JP5899634B2 - Composite structure - Google Patents

Composite structure Download PDF

Info

Publication number
JP5899634B2
JP5899634B2 JP2011052492A JP2011052492A JP5899634B2 JP 5899634 B2 JP5899634 B2 JP 5899634B2 JP 2011052492 A JP2011052492 A JP 2011052492A JP 2011052492 A JP2011052492 A JP 2011052492A JP 5899634 B2 JP5899634 B2 JP 5899634B2
Authority
JP
Japan
Prior art keywords
resin
metal member
resin member
composite structure
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011052492A
Other languages
Japanese (ja)
Other versions
JP2011213108A (en
Inventor
古屋敷 啓一郎
啓一郎 古屋敷
尾川 忠
忠 尾川
孝明 楠本
孝明 楠本
小林 和明
和明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2011052492A priority Critical patent/JP5899634B2/en
Publication of JP2011213108A publication Critical patent/JP2011213108A/en
Application granted granted Critical
Publication of JP5899634B2 publication Critical patent/JP5899634B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/731General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
    • B29C66/7311Thermal properties
    • B29C66/73111Thermal expansion coefficient
    • B29C66/73112Thermal expansion coefficient of different thermal expansion coefficient, i.e. the thermal expansion coefficient of one of the parts to be joined being different from the thermal expansion coefficient of the other part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/06Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using friction, e.g. spin welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/82Testing the joint
    • B29C65/8207Testing the joint by mechanical methods
    • B29C65/8246Pressure tests, e.g. hydrostatic pressure tests
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/13Single flanged joints; Fin-type joints; Single hem joints; Edge joints; Interpenetrating fingered joints; Other specific particular designs of joint cross-sections not provided for in groups B29C66/11 - B29C66/12
    • B29C66/131Single flanged joints, i.e. one of the parts to be joined being rigid and flanged in the joint area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/54Joining several hollow-preforms, e.g. half-shells, to form hollow articles, e.g. for making balls, containers; Joining several hollow-preforms, e.g. half-cylinders, to form tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/721Fibre-reinforced materials
    • B29C66/7212Fibre-reinforced materials characterised by the composition of the fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7422Aluminium or alloys of aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/74Joining plastics material to non-plastics material
    • B29C66/742Joining plastics material to non-plastics material to metals or their alloys
    • B29C66/7428Transition metals or their alloys
    • B29C66/74283Iron or alloys of iron, e.g. steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/949Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9513Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration frequency values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/95Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94
    • B29C66/951Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools
    • B29C66/9517Measuring or controlling the joining process by measuring or controlling specific variables not covered by groups B29C66/91 - B29C66/94 by measuring or controlling the vibration frequency and/or the vibration amplitude of vibrating joining tools, e.g. of ultrasonic welding tools characterised by specific vibration amplitude values or ranges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/34Electrical apparatus, e.g. sparking plugs or parts thereof
    • B29L2031/3481Housings or casings incorporating or embedding electric or electronic elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Casings For Electric Apparatus (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は、金属部材と樹脂部材を組み合わせた複合構造体に関し、より詳細には例えば電子・電機部品を収納する放熱性に優れる収納ケースを構成する構造体に関する。   The present invention relates to a composite structure in which a metal member and a resin member are combined, and more particularly, to a structure that constitutes a storage case that is excellent in heat dissipation for storing electronic / electrical parts, for example.

従来から、電子・電気部品の収納ケースは、軽量化、経済性等の観点から、金属素材から樹脂材料への変更が進められている。しかし、樹脂材料は放熱性が悪いため、ケースをすべて樹脂で形成すると、ケース内に収納された電子・電気部品から発生する熱を外部に効率よく放散することができない。特に、自動車のエンジンルーム等の高温に曝される環境下では、ケース内部に収納された電子・電気部品からの発熱のために、ケース内部の温度はさらに高温になる。そこで、ケース内部の熱を効率よく外部に放出するために、収納ケースの一部を金属材料で構成することで放熱を図っている。   Conventionally, storage cases for electronic / electrical parts have been changed from metal materials to resin materials from the viewpoints of weight reduction, economy, and the like. However, since the resin material has poor heat dissipation, if the case is entirely made of resin, the heat generated from the electronic / electrical components housed in the case cannot be efficiently dissipated to the outside. In particular, in an environment exposed to high temperatures, such as in an engine room of an automobile, the temperature inside the case becomes even higher due to heat generated from electronic / electrical components housed inside the case. Therefore, in order to efficiently release the heat inside the case to the outside, heat is radiated by configuring a part of the storage case with a metal material.

図5は、電子・電気部品の収納ケースの1例を模式的に示した図である。収納ケース50は、例えばアルミニウム板のような放熱作用のある金属基板53と、樹脂ケース部52で構成され、その内部に、電子部品51が金属基板53に熱結合されて配置されている。樹脂ケース部52と金属基板53には、フランジ面が形成され、間に例えばシリコーン樹脂等のシーリング材(ガスケット)を介して、ボルト54で締め付けることで、収納ケース全体が密閉される。   FIG. 5 is a diagram schematically showing an example of a storage case for electronic / electrical parts. The storage case 50 includes a metal substrate 53 having a heat radiation function such as an aluminum plate and a resin case portion 52, and an electronic component 51 is thermally coupled to the metal substrate 53. A flange surface is formed on the resin case portion 52 and the metal substrate 53, and the whole storage case is sealed by tightening with a bolt 54 via a sealing material (gasket) such as silicone resin.

しかしながら、この構造では、金属基板に対して、ボルト締め付けのために雌ネジ加工または貫通孔を形成し、金属基板と樹脂ケース部の合わせ面にシリコーンシーリング剤を塗布し、金属基板と樹脂ケース部とを合わせて数カ所をボルト締めする必要があるため、組み立てに非常に手間が掛かる問題がある。また、廃棄時においても、ボルトをはずして、金属部と樹脂部を分別する必要があり、非常に手間が掛かる。また、シーリング剤は金属基盤や樹脂ケース部のどちらに残っていてもマテリアルリサイクル時に大変好ましくない。   However, in this structure, a female substrate is processed or a through hole is formed on the metal substrate for tightening the bolt, and a silicone sealing agent is applied to the mating surface between the metal substrate and the resin case part. Since it is necessary to bolt several places together, there is a problem that the assembly is very troublesome. Moreover, it is necessary to remove the bolts and separate the metal part and the resin part even at the time of disposal, which is very troublesome. In addition, the sealing agent is not preferable at the time of material recycling, whether it remains in the metal base or the resin case.

特許文献1には、内部に電子回路基板を収納する収容ケースとして、金属製のケース本体露出部ができるように樹脂をモールドし、ケース本体露出部と樹脂部の界面を覆うように接着剤を塗布した電子回路基板収容ケースが記載されている。この構造では、ボルトによる締め付け工程が不要になるために、組み立ての手間が省かれる。また、接着剤を使用することで、金属と樹脂の接合面の気密性を確保しようとするものであるが、金属と樹脂の界面を接着剤でシールする手間がかかり、構造によっては、シール剤の塗布が非常に難しい場合がある。   In Patent Document 1, a resin is molded so that a metal case main body exposed portion is formed as a housing case for accommodating an electronic circuit board therein, and an adhesive is provided so as to cover the interface between the case main body exposed portion and the resin portion. A coated electronic circuit board housing case is described. In this structure, the tightening process using bolts is not necessary, and therefore, the labor of assembling can be saved. In addition, by using an adhesive, it is intended to ensure the airtightness of the joint surface between the metal and the resin, but it takes time and effort to seal the interface between the metal and the resin with an adhesive. Application may be very difficult.

特開2002−134931号公報JP 2002-134931 A

本発明は、このような問題点に鑑みてなされたもので、部品数が少なくて済み、組み立て時間を大幅に短縮でき、かつ金属と樹脂の接合面での気密性も高い複合構造体を提供することを目的とする。   The present invention has been made in view of such problems, and provides a composite structure that requires only a small number of parts, can greatly reduce the assembly time, and has high airtightness at the joint surface between the metal and the resin. The purpose is to do.

本発明は以下の事項に関する。   The present invention relates to the following matters.

1. 金属部材と樹脂部材とが接合されて形成される複合構造体であって、
前記金属部材と接合している箇所に存在する第1樹脂部材の線膨張係数が、20℃〜150℃の範囲において、前記金属部材の線膨張係数の0.5〜1.5倍の範囲であることを特徴とする複合構造体。
1. A composite structure formed by joining a metal member and a resin member,
The linear expansion coefficient of the first resin member present at the location where the metal member is joined is in the range of 0.5 to 1.5 times the linear expansion coefficient of the metal member in the range of 20 ° C to 150 ° C. A composite structure characterized by being.

2. 前記樹脂部材は、樹脂成分と無機充填材成分を含有し、前記範囲の線膨張係数を有するように前記無機充填剤成分の量が選ばれることを特徴とする上記1記載の複合構造体。   2. 2. The composite structure according to claim 1, wherein the resin member contains a resin component and an inorganic filler component, and the amount of the inorganic filler component is selected so as to have a linear expansion coefficient in the range.

3. 前記無機充填剤が、ガラス繊維またはカーボン繊維であることを特徴とする上記2記載の複合構造体。   3. 3. The composite structure according to 2 above, wherein the inorganic filler is glass fiber or carbon fiber.

4. 前記樹脂部材を構成する樹脂成分が、ポリアミド樹脂であることを特徴とする上記2記載の複合構造体。   4). 3. The composite structure according to 2 above, wherein the resin component constituting the resin member is a polyamide resin.

5. 前記金属部材が、ダイカスト成形で加工されたアルミニウムであることを特徴とする上記1〜4のいずれか1項に記載の複合構造体。   5. 5. The composite structure according to claim 1, wherein the metal member is aluminum processed by die casting.

6. 金属部材と樹脂部材が接合部において接合された複合構造体の製造方法であって、
前記金属部材を、インサート成形用の金型に設置する工程と、
前記金型に、溶融状態の第1樹脂部材を注入し、前記金属部材と前記第1樹脂部材が接合部において接合するように第1樹脂部材を成型する工程と、
を有し、
20℃〜150℃の範囲において、前記第1樹脂部材の線膨張係数が、前記金属部材の線膨張係数の0.5〜1.5倍の範囲であること
を特徴とする複合構造体の製造方法。
6). A method for producing a composite structure in which a metal member and a resin member are joined at a joint,
Installing the metal member in a mold for insert molding;
Injecting a molten first resin member into the mold, and molding the first resin member so that the metal member and the first resin member are joined at a joint portion;
Have
In the range of 20 ° C. to 150 ° C., the first resin member has a linear expansion coefficient in the range of 0.5 to 1.5 times the linear expansion coefficient of the metal member. Method.

7. 前記接合部に接合して成型された第1樹脂部材と、所望の形状に予め形成された第2樹脂部材を溶着する工程とをさらに有することを特徴とする上記6記載の複合構造体の製造方法。   7). The manufacturing of the composite structure according to claim 6, further comprising a step of welding a first resin member formed by bonding to the bonding portion and a second resin member previously formed in a desired shape. Method.

8. 前記溶融状態の第1樹脂部材を注入する際に、前記金属部材を前記金型と略同一の温度に予熱しておくことを特徴とする上記6または7記載の複合構造体の製造方法。   8). 8. The method for producing a composite structure according to 6 or 7, wherein when the molten first resin member is injected, the metal member is preheated to substantially the same temperature as the mold.

本発明の複合構造体は、金属部材と樹脂部材の接合にボルト締め等が不要であるため、部品の種類を減らすことが可能で、そのために組み立て時間を大幅に短縮できる。さらに、金属部材と樹脂部材の間の気密性に優れる。また、廃棄時に、金属部材と樹脂部材とを分別することが容易であるため、リサイクル性にも優れる。   Since the composite structure of the present invention does not require bolting or the like for joining the metal member and the resin member, it is possible to reduce the types of components, and therefore the assembly time can be greatly shortened. Furthermore, the airtightness between the metal member and the resin member is excellent. Moreover, since it is easy to separate a metal member and a resin member at the time of disposal, it is excellent also in recyclability.

本発明の複合構造体の1例を示す図である。(a)断面図、(b)裏面図It is a figure which shows one example of the composite structure of this invention. (A) Cross section, (b) Back view 複合構造体の製造工程の1例の工程図である。(a)断面図、(b)裏面図It is process drawing of an example of the manufacturing process of a composite structure. (A) Cross section, (b) Back view 複合構造体の製造工程の1例の工程図である。It is process drawing of an example of the manufacturing process of a composite structure. 複合構造体の製造工程の1例の完成構造を示す断面図である。It is sectional drawing which shows the completed structure of one example of the manufacturing process of a composite structure. 電子・電機部品の従来の収納ケースを示す断面図である。It is sectional drawing which shows the conventional storage case of an electronic / electrical component. 実施例1および比較例1で使用した樹脂の線膨張係数の測定結果を示すグラフである。It is a graph which shows the measurement result of the linear expansion coefficient of resin used in Example 1 and Comparative Example 1.

図1に、本発明の複合構造体の1例を示す。図1(a)は、断面図であり、図1(b)は図1(a)の下から見た裏面図である。複合構造体10は、金属部材13と樹脂部材12により構成され、樹脂部材12は、第1樹脂部材12aと第2樹脂部材12bが溶着されて形成されている。複合構造体10は、例えば電子・電機部品の収納ケースであり、金属部材13に熱的に結合した電子部品11が内部に配置される。   FIG. 1 shows an example of the composite structure of the present invention. FIG. 1A is a cross-sectional view, and FIG. 1B is a back view as viewed from the bottom of FIG. The composite structure 10 includes a metal member 13 and a resin member 12, and the resin member 12 is formed by welding a first resin member 12a and a second resin member 12b. The composite structure 10 is, for example, a storage case for electronic / electrical parts, and an electronic part 11 thermally coupled to a metal member 13 is disposed therein.

図に示されるように、金属部材13に対して第1樹脂部材12aが接合されている。金属部材13と第1樹脂12aが接合している箇所を、以下、接合部と言う。接合部においては、特に接着剤は使用されずに、金属部材と第1樹脂部材が密着している。   As shown in the figure, the first resin member 12 a is bonded to the metal member 13. A portion where the metal member 13 and the first resin 12a are joined is hereinafter referred to as a joined portion. In the joint portion, no adhesive is used, and the metal member and the first resin member are in close contact with each other.

本発明において、金属部材と第1樹脂部材の線膨張係数は、第1樹脂部材の線膨張係数が、金属部材の線膨張係数の0.5〜1.5倍の範囲にある。線膨張係数の関係が、この範囲にあることにより、例えば自動車のエンジンルームような寒暖差の大きな環境で使用されても、熱膨張・冷却収縮の影響が小さく、金属部材と第1樹脂部材との間で気密性を維持できる。また、後述するような成形時においても、寸法ずれをほとんどなくすことができるために、金属部材と第1樹脂部材との間の気密性の高い複合構造体を形成することができる。さらに好ましくは、第1樹脂部材の線膨張係数は、金属部材の線膨張係数の0.8〜1.2倍の範囲である。   In the present invention, the linear expansion coefficient of the metal member and the first resin member is such that the linear expansion coefficient of the first resin member is in the range of 0.5 to 1.5 times the linear expansion coefficient of the metal member. Since the relationship between the linear expansion coefficients is within this range, the metal member and the first resin member are less affected by thermal expansion / cooling shrinkage even when used in an environment with a large temperature difference such as an engine room of an automobile. Airtightness can be maintained between. In addition, since a dimensional shift can be almost eliminated even during molding as described later, a highly airtight composite structure between the metal member and the first resin member can be formed. More preferably, the linear expansion coefficient of the first resin member is in the range of 0.8 to 1.2 times the linear expansion coefficient of the metal member.

前記の線膨張係数は、20℃〜150℃の範囲において測定される値であり、通常はこの範囲の膨張係数(ΔL/L;ΔLは伸び、Lは試験サンプル長)を温度範囲で割って得られる線膨張係数が上記範囲であれば、成形の際の熱膨張・収縮の影響がほとんどない。   The linear expansion coefficient is a value measured in the range of 20 ° C. to 150 ° C. Usually, the expansion coefficient in this range (ΔL / L; ΔL is elongation, L is the test sample length) divided by the temperature range. If the obtained linear expansion coefficient is in the above range, there is almost no influence of thermal expansion / contraction during molding.

金属部材および第1樹脂部材のどちらも、温度範囲により平均線膨張係数が変化することがある。例えば、アルミニウム合金2014の平均線膨張係数は次の通りである。
−196〜−60℃ :1.53×10-5(1/℃)
−60〜+20℃ :2.14×10-5(1/℃)
+20〜+100℃ :2.30×10-5(1/℃)
+100〜+200℃:2.36×10-5(1/℃)
従って、20℃〜150℃の温度範囲における平均の線膨張係数を比較したときに、金属部材と第1樹脂部材の線膨張係数が上記の関係にあることに加え、20℃〜150℃の温度範囲の各温度における線膨張係数を比較したときに、金属部材と第1樹脂部材の線膨張係数が上記の関係(0.5〜1.5倍の範囲、好ましくは0.8〜1.2倍の範囲)にあることが好ましい。
In both the metal member and the first resin member, the average linear expansion coefficient may change depending on the temperature range. For example, the average linear expansion coefficient of the aluminum alloy 2014 is as follows.
−196 to −60 ° C .: 1.53 × 10 −5 (1 / ° C.)
−60 to + 20 ° C .: 2.14 × 10 −5 (1 / ° C.)
+20 to + 100 ° C .: 2.30 × 10 −5 (1 / ° C.)
+100 to + 200 ° C .: 2.36 × 10 −5 (1 / ° C.)
Therefore, when the average linear expansion coefficient in the temperature range of 20 ° C. to 150 ° C. is compared, the linear expansion coefficient of the metal member and the first resin member is in the above relationship, and the temperature of 20 ° C. to 150 ° C. When the linear expansion coefficient at each temperature in the range is compared, the linear expansion coefficient between the metal member and the first resin member is the above relationship (range of 0.5 to 1.5 times, preferably 0.8 to 1.2). It is preferable that it is in the range of twice.

また、複合構造体が使用される温度範囲全体にわたり、平均の線膨張係数、さらに好ましくは各温度における線膨張率について、金属部材と第1樹脂部材の線膨張係数が上記の関係にあることが好ましい。例えば自動車のエンジンルームで使用されるような用途では、−40℃〜130℃の範囲である。   Further, the average linear expansion coefficient over the entire temperature range in which the composite structure is used, more preferably, the linear expansion coefficient of the metal member and the first resin member is in the above relationship with respect to the linear expansion coefficient at each temperature. preferable. For example, in an application used in an engine room of an automobile, it is in a range of −40 ° C. to 130 ° C.

金属部材を構成する金属材料としては、例えば、一般冷延鋼、特殊冷延鋼、自動車用高張力鋼、熱延鋼、表面処理鋼、高強度鋼、特殊鋼、ステンレス鋼、アルミニウム、高力アルミニウム、ジュラルミン、及び超々ジュラルミンからなる群より選択される少なくとも一種であることが好ましい。なお、高強度鋼には、Duel−Phase鋼、TRIP鋼が含まれる。特に好ましくはアルミニウムである。また、金属部材の成形方法は、特に限定されないが、種々の形状を比較的安価に形成できる方法として、ダイカスト成形、特にアルミニウムを用いたダイカスト成形が好ましい。   Examples of the metal material constituting the metal member include general cold-rolled steel, special cold-rolled steel, high-strength steel for automobiles, hot-rolled steel, surface-treated steel, high-strength steel, special steel, stainless steel, aluminum, and high strength. It is preferably at least one selected from the group consisting of aluminum, duralumin, and ultraduralumin. Note that high-strength steel includes Duel-Phase steel and TRIP steel. Particularly preferred is aluminum. The method for forming the metal member is not particularly limited, but die casting, particularly die casting using aluminum is preferable as a method for forming various shapes at a relatively low cost.

第1樹脂部材は、樹脂成分(マトリックス樹脂)に加えて、線膨張係数を調節するための無機充填剤を含有することが好ましい。第1樹脂部材中の樹脂成分としては、特に制限はなく、それぞれの部材に必要とされる特性や成形に応じて任意の樹脂を用いることができる。好ましい樹脂として、例えば、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリエステル樹脂、ポリプロピレン、ABS樹脂等が挙げられる。これらの樹脂は、単独で用いてもよいし、2種以上を混合させて用いてもよい。単独で用いる場合に特に好ましい樹脂として、ポリアミド樹脂およびポリプロピレンが挙げられる。さらに、ポリアミド樹脂の具体例としては、ナイロン6、ナイロン66、ナイロン11、ナイロン12のような脂肪族ポリアミドやポリヘキサメチレンテレフタラミド、ポリヘキサメチレンイソフタラミドのような半芳香族ポリアミド樹脂が挙げられる。これらの樹脂は、単独あるいは2つ以上の共重合から成り立っていてもよい。ポリアミド樹脂の中で好ましいのは、ナイロン6、ナイロン66である。   The first resin member preferably contains an inorganic filler for adjusting the linear expansion coefficient in addition to the resin component (matrix resin). There is no restriction | limiting in particular as a resin component in a 1st resin member, Arbitrary resin can be used according to the characteristic and shaping | molding required for each member. Preferred resins include, for example, polyamide resin, polyacetal resin, polycarbonate resin, polyether resin, polyester resin, polypropylene, ABS resin and the like. These resins may be used alone or in combination of two or more. Particularly preferred resins when used alone include polyamide resins and polypropylene. Specific examples of the polyamide resin include aliphatic polyamides such as nylon 6, nylon 66, nylon 11 and nylon 12, and semi-aromatic polyamide resins such as polyhexamethylene terephthalamide and polyhexamethylene isophthalamide. Can be mentioned. These resins may consist of one or two or more copolymers. Among the polyamide resins, nylon 6 and nylon 66 are preferable.

無機充填剤としては、ガラス繊維、炭素繊維、シリカ、アルミナ、アルミノケイ酸塩、窒化ケイ素、粘土、タルク、マイカ、カオリン、炭酸カルシウム、炭酸マグネシウム等が挙げられる。好ましくは、樹脂成分の補強材として機能する繊維状(ウィスカーを含む)のものであり、特にガラス繊維または炭素繊維が好ましく、ガラス繊維が最も好ましい。無機充填剤は、第1樹脂部材が、前述の所定の線膨張係数を有し、また好ましくは後述するようにインサート成形の際に樹脂の溶融性を阻害しないような範囲で添加される。   Examples of the inorganic filler include glass fiber, carbon fiber, silica, alumina, aluminosilicate, silicon nitride, clay, talc, mica, kaolin, calcium carbonate, magnesium carbonate and the like. Preferably, it is in the form of fibers (including whiskers) functioning as a reinforcing material for the resin component, particularly glass fibers or carbon fibers, and most preferably glass fibers. The inorganic filler is added in such a range that the first resin member has the above-mentioned predetermined linear expansion coefficient and preferably does not hinder the meltability of the resin during insert molding as will be described later.

ガラス繊維を使用するとき、樹脂成分100重量部に対して、好ましくは15〜45重量部、より好ましくは20〜40重量部、最も好ましくは25〜35重量部の範囲で添加される。   When glass fiber is used, it is preferably added in an amount of 15 to 45 parts by weight, more preferably 20 to 40 parts by weight, and most preferably 25 to 35 parts by weight with respect to 100 parts by weight of the resin component.

また、第1樹脂部材の線膨張係数が異方性を有している場合、即ち、方向により線膨張係数が異なる場合、少なくとも1つの線膨張係数が、前述のとおりの金属部材との線膨張係数の関係を満たしていればよい。金属部材と線膨張係数の近い方向を、熱膨張・冷却収縮が問題となる方向にほぼあわせることで、ほとんどの用途において、熱膨張・冷却収縮の問題を解決できる。例えば、図1に示すように、金属部材13の周囲を第1樹脂部材12aが囲む構造の場合、第1樹脂部材12aの周囲方向の線膨張係数を金属部材の線膨張係数に近くすることが好ましい。より具体的には金属部材13が、方形である場合には、各4辺の長さ方向で、第1樹脂部材12aの線膨張係数が、本発明で規定する関係を有していることが好ましい。つまり、第1樹脂部材12aの中の各場所において、線膨張係数が金属と近い方向が、適した方向に向くように形成されることが好ましい。   In addition, when the linear expansion coefficient of the first resin member has anisotropy, that is, when the linear expansion coefficient differs depending on the direction, at least one linear expansion coefficient has a linear expansion with the metal member as described above. It only needs to satisfy the coefficient relationship. By aligning the direction in which the linear expansion coefficient is close to that of the metal member with the direction in which thermal expansion / cooling shrinkage is a problem, the problem of thermal expansion / cooling shrinkage can be solved in most applications. For example, as shown in FIG. 1, when the first resin member 12 a surrounds the metal member 13, the linear expansion coefficient in the peripheral direction of the first resin member 12 a may be close to the linear expansion coefficient of the metal member. preferable. More specifically, when the metal member 13 is square, the linear expansion coefficient of the first resin member 12a has a relationship defined by the present invention in the length direction of each of the four sides. preferable. That is, it is preferable that the linear expansion coefficient is formed so that the direction close to the metal is in a suitable direction at each location in the first resin member 12a.

第2樹脂部材は、第1樹脂部材と同一または異なる材料で形成される。第2樹脂部材を構成する樹脂成分としては、前述の第1樹脂部材に適した樹脂が挙げられ、好ましい樹脂も同様である。第1樹脂部材と第2樹脂部材は、後述するように、好ましくは溶着によって接合されるため、少なくとも両者の樹脂成分が相溶性を有するように第1および第2樹脂成分が選ばれる。好ましくは、第1樹脂部材と第2樹脂部材の樹脂成分が同一である。ここで、樹脂同士が互いに「相溶性を有する」とは、一方の樹脂と他方の樹脂との溶解度パラメータの差が小さい、具体的には、1.4以下、好ましくは1.2以下、より好ましくは1.0以下であり、両者の分子鎖が混ざり合うことが可能であることをいう。ここで溶解度パラメータ(Sp)値は、Fedorsの方法(R. F. Fedors, Poly. Eng. and Sci., 14(2), 147(1974)などの文献を参照)によりポリマーの骨格より算出される。   The second resin member is formed of the same or different material as the first resin member. Examples of the resin component constituting the second resin member include resins suitable for the first resin member described above, and preferred resins are also the same. As will be described later, since the first resin member and the second resin member are preferably joined by welding, the first and second resin components are selected so that at least the two resin components have compatibility. Preferably, the resin components of the first resin member and the second resin member are the same. Here, the resins are mutually “compatible” means that the difference in solubility parameter between one resin and the other resin is small, specifically 1.4 or less, preferably 1.2 or less. Preferably it is 1.0 or less, and it means that both molecular chains can be mixed. Here, the solubility parameter (Sp) value is calculated from the polymer skeleton by the method of Fedors (see documents such as R. F. Fedors, Poly. Eng. And Sci., 14 (2), 147 (1974)). The

また、第2樹脂部材は、金属部材と接合されていないため(図1中の金属部材13のように、樹脂との間で気密性が問題となる金属部材と接合されていないことを意味する)、その線膨張係数について、特に要求はない。従って、ガラス繊維のような無機充填剤を含有しなくてもよいが、第1樹脂部材との線膨張係数が大きく異なると、金属部材の線膨張係数と大きく異なることになるため、図1から理解されるように、温度変化に伴って樹脂部材12全体と金属部材13との熱膨張差により、金属部材と第1樹脂部材の接合部に過度の力が加わったり、樹脂部材に歪みが生じたりすることがある。従って、一般的には、第2樹脂部材も第1樹脂部材と同一か近い線膨張係数を有するように、無機充填剤を含有することが好ましい。好ましい無機充填剤および量は、前述の第1樹脂部材と同じである。好ましい形態では、第1樹脂部材と第2樹脂部材を同一材料(樹脂成分および無機充填剤の配合が同一)で構成する。具体的には、第1樹脂部材と第2樹脂部材の両方が、ガラス繊維強化ナイロン6であることが最も好ましい。   Further, since the second resin member is not joined to the metal member (meaning that the airtightness between the resin and the resin is a problem as in the metal member 13 in FIG. 1). ), There is no particular requirement for the linear expansion coefficient. Therefore, it is not necessary to contain an inorganic filler such as glass fiber, but if the linear expansion coefficient with the first resin member is greatly different, the linear expansion coefficient of the metal member will be greatly different. As will be understood, an excessive force is applied to the joint between the metal member and the first resin member due to a difference in thermal expansion between the entire resin member 12 and the metal member 13 as the temperature changes, or the resin member is distorted. Sometimes. Therefore, generally, it is preferable to contain an inorganic filler so that the second resin member also has a linear expansion coefficient that is the same as or close to that of the first resin member. A preferable inorganic filler and amount are the same as those of the first resin member described above. In a preferred embodiment, the first resin member and the second resin member are made of the same material (the blending of the resin component and the inorganic filler is the same). Specifically, it is most preferable that both the first resin member and the second resin member are glass fiber reinforced nylon 6.

第1樹脂部材と金属部材の形状に関しては、接合部において、第1樹脂部材と金属部材が嵌合していることが好ましい。接合部において、金属部材と第1樹脂部材の接合面に対して、略垂直方向に力が加わったときに、引き剥がしに対して抵抗できるような形状である。最も簡単な嵌合の形態は、図1(a)、(b)に示すように、第1樹脂部材が、金属部材の端部をコの字状に囲むように、金属部材の表面から裏面まで連続して形成されている形態である。   Regarding the shapes of the first resin member and the metal member, it is preferable that the first resin member and the metal member are fitted in the joint portion. In the joint portion, when a force is applied in a substantially vertical direction to the joint surface between the metal member and the first resin member, the joint portion has a shape that can resist peeling. As shown in FIGS. 1 (a) and 1 (b), the simplest form of fitting is as follows. The first resin member surrounds the end of the metal member in a U-shape so that the first resin member surrounds the back surface of the metal member. It is the form formed continuously.

次に、本発明の複合構造体の製造方法を、図2〜図4を参照しながら説明する。   Next, the manufacturing method of the composite structure of this invention is demonstrated, referring FIGS.

まず最初に、所望の形状の金属部材13を用意する。金属部材は好ましくはダイカスト成形で形成する。次に、金属部材13をインサート成形用の金型(図示せず)にセットする。金型と金属部材13とで形成されるキャビティにより、第1樹脂部材の形状が規定される。   First, a metal member 13 having a desired shape is prepared. The metal member is preferably formed by die casting. Next, the metal member 13 is set in a mold (not shown) for insert molding. The cavity formed by the mold and the metal member 13 defines the shape of the first resin member.

次に、金型と金属部材13とで形成されるキャビティに、溶融樹脂を注入し、図2に示すように、金属部材13の接合部(この例では端部)に、第1樹脂部材12aを成型する。一般に、インサート成型では、金型は適切な温度に加熱されているが、金属部材13は、通常は冷えたまま(通常は室温)の状態でセットされるため、その状態で溶融樹脂を注入すると、金属部材表面で樹脂が急冷され、収縮差の影響が出やすく、樹脂の流動性も悪くなりがちである。そこで、本発明の製造方法では、溶融樹脂を注入する前に、金属部材を金型と同程度の温度(例えば±10℃以内、好ましくは±5℃以内)まで予熱することが好ましい。   Next, molten resin is injected into the cavity formed by the mold and the metal member 13, and as shown in FIG. 2, the first resin member 12 a is formed at the joint portion (the end portion in this example) of the metal member 13. Is molded. In general, in insert molding, the mold is heated to an appropriate temperature. However, since the metal member 13 is usually set in a cold state (usually room temperature), the molten resin is injected in that state. The resin is rapidly cooled on the surface of the metal member, and the influence of the shrinkage difference is likely to occur, and the fluidity of the resin tends to deteriorate. Therefore, in the production method of the present invention, it is preferable to preheat the metal member to a temperature comparable to that of the mold (for example, within ± 10 ° C., preferably within ± 5 ° C.) before injecting the molten resin.

金型および金属部材の予熱温度は、樹脂の種類にも依存するが、通常60〜120℃程度であり、好ましくは70〜100℃であり、特に好ましくは70〜90℃であり、代表的な例として80℃が挙げられる。   Although the preheating temperature of the mold and the metal member depends on the type of the resin, it is usually about 60 to 120 ° C., preferably 70 to 100 ° C., particularly preferably 70 to 90 ° C. An example is 80 ° C.

所定の温度まで冷却後、金型をはずして、金属部材13と第1樹脂部材が一体となった複合構造体(中間複合構造体)を取り出す。   After cooling to a predetermined temperature, the mold is removed, and a composite structure (intermediate composite structure) in which the metal member 13 and the first resin member are integrated is taken out.

その後、適宜、内部に収納される電子部品11等を実装した後、図3に示すように、別途所望の形状に形成した第2樹脂部材12bの合わせ面と、第1樹脂部材12aの合わせ面とを密着させてから溶着することで、図4に示すように、第1樹脂部材12aと第2樹脂部材12bが一体化され、金属部材13と共に複合構造体10が得られる。第1樹脂部材12aと第2樹脂部材12bの溶着は、レーザー溶着、振動溶着等の任意の溶着技術で実施できるが、経済性と簡便性から特に振動溶着が好ましい。   Thereafter, after appropriately mounting the electronic component 11 and the like housed therein, as shown in FIG. 3, the mating surface of the second resin member 12b and the mating surface of the first resin member 12a separately formed in a desired shape, as shown in FIG. As shown in FIG. 4, the first resin member 12 a and the second resin member 12 b are integrated, and the composite structure 10 is obtained together with the metal member 13. Although welding of the 1st resin member 12a and the 2nd resin member 12b can be implemented with arbitrary welding techniques, such as laser welding and vibration welding, vibration welding is especially preferable from economical efficiency and simplicity.

また、廃棄する際には、複合構造体を破砕機等で破砕すると樹脂と金属が剥離するので、ボルトをはずす等の操作が不要であり容易に分別できる。分別した樹脂部材は、リサイクルが可能である。   Further, when discarding, the composite structure is crushed with a crusher or the like, so that the resin and the metal are peeled off, so that an operation such as removing a bolt is unnecessary and can be easily separated. The sorted resin member can be recycled.

本発明の複合構造部材は、種々の形態、形状にて、種々の用途に使用可能である。特に、密閉性が必要で、熱を放出する電子・電機部品を内部に収納するケースとして好適であり、例えば電子制御基板筐体、電池筐体、電力制御筐体が挙げられ、特にエンジン制御ユニットなどの車載用途が挙げられる。その他、金属と樹脂との接合に気密性が必要とされる用途に好適であり、例えばインテークマニホールドのような吸気系部品、ラジエターポンプのような冷却系部品、燃料ポンプのような燃料系部品、ECU(Engine Computer Unit)ハウジングのような制御系部品、オイルポンプのような潤滑油部品、シリンダーヘッドカバーのようなカバー類、トランスミッション部品などの自動車部品に適用することができる。   The composite structural member of the present invention can be used for various applications in various forms and shapes. Particularly, it is suitable as a case for housing an electronic / electrical part that requires airtightness and emits heat, and includes, for example, an electronic control board casing, a battery casing, and a power control casing. In-vehicle applications such as In addition, it is suitable for applications where airtightness is required for joining metal and resin, for example, intake system parts such as intake manifolds, cooling system parts such as radiator pumps, fuel system parts such as fuel pumps, The present invention can be applied to automobile parts such as control system parts such as an ECU (Engine Computer Unit) housing, lubricating oil parts such as an oil pump, covers such as a cylinder head cover, and transmission parts.

<線膨張係数測定>
測定対象の樹脂を使用して、長さ20mm、幅6mm、厚さ5mmのテストピースを作製した。テストピースをTMA装置(引張りモード、2g荷重、5℃/分)で、−150℃〜180℃の間で温度を変化させ、−40℃〜150℃の範囲で伸びを測定した。同じサンプルで2回測定して、2回目の値を採用した。また、ガラス繊維強化ナイロンについては、ガラス繊維の方向が長さ方向となるようにテストピースを作製した。
<Measurement of linear expansion coefficient>
A test piece having a length of 20 mm, a width of 6 mm, and a thickness of 5 mm was produced using the resin to be measured. The test piece was measured for elongation in the range of −40 ° C. to 150 ° C. with a TMA apparatus (tensile mode, 2 g load, 5 ° C./min) while changing the temperature between −150 ° C. and 180 ° C. The same sample was measured twice and the second value was adopted. Moreover, about glass fiber reinforced nylon, the test piece was produced so that the direction of glass fiber might become a length direction.

<実施例1>
150mm×150mm×3mm(厚み)のダイカスト成型したアルミニウム板を、インサート成型用金型にセットし、金型と同じ80℃に予熱した。金型とアルミニウム板で形成されるキャビティに、ガラス繊維強化ナイロン6の溶融樹脂を注入し、図2に示すような、樹脂部材がアルミニウム板の周囲を表側から裏側まで囲む中間複合構造体を製造した。ここで、アルミニウム板の周辺で、アルミニウム板と樹脂との重なりが6mmとなるようにした。尚、ガラス繊維強化ナイロン6の注入時の流れ方向を制御し、樹脂部材中のガラス繊維の方向が、アルミニウム板の4辺において、辺とほぼ平行に向くように樹脂部材を成形した。
<Example 1>
A 150 mm × 150 mm × 3 mm (thickness) die-cast aluminum plate was set in an insert molding die and preheated to 80 ° C., the same as the die. A molten resin of glass fiber reinforced nylon 6 is injected into a cavity formed by a mold and an aluminum plate, and an intermediate composite structure in which a resin member surrounds the aluminum plate from the front side to the back side as shown in FIG. 2 is manufactured. did. Here, the overlap between the aluminum plate and the resin was set to 6 mm around the aluminum plate. In addition, the flow direction at the time of injection | pouring of the glass fiber reinforced nylon 6 was controlled, and the resin member was shape | molded so that the direction of the glass fiber in a resin member might face the side substantially parallel in 4 sides of an aluminum plate.

一方、このように成型した樹脂と一致するフランジ面を周囲に有する蓋材(図3の第2樹脂部材12bと同様の形状を有するもの)を、ガラス繊維強化ナイロン6を用いて成型した。蓋材と中間複合構造体との面を合わせて、振動溶着装置に設置し、振幅1〜2mm、240Hzで、10秒間振動させ、合わせ面を溶着して、密閉容器状の複合構造体を形成した。   On the other hand, a lid member (having a shape similar to that of the second resin member 12b in FIG. 3) having a flange surface that coincides with the resin thus molded was molded using glass fiber reinforced nylon 6. The surface of the lid and the intermediate composite structure are put together and installed in a vibration welding apparatus, vibrated for 10 seconds at an amplitude of 1-2 mm and 240 Hz, and the mating surfaces are welded to form a sealed container-like composite structure. did.

実施例1で使用したガラス繊維強化ナイロン6樹脂は、70質量部のナイロン6に30質量部のガラス繊維を添加したものであり、線膨張係数は、2.4×10−5cm/cm/℃(20℃〜150℃の範囲:ガラス繊維方向)である。線膨張係数の測定結果を図6に示す。同じ温度範囲におけるアルミニウムの線膨張係数は、2.4×10−5cm/cm/℃である。 The glass fiber reinforced nylon 6 resin used in Example 1 is obtained by adding 30 parts by weight of glass fiber to 70 parts by weight of nylon 6 and has a linear expansion coefficient of 2.4 × 10 −5 cm / cm / ° C (range of 20 ° C to 150 ° C: glass fiber direction). The measurement result of the linear expansion coefficient is shown in FIG. The linear expansion coefficient of aluminum in the same temperature range is 2.4 × 10 −5 cm / cm / ° C.

蓋材に設けておいたノズル状の孔から、水密性を調べるために水圧を加えた。0.6MPa(ゲージ圧)にて容器が破壊するまで、アルミニウムと樹脂の接合部からの水の漏れは観察されなかった。   Water pressure was applied from a nozzle-like hole provided in the lid material in order to investigate water tightness. Until the container broke at 0.6 MPa (gauge pressure), no leakage of water from the aluminum / resin joint was observed.

蓋材に設けておいたノズル状の孔から、気密性を調べるために空気圧を加えた。0.4MPa(ゲージ圧)以上で容器からわずかなリークが生じるまで、アルミニウムと樹脂の接合部からの空気の漏れは観察されなかった。   Air pressure was applied through a nozzle-like hole provided in the lid to check the airtightness. Air leakage from the aluminum / resin joint was not observed until a slight leak occurred from the container at 0.4 MPa (gauge pressure) or higher.

<比較例1>
実施例1において、ガラス繊維を含有しないナイロン6を使用して、実施例1と同様形状の中間複合構造体を形成した。ナイロン6を使用して、実施例1と同様形状の蓋材を成型し、中間複合構造体と面を合わせて、振動溶着により密閉容器状の複合構造体を形成した。実施例1と同様にして気密性を調べたところ、アルミニウムと樹脂の接合部から空気が漏れ、気密性が不十分であった。使用したナイロン6の線膨張係数は、8.85×10−5cm/cm/℃(20℃〜150℃の範囲)である)。線膨張係数の測定結果を図6に示す。
<Comparative Example 1>
In Example 1, an intermediate composite structure having the same shape as in Example 1 was formed using nylon 6 containing no glass fiber. Using nylon 6, a lid material having the same shape as in Example 1 was molded, and the intermediate composite structure and the surface were combined to form an airtight container-shaped composite structure by vibration welding. The airtightness was examined in the same manner as in Example 1. As a result, air leaked from the joint between the aluminum and the resin, and the airtightness was insufficient. The linear expansion coefficient of nylon 6 used is 8.85 × 10 −5 cm / cm / ° C. (range of 20 ° C. to 150 ° C.). The measurement result of the linear expansion coefficient is shown in FIG.

<実施例2:高温耐久性試験、低温耐久性試験、ヒートサイクル試験>
実施例1と同様に、密閉容器状の複合構造体を複数個製造し、所定の環境下に所定時間、放置し、耐環境・耐久性試験を行った。試験条件は以下のとおりである。
高温試験:150℃の恒温槽に、750時間または1500時間放置
低温試験:−40℃の恒温槽に、750時間または1500時間放置
ヒートサイクル試験:150℃の条件下に2時間、−40℃の条件下に2時間を1サイクルとして、これを100サイクル繰り返した。
<Example 2: High temperature durability test, low temperature durability test, heat cycle test>
In the same manner as in Example 1, a plurality of sealed container-like composite structures were manufactured, and left in a predetermined environment for a predetermined time, and an environment resistance / durability test was performed. The test conditions are as follows.
High temperature test: left in a thermostatic bath at 150 ° C. for 750 hours or 1500 hours Low temperature test: left in a thermostatic bath at −40 ° C. for 750 hours or 1500 hours Heat cycle test: 2 hours under the condition of 150 ° C., −40 ° C. This was repeated 100 cycles with 2 hours as one cycle under the conditions.

評価は、耐圧試験(水密性試験)および気密性試験とし、耐圧試験(水密性試験)では、実施例1と同様に破壊するまで水圧を加え、破壊したときの圧力を記録した。結果を表1に示す。また、気密試験では、0.15MPaの空気圧をかけて、リークの有無を検査した。結果を表2に示す。   The evaluation was a pressure resistance test (water tightness test) and an air tightness test. In the pressure resistance test (water tightness test), water pressure was applied until breakdown as in Example 1, and the pressure at the time of breakdown was recorded. The results are shown in Table 1. In the air tightness test, air pressure of 0.15 MPa was applied to inspect for leaks. The results are shown in Table 2.

Figure 0005899634
Figure 0005899634

Figure 0005899634
Figure 0005899634

<比較例2:高温耐久性試験、低温耐久性試験、ヒートサイクル試験>
実施例2において、ガラス繊維を含有しないナイロン6を使用して、同様に複合構造体を製造し、同様に、耐環境・耐久性試験を行った。但し、表3、4に示すとおり、高温試験および低温試験における時間は100時間とし、ヒートサイクル試験では20サイクルとした。評価方法も実施例2と同様にして評価した。結果を表3、表4に示す。

Figure 0005899634
<Comparative Example 2: High temperature durability test, low temperature durability test, heat cycle test>
In Example 2, a composite structure was produced in the same manner using nylon 6 containing no glass fiber, and the environment resistance / durability test was similarly conducted. However, as shown in Tables 3 and 4, the time in the high temperature test and the low temperature test was 100 hours, and in the heat cycle test, it was 20 cycles. The evaluation method was also evaluated in the same manner as in Example 2. The results are shown in Tables 3 and 4.
Figure 0005899634

Figure 0005899634
Figure 0005899634

以上のとおり、本発明の複合構造体は、高温試験、低温試験およびヒートサイクル試験の後でも、耐圧強度および気密性を維持しており、このような試験条件に対応する過酷な環境での使用に適合していることが明らかである。   As described above, the composite structure of the present invention maintains pressure strength and airtightness even after a high temperature test, a low temperature test, and a heat cycle test, and is used in a harsh environment corresponding to such test conditions. It is clear that

本発明によれば、部品数が少なくて済み、組み立て時間を大幅に短縮でき、かつ金属と樹脂の接合面での気密性も高い複合構造体を提供することができる。   According to the present invention, it is possible to provide a composite structure in which the number of parts is small, the assembling time can be significantly shortened, and the airtightness at the joint surface between the metal and the resin is high.

10 複合構造体
11 電子部品
12 樹脂部材
12a 第1樹脂部材
12b 第2樹脂部材
13 金属部材
50 収納ケース
53 金属基板
52 樹脂ケース部
51 電子部品
54 ボルト
DESCRIPTION OF SYMBOLS 10 Composite structure 11 Electronic component 12 Resin member 12a 1st resin member 12b 2nd resin member 13 Metal member 50 Storage case 53 Metal substrate 52 Resin case part 51 Electronic component 54 Bolt

Claims (13)

金属部材と樹脂部材とが接合されて形成される密閉容器状構造を有する複合構造体であって、
前記金属部材は、前記密閉容器状構造の内部側と外部側に露出し、
前記金属部材と接合している箇所に存在する第1樹脂部材が、前記金属部材の周囲を取り囲んで射出成型で形成され、かつ前記第1樹脂部材の線膨張係数が、20℃〜150℃の範囲において、前記金属部材の線膨張係数の0.5〜1.5倍の範囲であることを特徴とする複合構造体。
A composite structure having a sealed container-like structure formed by joining a metal member and a resin member,
The metal member is exposed on the inner side and the outer side of the sealed container-like structure,
The 1st resin member which exists in the location joined with the metal member is formed by injection molding surrounding the circumference of the metal member, and the linear expansion coefficient of the 1st resin member is 20 ° C-150 ° C The composite structure according to claim 1, wherein the composite structure has a range of 0.5 to 1.5 times the linear expansion coefficient of the metal member.
前記金属部材と前記第1樹脂部材が嵌合していることを特徴とする請求項1記載の複合構造体。The composite structure according to claim 1, wherein the metal member and the first resin member are fitted. 前記第1樹脂部材が、前記金属部材の端部をコの字状に囲むように前記金属部材の前記密閉容器状構造の内部側から外部側まで連続して形成されていることを特徴とする請求項2記載の複合構造体。The first resin member is formed continuously from the inner side to the outer side of the sealed container-like structure of the metal member so as to surround an end of the metal member in a U-shape. The composite structure according to claim 2. 前記金属部材が板状であることを特徴とする請求項1〜3のいずれか1項に記載の複合構造体。The said metal member is plate shape, The composite structure of any one of Claims 1-3 characterized by the above-mentioned. 前記第1樹脂部材は、樹脂成分と無機充填材成分を含有し、前記範囲の線膨張係数を有するように前記無機充填剤成分の量が選ばれることを特徴とする請求項1〜4のいずれか1項に記載の複合構造体。 The said 1st resin member contains a resin component and an inorganic filler component, and the quantity of the said inorganic filler component is selected so that it may have the linear expansion coefficient of the said range , Any one of Claims 1-4 characterized by the above-mentioned. The composite structure according to claim 1 . 前記無機充填剤が、ガラス繊維またはカーボン繊維であることを特徴とする請求項記載の複合構造体。 6. The composite structure according to claim 5 , wherein the inorganic filler is glass fiber or carbon fiber. 少なくとも前記第1樹脂部材を構成する樹脂成分が、ポリアミド樹脂であることを特徴とする請求項記載の複合構造体。 The composite structure according to claim 5, wherein at least the resin component constituting the first resin member is a polyamide resin. 前記金属部材が、ダイカスト成形で加工されたアルミニウムであることを特徴とする請求項1〜7のいずれか1項に記載の複合構造体。 The composite structure according to any one of claims 1 to 7 , wherein the metal member is aluminum processed by die casting. 金属部材と樹脂部材が接合部において接合された密閉容器状構造を有する複合構造体の製造方法であって、
前記金属部材を、インサート成形用の金型に設置する工程と、
前記金型に、溶融状態の第1樹脂部材を注入し、前記金属部材と前記第1樹脂部材が接合部において接合し、前記金属部材の周囲を前記第1の樹脂部材が取り囲むように第1樹脂部材を成型する工程と、
前記接合部に接合して成型された第1樹脂部材と、予め形成された第2樹脂部材を溶着し、前記金属部材が前記密閉容器状構造の内部側と外部側に露出するようにして、前記密閉容器状構造を形成する工程と
を有し、
20℃〜150℃の範囲において、前記第1樹脂部材の線膨張係数が、前記金属部材の線膨張係数の0.5〜1.5倍の範囲であること
を特徴とする複合構造体の製造方法。
A method of manufacturing a composite structure having a sealed container-like structure in which a metal member and a resin member are joined at a joint,
Installing the metal member in a mold for insert molding;
A molten first resin member is poured into the mold, the metal member and the first resin member are joined at a joint, and the first resin member surrounds the first metal member . A step of molding a resin member;
A first resin member molded by bonding to the bonding portion and a second resin member formed in advance are welded so that the metal member is exposed to the inner side and the outer side of the sealed container-like structure, Forming the sealed container-like structure; and
In the range of 20 ° C. to 150 ° C., the first resin member has a linear expansion coefficient in the range of 0.5 to 1.5 times the linear expansion coefficient of the metal member. Method.
前記第1の樹脂部材を成型する工程において、前記金属部材と前記樹脂部材が嵌合することを特徴とする請求項9記載の複合構造体の製造方法。The method for manufacturing a composite structure according to claim 9, wherein the metal member and the resin member are fitted in the step of molding the first resin member. 前記第1の樹脂部材が、前記金属部材の端部をコの字状に囲むように前記金属部材の前記密閉容器状構造の内部側から外部側まで連続して形成されていることを特徴とする請求項10記載の複合構造体の製造方法。The first resin member is formed continuously from the inner side to the outer side of the sealed container-like structure of the metal member so as to surround an end of the metal member in a U-shape. The method for producing a composite structure according to claim 10. 前記金属部材が板状であることを特徴とする請求項9〜11のいずれか1項に記載の複合構造体の製造方法。The method for producing a composite structure according to any one of claims 9 to 11, wherein the metal member has a plate shape. 前記溶融状態の第1樹脂部材を注入する際に、前記金属部材を前記金型と略同一の温度に予熱しておくことを特徴とする請求項9〜12のいずれか1項に記載の複合構造体の製造方法。 13. The composite according to claim 9 , wherein when the molten first resin member is injected, the metal member is preheated to substantially the same temperature as the mold. Manufacturing method of structure.
JP2011052492A 2010-03-16 2011-03-10 Composite structure Expired - Fee Related JP5899634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052492A JP5899634B2 (en) 2010-03-16 2011-03-10 Composite structure

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010059245 2010-03-16
JP2010059245 2010-03-16
JP2011052492A JP5899634B2 (en) 2010-03-16 2011-03-10 Composite structure

Publications (2)

Publication Number Publication Date
JP2011213108A JP2011213108A (en) 2011-10-27
JP5899634B2 true JP5899634B2 (en) 2016-04-06

Family

ID=44943333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052492A Expired - Fee Related JP5899634B2 (en) 2010-03-16 2011-03-10 Composite structure

Country Status (1)

Country Link
JP (1) JP5899634B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012132639A1 (en) * 2011-03-25 2014-07-24 宇部興産株式会社 Composite of metal and thermoplastic resin
JP5838949B2 (en) * 2012-10-17 2016-01-06 日本軽金属株式会社 Method for producing composite hollow container and composite hollow container
US20160221254A1 (en) * 2013-08-15 2016-08-04 Asahi Kasei Chemicals Corporation Bonded body and bonding method
JP6610859B2 (en) * 2015-06-01 2019-11-27 日産自動車株式会社 Composite member and method for manufacturing the composite member
JP6065068B2 (en) * 2015-07-16 2017-01-25 日本軽金属株式会社 Method for producing composite hollow container and composite hollow container
JP5935933B2 (en) * 2015-07-16 2016-06-15 日本軽金属株式会社 Method for producing composite hollow container
WO2019065301A1 (en) * 2017-09-29 2019-04-04 本田技研工業株式会社 Resin joined body and method for manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936567A (en) * 1995-07-17 1997-02-07 Fujitsu Ten Ltd Fitting structure
JP4044669B2 (en) * 1998-03-23 2008-02-06 電気化学工業株式会社 Resin frame assembly and assembly method thereof
JP2960047B1 (en) * 1998-04-13 1999-10-06 東北ムネカタ株式会社 Composite housing
JP4202015B2 (en) * 2001-12-10 2008-12-24 大成プラス株式会社 Metal-resin composite and method for producing the same
JP5124129B2 (en) * 2005-12-08 2013-01-23 東レ株式会社 Aluminum alloy-resin composite and method for producing the same

Also Published As

Publication number Publication date
JP2011213108A (en) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5899634B2 (en) Composite structure
US9239337B2 (en) Ultrasonic transducer for use in a fluid medium
US7316215B1 (en) Valve cover assembly for a vehicle engine and method for producing same
EP0665370A1 (en) Multi polymer structures for internal combustion engines
US7827950B2 (en) Valve cover assembly and method of construction
JP2004534169A (en) Adhesive bonded engine intake manifold assembly
KR20080033942A (en) Automotive heat exchanger
CN100569483C (en) The manufacture method of compound sealing component used for internal combustion engine
US20200171563A1 (en) Method of forming casting with flow passage, and casting formed by the same
JP2012021503A (en) Oil jet for cooling piston
US20230341195A1 (en) Heat exchange device and method for manufacturing heat exchange device
AU2016352821A1 (en) Composite-plastic hybrid engine cover and process for making the same
US9897395B2 (en) Tank for heat exchanger, and method for manufacturing the same
JP2014181593A (en) Oil pan for internal combustion engine
CN103867327B (en) Containment assembly for flowable materials
JPH0427382B2 (en)
US6945199B2 (en) Engine coolant crossover assembly
JP5326452B2 (en) Composite structure and manufacturing method thereof
US8985082B2 (en) Engine assembly with pump cavity liner and method of assembling an engine
WO2009015458A1 (en) Light-metal alloy injection-molded article having hollow insert and associated process, mold and system
JP2006266184A (en) Engine block structure
GB2563014A (en) A method of manufacturing a sump, a sump, and a vehicle comprising a sump
JP2013115231A (en) Electromagnetic shield cover
US20220082061A1 (en) Engine block, resin block, and method of manufacturing engine block
KR100963771B1 (en) Hybrid Radiator Tank and Manufacturing Method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160222

R150 Certificate of patent or registration of utility model

Ref document number: 5899634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees