散性が低下しない。その結果、水分散性ポリマー粒子を均一に炭素繊維束に付着させることが容易となるため好ましい。一方、水分散性ポリマー粒子の粒子径が10μm以下であると、炭素繊維束を構成する各フィラメント間の隙間にポリマー粒子が入ることができ、水分散性ポリマー粒子を均一に付着させることが容易になるため好ましい。水分散性ポリマー粒子の粒子径のより好ましい範囲は、0.01〜5μmであり、更に好ましくは0.02〜1μmの範囲が好ましい。水分散性ポリマー粒子のエマルションに対する重量割合は、均一な溶液が得られるのであれば特に制限はないが、0.001〜10wt%である事が好ましい。 The particle diameter of the water-dispersible polymer particles is not particularly limited, but is preferably in the range of 0.01 to 10 μm. When the particle diameter of the water-dispersible polymer particles is 0.01 μm or more, the emulsion does not increase in viscosity, so that the diffusibility of the emulsion does not decrease. As a result, the water-dispersible polymer particles are preferably uniformly attached to the carbon fiber bundle, which is preferable. On the other hand, when the particle size of the water-dispersible polymer particles is 10 μm or less, the polymer particles can enter the gaps between the filaments constituting the carbon fiber bundle, and the water-dispersible polymer particles can be easily adhered uniformly. Therefore, it is preferable. A more preferable range of the particle diameter of the water-dispersible polymer particles is 0.01 to 5 μm, and more preferably 0.02 to 1 μm. The weight ratio of the water-dispersible polymer particles to the emulsion is not particularly limited as long as a uniform solution can be obtained, but is preferably 0.001 to 10 wt%.
[界面活性剤]
本発明において、界面活性剤の含有量は水分散性ポリマー粒子100重量部に対して5重量部未満である。下限は特に規定しないが0.1重量部以上が好ましい。
一般に、界面活性剤はエマルション中のポリマー粒子の凝集を抑制するために使われる。しかし、界面活性剤を多量に使用した場合、熱可塑性樹脂と炭素繊維との表面接着性を低下させ、熱可塑性樹脂をマトリックスとした繊維強化熱可塑性樹脂成形体の機械特性を低下させる原因となる。
本発明においては、表面張力の低いアルコールをエマルションに添加する事で、エマルションの表面張力を低下させ、水分散性ポリマー粒子の凝集を抑制することができる。このため、本発明では界面活性剤の使用量を、従来よりも著しく低減させることが可能となった。
[Surfactant]
In the present invention, the content of the surfactant is less than 5 parts by weight with respect to 100 parts by weight of the water-dispersible polymer particles. Although a minimum in particular is not prescribed | regulated, 0.1 weight part or more is preferable.
In general, surfactants are used to suppress aggregation of polymer particles in the emulsion. However, when a large amount of surfactant is used, the surface adhesiveness between the thermoplastic resin and the carbon fiber is lowered, which causes the mechanical properties of the fiber-reinforced thermoplastic resin molded body using the thermoplastic resin as a matrix to be lowered. .
In the present invention, by adding an alcohol having a low surface tension to the emulsion, the surface tension of the emulsion can be lowered and aggregation of the water-dispersible polymer particles can be suppressed. For this reason, in this invention, it became possible to reduce the usage-amount of surfactant significantly compared with the past.
本発明で使用する界面活性剤の種類に限定はなく、従来公知の親水性部分がイオン性(カチオン性・アニオン性・双性)のものと非イオン性(ノニオン性)のものを使用することが出来る。なかでも、熱可塑性樹脂の分解を促進させる金属、ハロゲンなどの対イオンを含まないノニオン系界面活性剤が好ましい。ノニオン系界面活性剤は、サイジング剤が炭素繊維に付着する際に、該界面活性剤も同時に炭素繊維表面に付着し、開繊工程での炭素繊維束の開繊性を向上させる。少なくとも20℃で液体のノニオン系界面活性剤を含有させると、得られる炭素繊維束の開繊性が向上するので好ましい。本発明においてノニオン系界面活性剤の好ましい含有量は、前記水分散性ポリマー粒子100重量部に対して0.01重量部以上かつ5重量部未満である。当該範囲であれば開繊性が担保でき、またマトリックス樹脂に対するノニオン系界面活性剤の量が十分少なく、本発明の炭素繊維束を用いた成形体の機械的物性を低下させることがないため好ましい。ノニオン系界面活性剤の含有量は3重量部以下が好ましく、1重量部以下がさらに好ましい。得られる炭素繊維束の開繊性の観点から、ノニオン系界面活性剤の含有量は、0.05重量部以上が好ましく、0.1重量部以上が更に好ましい。 There is no limitation on the type of surfactant used in the present invention, and the conventionally known hydrophilic portion should be ionic (cationic, anionic, zwitterionic) or nonionic (nonionic). I can do it. Among these, nonionic surfactants that do not contain counter ions such as metals and halogens that promote the decomposition of the thermoplastic resin are preferable. When the sizing agent adheres to the carbon fiber, the nonionic surfactant also adheres to the surface of the carbon fiber at the same time, and improves the opening property of the carbon fiber bundle in the opening step. It is preferable to include a nonionic surfactant that is liquid at least at 20 ° C., since the fiber-opening property of the obtained carbon fiber bundle is improved. In the present invention, the preferred content of the nonionic surfactant is 0.01 parts by weight or more and less than 5 parts by weight with respect to 100 parts by weight of the water-dispersible polymer particles. Within this range, the opening property can be ensured, the amount of the nonionic surfactant relative to the matrix resin is sufficiently small, and the mechanical properties of the molded body using the carbon fiber bundle of the present invention are not lowered, which is preferable. . The content of the nonionic surfactant is preferably 3 parts by weight or less, and more preferably 1 part by weight or less. From the viewpoint of the openability of the obtained carbon fiber bundle, the content of the nonionic surfactant is preferably 0.05 parts by weight or more, and more preferably 0.1 parts by weight or more.
ノニオン系界面活性剤の種類は、少なくとも20℃で液体であれば特に限定されないが、好ましい化合物として例えば、下記式(1)で表されるポリオキシエチレンアルキルエーテルが挙げられる。
H2m+1Cm−O−(X−O)n−H (1)
(m=8〜22の整数、n=2〜20の整数、X:炭素数1〜5のアルキレン基)
なお、Xの炭素数は2〜5が好ましい。ポリオキシエチレンアルキルエーテルとしては、例えば、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオイレルエーテル等が好ましく挙げられる。これらの化合物は、1種単独または2種以上を混合して用いることができる。
The kind of the nonionic surfactant is not particularly limited as long as it is liquid at least at 20 ° C., but a preferable compound includes, for example, polyoxyethylene alkyl ether represented by the following formula (1).
H2m + 1Cm-O- (X-O) n-H (1)
(M = integer of 8 to 22, n = 2 to 20, integer X: alkylene group having 1 to 5 carbon atoms)
In addition, as for carbon number of X, 2-5 are preferable. Preferred examples of the polyoxyethylene alkyl ether include polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene oilyl ether and the like. These compounds can be used individually by 1 type or in mixture of 2 or more types.
