JP5904435B2 - Heavy metal ion measuring instrument - Google Patents

Heavy metal ion measuring instrument Download PDF

Info

Publication number
JP5904435B2
JP5904435B2 JP2011224432A JP2011224432A JP5904435B2 JP 5904435 B2 JP5904435 B2 JP 5904435B2 JP 2011224432 A JP2011224432 A JP 2011224432A JP 2011224432 A JP2011224432 A JP 2011224432A JP 5904435 B2 JP5904435 B2 JP 5904435B2
Authority
JP
Japan
Prior art keywords
water
heavy metal
adjustment liquid
container
liquid container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011224432A
Other languages
Japanese (ja)
Other versions
JP2012208105A (en
Inventor
幸明 原田
幸明 原田
エルザフティ シェリフ
エルザフティ シェリフ
吉晴 市川
吉晴 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2011224432A priority Critical patent/JP5904435B2/en
Publication of JP2012208105A publication Critical patent/JP2012208105A/en
Application granted granted Critical
Publication of JP5904435B2 publication Critical patent/JP5904435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は,ヒ素などの重金属汚染された可能性ある飲料水から,呈色反応を利用して対象とする重金属の存在の有無やその濃度を比色測定する分析法を用いた重金属イオン測定器において,携帯可搬が可能で且つ簡単な操作によって分析することのできる重金属イオン測定器に関するものである。
The present invention relates to a heavy metal ion measuring device using an analytical method for colorimetrically measuring the presence or concentration of a heavy metal of interest using a color reaction from drinking water possibly contaminated with heavy metals such as arsenic . The present invention relates to a heavy metal ion measuring instrument that is portable and can be analyzed by a simple operation.

厚生省の水質基準(非特許文献1)によれば,飲用可能な水中に溶存する有害性重金属の許容量は対象とする重金属の種類によってそれぞれ(Cd<0.01, Pb<0.01, Cr(6+)<0.05, Hg<0.0005, As<0.01 mg/l)などと規定されている。     According to the water quality standards of the Ministry of Health and Welfare (Non-Patent Document 1), the allowable amount of harmful heavy metals dissolved in drinkable water depends on the type of heavy metal (Cd <0.01, Pb <0.01, Cr (6 +) <0.05, Hg <0.0005, As <0.01 mg / l).

これらの物質のいずれかがこの基準値を超えた場合,重金属汚染水となる訳であるが,通常,その値が基準値を遥かに超えた高濃度でない限り,一般的にはその汚染水は無味,無臭である。また,これらの重金属が水中にイオンとして溶解している場合,原理的にはそのイオンがある特定の波長の光を吸収するため呈色することになるが,その色調は物質により異なるとともに,色濃度はイオン濃度ばかりではなく,観察水の厚さによって著しく異なって見える。とくに,上記許容量のように微量な濃度領域で,かつ観察水の厚さが薄い場合(例えば,コップ一杯の厚さ程度)では人間の目の感覚よって汚染を検出することは困難と考えられ,その検出に当たっては,高度な分析機器と訓練を経たオペレーターの存在が不可欠の要素となっている。   If any of these substances exceeds this reference value, it will be heavy metal contaminated water, but usually the contaminated water will not be highly concentrated unless its value is much higher than the reference value. Tasteless and odorless. In addition, when these heavy metals are dissolved as ions in water, in principle, the ions are colored to absorb light of a specific wavelength, but the color tone varies depending on the substance, The concentration looks not only different from the ion concentration but also depending on the thickness of the observation water. In particular, it is considered difficult to detect contamination by the sense of the human eye when the observation water is thin (for example, about a full glass thickness) in a very small concentration range as described above. In the detection, the presence of advanced analytical instruments and trained operators is an indispensable element.

しかしながら,これらの方法は震災、津波、洪水等の災害非常時、あるいは、井戸水や湧き水を使用する一般家庭などにおいては適用困難な方法であり,特別な専門的知識・技術を必要とせず,かつ携帯可能でその場検出することのできる小型の検出・分析機器の開発が強く望まれている。   However, these methods are difficult to apply in times of disaster such as earthquakes, tsunamis, floods, etc., or in ordinary households that use well water or spring water, and do not require special specialized knowledge and technology. There is a strong demand for the development of small detection / analysis instruments that are portable and can be detected on the spot.

なお,その場検出の観点からすれば,可搬型のエネルギー分散型蛍光エックス線分光分析装置を用いる方法(非特許文献2)や,イオン選択性電極を用いたイオン分析法(特許文献1)などが開発されているが,いずれの場合もその分野における専門知識,オペレーション技術が必要であり,一般の人々が家庭内等で日常的に使用できる技術とは言い難いのが現状である。   From the viewpoint of in-situ detection, there are a method using a portable energy dispersive X-ray fluorescence spectrometer (Non-Patent Document 2), an ion analysis method using an ion-selective electrode (Patent Document 1), and the like. Although it has been developed, in any case, it requires specialized knowledge and operation technology in that field, and it is difficult to say that it is a technology that ordinary people can use on a daily basis at home.

一方これとは別に,発明者らは,重金属イオンの選択的吸着体を開発するとともに,それらの吸着中には重金属イオンの吸着に伴い呈色反応による色変化が進行し,その色相変化から重金属イオン濃度を精度良く定量出来ることを見出した(非特許文献3)。   On the other hand, the inventors have developed a selective adsorbent of heavy metal ions, and during the adsorption, the color change due to the color reaction proceeds along with the adsorption of the heavy metal ions, and from the hue change, It was found that the ion concentration can be accurately quantified (Non-patent Document 3).

このような吸着体を使用することにより,特別な分析機器を用いること無く,比色試験によって容易に重金属イオン濃度を測定できることになる。したがって,これらの特性を応用することにより,重金属イオンその場検出が容易な可搬型検出器を構成することが可能となる。   By using such an adsorbent, the concentration of heavy metal ions can be easily measured by a colorimetric test without using a special analytical instrument. Therefore, by applying these characteristics, it is possible to configure a portable detector that can easily detect in situ heavy metal ions.

特開平9-89832号報JP 9-89832 A

環境庁告示第59号 (1974)Environmental Agency Notification No.59 (1974) 九州大学中央分析センター報告 第26号(2008)Kyushu University Central Analysis Center Report No. 26 (2008) Nanomaterials for Life Sciences Vol 2: NanostructuredOxides. 2009.Nanomaterials for Life Sciences Vol 2: NanostructuredOxides. 2009.

しかしながら,上記の方法により重金属イオンを検出する場合においても,被試験水のpH調整や反応助剤の添加・混合等の処理が必要であり(例えば,非特許文献3の選択吸着剤を用いたヒ素検出の場合,pHを7以下の酸性とすることが求められている),未経験者が被試験水量に合わせてそれらを調整することはかなり困難であることも事実である。     However, even when heavy metal ions are detected by the above method, it is necessary to adjust the pH of the water to be tested and add / mix the reaction aid (for example, using the selective adsorbent of Non-Patent Document 3). In the case of arsenic detection, it is required to make the pH acidic to 7 or less), and it is also a fact that it is quite difficult for an inexperienced person to adjust them according to the amount of water to be tested.

本発明は,重金属イオンの測定を任意の場所において迅速・かつ簡便に行うことのできる小型・軽量な重金属イオン測定器を提供することを目的にしたものであり,そのためには,被試験水の採取から計量・調合・呈色反応までの全過程を同一容器内で連続的に行うことのできるバッチ方式を採用した重金属イオン測定器を提供するものである。
The object of the present invention is to provide a small and lightweight heavy metal ion measuring device capable of measuring heavy metal ions quickly and easily at an arbitrary place. The present invention provides a heavy metal ion measuring apparatus employing a batch system capable of continuously performing all processes from collection to weighing, blending, and color reaction in the same container .

上述の目的を達成するための機器形態としては,検出管の一部あるいは全体を無色透明な材質(例えばガラス)で構成するとともに,そのサイズを片手で操作可能な大きさ(大略:直径10cm以下,長さ50cm以下,重量5kg以下)とし,その中に呈色反応を示す選択的吸着剤(固形センサ)を配した無色透明な小容器(以下受水容器2)を設置し,該固形センサの色相変化により目的とする重金属イオンの検出を行う。その際,被試験水の採取量を一定とし,その採取量に見合った量の調整液(pH調整や補助成分添加に使用)を予めカートリッジとして準備する(以下調整液容器3)。この両者の内容物を混合することにより,選択的吸着剤の呈色環境に適した水溶液条件を検出管内に構築する。重金属イオンの有無あるいはその濃度はこれらの操作によって得られた色相変化を基準となるカラースケールと対比することにより判定する。   As a device configuration for achieving the above-mentioned object, a part or the whole of the detection tube is made of a colorless and transparent material (for example, glass), and its size can be operated with one hand (generally: a diameter of 10 cm or less). , A length of 50 cm or less, and a weight of 5 kg or less), and a colorless and transparent small container (hereinafter referred to as a water receiving container 2) in which a selective adsorbent (solid sensor) exhibiting a color reaction is disposed. The target heavy metal ions are detected by the change in hue. At that time, the collected amount of water to be tested is made constant, and an adjustment liquid (used for pH adjustment and auxiliary component addition) corresponding to the collected amount is prepared in advance as a cartridge (hereinafter referred to as adjustment liquid container 3). By mixing these two contents, an aqueous solution condition suitable for the color environment of the selective adsorbent is established in the detection tube. The presence or absence of heavy metal ions or their concentration is determined by comparing the hue change obtained by these operations with a reference color scale.

被試験水量を一定にするには,検出管内部に一定容積の受水容器2を配置し,一旦その小容器全体に被試験水が満たされるまで検出管内に被試験水を導入し,その後過剰の被試験水を排出する。検出管内への試験水の導入には,スポイトもしくはシリンダーによる吸引や,上部に空気逃げをつけての検出管内中への被試験水の浸漬,もしくは上部からの被試験水の流し込みなどがある。   To make the amount of water to be tested constant, place a water receiving container 2 of a certain volume inside the detection tube, and once the test water is filled in the small container until the water to be tested is filled, Drain the water to be tested. Examples of introducing test water into the detection tube include suction with a dropper or cylinder, immersion of the test water into the detection tube with an air escape at the top, or pouring the test water from the top.

なお,この受水容器2の底部は,後述する調整液との混合に際しての外部操作により容易に破壊でき,かつ調整液と反応しないもの(例えばプラスチック膜など)であれば材質は問わない。   The bottom of the water receiving container 2 can be made of any material as long as it can be easily broken by an external operation during mixing with the adjustment liquid described later and does not react with the adjustment liquid (for example, a plastic film).

この受水容器2とは別に,調整液を充填した調整液容器3を検出管内に配置する。この調整液容器3の一部分は受水容器2の底部と同様に容易に破ることのできる隔壁をもつ。なお,この隔壁の材質は上記受水容器2の底面と同様の特性を有するものであればよい。被試験水が受水容器2に満たされ,過剰な水が排出された段階で,受水容器2の底部および調整液容器3の隔壁を外部操作によって破壊し,調整液と被試験水とを混合する。この調整液と被試験水との混合に際し,受水容器2と調整液容器3の合算容積よりも大きい容積の小容器を検出管内に配置してもよいが,調整液容器3の上部に破壊用隔壁を設け,その破壊用隔壁を受水容器2の底面となるように配置する(すなわち,受水容器2の底面を調整液容器3の破壊用隔壁と共用する)ことにより,一段の隔壁破壊で受水容器2と調整液容器3を連結させることができる。この調整液容器3の隔壁破壊には,ニードルを上部からノックする方法がある。その際,受水容器2の蓋の役割を果すものをニードル軸部に設けておき,隔壁破壊と同時に受水容器2に蓋をすることで受水容器2底部と調整液容器3の合体した小容器は閉鎖系とすることができ,上下振盪による液の均一化を容易に行うことができる。   Separately from the water receiving container 2, an adjustment liquid container 3 filled with the adjustment liquid is disposed in the detection tube. A part of the adjustment liquid container 3 has a partition wall that can be easily broken like the bottom of the water receiving container 2. In addition, the material of this partition should just have the characteristic similar to the bottom face of the said water receiving container 2. FIG. When the water to be tested is filled in the water receiving container 2 and excessive water is discharged, the bottom of the water receiving container 2 and the partition wall of the adjustment liquid container 3 are destroyed by external operation, and the adjustment liquid and the water to be tested are removed. Mix. When mixing the adjustment liquid and the water to be tested, a small container having a volume larger than the combined volume of the water receiving container 2 and the adjustment liquid container 3 may be disposed in the detection tube. A partition wall is provided, and the partition wall for destruction is arranged to be the bottom surface of the water receiving container 2 (that is, the bottom surface of the water receiving container 2 is shared with the partition wall for breaking the adjustment liquid container 3). The water receiving container 2 and the adjustment liquid container 3 can be connected by destruction. For breaking the partition wall of the adjustment liquid container 3, there is a method of knocking the needle from above. At that time, a thing that plays the role of the lid of the water receiving container 2 is provided in the needle shaft portion, and the water receiving container 2 is covered simultaneously with the breakage of the partition wall so that the bottom of the water receiving container 2 and the adjustment liquid container 3 are combined. The small container can be closed and the liquid can be easily homogenized by shaking up and down.

呈色性の個体重金属イオン選択吸着剤(以下センサ材5)は,容積一定の条件を損なわない範囲であれば,受水容器2底部もしくは調整液容器3のいずれに配置しても良いが,受水容器2に配置しておくと,被試験水に汚染が認められなかった場合には調整液の入った調整液容器3を交換するだけで測定に再利用できる。
上述のように,本発明の測定器は,被試験水の吸引採取から調整液との混合,センサ材の呈色反応までの諸過程に必要な機能を一種の閉鎖系と見なせる検出管内に構築したバッチ方式とすることにより,測定時における検出器外部からの操作を,スポイト吸引による試験水の採取,ニードル押込みによる受水容器の封鎖と調整液容器との一体化,検出器の振盪による試験水と調整液との混合,という極めてシンプルな操作方法としたものであり,片手操作が可能である。
The color-adsorbing individual body weight metal ion selective adsorbent (hereinafter referred to as sensor material 5) may be arranged at either the bottom of the water receiving container 2 or the adjustment liquid container 3 as long as the constant volume condition is not impaired. If it is placed in the water receiving container 2, if the test water is not contaminated, it can be reused for measurement simply by replacing the adjusting liquid container 3 containing the adjusting liquid.
As described above, the measuring instrument of the present invention is constructed in a detection tube that can be regarded as a kind of closed system for the functions required for various processes from the sampling of the water to be tested to mixing with the adjustment liquid and the color reaction of the sensor material. By adopting the batch method, the operation from the outside of the detector at the time of measurement can be performed by collecting the test water by dropper suction, sealing the receiving container by pushing the needle and integrating the adjustment liquid container, and testing by shaking the detector. This is a very simple operation method of mixing water and adjustment liquid, and can be operated with one hand.

上記携帯型重金属イオン検出器により,化学に対する専門知識,技術を持たない人でも,安全な飲み水を必要としているその場で,その対象水が有害重金属によって汚染されているか否かを容易に知ることが可能である。
なお,本法に使用される呈色性選択吸着剤としては,As,Cd,Hgなどの有害金属を対象とするものが開発されているが,対象物質に応じた呈色性選択吸着剤を開発することができれば,本法を他の金属ばかりではなく有害有機化合物の検出に応用できる。
With the above-mentioned portable heavy metal ion detector, even those who have no specialized knowledge or skills in chemistry can easily know whether or not the target water is contaminated with harmful heavy metals on the spot that requires safe drinking water. It is possible.
As color selective adsorbents used in this method, those targeting harmful metals such as As, Cd, and Hg have been developed. If developed, this method can be applied to the detection of harmful organic compounds as well as other metals.

検出管の基本構造の一例(スポイトタイプ)を図1に示す。 ここで,1は検出管,2は受水容器,3は調整液容器,4は受水容器2と調整液容器3を隔てる調整液容器隔膜,5は重金属イオンを選択吸着する呈色性センサ材,6は調整液容器隔膜破壊用ピン,7は試験水採取用スポイト,8は試験水採取口,9は隔膜破壊用ピンに取り付けられた受水容器2用の測定蓋,10は破壊ピン6を駆動するための押込み棒,11はセンサ材5の発色状態を比較するためのカラースケールである。 なおここで,重金属汚染の有無を判定する場合,広範囲の汚染濃度を判定できるカラースケール11(図2参照)を内蔵することは不要であり,測定対象とする重金属イオンの許容濃度前後の色対象のみをカラースケールとして配置すれば良い。An example (dropper type) of the basic structure of the detection tube is shown in FIG. Here, 1 is a detection tube, 2 is a water receiving container, 3 is an adjustment liquid container, 4 is an adjustment liquid container diaphragm that separates the water receiving container 2 and the adjustment liquid container 3, and 5 is a color sensor that selectively adsorbs heavy metal ions. Material, 6 for adjusting liquid container diaphragm breaking pin, 7 for dropper for collecting test water, 8 for test water sampling port, 9 for measuring lid for receiving container 2 attached to the diaphragm breaking pin, and 10 for breaking pin A push bar 11 for driving 6 and a color scale 11 for comparing the color development state of the sensor material 5. Here, when determining the presence or absence of heavy metal contamination, it is not necessary to incorporate a color scale 11 (see FIG. 2) that can determine a wide range of contamination concentrations, and color objects around the permissible concentration of heavy metal ions to be measured. Need only be arranged as a color scale. 一例として,Asイオンの呈色性選択吸着剤をセンサ材とした場合のAsイオン濃度とセンサ材の色相変化との関係を図2に示した。 なお,ここでは,Asイオン濃度:0〜50ppbの範囲について,カラーNo.1〜5に分けて示したものである。As an example, FIG. 2 shows the relationship between the As ion concentration and the hue change of the sensor material when the As ion colorimetric selective adsorbent is used as the sensor material. It should be noted that here, for the range of As ion concentration: 0 to 50 ppb, color No. 1 to 5 are shown separately.

検出管の基本構造を図1のスポイトタイプを例に説明する。
検出管の中には受水容器2と調整液容器3の二つの容器があり,これらは調整液容器3の上部にある調整液容器隔膜で接している。なお,受水容器2は,底面を有さない円筒状とし,その側面をネジ込みあるいは擦り合わせ等により調整液容器3の上部に密着させ,その底面を調整液容器隔膜4と共有することにより,後述するような測定時における隔膜の破壊工程を一段階で行うことができる。
The basic structure of the detection tube will be described taking the dropper type of FIG. 1 as an example.
In the detection tube, there are two containers, a water receiving container 2 and an adjustment liquid container 3, which are in contact with an adjustment liquid container diaphragm at the upper part of the adjustment liquid container 3. The water receiving container 2 has a cylindrical shape having no bottom surface, the side surface thereof is closely attached to the upper part of the adjustment liquid container 3 by screwing or rubbing, and the bottom surface is shared with the adjustment liquid container diaphragm 4. The diaphragm breaking process at the time of measurement as described later can be performed in one stage.

さらに,検出管内部には押し込み棒10があり,受水容器2に被試験液が満たされた後,外部から検定者がこの棒を押すなどの行為で調整液容器隔膜4を破ることができる。その時,押し込み棒に付属した測定蓋9が受水容器2に密着して蓋をする構造とすることにより,受水容器2と調整液容器3で形成された空間が密閉され,振盪に際して溶液の外部漏洩が防止される。呈色性選択吸着剤であるセンサ材5は受水容器2の中にあり,押し込み棒を押した後,検出管全体を軽く振ることで均一となった溶液と反応し,対象とする重金属イオンが検出できれば呈色反応を示す。なお,この反応に伴う色調変化を見るためには,検出管および受水容器は透明もしくは必要部分が見える構造とする。検出管の一部に選択吸着剤の呈色反応度を表す基準の色対象(カラースケール11)を配置しておけば汚染の有無を容易に判断することができるとともに,検出管とは別に用意したより詳細なカラースケールと対比することにより汚染濃度を判定することができる。
なお,本検出器による測定操作は,スポイトにより被試験水を吸引して受水容器2に被試験液を満たした後,スポイト部を介して押し込み棒10を下方に押込む(これにより,測定蓋9による受水容器2の封鎖,調整液容器隔膜4の破壊および受水容器2と調整液容器3の一体化が生じる)。ついで,検出管を上下等に振盪し,試験水と調整液とを混合した後,所定の時間経過後,センサ材5の色相変化をチェックする。
このように、本検出器において必要とされる外部からの測定操作は、スポイトによる被試験水を吸引、スポイト部を介して押し込み棒の押込および検出管の振盪、センサ材色相判定といった単純なものであり、その操作には特段の知識・技術を必要としないものである。
Further, there is a push rod 10 inside the detection tube, and after the water receiving container 2 is filled with the liquid to be tested, the adjuster container diaphragm 4 can be broken by an act such as pushing the rod from the outside by an examiner. . At this time, the measurement lid 9 attached to the push-in rod is in close contact with the water receiving container 2 so that the space formed by the water receiving container 2 and the adjustment liquid container 3 is sealed, and the solution is not removed during shaking. External leakage is prevented. The sensor material 5 which is a color-selective adsorbent is in the water receiving container 2, and after pressing the push-in rod, it reacts with the uniform solution by gently shaking the entire detection tube, and the target heavy metal ions If can be detected, a color reaction is shown. In order to see the color change due to this reaction, the detector tube and the water receiving container should be transparent or have a structure where the necessary parts can be seen. If a reference color object (color scale 11) indicating the coloration reactivity of the selective adsorbent is placed in a part of the detection tube, it is possible to easily determine the presence or absence of contamination and to prepare separately from the detection tube The contamination concentration can be determined by comparing with the more detailed color scale.
In this measurement operation, the test water is sucked with a dropper to fill the water-receiving container 2 with the liquid to be tested, and then the push-in rod 10 is pushed downward through the dropper part (the measurement Sealing of the water receiving container 2 by the lid 9, destruction of the adjustment liquid container diaphragm 4 and integration of the water receiving container 2 and the adjustment liquid container 3 occur). Next, the detection tube is shaken up and down, the test water and the adjustment liquid are mixed, and after a predetermined time has elapsed, the hue change of the sensor material 5 is checked.
In this way, the external measurement operation required for this detector is as simple as sucking water under test with a dropper, pushing the push rod through the dropper, shaking the detection tube, and determining the sensor material hue. The operation does not require any special knowledge or skills.

有害重金属としてヒ素を対象とした検出器の実施例を示す。ヒ素の呈色性選択吸着剤としては,非特許文献3(ヒ素イオン吸着素子と,それを用いた水中のAsイオン濃度検出方法)にあるTiOナノマテリアル基盤のヒ素(V)イオン光学センサを使用した。
本試験に使用した検出管は外径約12mm,長さ約100mmのスポイトタイプのものであり,受水容器および調整液容器の外径はいずれも約8mmで両容器の合計内容積は約0.5mlである。また,測定に使用したカラースケールを図2に示した。
An embodiment of a detector targeting arsenic as a toxic heavy metal will be described. As a selective adsorbent for coloring arsenic, an arsenic (V) ion optical sensor based on TiO 2 nanomaterials described in Non-Patent Document 3 (arsenic ion adsorption element and As ion concentration detection method in water using the same) is used. used.
The detection tube used in this test is of the dropper type with an outer diameter of about 12 mm and a length of about 100 mm. The outer diameter of the water receiving container and the adjustment liquid container are both about 8 mm, and the total inner volume of both containers is about 0. .5 ml. The color scale used for the measurement is shown in FIG.

試験液のヒ素(V)イオン濃度を種々変化させた場合における発色状態を目視検査により測定した結果を表1に示した。   Table 1 shows the results obtained by visual inspection of the colored state when the arsenic (V) ion concentration of the test solution was variously changed.


ここで,本発明の目的の一つが一般人にも容易に測定可能であることに鑑み,この発色状態の目視検査(発色状態とカラースケールとの比較)に際しては,専門知識を有さない一般人3名が各試験条件(ヒ素(V)イオン濃度)について各々繰返し3回実施したものである。

Here, in view of the fact that one of the objects of the present invention can be easily measured by the general public, this visual inspection of the color development state (comparison between the color development state and the color scale) 3 The name was repeated three times for each test condition (arsenic (V) ion concentration).

これらの結果から判るように,本発明の測定法および測定器具を使用することにより,専門知識を有さない一般人であっても有害重金属イオンの有無ばかりではなく,その濃度をも極めて容易に測定できるものである。   As can be seen from these results, by using the measuring method and measuring instrument of the present invention, it is very easy to measure not only the presence or absence of harmful heavy metal ions but also the concentration of ordinary people who do not have specialized knowledge. It can be done.

本発明は,飲料水中に含まれる人体に有害な重金属イオンのその場検出を目的に開発した小型の携帯検出器であり,その特徴は,測定に当たって特別な付属設備・機器等を必要とせず,かつ,その測定操作にも専門性を必要としないというものである。本発明を利用することにより,世界的に課題となっている水資源の開発・利用促進を進展できるばかりではなく,僻地,被災地などにおける飲み水の安全性向上に大きく寄与できるものと考えられる。   The present invention is a small portable detector developed for the purpose of in-situ detection of heavy metal ions harmful to the human body contained in drinking water, and its features do not require special accessory equipment or equipment for measurement. In addition, the measurement operation does not require expertise. By using the present invention, it is considered that not only can the development and promotion of water resources, which are a global issue, be promoted, but it can also greatly contribute to the improvement of the safety of drinking water in remote areas and disaster areas. .

1 検出器
2 受水容器
3 調整液容器
4 調整液容器隔膜
5 センサ材
6 破壊ピン
7 スポイト
8 水採取口
9 測定蓋
10 押込み棒
11 カラースケール
DESCRIPTION OF SYMBOLS 1 Detector 2 Water receiving container 3 Adjustment liquid container 4 Adjustment liquid container diaphragm 5 Sensor material 6 Breaking pin 7 Dropper 8 Water sampling port 9 Measuring lid 10 Push rod 11 Color scale

Claims (3)

水中の重金属イオンの測定において、呈色反応性選択吸着剤を用いてその色相変化を利用する重金属イオン測定器であって、
被試験水の採取から計量・調合・呈色反応までの全過程を同一容器内で行うことのできるバッチ方式とした重金属イオン測定器において、
前記被試験水が満たされる受水容器(2)と、
前記被試験水の採取量に見合った量の調整液を有する調整液容器(3)と、
調整液容器(3)の上部にあると共に、受水容器(2)の底面と共有された調整液容器隔膜(4)と、
受水容器(2)に設けられた呈色性選択吸着剤(5)と、
測定時における調整液容器隔膜(4)の破壊を行う手段(6、10)と、
を備えることを特徴とする重金属イオン測定器。
In the measurement of heavy metal ions in water, it is a heavy metal ion measuring instrument that uses the change in hue using a color reactive selective adsorbent ,
In a heavy metal ion measuring device that is a batch system that can perform the entire process from collection of water to be tested to weighing, blending, and color reaction in the same container ,
A water receiving container (2) filled with the test water;
An adjustment liquid container (3) having an adjustment liquid in an amount commensurate with the amount of water to be tested,
An adjustment liquid container diaphragm (4) located at the top of the adjustment liquid container (3) and shared with the bottom surface of the water receiving container (2);
A color-selective adsorbent (5) provided in the water-receiving container (2);
Means (6, 10) for breaking the adjustment liquid container diaphragm (4) at the time of measurement;
A heavy metal ion measuring instrument comprising:
前記隔膜の破壊を行う手段は、押し込み棒(10)と、調整液容器隔膜破壊用ピン(6)とを有することを特徴とする請求項1に記載の重金属イオン測定器。2. The heavy metal ion measuring device according to claim 1, wherein the means for breaking the diaphragm includes a push-in rod (10) and a pin (6) for adjusting liquid container diaphragm breaking. 請求項1又は2に記載の重金属イオン測定器において、さらに押し込み棒(10)に付属した測定蓋(9)を有し、  The heavy metal ion measuring instrument according to claim 1 or 2, further comprising a measurement lid (9) attached to the push rod (10),
前記押し込み棒(10)によって調整液容器隔膜(4)が破られたときに、当該測定蓋(9)は受水容器(2)に密着して蓋をする構造であることを特徴とする重金属イオン測定器。  Heavy metal, characterized in that when the adjustment liquid container diaphragm (4) is broken by the push rod (10), the measurement lid (9) is in close contact with the water receiving container (2) Ion meter.
JP2011224432A 2011-03-16 2011-10-12 Heavy metal ion measuring instrument Expired - Fee Related JP5904435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011224432A JP5904435B2 (en) 2011-03-16 2011-10-12 Heavy metal ion measuring instrument

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011057450 2011-03-16
JP2011057450 2011-03-16
JP2011224432A JP5904435B2 (en) 2011-03-16 2011-10-12 Heavy metal ion measuring instrument

Publications (2)

Publication Number Publication Date
JP2012208105A JP2012208105A (en) 2012-10-25
JP5904435B2 true JP5904435B2 (en) 2016-04-13

Family

ID=47187961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011224432A Expired - Fee Related JP5904435B2 (en) 2011-03-16 2011-10-12 Heavy metal ion measuring instrument

Country Status (1)

Country Link
JP (1) JP5904435B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437496B1 (en) 2012-11-12 2014-09-04 대한민국 Portable heavy metal detector sensor
JP5949864B2 (en) * 2014-09-16 2016-07-13 ダイキン工業株式会社 Container refrigeration equipment
CN104267027A (en) * 2014-10-17 2015-01-07 北京理工大学 Method for detecting target object by utilizing color-developable imprinting colloid film
CN104297240A (en) * 2014-10-24 2015-01-21 中国人民解放军国防科学技术大学 Method and device applied to detection of toxic metal ions in water
JP7064069B2 (en) * 2018-12-10 2022-05-10 テクノグローバル株式会社 Micro sampling chip
CN110186989A (en) * 2019-05-31 2019-08-30 中兴仪器(深圳)有限公司 A kind of water quality heavy metal online analyzer

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000515968A (en) * 1996-07-12 2000-11-28 アイビーシー・アドヴァンスト・テクノロジーズ・インコーポレーテッド Colorimetric determination of ions
JP3792444B2 (en) * 1999-07-27 2006-07-05 株式会社日研生物医学研究所 Simple inspection tool
JP2001183038A (en) * 1999-12-28 2001-07-06 Yazaki Corp Metal indicator and absorption refrigerating machine with it
JP2001245873A (en) * 2000-03-02 2001-09-11 Terumo Corp Auxuiliary tool
JP2002085052A (en) * 2000-09-14 2002-03-26 Kyoritsu Rikagaku Kenkyusho:Kk Tool for simple water analysis using enzymatic reaction
JP3880057B2 (en) * 2004-08-09 2007-02-14 株式会社創成電子 Sample characteristic measurement device
JP2007205924A (en) * 2006-02-02 2007-08-16 Nippon Sheet Glass Co Ltd Metal ion sensor and metal ion absorber
JP2007333689A (en) * 2006-06-19 2007-12-27 Hiroshi Yokozawa Simple measurement kit
JP5757610B2 (en) * 2011-01-14 2015-07-29 国立研究開発法人物質・材料研究機構 Arsenic (As) ion adsorption element, As ion concentration detection method in water using the same, and As removal method from water

Also Published As

Publication number Publication date
JP2012208105A (en) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5904435B2 (en) Heavy metal ion measuring instrument
Alahmad et al. A colorimetric paper-based analytical device coupled with hollow fiber membrane liquid phase microextraction (HF-LPME) for highly sensitive detection of hexavalent chromium in water samples
Levin et al. Monitoring of fluoride in water samples using a smartphone
US11408826B2 (en) Portable organic molecular sensing device and related systems and methods
Ellis et al. Determination of water quality
Mills et al. Measurement of environmental pollutants using passive sampling devices–an updated commentary on the current state of the art
Šrámková et al. A novel approach to lab-in-syringe head-space single-drop microextraction and on-drop sensing of ammonia
Allan et al. Measuring nonpolar organic contaminant partitioning in three Norwegian sediments using polyethylene passive samplers
Jaikang et al. Conductometric determination of ammonium ion with a mobile drop
Danchana et al. Spectrophotometric determination of bromide in water using the multisyringe flow injection analysis technique coupled to a gas-diffusion unit
Shih et al. Rapid analysis of triclosan in water samples using an in-tube ultrasonication assisted emulsification microextraction coupled with gas chromatography-electron capture detection
CN111380862A (en) Method for detecting concentration of ethanol in alcohol disinfectant product
Walash et al. Kinetic spectrophotometric determination of famotidine in pharmaceutical preparations
Krata et al. Cold vapour matrix-independent generation and isotope dilution inductively coupled plasma mass spectrometry for reference measurements of Hg in marine environmental samples
Amornthammarong et al. A simplified coulometric method for multi-sample measurements of total dissolved inorganic carbon concentration in marine waters
Sha et al. A simple and rapid method for determination of paraquat in human urine and plasma by improved solid adsorption using equipment built in-house
ITTO20110605A1 (en) PROCEDURE FOR THE QUANTITATIVE DETERMINATION OF TOTAL CHLORINE IN A MATRIX
Voinea et al. Study case of potable water from wells in the metropolitan Bucharest area. Influences on human health–interdisciplinary lab
Kopeć et al. Ultra‐sensitive Voltammetric Aluminum Determination on a Solid Bismuth Electrode for Water Filter Verification
Fontela et al. Carbonate system species and pH
Saranchina et al. A simple method for colorimetric and naked-eye detection of mercury in fish products
RU2567844C1 (en) Method of determining selenium(iv)
US11022557B2 (en) Test kit for detecting arsenic
RU2760002C2 (en) Method for determining mass concentration of total iron in associated waters and waters of oil and gas condensate fields by x-ray fluorescence method
Yücel et al. Development of a Digital Imaging-Based Colorimetric Analysis Method for the Determination of Phenolphthalein in Drinking Water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150714

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160223

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5904435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees