JP5902429B2 - Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines - Google Patents

Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines Download PDF

Info

Publication number
JP5902429B2
JP5902429B2 JP2011217925A JP2011217925A JP5902429B2 JP 5902429 B2 JP5902429 B2 JP 5902429B2 JP 2011217925 A JP2011217925 A JP 2011217925A JP 2011217925 A JP2011217925 A JP 2011217925A JP 5902429 B2 JP5902429 B2 JP 5902429B2
Authority
JP
Japan
Prior art keywords
gas
flow path
reducing valve
pressure reducing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011217925A
Other languages
Japanese (ja)
Other versions
JP2013075277A (en
Inventor
元道 石川
元道 石川
佐竹 志伸
志伸 佐竹
正明 東
正明 東
平野 正
正 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2011217925A priority Critical patent/JP5902429B2/en
Publication of JP2013075277A publication Critical patent/JP2013075277A/en
Application granted granted Critical
Publication of JP5902429B2 publication Critical patent/JP5902429B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Accessories For Mixers (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、埋設パイプラインの漏洩検査ガス混合装置、及びこれを用いた埋設パイプラインの漏洩検査方法に関するものである。   The present invention relates to a leakage inspection gas mixing device for buried pipelines and a leakage inspection method for buried pipelines using the same.

地震等の災害発生時には、ガス供給を行う埋設パイプラインは災害発生箇所の上流側でガスの流通を遮断する。その後災害発生箇所へのガス供給を再開するためには、ガス供給停止エリアの全体で埋設パイプラインの健全性を確認することが必要であり、広いエリアに亘ってガス供給を停止した場合には、速やかに埋設パイプラインの健全性を確認してガス供給停止から復旧に至るまでの時間をできる限り短縮することが求められている。   In the event of a disaster such as an earthquake, a buried pipeline that supplies gas shuts off the gas distribution upstream of the location of the disaster. In order to resume gas supply to the disaster location after that, it is necessary to check the soundness of the buried pipeline in the entire gas supply stop area, and when the gas supply is stopped over a wide area Therefore, it is required to quickly check the soundness of the buried pipeline and shorten the time from gas supply stop to recovery as much as possible.

これに対しては、ガス供給を停止した広いエリアを複数の比較的狭いエリアにブロック化し、埋設パイプラインの健全性が確認できた上流側のブロックから順次ガス供給を再開することで早期の復旧が可能になる。下記特許文献1に記載された災害時のガス供給工法によると、埋設パイプラインの漏洩・損傷箇所を探査し、特定された漏洩・損傷箇所の上流側に当たる全ての埋設パイプラインの選択箇所にガス遮断部材を充填することで、特定された漏洩・損傷箇所の上流側をブロック化することが提案されている。   To cope with this, the wide area where the gas supply was stopped was blocked into a plurality of relatively narrow areas, and the gas supply was restarted sequentially from the upstream block where the soundness of the buried pipeline was confirmed. Is possible. According to the gas supply method at the time of a disaster described in Patent Document 1 below, the leaked / damaged portion of the buried pipeline is searched, and gas is supplied to selected locations of all buried pipelines that are upstream of the specified leaked / damaged portion. It has been proposed to block the upstream side of the specified leakage / damage location by filling the blocking member.

特開2010−139039号公報JP 2010-139039 A

前述の従来技術のように、広いガス供給停止エリアをブロック化した後には、ガス供給の上流側から順次各ブロック単位で埋設パイプラインの漏洩検査を行い、埋設パイプラインの健全性が確認されたブロック毎にガス供給を再開させる。ここでの漏洩検査は、各ブロック内の埋設パイプラインに検査ガスを注入し、検査ガスが注入された埋設パイプラインに対して地上でガス検知を行い、ガスが検知されないことで埋設パイプラインの健全性を確認する。   After blocking the wide gas supply stop area as in the above-mentioned conventional technology, the leakage of the embedded pipeline was inspected in units of blocks sequentially from the upstream side of the gas supply, and the soundness of the embedded pipeline was confirmed. Restart gas supply for each block. In this leak inspection, inspection gas is injected into the buried pipeline in each block, gas detection is performed on the buried pipeline where the inspection gas is injected, and no gas is detected. Check soundness.

この際に埋設パイプラインに注入される検査ガスは、二次的な被害を防ぐために非可燃性のガスを用いることが求められる。また一方で、既存のガス検知器で漏洩した検査ガスを容易に検知できるように、所定の割合で可燃ガスを含んでいることが求められる。このため、検査ガスは、可燃ガス(メタン)の割合が12%であり、窒素の割合が88%となる混合ガスが用いられ、その混合ガスの成分割合を高い精度で管理することが必要になる。   At this time, the inspection gas injected into the buried pipeline is required to use a non-flammable gas in order to prevent secondary damage. On the other hand, it is required to contain a combustible gas at a predetermined ratio so that the inspection gas leaked by the existing gas detector can be easily detected. For this reason, the test gas is a mixed gas having a combustible gas (methane) ratio of 12% and a nitrogen ratio of 88%, and it is necessary to manage the component ratio of the mixed gas with high accuracy. Become.

しかしながらこれまでは、このような高精度の成分割合を有する検査ガスを埋設パイプラインの漏洩検査を行う現場で即座に得ることができず、求められる割合でメタンと窒素を容器内に混入し、その成分が容器内全体で安定するまで養生させることが行われていた。これによると、成分が安定するまでに時間がかかり、ブロック内での埋設パイプラインの漏洩検査を迅速に行うことができない問題があった。   However, until now, it has not been possible to immediately obtain a test gas having such a high-accuracy component ratio at the site where leakage inspection of an embedded pipeline is performed, and methane and nitrogen are mixed into the container at the required ratio, Curing was performed until the components were stabilized throughout the container. According to this, there is a problem that it takes time until the components are stabilized, and the leakage inspection of the buried pipeline in the block cannot be performed quickly.

本発明は、このような問題に対処することを課題の一例とするものである。すなわち、所望の成分割合を有する検査ガスを埋設パイプラインの漏洩検査を行う現場で即座に混合することができること、ブロック内での埋設パイプラインの漏洩検査を迅速に行い、ガス供給停止の早期復旧を実現可能にすること、等が本発明の目的である。   This invention makes it an example of a subject to cope with such a problem. That is, the inspection gas having the desired component ratio can be immediately mixed at the site where the leakage inspection of the embedded pipeline is performed, the leakage inspection of the embedded pipeline in the block is quickly performed, and the gas supply stoppage is quickly restored. It is an object of the present invention to make this possible.

このような目的を達成するために、本発明は、以下の構成を少なくとも具備するものである。   In order to achieve such an object, the present invention comprises at least the following configuration.

埋設パイプラインの漏洩検査を行うために、埋設パイプラインに注入する検査ガスを混合する装置であって、第1成分ガスの供給源に接続される入口端を有する第1流路と、第2成分ガスの供給源に接続される入口端を有する第2流路と、前記第1流路と前記第2流路に連通して前記第1成分ガスと前記第2成分ガスの混合ガスが流通すると共に前記埋設パイプラインの注入口に接続される出口端を有する混合流路を備え、前記第1流路は前記第1成分ガスの成分割合を設定する第1減圧弁を備え、前記第2流路は前記第2成分ガスの成分割合を設定する第2減圧弁を備えており、前記第1減圧弁と前記第2減圧弁は互いの圧力制御室が連通しており、前記第1流路は前記第1減圧弁を跨ぐバイパス流路を備え、該バイパス流路には前記第1減圧弁と異なる設定圧の補助減圧弁が設けられ、前記バイパス流路は前記第1減圧弁と前記第2減圧弁の圧力制御室に連通していることを特徴とする埋設パイプラインの漏洩検査ガス混合装置。 A device for mixing a test gas to be injected into the buried pipeline in order to perform a leak test on the buried pipeline, the first flow path having an inlet end connected to the supply source of the first component gas, and a second A second flow path having an inlet end connected to a component gas supply source, and a mixed gas of the first component gas and the second component gas is communicated with the first flow path and the second flow path. And a mixing flow path having an outlet connected to the inlet of the buried pipeline, the first flow path including a first pressure reducing valve for setting a component ratio of the first component gas, and the second flow path. The flow path includes a second pressure reducing valve that sets a component ratio of the second component gas. The first pressure reducing valve and the second pressure reducing valve communicate with each other in pressure control chambers , and the first flow The path includes a bypass flow path straddling the first pressure reducing valve, and the bypass flow path includes the first flow path. Valve and is provided with an auxiliary pressure reducing valve of a different set pressure, the bypass flow path leakage inspection gas buried pipeline, characterized in that it communicates with the pressure control chamber of the second pressure reducing valve and the first pressure reducing valve Mixing equipment.

このような特徴を有する本発明は、所望の成分割合を有する検査ガスを埋設パイプラインの漏洩検査を行う現場で即座に得ることができ、ブロック内での埋設パイプラインの漏洩検査を迅速に行い、ガス供給停止の早期復旧を実現することができる。   The present invention having such a feature makes it possible to immediately obtain a test gas having a desired component ratio at a site where a leakage inspection of an embedded pipeline is performed, and to quickly perform a leakage inspection of the embedded pipeline within a block. In addition, it is possible to realize an early recovery from a gas supply stop.

本発明の一実施形態に係る埋設パイプラインの漏洩検査ガス混合装置を示した説明図である。It is explanatory drawing which showed the leakage inspection gas mixing apparatus of the buried pipeline which concerns on one Embodiment of this invention. 本発明の実施形態に係る漏洩検査ガス混合装置の形態例を示した説明図である。図2(a)が正面図、図2(b),(c)が左右側面図、図2(d)が平面図を示している。It is explanatory drawing which showed the example of the form of the leak test | inspection gas mixing apparatus which concerns on embodiment of this invention. 2A is a front view, FIGS. 2B and 2C are left and right side views, and FIG. 2D is a plan view. 本発明の実施形態に係る漏洩検査ガス混合装置を用いた埋設パイプラインの漏洩検査方法を示す説明図である。It is explanatory drawing which shows the leakage inspection method of the buried pipeline using the leakage inspection gas mixing apparatus which concerns on embodiment of this invention.

以下、図面を参照しながら、本発明の実施形態を説明する。図1は本発明の一実施形態に係る埋設パイプラインの漏洩検査ガス混合装置を示した説明図である。漏洩検査ガス混合装置1は、埋設パイプラインの漏洩検査を行うために、埋設パイプラインに注入する検査ガスを複数の成分ガスを混合することで製造する装置であって、第1流路10、第2流路20、混合流路30を備えている。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory view showing a leakage inspection gas mixing device for an embedded pipeline according to an embodiment of the present invention. The leakage inspection gas mixing apparatus 1 is an apparatus that manufactures the inspection gas injected into the embedded pipeline by mixing a plurality of component gases in order to perform the leakage inspection of the embedded pipeline. A second flow path 20 and a mixing flow path 30 are provided.

第1流路10は、図示省略した第1成分ガスの供給源に接続される入口端10Aを有しており、第2流路20は、図示省略した第2成分ガスの供給源に接続される入口端20Aを有している。混合流路30は、第1流路10と第2流路20に連通しており、第1流路10を流れる第1成分ガスと第2流路20を流れる第2成分ガスの混合ガスが流通する流路である。混合流路30は、図示省略の埋設パイプラインにおける注入口に直接又は供給ホースなどを介して接続される出口端30Aを有している。   The first flow path 10 has an inlet end 10A connected to a supply source of a first component gas (not shown), and the second flow path 20 is connected to a supply source of a second component gas (not shown). It has an inlet end 20A. The mixed flow path 30 communicates with the first flow path 10 and the second flow path 20, and a mixed gas of the first component gas flowing through the first flow path 10 and the second component gas flowing through the second flow path 20 is present. It is a flow path that circulates. The mixing channel 30 has an outlet end 30A connected directly or via a supply hose or the like to an inlet in a buried pipeline (not shown).

第1流路10は第1成分ガスの成分割合を設定する第1減圧弁11を備えている。また、第2流路20は第2成分ガスの成分割合を設定する第2減圧弁21を備えている。そして、第1減圧弁11と第2減圧弁21は互いの圧力制御室11a,21aが連通路12によって連通している。   The first flow path 10 includes a first pressure reducing valve 11 that sets a component ratio of the first component gas. The second flow path 20 is provided with a second pressure reducing valve 21 that sets the component ratio of the second component gas. The first pressure reducing valve 11 and the second pressure reducing valve 21 are in communication with each other through the communication passage 12 between the pressure control chambers 11 a and 21 a.

図示の例では、第1流路10における第1減圧弁11の下流側と第2流路20における第2減圧弁21の下流側の両方に、流量調整手段13,22が備えられている。流量調整手段13,22は、図示のように第1流路10と第2流路20の両方に設けても、いずれか一方に設けてもよい。   In the illustrated example, flow rate adjusting means 13 and 22 are provided on both the downstream side of the first pressure reducing valve 11 in the first flow path 10 and the downstream side of the second pressure reducing valve 21 in the second flow path 20. The flow rate adjusting means 13 and 22 may be provided in both the first flow path 10 and the second flow path 20 as shown, or may be provided in either one.

流量調整手段13は、切替弁13Aを介して2つの流路13B,13Cが設けられ、この2つの流路13B,13Cは下流側で合流して混合流路30に連通している。2つの流路13B,13Cのそれぞれには流量計13B1,13C1とニードル弁13B2,13C2が設けられている。流量調整手段22も同様であって、切替弁22Aを介して2つの流路22B,22Cが設けられ、2つの流路22B,22Cは下流側で合流して混合流路30に連通している。2つの流路22B,22Cのそれぞれには流量計22B1,22C1とニードル弁22B2,22C2が設けられている。   The flow rate adjusting means 13 is provided with two flow paths 13B and 13C via a switching valve 13A, and the two flow paths 13B and 13C merge on the downstream side and communicate with the mixing flow path 30. Flow meters 13B1 and 13C1 and needle valves 13B2 and 13C2 are provided in the two flow paths 13B and 13C, respectively. The flow rate adjusting means 22 is also the same, and two flow paths 22B and 22C are provided via the switching valve 22A, and the two flow paths 22B and 22C are merged downstream and communicated with the mixing flow path 30. . Each of the two flow paths 22B and 22C is provided with flow meters 22B1 and 22C1 and needle valves 22B2 and 22C2.

図示の例では、第1流路10は第1減圧弁11を跨ぐバイパス流路14を備えている。バイパス流路14には第1減圧弁11と異なる設定圧の補助減圧弁15が設けられている。バイパス流路14は、連通路12に連通することで第1減圧弁11と第2減圧弁21の圧力制御室11a,21aに連通している。バイパス流路14には、連通路12との連通箇所の下流側に圧抜き弁16が設けられている。   In the illustrated example, the first flow path 10 includes a bypass flow path 14 that straddles the first pressure reducing valve 11. The bypass passage 14 is provided with an auxiliary pressure reducing valve 15 having a set pressure different from that of the first pressure reducing valve 11. The bypass flow path 14 communicates with the pressure control chambers 11 a and 21 a of the first pressure reducing valve 11 and the second pressure reducing valve 21 by communicating with the communication path 12. In the bypass channel 14, a pressure relief valve 16 is provided on the downstream side of the communication point with the communication path 12.

図示の例では、第1流路10と第2流路20の入口端10A,20Aの下流側には、圧力計元弁10B,20Bを介して圧力計10C,20Cが接続されており、更にブロー弁10D,20Dを介してベント流路10E,20Eが接続されている。また、第1流路10と第2流路20の圧力計元弁10B,20Bの下流側にはそれぞれ入口弁10F,20Fが設けられている。   In the illustrated example, pressure gauges 10C and 20C are connected to the downstream sides of the inlet ends 10A and 20A of the first flow path 10 and the second flow path 20 via pressure gauge main valves 10B and 20B. Vent flow paths 10E and 20E are connected via blow valves 10D and 20D. In addition, inlet valves 10F and 20F are provided on the downstream side of the pressure gauge main valves 10B and 20B of the first flow path 10 and the second flow path 20, respectively.

図示の例では、混合流路30にはミキサ(気体混合手段)31が設けられている。更には、混合流路30におけるミキサ31の下流側には、安全弁元弁32Aを介して安全弁32が接続されており、さらに下流には、ブロー弁33を介してベント流路34が接続されている。混合流路30におけるベント流路34の接続箇所の下流には減圧弁35が設けられ、その下流には、圧力計元弁36Aを介して圧力計36が接続され、更に下流には、リリーフ弁元弁37Aを介してリリーフ弁37が接続されている。更に、混合流路30におけるリリーフ弁37の下流側には出口弁38が設けられている。   In the illustrated example, the mixing channel 30 is provided with a mixer (gas mixing means) 31. Furthermore, a safety valve 32 is connected to the downstream side of the mixer 31 in the mixing channel 30 via a safety valve main valve 32A, and a vent channel 34 is connected to the downstream side via a blow valve 33. Yes. A pressure reducing valve 35 is provided downstream of the connection point of the vent flow path 34 in the mixing flow path 30, a pressure gauge 36 is connected to the downstream thereof via a pressure gauge main valve 36 A, and a relief valve is further downstream. A relief valve 37 is connected via the main valve 37A. Further, an outlet valve 38 is provided on the downstream side of the relief valve 37 in the mixing channel 30.

このような構成を備えた漏洩検査ガス混合装置1は、第1成分ガスの供給源を直接又はホースなどを介して第1流路10の入口端10Aに接続し、第2成分ガスの供給源を直接又はホースなどを介して第2流路20の入口端20Aに接続することで、第1成分ガスと第2成分ガスを設定された成分割合で混合した検査ガスを混合流路30の出口端30Aから得ることができる。   In the leak test gas mixing apparatus 1 having such a configuration, the supply source of the first component gas is connected to the inlet end 10A of the first flow path 10 directly or via a hose or the like, and the supply source of the second component gas Is connected to the inlet end 20A of the second flow path 20 directly or via a hose or the like, so that the test gas obtained by mixing the first component gas and the second component gas at a set component ratio is discharged from the mixing flow path 30. It can be obtained from the end 30A.

ここでの第1成分ガスと第2成分ガスの成分割合は、第1減圧弁11と第2減圧弁21の設定圧で設定することができ、更に微細な成分割合の調整を流量調整手段13,22によって行うことができる。そして、漏洩検査ガス混合装置1は、第1減圧弁11の圧力制御室11aと第2減圧弁21の圧力制御室21aが連通路12によって連通していることで、第1減圧弁11と第2減圧弁21の減圧が連動して行われ、所望の成分割合を精度良く維持した状態で第1減圧弁11及び第2減圧弁21の下流側圧力を調整することができる。また、第1減圧弁11と第2減圧弁21の連動を電気的な制御に頼らないので、可燃ガスを扱う状況下において安全な装置を実現することができる。   Here, the component ratio of the first component gas and the second component gas can be set by the set pressure of the first pressure reducing valve 11 and the second pressure reducing valve 21, and the flow rate adjusting means 13 can adjust the finer component ratio. , 22. The leak test gas mixing apparatus 1 is configured such that the pressure control chamber 11a of the first pressure reducing valve 11 and the pressure control chamber 21a of the second pressure reducing valve 21 are communicated with each other by the communication passage 12, so 2 The pressure reduction of the pressure reducing valve 21 is performed in conjunction with each other, and the downstream pressure of the first pressure reducing valve 11 and the second pressure reducing valve 21 can be adjusted while maintaining a desired component ratio with high accuracy. Further, since the interlocking of the first pressure reducing valve 11 and the second pressure reducing valve 21 does not depend on electrical control, a safe device can be realized under the situation where combustible gas is handled.

また、第1流路10はバイパス流路14を備えており、バイパス流路14には補助減圧弁15を設けており、第1減圧弁11の圧力制御室11aと第2減圧弁21の圧力制御室21aがバイパス流路14に連通しているので、第1成分ガス供給源や第2成分ガス供給源の供給圧が低下した場合にも、補助減圧弁15の設定圧によって第1成分ガスと第2成分ガスの成分割合を一定に維持することができる。更には、混合流路30には、第1成分ガスと第2成分ガスを混合するミキサ(気体混合手段)31を設けているので、混合流路30の出口端30Aでは所望の成分割合で均一な検査ガスを得ることができる。   The first flow path 10 is provided with a bypass flow path 14, and an auxiliary pressure reducing valve 15 is provided in the bypass flow path 14, and the pressures of the pressure control chamber 11 a of the first pressure reducing valve 11 and the second pressure reducing valve 21 are provided. Since the control chamber 21 a communicates with the bypass flow path 14, the first component gas is set by the set pressure of the auxiliary pressure reducing valve 15 even when the supply pressure of the first component gas supply source or the second component gas supply source decreases. The component ratio of the second component gas can be kept constant. Furthermore, since the mixing channel 30 is provided with a mixer (gas mixing means) 31 for mixing the first component gas and the second component gas, at the outlet end 30A of the mixing channel 30, it is uniform at a desired component ratio. Test gas can be obtained.

図2は、本発明の実施形態に係る漏洩検査ガス混合装置の形態例を示した説明図である。図2(a)が正面図、図2(b),(c)が左右側面図、図2(d)が平面図を示している。   FIG. 2 is an explanatory view showing a form example of a leakage inspection gas mixing apparatus according to an embodiment of the present invention. 2A is a front view, FIGS. 2B and 2C are left and right side views, and FIG. 2D is a plan view.

図示の例では、漏洩検査ガス混合装置1は、キャスター40付きの枠体41を備えている。枠体41は、箱形の空間を内部に備え、その空間内に第1流路10,第2流路20,混合流路30が配備されている。第1流路10の入口端10Aと第2流路20の入口端20Aは枠体41における一方の側面(右側面)に配置されている。また、混合流路30の出口端30Aは枠体41における他方の側面(左側面)に配置されている。図1と共通する部位には同一符号を付して重複説明を省略する。このようなキャスター40付きの枠体41内に第1流路10,第2流路20,混合流路30を配備することで、漏洩検査を行う作業現場への搬送が容易になる。   In the illustrated example, the leakage inspection gas mixing apparatus 1 includes a frame body 41 with casters 40. The frame 41 has a box-shaped space inside, and the first flow path 10, the second flow path 20, and the mixing flow path 30 are arranged in the space. The inlet end 10 </ b> A of the first channel 10 and the inlet end 20 </ b> A of the second channel 20 are disposed on one side surface (right side surface) of the frame body 41. The outlet end 30 </ b> A of the mixing channel 30 is disposed on the other side surface (left side surface) of the frame body 41. Parts that are the same as those in FIG. By arranging the first flow path 10, the second flow path 20, and the mixing flow path 30 in the frame body 41 with the casters 40, it becomes easy to carry to the work site where the leakage inspection is performed.

漏洩検査ガス混合装置1によって得られる検査ガスの一例としては、第1成分ガスが窒素(N2)であり、第2成分ガスがメタン(CH4)である。また、第2成分ガスとしては圧縮天然ガスを用いることができる。そして、可燃性が無く、しかも既存のガス検知器で検知できるようにするために、検査ガスは、メタンの成分割合を12%(窒素の成分割合を88%)にしている。メタンの成分割合が13%以上になると可燃性ガスに分類されることになり、メタンの割合が11%未満になると一般的なガス検知器で検知し難くなる。したがって、検査ガスのメタン成分割合は12%に対して−1%以上,+0.5%未満の範囲で高精度且つ安定した状態に維持する必要がある。漏洩検査ガス混合装置1によると、窒素供給源とメタン供給源を漏洩検査の作業現場に配備し、これらを漏洩検査ガス混合装置1の入口端10A,20Aに接続するだけで、即座にメタン成分12%の検査ガスを高精度且つ安定的に得ることができる。 As an example of the inspection gas obtained by the leakage inspection gas mixing device 1, the first component gas is nitrogen (N 2 ), and the second component gas is methane (CH 4 ). Further, compressed natural gas can be used as the second component gas. And in order to make it possible to detect with the existing gas detector without being flammable, the test gas has a methane component ratio of 12% (nitrogen component ratio of 88%). When the component ratio of methane is 13% or more, it is classified as a combustible gas. When the proportion of methane is less than 11%, it is difficult to detect with a general gas detector. Therefore, the methane component ratio of the inspection gas needs to be maintained in a highly accurate and stable state within a range of −1% or more and less than + 0.5% with respect to 12%. According to the leak test gas mixing apparatus 1, a nitrogen supply source and a methane supply source are arranged at the work site of the leak test, and these are connected to the inlet ends 10A and 20A of the leak test gas mixing apparatus 1 to instantly generate methane components. 12% inspection gas can be obtained with high accuracy and stability.

以下に、図3に基づいて、本発明の実施形態に係る漏洩検査ガス混合装置1を用いた埋設パイプラインの漏洩検査方法について説明する。広いエリアでガス供給が遮断された後の復旧作業においては、まず、早期復旧が可能なエリアを選択してエリア内の埋設パイプラインに対してブロック化のための遮断処置を施す(S1)。そして、遮断された一つのブロック内において、埋設パイプラインに漏洩検査ガス混合装置1を用いて検査ガスを注入する(S2)。   Below, based on FIG. 3, the leakage inspection method of the buried pipeline using the leakage inspection gas mixing apparatus 1 which concerns on embodiment of this invention is demonstrated. In the restoration work after the gas supply is cut off in a wide area, first, an area where early restoration is possible is selected, and the buried pipeline in the area is cut off for blocking (S1). Then, in one blocked block, the inspection gas is injected into the buried pipeline using the leakage inspection gas mixing device 1 (S2).

検査ガスを注入した埋設パイプラインに対して地上でガス漏洩検知を行う(S3)。この際には、ガス検知器を地表面に置いて、埋設パイプラインに沿って移動させることで埋設パイプラインから漏洩した検査ガスを捕捉する。埋設パイプラインの敷設距離が長い場合には、自転車等の移動手段にガス検知器を取り付けて移動しながら検査ガスの捕捉を行うことで迅速に作業を進めることができる。   Gas leakage detection is performed on the ground with respect to the buried pipeline into which the inspection gas has been injected (S3). In this case, the inspection gas leaked from the buried pipeline is captured by placing the gas detector on the ground surface and moving it along the buried pipeline. When the laying distance of the buried pipeline is long, the work can be quickly advanced by capturing the inspection gas while moving the gas detector attached to the moving means such as a bicycle.

そして、ガス検知器で検査ガスが捕捉された場合(漏洩有りS4:YES)には、漏洩箇所を特定して掘削による修復工事を行い、再び、埋設パイプラインに検査ガスを注入して(S2)、地上でのガス漏洩検知を行う(S3)。ガス検知器で検査ガスが捕捉されなかった場合(漏洩有りS4:NO)には、ブロック内の上流側で埋設パイプラインのガス遮断を開放し、ブロック内のガス供給を再開する(S6)。その後は、次のブロックへの作業に移行する(S7)。   Then, when the inspection gas is captured by the gas detector (leakage S4: YES), the leakage location is specified, repair work is performed by excavation, and the inspection gas is injected again into the buried pipeline (S2). ), Gas leakage detection on the ground is performed (S3). When the inspection gas is not captured by the gas detector (leakage S4: NO), the gas cutoff of the buried pipeline is opened upstream in the block, and the gas supply in the block is resumed (S6). After that, the process moves to the next block (S7).

本発明の実施形態に係る漏洩検査ガス混合装置1を用いた埋設パイプラインの漏洩検査方法によると、可燃性を有さないでしかも既存のガス検知器での検知が可能な12%メタンの検査ガスを作業現場で即座に得ることができる。これによって、安全且つ低コストの漏洩検査を迅速に行うことが可能になる。   According to the leakage inspection method for buried pipelines using the leakage inspection gas mixing apparatus 1 according to the embodiment of the present invention, inspection of 12% methane that does not have flammability and can be detected by an existing gas detector Gas can be obtained immediately at the work site. This makes it possible to quickly perform a safe and low-cost leak inspection.

1:漏洩検査ガス混合装置,
10:第1流路,10A,20A:入口端,10B,20B:圧力計元弁,
10C,20C:圧力計,10D,20D:ブロー弁,
10E,20E:ベント流路,10F,20F:入口弁,
11:第1減圧弁,11a:圧力制御室,
12:連通路,13,22:流量調整手段,14:バイパス流路,
15:補助減圧弁,16:圧抜き弁,
20:第2流路,
21:第2減圧弁,21a圧力制御室,
30:混合流路,30A:出口端,31:ミキサ(気体混合手段),
32:安全弁,33:ブロー弁,34:ベント流路,
35:減圧弁,36:圧力計,37:リリーフ弁,38:出口弁,
40:キャスター,41:枠体,
1: Leakage inspection gas mixing device,
10: 1st flow path, 10A, 20A: Inlet end, 10B, 20B: Pressure gauge main valve,
10C, 20C: pressure gauge, 10D, 20D: blow valve,
10E, 20E: Vent flow path, 10F, 20F: Inlet valve,
11: first pressure reducing valve, 11a: pressure control chamber,
12: Communication path, 13, 22: Flow rate adjusting means, 14: Bypass flow path,
15: auxiliary pressure reducing valve, 16: pressure relief valve,
20: second flow path,
21: second pressure reducing valve, 21a pressure control chamber,
30: mixing channel, 30A: outlet end, 31: mixer (gas mixing means),
32: Safety valve, 33: Blow valve, 34: Vent flow path,
35: Pressure reducing valve, 36: Pressure gauge, 37: Relief valve, 38: Outlet valve,
40: caster, 41: frame,

Claims (6)

埋設パイプラインの漏洩検査を行うために、埋設パイプラインに注入する検査ガスを混合する装置であって、
第1成分ガスの供給源に接続される入口端を有する第1流路と、
第2成分ガスの供給源に接続される入口端を有する第2流路と、
前記第1流路と前記第2流路に連通して前記第1成分ガスと前記第2成分ガスの混合ガスが流通すると共に前記埋設パイプラインの注入口に接続される出口端を有する混合流路を備え、
前記第1流路は前記第1成分ガスの成分割合を設定する第1減圧弁を備え、前記第2流路は前記第2成分ガスの成分割合を設定する第2減圧弁を備えており、前記第1減圧弁と前記第2減圧弁は互いの圧力制御室が連通しており、
前記第1流路は前記第1減圧弁を跨ぐバイパス流路を備え、該バイパス流路には前記第1減圧弁と異なる設定圧の補助減圧弁が設けられ、
前記バイパス流路は前記第1減圧弁と前記第2減圧弁の圧力制御室に連通していることを特徴とする埋設パイプラインの漏洩検査ガス混合装置。
A device that mixes the inspection gas injected into the buried pipeline in order to perform leakage inspection of the buried pipeline,
A first flow path having an inlet end connected to a supply source of the first component gas;
A second flow path having an inlet end connected to a supply source of the second component gas;
A mixed flow having an outlet end connected to the inlet of the buried pipeline while the mixed gas of the first component gas and the second component gas circulates in communication with the first flow path and the second flow path With a road,
The first flow path includes a first pressure reducing valve that sets a component ratio of the first component gas, and the second flow path includes a second pressure reducing valve that sets a component ratio of the second component gas, The first pressure reducing valve and the second pressure reducing valve communicate with each other in pressure control chambers ,
The first flow path includes a bypass flow path straddling the first pressure reducing valve, and the bypass flow path is provided with an auxiliary pressure reducing valve having a set pressure different from that of the first pressure reducing valve,
The leakage inspection gas mixing apparatus for an embedded pipeline, wherein the bypass flow path communicates with a pressure control chamber of the first pressure reducing valve and the second pressure reducing valve .
前記第1流路における前記第1減圧弁の下流側と前記第2流路における前記第2減圧弁の下流側の一方又は両方には、流量調整手段が備えられることを特徴とする請求項1に記載された埋設パイプラインの漏洩検査ガス混合装置。   The flow rate adjusting means is provided on one or both of the downstream side of the first pressure reducing valve in the first flow path and the downstream side of the second pressure reducing valve in the second flow path. Leakage inspection gas mixing device for buried pipeline described in 1. 前記混合流路は、前記第1成分ガスと前記第2成分ガスを混合する気体混合手段を備えることを特徴とする請求項1又は2に記載された埋設パイプラインの漏洩検査ガス混合装置。 3. The leak inspection gas mixing apparatus for an embedded pipeline according to claim 1, wherein the mixing flow path includes a gas mixing unit that mixes the first component gas and the second component gas. 4. 前記第1成分ガスは窒素であり、前記第2ガスはメタンであり、前記混合流路の出口では、12%のメタンと88%の窒素が混合した検査ガスが得られることを特徴とする請求項1〜3のいずれかに記載された埋設パイプラインの漏洩検査ガス混合装置。 The first component gas is nitrogen, the second gas is methane, and an inspection gas in which 12% methane and 88% nitrogen are mixed is obtained at the outlet of the mixing channel. Item 4. A leakage inspection gas mixing device for an embedded pipeline according to any one of Items 1 to 3 . 前記第2成分ガスは、圧縮天然ガスを用いることを特徴とする請求項1〜3のいずれかに記載された埋設パイプラインの漏洩検査ガス混合装置。 The leakage inspection gas mixing device for an embedded pipeline according to any one of claims 1 to 3 , wherein the second component gas is compressed natural gas. 請求項1〜5のいずれかに記載された埋設パイプラインの漏洩検査ガス混合装置を用いた埋設パイプラインの漏洩検査方法であって、
前記混合流路の出口端をブロック化された埋設パイプラインの注入口に接続し、前記埋設パイプライン内に前記漏洩検査ガス混合装置で混合された検査ガスを注入する工程と、
前記検査ガスを注入した後に、ガス検知器を用いて前記埋設パイプラインに対して地上でガス漏洩を検知する工程とを有することを特徴とする埋設パイプラインの漏洩検査方法。
Leakage inspection method for buried pipelines using the leakage inspection gas mixing device according to any one of claims 1 to 5 ,
Connecting the outlet end of the mixing flow path to an inlet of a blocked buried pipeline, and injecting the inspection gas mixed by the leaky inspection gas mixing device into the buried pipeline;
And a step of detecting a gas leak on the ground with respect to the buried pipeline using a gas detector after injecting the inspection gas.
JP2011217925A 2011-09-30 2011-09-30 Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines Active JP5902429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011217925A JP5902429B2 (en) 2011-09-30 2011-09-30 Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011217925A JP5902429B2 (en) 2011-09-30 2011-09-30 Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines

Publications (2)

Publication Number Publication Date
JP2013075277A JP2013075277A (en) 2013-04-25
JP5902429B2 true JP5902429B2 (en) 2016-04-13

Family

ID=48479182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011217925A Active JP5902429B2 (en) 2011-09-30 2011-09-30 Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines

Country Status (1)

Country Link
JP (1) JP5902429B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209952607U (en) * 2016-10-17 2020-01-17 雅马哈精密科技株式会社 Mixed gas supply device
JP6663874B2 (en) * 2017-02-28 2020-03-13 ヤマハファインテック株式会社 Mixed gas supply device
CN112763158B (en) * 2020-12-29 2023-07-25 博众精工科技股份有限公司 Air tightness testing device and testing method
CN114413099A (en) * 2022-01-27 2022-04-29 国家石油天然气管网集团有限公司 Natural gas pipeline valve chamber emergency repair operation method and emergency repair operation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134930A (en) * 1986-11-26 1988-06-07 Hokkaido Netsu Kiyoukiyuu Koushiya:Kk Method for detecting damaged part of underground buried pipe
DE3716289A1 (en) * 1987-05-15 1988-11-24 Leybold Ag DEVICE FOR THE PRODUCTION OF CERTAIN CONCENTRATIONS OF GAS SHAPED MATERIALS AND FOR MIXING DIFFERENT GAS SHAPED MATERIALS IN A PRESENT RATIO
JP3701065B2 (en) * 1995-11-06 2005-09-28 有限会社エーディ Heterogeneous fluid mixing device
JPH10128102A (en) * 1996-11-06 1998-05-19 Taiyo Toyo Sanso Co Ltd Mixed gas supply apparatus
JP2001174359A (en) * 1999-12-15 2001-06-29 Kimmon Mfg Co Ltd Leakage inspecting method for buried lp gas pipe and its device
JP4329921B2 (en) * 2001-08-06 2009-09-09 ヤマハファインテック株式会社 Inspection gas mixing apparatus and mixing method
JP2007038179A (en) * 2005-08-05 2007-02-15 Yutaka:Kk Gas mixer
JP4637069B2 (en) * 2006-08-30 2011-02-23 東京瓦斯株式会社 Decompressor
JP5244573B2 (en) * 2008-12-15 2013-07-24 東京瓦斯株式会社 Gas supply construction method in case of disaster by buried pipeline

Also Published As

Publication number Publication date
JP2013075277A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
JP5902429B2 (en) Leakage inspection for buried pipelines Gas mixing device, leakage inspection method for buried pipelines
US20150068288A1 (en) Leak location detection system
US9045648B2 (en) Method of repairing leakage in pipelines
US20110185793A1 (en) Seal assembly with leak monitoring
CN103674510B (en) Ultrahigh pressure relief valve property test platform
KR101620262B1 (en) Leak Testing Apparatus of Ball valve for Natural Gas
KR101938164B1 (en) Leakage testing apparatus for double check valve and its testing method
EA201391058A1 (en) HIGHLY INTEGRATED PROTECTION SYSTEM (VISZ, HIPS) WELL TEST WITH AUTOMATIC TESTING AND SELF DIAGNOSTICS
UA117739C2 (en) LABOR GAS SUPPLY FOR ION REFERENCE ENGINE
CN108362489A (en) A kind of versatile testing device of safety valve
CN104483135B (en) A kind of liquid-propellant rocket engine defective pipe partition method
CN103900774A (en) Oil cooler dry and wet mixed sealing performance test method and device
JP6919482B2 (en) Fuel cell system
JPH09257195A (en) Gas supply device
KR101425441B1 (en) Apparatus for distributing processing gas having air leakage testing function
KR100796527B1 (en) Operational structure of safety valve
JP2009085249A (en) Liquefied gas filling system
KR101458876B1 (en) Exploration equipment leak points
CN208012851U (en) Versatile testing device of safety valve
JP5244573B2 (en) Gas supply construction method in case of disaster by buried pipeline
CN203259321U (en) Instrument pipeline pressure test device
JP2008070297A (en) Specifying method of leak part existing in pipe line, and device used for it
KR20180000181U (en) Leak Testing Apparatus using pressure-difference of Ball valve
JP3801481B2 (en) Piping leak location detection method and piping leak location detection system
JP6082361B2 (en) Gas supply method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140805

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140916

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160310

R150 Certificate of patent or registration of utility model

Ref document number: 5902429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250