[炭素繊維束]
本発明で使用する未サイジングの炭素繊維束としては、ポリアクリロニトリル(PAN)系、石油・石炭ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維を使用しても良いが、工業規模における生産性及び機械特性の観点から、PAN系炭素繊維を用いることが特に好ましい。炭素繊維の平均直径としては、5〜10μmのものを使用するのが好ましい。炭素繊維の平均直径が5μm以上にすると、繊維強化熱可塑性樹脂成形体を製造する際、成形体に占める炭素繊維の体積分率を高めることが出来る。その結果、機械強度の優れた成形体を得ることが容易になるため、好ましい。一方、炭素繊維の平均直径が10μm以下であると、炭素繊維製造時の耐炎化または不融化工程で炭素繊維前駆体繊維の耐炎または不融化処理を十分に行うことが出来るため、最終的に得られる炭素繊維の機械物性が低下すること無く好ましい。炭素繊維の平均直径のより好ましい範囲は、6〜9μmである。また、炭素繊維束を構成するモノフィラメントの本数としては、1000〜50000本が好ましい。モノフィラメントの本数が1000本以上であると、炭素繊維の生産性が向上するので好ましい。一方、50000本以下であると、炭素繊維製造時の耐炎化または不融化工程で、炭素繊維前駆体繊維の耐炎または不融化処理を十分に行うことができ、最終的に得られる炭素繊維の機械物性が低下しないため好ましい。モノフィラメント本数のより好ましい範囲は3000〜40000本である。また、本発明で使用する未サイジングの炭素繊維束は、炭素繊維束とマトリックス樹脂との接着性を高める目的で、炭素繊維表面に含酸素官能基を導入したものを使用することが好ましい。
[Carbon fiber bundle]
As the unsized carbon fiber bundle used in the present invention, any carbon fiber such as polyacrylonitrile (PAN), petroleum / coal pitch, rayon, and lignin may be used. From the viewpoints of properties and mechanical properties, it is particularly preferable to use PAN-based carbon fibers. The average diameter of the carbon fibers is preferably 5 to 10 μm. When the average diameter of the carbon fibers is 5 μm or more, the volume fraction of the carbon fibers in the molded body can be increased when the fiber reinforced thermoplastic resin molded body is manufactured. As a result, it is easy to obtain a molded article having excellent mechanical strength, which is preferable. On the other hand, if the average diameter of the carbon fibers is 10 μm or less, the carbon fiber precursor fibers can be sufficiently subjected to flame resistance or infusibilization treatment in the flame resistance or infusibilization process at the time of carbon fiber production. It is preferable that the mechanical properties of the carbon fiber obtained are not lowered. A more preferable range of the average diameter of the carbon fibers is 6 to 9 μm. Moreover, as a number of the monofilament which comprises a carbon fiber bundle, 1000-50000 are preferable. It is preferable that the number of monofilaments is 1000 or more because the productivity of carbon fibers is improved. On the other hand, if the number is 50,000 or less, the carbon fiber precursor fiber can be sufficiently subjected to a flame resistance or infusibilization process in the flame resistance or infusibilization process at the time of carbon fiber production, and the carbon fiber machine finally obtained It is preferable because the physical properties do not deteriorate. A more preferable range of the number of monofilaments is 3000 to 40000. In addition, the unsized carbon fiber bundle used in the present invention is preferably a carbon fiber bundle having an oxygen-containing functional group introduced on the surface of the carbon fiber for the purpose of enhancing the adhesion between the carbon fiber bundle and the matrix resin.
[浸漬方法]
本発明では、未サイジングの炭素繊維束をエマルションに浸漬させる方法に限定はなく、水分散性ポリマー粒子を均一に塗布できるのであればどのような方法でも良い。具体的な方法としては、例えばスプレー法、ローラー浸漬法、ローラー転写法などが挙げられる。これら方法を単独もしくは組み合わせて使用しても良い。これら浸漬法の中でも、生産性、均一性に優れる方法として、ローラー浸漬法が好ましい。水とアルコールを含む溶液に水分散性ポリマー粒子を分散させたエマルションに炭素繊維束を浸漬する際には、エマルション浴中に設けられた浸漬ローラーを介して、開繊と絞りを繰り返し、炭素繊維束の中にまでエマルションを浸漬させると良い。炭素繊維束に対するサイジング剤の付着量の調整は、溶液中の水分散性ポリマー粒子の濃度や、絞りローラーの調整などによって行うことができる。
[Dipping method]
In the present invention, the method of immersing the unsized carbon fiber bundle in the emulsion is not limited, and any method may be used as long as the water-dispersible polymer particles can be uniformly applied. Specific examples of the method include a spray method, a roller dipping method, and a roller transfer method. These methods may be used alone or in combination. Among these immersion methods, the roller immersion method is preferable as a method excellent in productivity and uniformity. When the carbon fiber bundle is immersed in an emulsion in which water-dispersible polymer particles are dispersed in a solution containing water and alcohol, the carbon fiber is repeatedly opened and squeezed through an immersion roller provided in the emulsion bath. It is good to immerse the emulsion in the bundle. The amount of the sizing agent attached to the carbon fiber bundle can be adjusted by adjusting the concentration of water-dispersible polymer particles in the solution or adjusting the squeeze roller.
[乾燥]
炭素繊維束をエマルションに浸漬後、水分とアルコールを乾燥除去することで、水分散性ポリマー粒子を炭素繊維の表面に残し、サイジング剤として作用させる。乾燥処理の方法はとくに限定はなく、熱処理や風乾、遠心分離などが挙げることが出来るが、中でもコストの観点から熱処理が好ましい。熱処理の加熱手段としては、例えば、熱風、熱板、ロ
ーラー、赤外線ヒーターなどを使用することができる。乾燥処理の温度としては炭素繊維表面温度50〜200℃の範囲で、水分およびアルコール成分を除去するのが好ましい。ただし、アルコールとしてポリビニルアルコール系重合体を用いた場合には、炭素繊維上に水分散性ポリマー粒子とポリビニルアルコール系重合体が残る。ポリビニルアルコール系重合体は、室温での風合いが柔らかいため、炭素繊維束の収束剤として優れた性能を発現する。
また、乾燥処理の温度は50〜200℃の間で段階的に昇温させても良い。この温度域であれば、水分散性ポリマー粒子、ひいては炭素繊維束を劣化させることなく、目的の炭素繊維束を得ることができる。
[Dry]
After dipping the carbon fiber bundle in the emulsion, the water and alcohol are dried and removed to leave the water-dispersible polymer particles on the surface of the carbon fiber and act as a sizing agent. The method for the drying treatment is not particularly limited, and examples thereof include heat treatment, air drying, and centrifugal separation. Among them, heat treatment is preferable from the viewpoint of cost. As a heating means for the heat treatment, for example, hot air, a hot plate, a roller, an infrared heater or the like can be used. As the temperature for the drying treatment, it is preferable to remove moisture and alcohol components within a carbon fiber surface temperature range of 50 to 200 ° C. However, when a polyvinyl alcohol polymer is used as the alcohol, water-dispersible polymer particles and the polyvinyl alcohol polymer remain on the carbon fiber. Since the polyvinyl alcohol polymer has a soft texture at room temperature, it exhibits excellent performance as a sizing agent for carbon fiber bundles.
Moreover, you may heat up the temperature of a drying process in steps between 50-200 degreeC. If it is this temperature range, the target carbon fiber bundle can be obtained, without degrading water-dispersible polymer particle and by extension, a carbon fiber bundle.
[サイジング剤の付着量]
本発明で言うサイジング剤とは、未サイジングの炭素繊維束をエマルションに浸漬し、乾燥させて溶剤を除去した後に残る水分散性ポリマー、界面活性剤、乾燥処理後に残存するアルコールなどの全てを言う(ここで言う未サイジングの炭素繊維束とは、エマルションに浸漬させる前の炭素繊維束を指している)。残留するアルコールの例としては、ポリビニルアルコール系共重合体などの、揮発性が低いアルコールがある。一方、エタノール等の低級アルコールは揮発性が高く、炭素繊維束の乾燥の際に揮発して無くなるので、本発明でいうサイジング剤には含まれない。
[Amount of sizing agent attached]
The sizing agent referred to in the present invention refers to all of the water-dispersible polymer, surfactant, alcohol remaining after the drying treatment, and the like remaining after the unsized carbon fiber bundle is immersed in the emulsion and dried to remove the solvent. (The unsized carbon fiber bundle mentioned here refers to the carbon fiber bundle before being immersed in the emulsion). Examples of the remaining alcohol include alcohols with low volatility such as polyvinyl alcohol copolymers. On the other hand, lower alcohols such as ethanol are highly volatile and are not volatilized when the carbon fiber bundle is dried. Therefore, they are not included in the sizing agent in the present invention.
本発明において、炭素繊維束へのサイジング剤の付着量が、炭素繊維束100重量部に対して、0.01〜10重量部であることが好ましい。炭素繊維束100重量部に対するサイジング剤の付着量が、0.01重量部以上の場合、熱可塑性樹脂をマトリックスとした成形体を作製すると、マトリックスと炭素繊維との表面接着性が良く、成形体の機械特性が高くなり好ましい。一方、サイジング剤の付着量が10重量部以下であると、炭素繊維束が強直な板状とならず、ハンドリングが容易となるため好ましい。また、炭素繊維束100重量部に対する水分散性ポリマー粒子の付着量の好ましい範囲は0.05〜5重量部であり、より好ましくは0.1〜1重量部の範囲である。 In this invention, it is preferable that the adhesion amount of the sizing agent to a carbon fiber bundle is 0.01-10 weight part with respect to 100 weight part of carbon fiber bundles. When the amount of the sizing agent attached to 100 parts by weight of the carbon fiber bundle is 0.01 parts by weight or more, when a molded body using a thermoplastic resin as a matrix is produced, the surface adhesiveness between the matrix and the carbon fiber is good, and the molded body This is preferable because of its high mechanical properties. On the other hand, it is preferable that the amount of sizing agent attached is 10 parts by weight or less because the carbon fiber bundle does not become a tough plate and handling becomes easy. Moreover, the preferable range of the adhesion amount of the water-dispersible polymer particles with respect to 100 parts by weight of the carbon fiber bundle is 0.05 to 5 parts by weight, and more preferably 0.1 to 1 part by weight.
[開繊]
本発明では、上記乾燥工程を経た炭素繊維束を開繊工程に供することで、開繊された炭素繊維束を得ることが出来る。炭素繊維束を開繊させる方法は特に限定されないが、好ましくは丸棒で繊維をしごく方法、気流を用いる方法、超音波等で繊維を振動させる方法等を挙げることが出来る。炭素繊維束に空気を吹き付けることで繊維束を開繊させる方法では、開繊の程度を空気の圧力等により適宜コントロールすることができる。これらの開繊工程に供する繊維は連続繊維でも不連続繊維でもよい。上記の開繊工程を経ることで、目的とする開繊された炭素繊維束を得ることが出来る。
[Opening]
In the present invention, the opened carbon fiber bundle can be obtained by subjecting the carbon fiber bundle that has undergone the drying step to the opening step. The method for opening the carbon fiber bundle is not particularly limited, but preferred examples include a method of squeezing the fiber with a round bar, a method of using an air current, a method of vibrating the fiber with ultrasonic waves, and the like. In the method of opening the fiber bundle by blowing air onto the carbon fiber bundle, the degree of opening can be appropriately controlled by the air pressure or the like. The fibers subjected to these opening processes may be continuous fibers or discontinuous fibers. By passing through the above-described opening process, a target opened carbon fiber bundle can be obtained.
開繊された炭素繊維束の開繊率は、例えば、炭素繊維束を20mmにカットし、炭素繊維投入口直径20mm、かつ吹き出し口直径55mm、かつ管の長さが投入口から吹き出し口まで400mmであるテーパ管内に導入し、テーバ管に導入する圧縮空気圧力が0.25MPaであるようにして圧縮空気を流すことで、吹き付けた後の繊維全体中に存在する幅0.6mm未満の繊維束の重量割合で評価できる。このように開繊率を定義した際、開繊された炭素繊維束は、該開繊率が40%以上であることが好ましい。開繊率は得ようとする炭素繊維製品により適宜選択できるが、好ましくは45〜90%であり、より好ましくは45〜80%である。 The opening rate of the opened carbon fiber bundle is, for example, a carbon fiber bundle cut to 20 mm, a carbon fiber inlet diameter of 20 mm, a blower outlet diameter of 55 mm, and a tube length of 400 mm from the inlet to the outlet. A fiber bundle having a width of less than 0.6 mm present in the entire fiber after being blown by flowing the compressed air so that the compressed air pressure introduced into the taper pipe is 0.25 MPa. The weight ratio can be evaluated. When the fiber opening rate is defined in this way, the opened carbon fiber bundle preferably has a fiber opening rate of 40% or more. The opening rate can be appropriately selected depending on the carbon fiber product to be obtained, but is preferably 45 to 90%, and more preferably 45 to 80%.
[炭素繊維強化熱可塑性樹脂成形体]
本発明における炭素繊維束は、開繊させた後に熱可塑性樹脂と複合させた炭素繊維強化熱可塑性樹脂成形体にする事ができ、該成形体に対する炭素繊維束の体積割合が10〜60%である。本発明の炭素繊維束から得られる炭素繊維強化熱可塑性樹脂成形体は、熱可塑性樹脂の含浸が十分に行われ、強度ムラなどが少ない高品位なものとなる。本発明の炭素繊維束を熱可塑性樹脂成形体の強化材として用いる際の繊維形態としては、例えば、ランダムマット、一軸配向材、織物などを挙げることが出来る。
[Carbon fiber reinforced thermoplastic resin molding]
The carbon fiber bundle in the present invention can be made into a carbon fiber reinforced thermoplastic resin molded body that is composited with a thermoplastic resin after being opened, and the volume ratio of the carbon fiber bundle to the molded body is 10 to 60%. is there. The carbon fiber reinforced thermoplastic resin molded product obtained from the carbon fiber bundle of the present invention is sufficiently high in quality with little unevenness in strength, sufficiently impregnated with a thermoplastic resin. Examples of the fiber form when the carbon fiber bundle of the present invention is used as a reinforcing material for a thermoplastic resin molded body include a random mat, a uniaxially oriented material, and a woven fabric.
[熱可塑性樹脂]
用いる熱可塑性樹脂は特に限定はなく、公知の樹脂、例えば、ポリアミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリオレフィン系樹脂、ポリアセタール樹脂、ポリスルホン樹脂等が挙げられる。これらの中でポリアミド樹脂が成形品の力学特性、成形サイクルの速さの観点から好適である。
特に、エマルションに含まれるアルコールとしてポリビニルアルコール系共重合体を用いて、エマルションに浸漬させた炭素繊維束を用いる場合、熱可塑性樹脂としてポリアミド樹脂を選択すると良い。ポリビニルアルコール系共重合体の分子内の水酸基とポリアミド樹脂の反応性末端基(アミン末端やカルボン酸末端)が加熱処理により反応し、強固な結合を形成する。このため、優れた機械特性を持つ成形体を得ることが出来る。
ポリアミド樹脂としては、6−ナイロン、66−ナイロン、610−ナイロン、11−ナイロン、12−ナイロン、6/66共重合ナイロン、6/610共重合ナイロン、6/11共重合ナイロン、6/12共重合ナイロン、6/66/12共重合ナイロン等が好ましく挙げられる。これらの重合体または共重合体は、単独であっても2種以上の混合物であってもよい。
[Thermoplastic resin]
The thermoplastic resin to be used is not particularly limited, and examples thereof include known resins such as polyamide resins, polyester resins, polycarbonate resins, polyolefin resins, polyacetal resins, polysulfone resins and the like. Of these, polyamide resins are preferred from the viewpoint of the mechanical properties of the molded product and the speed of the molding cycle.
In particular, when using a carbon fiber bundle immersed in an emulsion using a polyvinyl alcohol copolymer as the alcohol contained in the emulsion, a polyamide resin may be selected as the thermoplastic resin. The hydroxyl group in the molecule of the polyvinyl alcohol copolymer and the reactive end group (amine end or carboxylic acid end) of the polyamide resin react by heat treatment to form a strong bond. For this reason, the molded object with the outstanding mechanical characteristic can be obtained.
Polyamide resins include 6-nylon, 66-nylon, 610-nylon, 11-nylon, 12-nylon, 6/66 copolymer nylon, 6/610 copolymer nylon, 6/11 copolymer nylon, and 6/12 copolymer. Preferred examples include polymerized nylon and 6/66/12 copolymerized nylon. These polymers or copolymers may be used alone or as a mixture of two or more.
[ランダムマット]
ランダムマットとは、平均繊維長1〜100mm程度で、マット面内において、強化繊維が特定の方向に配向しておらず、無作為な方向に分散して配置されているものを指す。繊維形態をランダムマットにする場合、繊維長を2〜60mm、目付を25〜3000g/m2とするのが良い。
当該ランダムマットは、好ましくは以下の1乃至3の工程を経て得ることができる。
1.本発明の炭素繊維束を開繊してカットする工程。
2.カットされた炭素繊維束を管内に導入し、空気を繊維に吹き付ける事により、繊維束を開繊させる工程。
3.開繊させた炭素繊維を拡散させると同時に、繊維状、粉末状、又は粒状の熱可塑性樹脂とともに吸引しつつ、炭素繊維と熱可塑性樹脂を同時に散布する塗布し定着させる工程。
[Random mat]
The random mat has an average fiber length of about 1 to 100 mm, and in the mat surface, the reinforcing fibers are not oriented in a specific direction and are distributed in a random direction. When the fiber form is a random mat, the fiber length is preferably 2 to 60 mm and the basis weight is 25 to 3000 g / m 2 .
The random mat can be obtained through the following steps 1 to 3.
1. A step of opening and cutting the carbon fiber bundle of the present invention.
2. A process of opening the fiber bundle by introducing the cut carbon fiber bundle into the tube and blowing air onto the fiber.
3. A step of spreading and spreading the carbon fiber and the thermoplastic resin simultaneously while diffusing the opened carbon fiber and simultaneously sucking it with the fibrous, powdery or granular thermoplastic resin.
本発明の炭素繊維強化熱可塑性樹脂成形体は、炭素繊維の開繊程度をコントロールし、炭素繊維束が特定本数以上で存在するものと、開繊された炭素繊維を特定の割合で含むランダムマットとすることが好ましい。前記1乃至3の製造方法によれば、開繊程度を適切にコントロールすることが可能であり、種々の用途、目的に適したランダムマットを提供することができる。適切な開繊率のランダムマットを作製することにより、炭素繊維と熱可塑性樹脂をより緻密に密着させ、高い物性を達成することが可能となる。 The carbon fiber reinforced thermoplastic resin molded article of the present invention is a random mat that controls the degree of opening of carbon fibers, includes carbon fiber bundles in a specific number or more, and contains the opened carbon fibers in a specific ratio. It is preferable that According to the manufacturing methods 1 to 3, the degree of opening can be appropriately controlled, and a random mat suitable for various uses and purposes can be provided. By producing a random mat with an appropriate fiber opening rate, it becomes possible to achieve a higher physical property by closely adhering the carbon fiber and the thermoplastic resin.
[一軸配向]
本発明の開繊された炭素繊維束は、一軸配向材として使用でき、一軸配向炭素繊維含有熱可塑性樹脂は、開繊された炭素繊維束を引き揃えた後、溶融した熱可塑性樹脂と接触させることで得ることができる。この際に用いられる熱可塑性樹脂は、上記のランダムマットの項で記載したものを使用することが出来る。一軸配向炭素繊維強化熱可塑性樹脂は、複数の一軸配向炭素繊維含有熱可塑性樹脂を積層してなるものとしても良い。一軸配向炭素繊維含有熱可塑性樹脂を製造する方法はとくに限定はなく、例えばプルトリュージョン法などで得ることができる。プルトリュージョン法で得られる一軸配向炭素繊維含有熱可塑性樹脂の場合、炭素繊維は熱可塑性樹脂に十分含浸した状態で得ることが出来る。熱可塑性樹脂による含浸を抑えたもの、すなわち半含浸の層とした場合は、例えば熱可塑性樹
脂からなるシートの上に炭素繊維を一方向に引き揃えて、必要により加熱プレスする方法等で得ることができる。一軸配向炭素繊維含有熱可塑性樹脂成形体の形状は円柱状、あるいは角柱状であることが好ましい。
[Uniaxial orientation]
The opened carbon fiber bundle of the present invention can be used as a uniaxially oriented material, and the uniaxially oriented carbon fiber-containing thermoplastic resin is brought into contact with a molten thermoplastic resin after the opened carbon fiber bundles are aligned. Can be obtained. As the thermoplastic resin used at this time, those described in the above-mentioned random mat can be used. The uniaxially oriented carbon fiber reinforced thermoplastic resin may be formed by laminating a plurality of uniaxially oriented carbon fiber-containing thermoplastic resins. The method for producing the uniaxially oriented carbon fiber-containing thermoplastic resin is not particularly limited, and can be obtained by, for example, a pultrusion method. In the case of the uniaxially oriented carbon fiber-containing thermoplastic resin obtained by the pultrusion method, the carbon fiber can be obtained in a state sufficiently impregnated with the thermoplastic resin. In the case of a layer impregnated with a thermoplastic resin, that is, a semi-impregnated layer, for example, it is obtained by a method in which carbon fibers are aligned in one direction on a sheet made of a thermoplastic resin and, if necessary, heated and pressed. Can do. The shape of the uniaxially oriented carbon fiber-containing thermoplastic resin molded body is preferably a columnar shape or a prismatic shape.
炭素繊維束を熱可塑性樹脂で被覆して固めたストランドを得て、これを切断することにより炭素繊維と熱可塑性樹脂からなる芯鞘型繊維ペレットを得ることもできる。角柱状の場合、高さ(厚み)を薄くすることでシート状とすることもできる。シート状としたときの好ましい厚みは40〜3000μmである。 A core-sheath fiber pellet made of carbon fiber and thermoplastic resin can also be obtained by obtaining a strand obtained by coating a carbon fiber bundle with a thermoplastic resin and solidifying it, and cutting the strand. In the case of a prismatic shape, a sheet shape can be obtained by reducing the height (thickness). A preferable thickness when the sheet is formed is 40 to 3000 μm.
[他の剤]
炭素繊維成形体には、本発明の目的を損なわない範囲で、無機フィラー等の各種の添加剤を含んでも良い。無機フィラーとしては、タルク、珪酸カルシウム、ワラストナイト、モンモリロナイトや各種の無機ナノフィラーを挙げることができる。また、必要に応じて、耐熱安定剤、帯電防止剤、耐候安定剤、耐光安定剤、老化防止剤、酸化防止剤、軟化剤、分散剤、充填剤、着色剤、滑剤、炭素繊維単糸など、従来から熱可塑性樹脂に配合されている他の添加剤を、配合することもできる。
[Other agents]
The carbon fiber molded body may contain various additives such as an inorganic filler as long as the object of the present invention is not impaired. Examples of the inorganic filler include talc, calcium silicate, wollastonite, montmorillonite, and various inorganic nanofillers. In addition, if necessary, heat stabilizer, antistatic agent, weathering stabilizer, light stabilizer, anti-aging agent, antioxidant, softener, dispersant, filler, colorant, lubricant, carbon fiber monofilament, etc. Other additives that have been conventionally blended in thermoplastic resins can also be blended.
以下に実施例を示すが、本発明はこれらに制限されるものではない。本発明の実施例は、以下に示す方法で評価を行った。 Examples are shown below, but the present invention is not limited thereto. The Example of this invention evaluated by the method shown below.
[エマルション中の水分散性ポリマー粒子の凝集性評価]
エマルション中の水分散性ポリマー粒子の凝集性は、レーザ回折式粒度分布測定装置(HORIBA製LA−500)を用い、超音波で3分処理後の平均粒子径(D50)と30分放置した後の平均粒子径を比較することで評価した。
[Evaluation of cohesiveness of water-dispersible polymer particles in emulsion]
The agglomeration property of the water-dispersible polymer particles in the emulsion was determined by using a laser diffraction particle size distribution measuring device (LA-500 manufactured by HORIBA) and the average particle size (D50) after 3 minutes treatment with ultrasonic waves for 30 minutes. Evaluation was made by comparing the average particle diameters of.
[炭素繊維束へのエマルションの浸漬性評価]
炭素繊維束へのエマルションの浸漬性は、底から5cmになるようにエマルションを入れたガラス製の容器に、繊維方向に1cmに裁断した未サイジングの炭素繊維束を着液させ、着液後の炭素繊維束表面の濡れ具合、炭素繊維束がガラス容器の底に沈むまでの時間を計測することで評価した。
[Evaluation of immersion of emulsion in carbon fiber bundle]
The soaking property of the emulsion in the carbon fiber bundle is such that an unsized carbon fiber bundle cut to 1 cm in the fiber direction is placed in a glass container in which the emulsion is placed 5 cm from the bottom. It evaluated by measuring the time until the carbon fiber bundle surface sinks to the bottom of a glass container, and the carbon fiber bundle surface.
[サイジング剤の付着量の評価]
サイジング剤の付着量は、1.0mの炭素繊維束を2本採取し、これらを窒素雰囲気下10℃/分で550℃に昇温後、同温度で10分間焼成し、重量減少した分をサイジング剤の付着分として以下の式(1)で算出した。
サイジング剤の付着量=(焼成前重量−焼成後重量)/焼成後重量 ×100 [%]
(1)
[Evaluation of sizing agent adhesion]
The amount of the sizing agent deposited was obtained by collecting two 1.0 m carbon fiber bundles, heating them up to 550 ° C. at 10 ° C./min in a nitrogen atmosphere, and firing them at the same temperature for 10 minutes. It calculated with the following formula | equation (1) as an adhesion part of a sizing agent.
Adhering amount of sizing agent = (weight before firing−weight after firing) / weight after firing × 100 [%]
(1)
[サイジング剤の付着状態の評価]
サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピング(HORIBA製:エネルギー分散型X線分析装置 EMAX ENERGY EX−450)を実施した。次に、炭素繊維束の両表面にグラファイトの粘着シートを0.1MPaの圧力で貼り付けた後、粘着シートの片方を剥がして、剥がした粘着シートに張り付いた炭素繊維表面の窒素マッピングを実施した。この操作を5回繰り返して、窒素マッピング像を比較することで、炭素繊維束内部のサイジング剤の付着状態を確認した。
[Evaluation of adhesion of sizing agent]
Nitrogen mapping of the surface SEM image of the carbon fiber bundle to which the sizing agent was attached (manufactured by HORIBA: energy dispersive X-ray analyzer EMAX ENERGY EX-450) was performed. Next, after attaching a graphite adhesive sheet to both surfaces of the carbon fiber bundle at a pressure of 0.1 MPa, one side of the adhesive sheet is peeled off, and nitrogen mapping of the carbon fiber surface attached to the peeled adhesive sheet is performed. did. This operation was repeated 5 times, and the nitrogen mapping images were compared, thereby confirming the adhesion state of the sizing agent inside the carbon fiber bundle.
[開繊率の評価]
開繊された炭素繊維束の開繊率は、例えば、炭素繊維束を20mmにカットし、炭素繊維投入口直径20mm、かつ吹き出し口直径55mm、かつ管の長さが投入口から吹き出
し口まで400mmであるテーパ管内に導入し、テーバ管に導入する圧縮空気圧力が0.25MPaであるようにして圧縮空気を流すことで、吹き付けた後の繊維全体中に存在する幅0.6mm未満の繊維束の重量割合で評価した。
[Evaluation of spread rate]
The opening rate of the opened carbon fiber bundle is, for example, a carbon fiber bundle cut to 20 mm, a carbon fiber inlet diameter of 20 mm, a blower outlet diameter of 55 mm, and a tube length of 400 mm from the inlet to the outlet. A fiber bundle having a width of less than 0.6 mm present in the entire fiber after being blown by flowing the compressed air so that the compressed air pressure introduced into the taper pipe is 0.25 MPa. The weight ratio was evaluated.
<ランダムマットを用いた熱可塑性樹脂成形体の曲げ物性測定方法>
成形体から、幅15mm×長さ100mmの試験片を切り出し、JIS K7074に準拠した中央荷重とする3点曲げにて評価した。支点間距離を80mmとしたr=2mmの支点上に試験片を置き、支点間中央部にr=5mmの圧子にて、試験速度5mm/分で荷重を与えた場合の最大荷重および中央たわみ量を測定し、曲げ強度および曲げ弾性率を測定した。
<Method for measuring bending physical properties of thermoplastic resin molding using random mat>
A test piece having a width of 15 mm and a length of 100 mm was cut out from the molded body and evaluated by three-point bending with a central load in accordance with JIS K7074. Maximum load and center deflection when a test piece is placed on a fulcrum of r = 2mm with a fulcrum distance of 80mm and a load is applied at a test speed of 5mm / min with an indenter of r = 5mm in the center between the fulcrum The bending strength and the bending elastic modulus were measured.
[実施例1]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Example 1]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
[エマルションの製造]
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水8220gとエタノール3600gを室温で撹拌しながら追加し、水とエタノールの混合液にポリアミド粒子が分散したエマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.6μmであり、30分放置後も平均粒子径は変化せず、ポリアミド粒子の凝集は認められなかった。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させると、直に炭素繊維束表面が濡れて、約5秒で5cmのガラス容器の底に沈み、炭素繊維束へのエマルションの浸漬性は非常に良好であることを確認した。
[Emulsion production]
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Further, 8220 g of water and 3600 g of ethanol were added to 300 g of the aqueous polyamide resin dispersion while stirring at room temperature to obtain an emulsion in which polyamide particles were dispersed in a mixed solution of water and ethanol. The average particle size of the polyamide particles after ultrasonic treatment was 0.6 μm, and the average particle size did not change even after standing for 30 minutes, and no aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )), the surface of the carbon fiber bundle is wetted directly and sinks to the bottom of a 5 cm glass container in about 5 seconds. It was confirmed that the emulsion was very good in the bundle.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.5重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイトの粘着シートで5回炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像の比較から、窒素原子の存在比率は変わらず、炭素繊維束の表面だけでなく内部にも均一にポリアミド粒子が付着していることを確認した。テーパ管内にφ1mmの穴を5ヶ所あけ、外側より0.5MPa圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより開繊しつつ、テーパ管出口の下部に設置したテーブル上に散布した。得られた炭素繊維束について上述した方法で開繊率を測定したところ、56%の高い開繊率が得られた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.5 part by weight with respect to 100 parts by weight of the carbon fiber. Also, nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached, and nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle five times with a graphite adhesive sheet From this comparison, it was confirmed that the abundance ratio of nitrogen atoms did not change, and the polyamide particles were uniformly attached not only to the surface but also to the inside of the carbon fiber bundle. Five holes with a diameter of 1 mm were formed in the taper tube, 0.5 MPa pressure was applied from the outside, and the air was spread by spraying compressed air directly onto the fiber bundle, and was then spread on a table installed at the lower part of the taper tube outlet. When the fiber opening rate of the obtained carbon fiber bundle was measured by the method described above, a high fiber opening rate of 56% was obtained.
[炭素繊維強化熱可塑性樹脂成形体]
実施例1で得られた炭素繊維束を16mmにカットしたもの、およびマトリックス樹脂として、ユニチカ製“A1030FP”PA6樹脂パウダーを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られたランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の板状の炭素繊維強化熱可塑性樹脂成形体を得た。得られた成形体に未含浸部はなく、曲げ物性は、曲げ強度510MPa、曲げ弾性率30GPaであった。結果を表1に示す。
[Carbon fiber reinforced thermoplastic resin molding]
The carbon fiber bundle obtained in Example 1 was cut to 16 mm, and “A1030FP” PA6 resin powder made by Unitika was prepared as a matrix resin. The supply amount of carbon fiber was 600 g / min, and the supply amount of polyamide was 730 g. / Min and introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The obtained random mat-shaped carbon fiber-containing thermoplastic resin composition was heated at 3 MPa for 5 minutes in a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2.0 mm. A plate-like carbon fiber reinforced thermoplastic resin molded article having a fiber volume content of 35 Vol% was obtained. The obtained molded body had no unimpregnated portion, and the bending properties were a bending strength of 510 MPa and a bending elastic modulus of 30 GPa. The results are shown in Table 1.
[実施例2]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Example 2]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
<エマルションの製造>
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水11620gとポリビニルアルコール(クラレ製PVA217)200gを室温で撹拌しながら追加し、水とポリビニルアルコールの混合液にポリアミド粒子が分散したエマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.5μmであり、30分放置後も平均粒子径は変化せず、ポリアミド粒子の凝集は認められなかった。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させると、直に炭素繊維束表面が濡れて、約6秒で5cmのガラス容器の底に沈み、炭素繊維束へのエマルションの浸漬性は非常に良好であることを確認した。
<Manufacture of emulsion>
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Further, 11620 g of water and 200 g of polyvinyl alcohol (PVA217 made by Kuraray) were added to 300 g of the aqueous polyamide resin dispersion while stirring at room temperature to obtain an emulsion in which polyamide particles were dispersed in a mixed solution of water and polyvinyl alcohol. The average particle size of the polyamide particles after ultrasonic treatment was 0.5 μm, and the average particle size did not change even after standing for 30 minutes, and no aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )), the surface of the carbon fiber bundle is wetted directly and sinks to the bottom of a 5 cm glass container in about 6 seconds. It was confirmed that the emulsion was very good in the bundle.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.6重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイトの粘着シートで5回炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像の比較から、窒素原子の存在比率は変わらず、炭素繊維束の表面だけでなく内部にも均一にポリアミド粒子が付着していることを確認した。テーパ管内にφ1mmの穴を5ヶ所あけ、外側より0.5MPa圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより開繊しつつ、テーパ管出口の下部に設置したテーブル上に散布した。得られた炭素繊維束について上述した方法で開繊率を測定したところ、51%の高い開繊率が得られた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.6 parts by weight with respect to 100 parts by weight of the carbon fibers. Also, nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached, and nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle five times with a graphite adhesive sheet From this comparison, it was confirmed that the abundance ratio of nitrogen atoms did not change, and the polyamide particles were uniformly attached not only to the surface but also to the inside of the carbon fiber bundle. Five holes with a diameter of 1 mm were formed in the taper tube, 0.5 MPa pressure was applied from the outside, and the air was spread by spraying compressed air directly onto the fiber bundle, and was then spread on a table installed at the lower part of the taper tube outlet. When the fiber opening rate of the obtained carbon fiber bundle was measured by the method described above, a high fiber opening rate of 51% was obtained.
<炭素繊維強化熱可塑性樹脂成形体>
得られた炭素繊維束を16mmにカットしたもの、および熱可塑性樹脂として、ユニチカ製「A1030FP」PA6樹脂パウダーを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られたランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の炭素繊維強化熱可塑性樹脂成形体を得た。得られた成形板に未含浸部はなく、曲げ物性は、曲げ強度540MPa、曲げ弾性率30GPaであった。結果を表1に示す。
<Carbon fiber reinforced thermoplastic resin molding>
Unita “A1030FP” PA6 resin powder prepared as a cut carbon fiber bundle of 16 mm and a thermoplastic resin, the carbon fiber supply rate to 600 g / min, and the polyamide supply rate to 730 g / min It was set and introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The obtained random mat-shaped carbon fiber-containing thermoplastic resin composition was heated at 3 MPa for 5 minutes in a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2.0 mm. A carbon fiber reinforced thermoplastic resin molded article having a fiber volume content of 35 Vol% was obtained. The obtained molded plate had no unimpregnated part, and the bending properties were a bending strength of 540 MPa and a bending elastic modulus of 30 GPa. The results are shown in Table 1.
[実施例3]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Example 3]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
<エマルションの製造>
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水9420gとエタノール2400gと20℃で液体のノニオン系界面活性剤であるポリオキシエチレンアルキルエーテル系界面活性剤(花王社製、ポリオキシエチレンラウリルエーテル登録商標「エマルゲン103」)3重量部を室温で撹拌しながら追加し、水とエタノールの混合にポリアミド粒子が分散したエマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.6μmであり、30分放置後も平均粒子径は変化せず、ポリアミド粒子の凝集は認められなかった。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させると、直に炭素繊維束表面が濡れて、約5秒で5cmのガラス容器の底に沈み、炭素繊維束へのエマルションの浸漬性は非常に良好であることを確認した。
<Manufacture of emulsion>
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Further, polyoxyethylene alkyl ether surfactant (trade name “Emulgen”, manufactured by Kao Corporation), which is a nonionic surfactant that is liquid at 20 ° C., 9420 g of water and 2400 g of ethanol, in 300 g of an aqueous polyamide resin dispersion. 103 ") 3 parts by weight were added with stirring at room temperature to obtain an emulsion in which polyamide particles were dispersed in a mixture of water and ethanol. The average particle size of the polyamide particles after ultrasonic treatment was 0.6 μm, and the average particle size did not change even after standing for 30 minutes, and no aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )), the surface of the carbon fiber bundle is wetted directly and sinks to the bottom of a 5 cm glass container in about 5 seconds. It was confirmed that the emulsion was very good in the bundle.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.7重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイトの粘着シートで5回炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像の比較から、窒素原子の存在比率は変わらず、炭素繊維束の表面だけでなく内部にも均一にポリアミド粒子が付着していることを確認した。
また、テーパ管内にφ1mmの穴を5ヶ所あけ、外側より0.5MPa圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより開繊しつつ、テーパ管出口の下部に設置したテーブル上に散布した。得られた炭素繊維束について上述した方法で開繊率を測定したところ、57%の高い開繊率が得られた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.7 parts by weight with respect to 100 parts by weight of the carbon fiber. Also, nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached, and nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle five times with a graphite adhesive sheet From this comparison, it was confirmed that the abundance ratio of nitrogen atoms did not change, and the polyamide particles were uniformly attached not only to the surface but also to the inside of the carbon fiber bundle.
Also, 5 holes of φ1mm were drilled in the taper tube, 0.5 MPa pressure was applied from the outside, and the air was spread by spraying the compressed air directly on the fiber bundle, and was spread on the table installed at the lower part of the taper tube outlet. . When the fiber opening rate of the obtained carbon fiber bundle was measured by the method described above, a high fiber opening rate of 57% was obtained.
<炭素繊維強化熱可塑性樹脂成形体>
得られた炭素繊維束を16mmにカットしたものと、熱可塑性樹脂であるユニチカ製「A1030FP」PA6樹脂パウダーとを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られたランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の炭素繊維強化熱可塑性樹脂成形体を得た。得られた成形体に未含浸部はなく、曲げ物性は、曲げ強度490MPa、曲げ弾性率25GPaであった。結果を表1に示す。
<Carbon fiber reinforced thermoplastic resin molding>
The obtained carbon fiber bundle was cut to 16 mm and a thermoplastic resin “A1030FP” PA6 resin powder was prepared. The supply amount of carbon fiber was 600 g / min and the supply amount of polyamide was 730 g / min. And introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The obtained random mat-shaped carbon fiber-containing thermoplastic resin composition was heated at 3 MPa for 5 minutes in a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2.0 mm. A carbon fiber reinforced thermoplastic resin molded article having a fiber volume content of 35 Vol% was obtained. The obtained molded body had no unimpregnated portion, and the bending properties were a bending strength of 490 MPa and a bending elastic modulus of 25 GPa. The results are shown in Table 1.
[比較例1]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Comparative Example 1]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
<エマルションの製造>
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水11820gを室温で撹拌しながら追加し、ポリアミド粒子が分散した水性エマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.7μmであったが、30分放置後の平均粒子径は75μmとなり、ポリアミド粒子の凝集が認められた。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させて、その浸漬性を評価したが、120秒経過しても炭素繊維束はエマルションに浸漬されることなく液面に浮いた状態であり、エマルションの浸漬性は不良であることを確認した。
<Manufacture of emulsion>
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Further, 11820 g of water was added to 300 g of the aqueous polyamide resin dispersion while stirring at room temperature to obtain an aqueous emulsion in which polyamide particles were dispersed. The average particle diameter of the polyamide particles after ultrasonic treatment was 0.7 μm, but the average particle diameter after standing for 30 minutes was 75 μm, and aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )) were applied to the emulsion and its immersion was evaluated, but the carbon fiber bundle was not immersed in the emulsion even after 120 seconds. It was in a state of floating on the liquid surface, and it was confirmed that the immersion property of the emulsion was poor.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.6重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイト粘着シートで炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像を比較したところ、粘着シートの剥ぐ回数(0〜5回)に伴い窒素原子の存在比率が低下する、すなわち炭素繊維束の表層から内部に向かうにつれてポリアミド粒子由来の窒素元素濃度が低下していた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.6 parts by weight with respect to 100 parts by weight of the carbon fibers. Moreover, the nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached was compared with the nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle with the graphite adhesive sheet. However, as the pressure-sensitive adhesive sheet is peeled off (0 to 5 times), the ratio of nitrogen atoms decreases, that is, the concentration of nitrogen elements derived from polyamide particles decreases from the surface layer of the carbon fiber bundle toward the inside.
<炭素繊維強化熱可塑性樹脂成形体>
得られた炭素繊維束を16mmにカットしたものと、熱可塑性樹脂、ユニチカ製「A1030FP」PA6樹脂パウダーとを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られたランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の炭素繊維強化熱可塑性樹脂成形体を得た。得られた成形体に未含浸部はなく、曲げ物性は、曲げ強度310MPa、曲げ弾性率20GPaであった。結果を表1に示す。
<Carbon fiber reinforced thermoplastic resin molding>
The obtained carbon fiber bundle was cut into 16 mm, and a thermoplastic resin, “A1030FP” PA6 resin powder made by Unitika, was prepared. The supply amount of carbon fiber was 600 g / min, and the supply amount of polyamide was 730 g / min. It was set and introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The obtained random mat-shaped carbon fiber-containing thermoplastic resin composition was heated at 3 MPa for 5 minutes in a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2.0 mm. A carbon fiber reinforced thermoplastic resin molded article having a fiber volume content of 35 Vol% was obtained. The obtained molded body had no unimpregnated portion, and the bending properties were a bending strength of 310 MPa and a bending elastic modulus of 20 GPa. The results are shown in Table 1.
[比較例2]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Comparative Example 2]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
<エマルションの製造>
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水11820gと20℃で液体のノニオン系界面活性剤であるポリオキシエチレンアルキルエーテル系界面活性剤(花王社製、ポリオキシエチレンラウリルエーテル登録商標「エマルゲン103」)2.5重量部を室温で撹拌しながら追加し、ポリアミド粒子が分散したエマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.7μmであったが、30分放置後の平均粒子径は75μmとなり、ポリアミド粒子の凝集が認められた。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させて、その浸漬性を評価したが、120秒経過しても炭素繊維束はエマルションに浸漬されることなく液面に浮いた状態であり、エマルションの浸漬性は不良であることを確認した。
<Manufacture of emulsion>
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Furthermore, polyoxyethylene alkyl ether surfactant which is a nonionic surfactant that is liquid at 20 ° C. with water of 18820 in 300 g of an aqueous polyamide resin dispersion (manufactured by Kao Corporation, polyoxyethylene lauryl ether registered trademark “Emulgen 103”) 2.5 parts by weight were added with stirring at room temperature to obtain an emulsion in which polyamide particles were dispersed. The average particle diameter of the polyamide particles after ultrasonic treatment was 0.7 μm, but the average particle diameter after standing for 30 minutes was 75 μm, and aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )) were applied to the emulsion and its immersion was evaluated, but the carbon fiber bundle was not immersed in the emulsion even after 120 seconds. It was in a state of floating on the liquid surface, and it was confirmed that the immersion property of the emulsion was poor.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.6重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイト粘着シートで炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像を比較したところ、粘着シートの剥ぐ回数(0〜5回)に伴い窒素原子の存在比率が低下する、すなわち炭素繊維束の表層から内部に向かうにつれてポリアミド粒子由来の窒素元素濃度が低下していた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.6 parts by weight with respect to 100 parts by weight of the carbon fibers. Moreover, the nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached was compared with the nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle with the graphite adhesive sheet. However, as the pressure-sensitive adhesive sheet is peeled off (0 to 5 times), the ratio of nitrogen atoms decreases, that is, the concentration of nitrogen elements derived from polyamide particles decreases from the surface layer of the carbon fiber bundle toward the inside.
<炭素繊維強化熱可塑性樹脂成形体>
得られた炭素繊維束を16mmにカットしたものと、熱可塑性樹脂、ユニチカ製「A1030FP」PA6樹脂パウダーとを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られたランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の炭素繊維強化熱可塑性樹脂成形体を得た。得られた成形体に未含浸部はなく、曲げ物性は、曲げ強度290MPa、曲げ弾性率18GPaであった。結果を表1に示す。
<Carbon fiber reinforced thermoplastic resin molding>
The obtained carbon fiber bundle was cut into 16 mm, and a thermoplastic resin, “A1030FP” PA6 resin powder made by Unitika, was prepared. The supply amount of carbon fiber was 600 g / min, and the supply amount of polyamide was 730 g / min. It was set and introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The obtained random mat-shaped carbon fiber-containing thermoplastic resin composition was heated at 3 MPa for 5 minutes in a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2.0 mm. A carbon fiber reinforced thermoplastic resin molded article having a fiber volume content of 35 Vol% was obtained. The obtained molded body had no unimpregnated portion, and the bending properties were a bending strength of 290 MPa and a bending elastic modulus of 18 GPa. The results are shown in Table 1.
[比較例3]
<水分散性ポリマー粒子の製造>
70Lのオートクレーブにε−カプロラクタム27kg、アジピン酸ヘキサメチレンアンモニウム塩の50%水溶液を6kg仕込み、重合槽内を窒素置換したのち、密閉して180℃まで昇温し、次いで攪拌しながら重合槽内を1.72MPaに調圧しながら、重合槽内温度を240℃まで昇温した。重合温度が240℃に達して2時間後に重合槽内の圧力を約2時間かけて常圧に放圧した。放圧後、窒素気流下で1時間重合したあと、2時間減圧重合を行った。窒素を導入して常圧に復圧後、攪拌機を止めて、ストランドとして抜き出しペレット化し、沸水を用いて未反応モノマーを抽出除去して乾燥した。このときの共重合比は、6/66=90/10(重量比)であった。
[Comparative Example 3]
<Production of water-dispersible polymer particles>
A 70 L autoclave was charged with 27 kg of ε-caprolactam and 6 kg of 50% aqueous solution of hexamethyleneammonium adipate, and the inside of the polymerization tank was purged with nitrogen, then sealed, heated to 180 ° C., and then stirred inside the polymerization tank. While adjusting the pressure to 1.72 MPa, the temperature in the polymerization tank was raised to 240 ° C. Two hours after the polymerization temperature reached 240 ° C., the pressure in the polymerization tank was released to normal pressure over about 2 hours. After releasing the pressure, polymerization was performed for 1 hour in a nitrogen stream, and then, vacuum polymerization was performed for 2 hours. After introducing nitrogen and returning to normal pressure, the stirrer was stopped, the strand was extracted and pelletized, and the unreacted monomer was extracted and removed using boiling water and dried. The copolymerization ratio at this time was 6/66 = 90/10 (weight ratio).
<エマルションの製造>
このようにして得られた6/66二元共重合ポリアミド樹脂120g、水179.6gおよび水酸化ナトリウム0.4gを、撹拌機を取り付けたオートクレーブ中に加え、回転数500rpmの状態を保持して150℃まで昇温させ、150℃になった状態で30分間反応を行った。反応終了後、そのまま50℃まで冷却して、ポリアミド樹脂水性分散液を取り出した。得られたポリアミド樹脂水性分散液の樹脂含有量は、水性分散液100重量部に対して40重量部であった。更に、ポリアミド樹脂水性分散液300gに水11820gと20℃で液体のノニオン系界面活性剤であるポリオキシエチレンアルキルエーテル系界面活性剤(花王社製、ポリオキシエチレンラウリルエーテル登録商標「エマルゲン103」)50重量部を室温で撹拌しながら追加し、ポリアミド粒子が分散したエマルションを得た。超音波処理後のポリアミド粒子の平均粒子径は0.6μmであり、30分放置後も平均粒子径は変化せず、ポリアミド粒子の凝集は認められなかった。また、繊維方向に1cmに裁断した未サイジングの炭素繊維束(東邦テナックス社製、登録商標「テナックスSTS−24K N00」、直径7μm×24000フィラメント、繊度1.6g/m、引張強度4000MPa(408kgf/mm2)、引張弾性率238GPa(24.3ton/mm2))をエマルションに着液させると、直に炭素繊維束表面が濡れて、約4秒で5cmのガラス容器の底に沈み、炭素繊維束へのエマルションの浸漬性は非常に良好であることを確認した。
<Manufacture of emulsion>
120 g of 6/66 binary copolymer polyamide resin thus obtained, 179.6 g of water and 0.4 g of sodium hydroxide were added into an autoclave equipped with a stirrer, and the state at a rotation speed of 500 rpm was maintained. The temperature was raised to 150 ° C., and the reaction was carried out for 30 minutes at 150 ° C. After completion of the reaction, it was cooled to 50 ° C. as it was, and the polyamide resin aqueous dispersion was taken out. The resin content of the obtained aqueous polyamide resin dispersion was 40 parts by weight with respect to 100 parts by weight of the aqueous dispersion. Furthermore, polyoxyethylene alkyl ether surfactant which is a nonionic surfactant that is liquid at 20 ° C. with water of 18820 in 300 g of an aqueous polyamide resin dispersion (manufactured by Kao Corporation, polyoxyethylene lauryl ether registered trademark “Emulgen 103”) 50 parts by weight were added with stirring at room temperature to obtain an emulsion in which polyamide particles were dispersed. The average particle size of the polyamide particles after ultrasonic treatment was 0.6 μm, and the average particle size did not change even after standing for 30 minutes, and no aggregation of the polyamide particles was observed. In addition, an unsized carbon fiber bundle cut to 1 cm in the fiber direction (manufactured by Toho Tenax Co., Ltd., registered trademark “Tenax STS-24K N00”, diameter 7 μm × 24000 filament, fineness 1.6 g / m, tensile strength 4000 MPa (408 kgf / mm 2 ) and tensile modulus of elasticity 238 GPa (24.3 ton / mm 2 )), the surface of the carbon fiber bundle is wetted directly and sinks to the bottom of a 5 cm glass container in about 4 seconds. It was confirmed that the emulsion was very good in the bundle.
<浸漬と乾燥>
次に、このエマルションの浴に、上記の未サイジングの炭素繊維束を連続的に浸漬させ、フィラメント間にポリアミド粒子を拡散させた。これを120℃〜150℃の乾燥炉に約120秒間通し、乾燥し、幅約15mmの炭素繊維束を得た。
<Dipping and drying>
Next, the unsized carbon fiber bundle was continuously immersed in the emulsion bath to diffuse the polyamide particles between the filaments. This was passed through a drying furnace at 120 ° C. to 150 ° C. for about 120 seconds and dried to obtain a carbon fiber bundle having a width of about 15 mm.
<炭素繊維束の評価>
得られた炭素繊維束中のサイジング剤の付着量は、炭素繊維重量100重量部に対して、0.7重量部であった。また、サイジング剤を付着した炭素繊維束の表面SEM像の窒素マッピングと、グラファイトの粘着シートで5回炭素繊維束の表面を剥いだ後に得られる粘着シートに張り付いた炭素繊維表面の窒素マッピング像の比較から、窒素原子の存在比率は変わらず、炭素繊維束の表面だけでなく内部にも均一にポリアミド粒子が付着していることを確認した。また、テーパ管内にφ1mmの穴を5ヶ所あけ、外側より0.5MPa圧力をかけ、圧縮空気を繊維束に直接吹き付けることにより開繊しつつ、テーパ管出口の下部に設置したテーブル上に散布した。得られた炭素繊維束について上述した方法で開繊率を測定したところ、53%の高い開繊率が得られた。
<Evaluation of carbon fiber bundle>
The adhesion amount of the sizing agent in the obtained carbon fiber bundle was 0.7 parts by weight with respect to 100 parts by weight of the carbon fiber. Also, nitrogen mapping of the surface SEM image of the carbon fiber bundle with the sizing agent attached, and nitrogen mapping image of the carbon fiber surface attached to the adhesive sheet obtained after peeling the surface of the carbon fiber bundle five times with a graphite adhesive sheet From this comparison, it was confirmed that the abundance ratio of nitrogen atoms did not change, and the polyamide particles were uniformly attached not only to the surface but also to the inside of the carbon fiber bundle. Also, 5 holes of φ1mm were drilled in the taper tube, 0.5 MPa pressure was applied from the outside, and the air was spread by spraying the compressed air directly on the fiber bundle, and was spread on the table installed at the lower part of the taper tube outlet. . When the opening rate of the obtained carbon fiber bundle was measured by the method described above, a high opening rate of 53% was obtained.
<炭素繊維強化熱可塑性樹脂成形体>
得られた炭素繊維束を16mmにカットしたもの、およびマトリックス樹脂として、ユ
ニチカ製“A1030FP”PA6樹脂パウダーを用意し、炭素繊維の供給量を600g/min、ポリアミドの供給量を730g/minにセットしてテーパ管内に導入した。
テーパ管内で空気を炭素繊維に吹き付けて繊維束を部分的に開繊しつつ、ポリアミドパウダーとともにテーパ管出口の下部に設置したテーブル上に散布した。散布された炭素繊維およびポリアミドパウダーを、テーブル下部よりブロワにて吸引し、定着させて、厚み5mm程度のランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を得た。
得られた炭素繊維ランダムマット形状の炭素繊維含有熱可塑性樹脂組成物を、260℃に加熱したプレス装置にて、3MPaにて5分間加熱し、繊維と樹脂の全目付け2700g/m2、厚み2.0mm、繊維体積含有率35Vol%の炭素繊維強化熱可塑青樹脂成形体を得た。得られた成形板には未含浸部が多数あり、曲げ物性は、曲げ強度210MPa、曲げ弾性率11GPaであった。結果を表1に示す。
<Carbon fiber reinforced thermoplastic resin molding>
Unita “A1030FP” PA6 resin powder prepared as a cut carbon fiber bundle of 16 mm and matrix resin, carbon fiber supply rate set to 600 g / min, polyamide supply rate set to 730 g / min And introduced into the taper tube.
While the fiber bundle was partially opened by blowing air onto the carbon fiber in the taper tube, it was sprayed on the table installed at the lower part of the taper tube outlet together with the polyamide powder. The dispersed carbon fibers and polyamide powder were sucked from the bottom of the table with a blower and fixed to obtain a random mat-shaped carbon fiber-containing thermoplastic resin composition having a thickness of about 5 mm.
The carbon fiber-containing thermoplastic resin composition in the form of a carbon fiber random mat was heated at 3 MPa for 5 minutes with a press apparatus heated to 260 ° C., and the total basis weight of fibers and resin was 2700 g / m 2 , thickness 2 A carbon fiber reinforced thermoplastic blue resin molded article having a fiber volume content of 35 vol% was obtained. The obtained molded plate had many unimpregnated portions, and the bending properties were a bending strength of 210 MPa and a bending elastic modulus of 11 GPa. The results are shown in Table 1.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012041656A JP5905740B2 (en) | 2012-02-28 | 2012-02-28 | Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012041656A JP5905740B2 (en) | 2012-02-28 | 2012-02-28 | Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013177705A JP2013177705A (en) | 2013-09-09 |
JP5905740B2 true JP5905740B2 (en) | 2016-04-20 |
Family
ID=49269588
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012041656A Expired - Fee Related JP5905740B2 (en) | 2012-02-28 | 2012-02-28 | Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5905740B2 (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5455141B1 (en) * | 2013-11-12 | 2014-03-26 | 竹本油脂株式会社 | Carbon fiber sizing agent, carbon fiber strand and carbon fiber composite material |
JP5570087B1 (en) * | 2014-03-06 | 2014-08-13 | 竹本油脂株式会社 | Sizing agent for carbon fiber, carbon fiber and carbon fiber composite material |
WO2015194457A1 (en) * | 2014-06-16 | 2015-12-23 | 帝人株式会社 | Reinforced fiber bundle and method for producing same |
KR102004068B1 (en) | 2015-01-16 | 2019-07-25 | 미쓰이 가가쿠 가부시키가이샤 | In a reinforcing fiber and a carbon fiber-reinforced thermoplastic resin molded article using the same, and a manufacturing method of the reinforcing fiber |
JP2016199681A (en) * | 2015-04-10 | 2016-12-01 | 東邦テナックス株式会社 | Fiber-reinforced composite material |
EP3690132A4 (en) | 2017-09-29 | 2021-06-30 | Sekisui Chemical Co., Ltd. | Reinforcing fiber bundle, reinforcing fiber open fabric, and fiber-reinforced composite, and manufacturing method thereof |
JPWO2019124389A1 (en) * | 2017-12-19 | 2020-07-16 | 株式会社リケン | Piston ring for internal combustion engine |
JP6889332B2 (en) | 2018-09-21 | 2021-06-18 | 積水化学工業株式会社 | Reinforced fiber bundles, reinforcing fiber spread fabrics, and fiber-reinforced composites, and methods for producing them. |
WO2020203925A1 (en) | 2019-03-29 | 2020-10-08 | 積水化学工業株式会社 | Method for manufacturing an opened carbon fiber bundle, and fiber reinforced composite material |
US20220162407A1 (en) | 2019-03-29 | 2022-05-26 | Sekisui Chemical Co., Ltd. | Opened carbon fibre bundle, fibre reinforced composite material, and method for producing opened carbon fibre bundle |
WO2024135676A1 (en) * | 2022-12-21 | 2024-06-27 | 東レ株式会社 | Fiber-reinforced resin substrate and method for producing fiber-reinforced resin substrate |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3106261B2 (en) * | 1991-02-25 | 2000-11-06 | 東レ株式会社 | Sizing agent for carbon fiber and carbon fiber treated with the sizing agent |
JP5222243B2 (en) * | 2009-07-13 | 2013-06-26 | 松本油脂製薬株式会社 | Reinforcing fiber sizing agents, synthetic fiber strands and fiber reinforced composites |
-
2012
- 2012-02-28 JP JP2012041656A patent/JP5905740B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2013177705A (en) | 2013-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5905740B2 (en) | Carbon fiber bundle and fiber reinforced thermoplastic resin molded article using the carbon fiber bundle | |
JP6105332B2 (en) | Reinforcing fiber and reinforcing fiber bundle comprising the same | |
US9475929B2 (en) | Fiber-reinforced thermoplastic resin composition, reinforcing fiber bundle, and process for production of fiber-reinforced thermoplastic resin composition | |
US20170297274A1 (en) | Hybrid long fiber thermoplastic composites | |
JP6361555B2 (en) | Resin coated carbon fiber and its carbon fiber reinforced composite material | |
JP5820927B2 (en) | Reinforcing carbon fiber bundle, method for producing the same, and method for producing a composite using the same | |
JP5908765B2 (en) | Manufacturing method of composite material | |
JP6211761B2 (en) | Carbon fiber bundle manufacturing method and carbon fiber bundle obtained by the manufacturing method | |
JP5905866B2 (en) | Sizing agent for carbon fiber | |
JP6154127B2 (en) | Method for producing reinforcing carbon fiber bundle and method for producing carbon fiber composite material using the same | |
JP2012007280A (en) | Carbon fiber bundle and method for producing the same, and molded article from the same | |
JP2006233346A (en) | Carbon fiber strand for reinforcing thermoplastic resin | |
JP2015178689A (en) | Reinforcing fiber bundle, method for producing the same and composite material using the same | |
WO2014045981A1 (en) | Reinforcing fiber bundle and composite material using same | |
JP4361401B2 (en) | Carbon fiber, carbon fiber reinforced thermoplastic resin, and method for producing carbon fiber | |
JP2006336131A (en) | Carbon fiber strand for reinforcing thermoplastic resin | |
JP2013119685A (en) | Opened carbon fiber bundle and method for producing the same | |
JP2006124852A (en) | Carbon fiber strand for thermoplastic resin reinforcement | |
JP2013119684A (en) | Opened carbon fiber bundle and method for producing the same | |
JP2013119686A (en) | Opened carbon fiber bundle and method for producing the same | |
JP2006077334A (en) | Carbon fiber for reinforcing thermoplastic resin | |
JP2006089614A (en) | Carbon fiber strand for thermoplastic resin reinforcement | |
JP2006207073A (en) | Carbon fiber strand for reinforcing thermoplastic resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151119 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151208 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160223 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160317 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5905740 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |