JP5898565B2 - Method for reducing surface resistance of transparent conductive carbon film laminate - Google Patents

Method for reducing surface resistance of transparent conductive carbon film laminate Download PDF

Info

Publication number
JP5898565B2
JP5898565B2 JP2012112736A JP2012112736A JP5898565B2 JP 5898565 B2 JP5898565 B2 JP 5898565B2 JP 2012112736 A JP2012112736 A JP 2012112736A JP 2012112736 A JP2012112736 A JP 2012112736A JP 5898565 B2 JP5898565 B2 JP 5898565B2
Authority
JP
Japan
Prior art keywords
transparent conductive
carbon film
conductive carbon
surface resistance
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012112736A
Other languages
Japanese (ja)
Other versions
JP2013239385A (en
Inventor
篤 多々見
篤 多々見
村上 睦明
睦明 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2012112736A priority Critical patent/JP5898565B2/en
Publication of JP2013239385A publication Critical patent/JP2013239385A/en
Application granted granted Critical
Publication of JP5898565B2 publication Critical patent/JP5898565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、実際の製造プロセスへの応用が可能な大面積のグラフェンのドーピング方法に関する。   The present invention relates to a method for doping large-area graphene that can be applied to an actual manufacturing process.

グラフェンは高い透明性と電気移動度を兼ね備えており、タッチパネル、太陽電池、有機EL用透明導電膜や電極材料として注目されている。特に近年のスマートフォン市場の拡大を受け、スマートフォン用タッチパネル用透明導電膜としての利用が注目されている。   Graphene has high transparency and electric mobility, and has attracted attention as a touch panel, a solar cell, a transparent conductive film for organic EL, and an electrode material. In particular, in response to the recent expansion of the smartphone market, the use as a transparent conductive film for smartphone touch panels has attracted attention.

タッチパネル用の大面積グラフェンを作成するには、熱およびプラズマCVDでグラフェンを銅、ニッケル箔上に作製するか、酸化グラフェンを基板に塗布して還元する方法がある。これらの方法では大面積のグラフェン膜が比較的簡便に作成できる。しかし、表面抵抗値が103〜105Ohm/sq.程度であり、現状のグラフェン合成手法だけではタッチパネル用透明導電膜の要求特性を満たすことは厳しい。 In order to create large-area graphene for a touch panel, there is a method in which graphene is produced on copper or nickel foil by heat and plasma CVD, or graphene oxide is applied to a substrate and reduced. With these methods, a large-area graphene film can be formed relatively easily. However, the surface resistance value is 10 3 to 10 5 Ohm / sq. However, it is difficult to satisfy the required characteristics of the transparent conductive film for touch panel only with the current graphene synthesis method.

このような状況から、グラフェンの表面抵抗を下げるためのドーピング法が多数検討されている。濃硝酸を使用するグラフェンのドーピング方法が報告されている(非特許文献1)。この方法によりグラフェンの表面抵抗は減少するが、使用する試薬が危険であり、安全対策のための設備が必要となる。また濃硝酸は、使用できる基板が限定され、デバイス作成後には腐食など悪影響が懸念される。塩化金(III)のニトロメタン溶液を使用する方法も報告されている(非特許文献1)。この方法もドーピング効果が高いことが報告されているが、高価な塩化金と可燃性が非常に高いニトロメタンを多量に使用するため、実際の工業プロセスで使用することは難しい。他にも有機分子などを付着させる方法も報告されているが、希ガス雰囲気化で電気抵抗だけを評価したもの、高配向熱分解黒鉛(HOPG)から剥離した数μm程度の非常に小さなグラフェンを用いて電気特性だけを評価しただけのものである(非特許文献2)。さらにこれらの文献では、ドーピング前後のグラフェンの透過率変化に関して詳細に調べていない。実際のタッチパネル用透明導電膜では、ドーピングによる基板の着色、透過率の低下は致命的である。このように、グラフェン透明導電膜の透過率を損なわず、表面抵抗を下げる方法の開発が目下の急務である。   Under such circumstances, many doping methods for reducing the surface resistance of graphene have been studied. A graphene doping method using concentrated nitric acid has been reported (Non-patent Document 1). Although the surface resistance of graphene is reduced by this method, the reagent used is dangerous and equipment for safety measures is required. Concentrated nitric acid is limited in the substrates that can be used, and there is a concern about adverse effects such as corrosion after device fabrication. A method using a nitromethane solution of gold (III) chloride has also been reported (Non-patent Document 1). Although this method is also reported to have a high doping effect, it is difficult to use it in an actual industrial process because it uses a large amount of expensive gold chloride and highly flammable nitromethane. Other methods of attaching organic molecules have also been reported, but only a small gas graphene of about several μm peeled from highly oriented pyrolytic graphite (HOPG) was evaluated based on the evaluation of electrical resistance only in a rare gas atmosphere. It is only used to evaluate only the electric characteristics (Non-Patent Document 2). Furthermore, these documents do not examine in detail the transmittance change of graphene before and after doping. In an actual transparent conductive film for a touch panel, coloring of the substrate due to doping and a decrease in transmittance are fatal. Thus, there is an urgent need to develop a method for reducing the surface resistance without impairing the transmittance of the graphene transparent conductive film.

Nano Lett.2011,(11),5154?5158.Nano Lett. 2011, (11), 5154-5158. J.Mater.Chem.2011,(21),3335−3345.J. et al. Mater. Chem. 2011, (21), 3335-3345.

本発明は前述の従来技術が包含する課題に鑑み、大面積グラフェンの透過率を低下させることなく表面抵抗を下げられる、実際の製造プロセスへの応用可能なドーピング方法を提供することである。   The present invention provides a doping method applicable to an actual manufacturing process, in which surface resistance can be reduced without reducing the transmittance of large-area graphene, in view of the problems involved in the above-described conventional technology.

本発明者らは前述の課題を解決するため、鋭意研究を重ねた。
すなわち本発明は、以下の通りである。
1)基板(A)上の透明導電性炭素膜(B)に、薄膜活性化層(C)を設けることを特徴とする透明導電性炭素膜積層体の表面抵抗の低下方法。
2)基板(A)として、金属、金属酸化物、ガラス、シリコンウエハ、SiCウエハ、およびポリマーフィルムからなる群より選択される材料からなることを特徴とする、1)に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
3)透明導電性炭素膜(B)が、厚さ0.1〜1000nm、面積0.1cm2以上のものであることを特徴とする、1)または2)に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
4)薄膜活性化層(C)の厚さが0.01〜1000nmであることを特徴とする、1)〜3)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
5)薄膜活性化層(C)の屈折率が透明導電炭素膜(B)よりも低いことを特徴とする、1)〜4)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
6)薄膜活性化層(C)を作成する際に、シランカップリング剤を使用することを特徴とする、1)〜5)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
7)シランカップリング剤として、下記化学式(I)、(II)または(III)
In order to solve the above-mentioned problems, the present inventors have conducted extensive research.
That is, the present invention is as follows.
1) A method for reducing the surface resistance of a transparent conductive carbon film laminate, comprising providing a thin film activation layer (C) on a transparent conductive carbon film (B) on a substrate (A).
2) The transparent conductive carbon according to 1), wherein the substrate (A) is made of a material selected from the group consisting of metal, metal oxide, glass, silicon wafer, SiC wafer, and polymer film. A method for reducing the surface resistance of a film laminate.
3) The transparent conductive carbon film (B) has a thickness of 0.1 to 1000 nm and an area of 0.1 cm 2 or more, and the transparent conductive carbon film laminate according to 1) or 2) A method of reducing the surface resistance of the body.
4) The thickness of the thin film activated layer (C) is 0.01 to 1000 nm, and the surface resistance of the transparent conductive carbon film laminate according to any one of 1) to 3) Lowering method.
5) The transparent conductive carbon film laminate according to any one of 1) to 4), wherein the refractive index of the thin film activated layer (C) is lower than that of the transparent conductive carbon film (B). Method for reducing surface resistance.
6) The surface of the transparent conductive carbon film laminate according to any one of 1) to 5), wherein a silane coupling agent is used when forming the thin film activation layer (C). How to reduce resistance.
7) As a silane coupling agent, the following chemical formula (I), (II) or (III)

〔但しXは加水分解性基である。R1,R2、R3は、それぞれ同一または異なって、水素原子の一部または全部がフッ素原子で置換されていてもよい炭素数1〜18の炭化水素基を表す。〕で示されるシランカップリング剤を少なくとも1種類以上含むことを特徴とする、6)に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
8)薄膜活性化層(C)上の接触角が60〜150°であることを特徴とする、請求項1〜7)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
9)(A)〜(C)からなる積層体の光線透過率が70%以上であることを特徴とする、1)〜8)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
10)(A)、(B)からなる積層体と、(A)〜(C)からなる積層体の透過率の差が10%以下であることを特徴とする、1)〜9)のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。
11)1)〜10)10のいずれか1項に記載の製造方法により得られた透明導電性炭素膜積層体。
[However, X is a hydrolyzable group. R 1 , R 2 and R 3 are the same or different and each represents a hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms. The method for reducing the surface resistance of the transparent conductive carbon film laminate according to 6), comprising at least one silane coupling agent represented by the formula:
8) The surface resistance of the transparent conductive carbon film laminate according to any one of claims 1 to 7, wherein a contact angle on the thin film activation layer (C) is 60 to 150 °. Method of lowering.
9) The transparent conductive carbon film laminate according to any one of 1) to 8) above, wherein the laminate comprising (A) to (C) has a light transmittance of 70% or more. Method for reducing surface resistance.
10) Any one of 1) to 9), wherein the difference in transmittance between the laminate comprising (A) and (B) and the laminate comprising (A) to (C) is 10% or less. The method for decreasing the surface resistance of the transparent conductive carbon film laminate according to claim 1.
11) The transparent conductive carbon film laminated body obtained by the manufacturing method of any one of 1) -10) 10.

本発明者らによる鋭意研究の結果、基板(A)に転写したグラフェン(B)を、下記化学式(I)、(II)、(II)で表されるシランカップリング剤と減圧条件で共存させることにより、グラフェン(B)の表面に薄膜活性化層(C)を作成させ、ドーピングすることを見出した。   As a result of intensive studies by the present inventors, the graphene (B) transferred to the substrate (A) is allowed to coexist with the silane coupling agent represented by the following chemical formulas (I), (II), and (II) under reduced pressure conditions. Thus, the inventors have found that a thin film activation layer (C) is formed on the surface of graphene (B) and doping is performed.

本発明により、グラフェンの透過率を下げることなく大面積のグラフェンに対してドーピングが可能となり、低抵抗のタッチパネル用のグラフェン透明導電膜を作成できる。   According to the present invention, it is possible to dope a large area of graphene without lowering the transmittance of graphene, and a graphene transparent conductive film for a low-resistance touch panel can be created.

以下に本発明の詳細について述べる。 Details of the present invention will be described below.

本発明で用いることのできる基板(A)としては、金属、金属酸化物、金属窒化物、金属酸窒化物などの無機材料の基体が挙げられる。例えば、ガラス、セラミックス、金属、シリコンウエハ、SiCなどがあげられる。ほかの基板例として、ポリビニルフェノール(PVP)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリ塩化ビニル(PVC)、ポリフッ化ビニリデン(PVDF、なおVDFは登録商標)、ポリテトラフルオロエチレン(PTFE)、ポリイミド(PI)、エポキシ樹脂、ポリジメチルシロキサン(PDMS)、ブタジエンゴム等のプラスチック基板が挙げられる。これら基板はバルクまたは薄膜として使用してもよいし、ガラス、プラスチックフィルム、セラミックス、金属、あるいはシリコンウエハなどの基板の最表面に配置してもよい。以上の無機材料や有機材料等の基体を張り合わせたり、積層したりして用いてもよい。   Examples of the substrate (A) that can be used in the present invention include substrates of inorganic materials such as metals, metal oxides, metal nitrides, and metal oxynitrides. For example, glass, ceramics, metal, silicon wafer, SiC and the like can be mentioned. Examples of other substrates include polyvinylphenol (PVP), polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), polyvinylidene fluoride (PVDF, VDF is a registered trademark), Examples thereof include plastic substrates such as polytetrafluoroethylene (PTFE), polyimide (PI), epoxy resin, polydimethylsiloxane (PDMS), and butadiene rubber. These substrates may be used as a bulk or a thin film, and may be disposed on the outermost surface of a substrate such as glass, plastic film, ceramics, metal, or silicon wafer. Substrates such as the above inorganic materials and organic materials may be laminated or laminated.

透明導電性炭素膜(B)の合成方法として特に限定はしないが、グラファイト薄膜、グラファイト薄膜の剥離法、表面波プラズマCVD法、熱CVD法、RFプラズマCVD法、リモートプラズマCVD法、インバータプラズマCVD法、SiCの加熱による合成法、酸化グラフェンの還元等、その他従来公知の方法または上記方法を一つ以上組み合わせてもよい。特に表面波プラズマCVD法、熱CVD法、RFプラズマCVD法、リモートプラズマCVD法、インバータプラズマCVD法で作成した透明導電性炭素膜が、膜の均一性が高いことからより好ましい。   The method for synthesizing the transparent conductive carbon film (B) is not particularly limited, but it is not limited to graphite thin film, graphite thin film peeling method, surface wave plasma CVD method, thermal CVD method, RF plasma CVD method, remote plasma CVD method, inverter plasma CVD. One or more of the above-mentioned methods or other conventionally known methods such as a method, a synthesis method by heating SiC, or reduction of graphene oxide may be used. In particular, a transparent conductive carbon film prepared by a surface wave plasma CVD method, a thermal CVD method, an RF plasma CVD method, a remote plasma CVD method, or an inverter plasma CVD method is more preferable because of high film uniformity.

透明導電性炭素膜(B)の厚みは0.01nm〜1000nmが好ましく、炭素膜の透明性を考慮すると0.1〜10nmが好ましく、0.3〜5nmがより好ましい。   The thickness of the transparent conductive carbon film (B) is preferably 0.01 nm to 1000 nm, and considering the transparency of the carbon film, 0.1 to 10 nm is preferable, and 0.3 to 5 nm is more preferable.

透明導電性炭素膜(B)は透明導電膜として使用することを考慮すると、面積0.1cm2以上であることが好ましい。 In consideration of using the transparent conductive carbon film (B) as a transparent conductive film, the area is preferably 0.1 cm 2 or more.

薄膜活性化層(C)とは、透明導電性炭素膜(B)に対してドーピングする役割を果たし、かつ(B)の表面抵抗を下げ、光線透過率を低下させない、連続または不連続な膜と定義する。   The thin film activation layer (C) is a continuous or discontinuous film that plays a role of doping the transparent conductive carbon film (B) and does not lower the surface resistance of (B) and reduce the light transmittance. It is defined as

活性化層(C)の厚みは、0.01〜1000nm以下が好ましく、透明導電性炭素膜組成物の透過率を下げないことを考えると0.1nm〜200nmであることがより好ましい。   The thickness of the activation layer (C) is preferably 0.01 to 1000 nm or less, and more preferably 0.1 to 200 nm in view of not reducing the transmittance of the transparent conductive carbon film composition.

活性化層(C)の屈折率は、反射抑制を考慮すると透明導電性炭素膜(B)より低いことが好ましい。   The refractive index of the activation layer (C) is preferably lower than that of the transparent conductive carbon film (B) in consideration of reflection suppression.

炭素膜表面に上記活性化層(C)を形成する方法として特に限定はしないが、ディッピング法、スピンコート法、バーコート法、スプレー法、エアレススプレー法、ダイコート法、ロールコート法、フローコート法、そして真空中でシランカップリング剤の蒸気に晒す真空蒸着法などがあげられる。通常シランカップリング剤中の加水分解性基Xが系中の水分と加水分解反応を起こしポリマー化やオリゴマー化が進行するため、できる限り空気や水分に接触しない方法が望まれることから、真空中でシランカップリング剤の蒸気に晒す真空蒸着法が特に好ましい。   The method for forming the activated layer (C) on the surface of the carbon film is not particularly limited, but dipping method, spin coating method, bar coating method, spray method, airless spray method, die coating method, roll coating method, flow coating method. And vacuum deposition in which the silane coupling agent is exposed to vapor in vacuum. Since a hydrolyzable group X in a silane coupling agent usually undergoes a hydrolysis reaction with water in the system and polymerization and oligomerization proceed, a method that does not come into contact with air and moisture as much as possible is desired. Particularly preferred is a vacuum deposition method in which the silane coupling agent is exposed to vapor.

本発明の化学式(I)、(II)または(III)におけるR1,R2、R3は、それぞれ同一または異なって、水素原子の一部または全部がフッ素原子で置換されていてもよい炭素数1〜18の炭化水素基を表す。 R 1 , R 2 , and R 3 in the chemical formula (I), (II), or (III) of the present invention are the same or different, and a carbon atom in which some or all of the hydrogen atoms may be substituted with fluorine atoms The hydrocarbon group of number 1-18 is represented.

また上記化学式(I)、(II)、(III)における官能基R1、R2、R3は、それぞれ同一または異なって、水素原子の一部がフッ素原子で置換されていてもよい炭素数1〜12の炭化水素基を表すことが好ましい。 The functional groups R 1 , R 2 , and R 3 in the above chemical formulas (I), (II), and (III) are the same or different, and the number of carbon atoms that may be partially substituted with fluorine atoms. It preferably represents 1 to 12 hydrocarbon groups.

さらに上記化学式(I)、(II)、(III)における官能基R1、R2、R3は、それぞれ同一または異なって、独立して、アルキル基、アリール基などを表わす。アルキル基としては、炭素数1〜18の置換もしくは無置換のものを示し、例えばメチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、イソペンチル基、n−ヘキシル基、トリフルオロメチル基、トリフルオロエチル基などを挙げることができる。アリール基としては炭素数6〜20の置換もしくは無置換のものを示し、例えば、フェニル基、1−ナフチル基、2−ナフチル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−ニトロフェニル基、4−フェニルフェニル基、4−クロロフェニル基、4−ブロモフェニル基などを挙げることができる。他の官能基としては、炭素数7〜20の置換もしくは無置換のものを示し、ベンジル基、4−メチルベンジル基、3−メチルベンジル基、2−メチルベンジル基、4−メトキシベンジル基、3−メトキシベンジル基、2−メトキシベンジル基、1−フェニルエチル基、2−フェニルエチル基、1−(4−メチルフェニル)エチル基、1−(4−メトキシフェニル)エチル基、3−フェニルプロピル基、2−フェニルプロピル基等を挙げることができる。中でもR1として好ましくはメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基、フェニル基、シクロヘキシル基、シクロペンチル基、1H,1H,2H,2H-トリデカフルオロ−n−オクチル基、1H,1H,2H,2H-ヘプタデカフルオロデシル基、2−シアノエチル基メチル基、フェニル基、4−メチルフェニル基であり、さらに好ましくはフェニル基、1H,1H,2H,2H-トリデカフルオロ−n−オクチル基、トリクロロ(1H,1H,2H,2H-ヘプタデカフルオロデシル)基である。R2、R3として好ましくはメチル基、エチル基、フェニル基であり、さらに好ましくはメチル基、エチル基である。メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、オクタデシル基、フェニル基、シクロヘキシル基、シクロペンチル基、1H,1H,2H,2H-トリデカフルオロ-n-オクチル基、1H,1H,2H,2H-ヘプタデカフルオロデシル基、2-シアノエチル基である。 Furthermore, the functional groups R 1 , R 2 and R 3 in the chemical formulas (I), (II) and (III) are the same or different and each independently represents an alkyl group, an aryl group or the like. Examples of the alkyl group include substituted or unsubstituted ones having 1 to 18 carbon atoms, such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert- Examples thereof include a butyl group, an n-pentyl group, an isopentyl group, an n-hexyl group, a trifluoromethyl group, and a trifluoroethyl group. The aryl group is a substituted or unsubstituted group having 6 to 20 carbon atoms, such as a phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl. Group, 4-ethylphenyl group, 3-ethylphenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group, 4-nitrophenyl group, 4-phenylphenyl group, 4-chlorophenyl group, 4 -A bromophenyl group etc. can be mentioned. Other functional groups are substituted or unsubstituted having 7 to 20 carbon atoms, such as benzyl group, 4-methylbenzyl group, 3-methylbenzyl group, 2-methylbenzyl group, 4-methoxybenzyl group, 3 -Methoxybenzyl group, 2-methoxybenzyl group, 1-phenylethyl group, 2-phenylethyl group, 1- (4-methylphenyl) ethyl group, 1- (4-methoxyphenyl) ethyl group, 3-phenylpropyl group And 2-phenylpropyl group. Among them, R 1 is preferably methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, octadecyl group, phenyl group, cyclohexyl group, cyclopentyl group, 1H, 1H, 2H, 2H- Tridecafluoro-n-octyl group, 1H, 1H, 2H, 2H-heptadecafluorodecyl group, 2-cyanoethyl group methyl group, phenyl group, 4-methylphenyl group, more preferably phenyl group, 1H, 1H , 2H, 2H-tridecafluoro-n-octyl group, trichloro (1H, 1H, 2H, 2H-heptadecafluorodecyl) group. R 2 and R 3 are preferably a methyl group, an ethyl group, or a phenyl group, and more preferably a methyl group or an ethyl group. Methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, octadecyl group, phenyl group, cyclohexyl group, cyclopentyl group, 1H, 1H, 2H, 2H-tridecafluoro-n- An octyl group, 1H, 1H, 2H, 2H-heptadecafluorodecyl group and 2-cyanoethyl group.

本発明の化学式(I)、(II)または(III)におけるXは加水分解性基である。   X in the chemical formula (I), (II) or (III) of the present invention is a hydrolyzable group.

上記化学式(I)、(II)、(III)における官能基Xとしてはハロゲン原子またはアルコキシ基が好ましい。例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子、アルコキシ基、アセトキシ基などを挙げることができる。入手性などを考慮すると、塩素原子、アルコキシ基が特に好ましい。   The functional group X in the chemical formulas (I), (II), and (III) is preferably a halogen atom or an alkoxy group. For example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, an alkoxy group, an acetoxy group, etc. can be mentioned. In view of availability, a chlorine atom and an alkoxy group are particularly preferable.

本発明の薄膜活性層(C)の接触角は、透明導電性炭素膜(B)の接触角が80〜95°であるため、濡れ性の問題を考慮すると薄膜活性層(C)表面は60〜150°が好ましく、80〜120°がより好ましい。   The contact angle of the thin film active layer (C) of the present invention is that the contact angle of the transparent conductive carbon film (B) is 80 to 95 °. ˜150 ° is preferable, and 80 to 120 ° is more preferable.

本発明の透明導電性炭素膜組成物(A)、(B)や組成物(A)〜(C)の透過率は、透明導電膜としての使用を考慮すると70%以上が好ましく、さらには80%以上がより好ましい。   The transmittance of the transparent conductive carbon film compositions (A) and (B) and the compositions (A) to (C) of the present invention is preferably 70% or more in consideration of use as a transparent conductive film, and more preferably 80 % Or more is more preferable.

本発明においては、透明導電性炭素膜組成物(A),(B)と組成物(A)〜(C)透過率の差は小さければ小さいほど透明導電性炭素膜組成物の透過率を損なわない良いドーピング方法であり、その差が10%以下であることが好ましく、5%以下であることがより好ましい。   In this invention, the transmittance | permeability of a transparent conductive carbon film composition is impaired, so that the difference of the transparent conductive carbon film composition (A), (B) and the composition (A)-(C) transmittance is small. A good doping method, and the difference is preferably 10% or less, more preferably 5% or less.

以下、実施例を挙げ、本発明を説明するが、本発明の主旨を越えない限り、実施例に限定されるものではない。また比較例、実施例中で使用する表面プラズマCVDで合成したグラフェンは以下の非公開特許に従い製造した。
1. “透明導電性炭素膜の製造方法及び透明導電性炭素膜”, 金載浩,石原正統,古賀義紀,津川和夫,長谷川雅考,飯島澄男,山田貴尋,特願2011- 041749 ,2011/02/28.
2. “透明導電性炭素膜の製造方法及び透明導電性炭素膜”, 金載浩,石原正統,古賀義紀,津川和夫,長谷川雅考,飯島澄男,山田貴尋,特願2011-009616,2011/01/20.
3. “透明導電性炭素膜の製造方法及び透明導電性炭素膜”,金載浩,石原正統,古賀義紀,津川和夫,長谷川雅考,飯島澄男,山田貴壽,特願2010-200901,2010/09/08.
4. “透明導電性炭素膜の製造方法及び透明導電性炭素膜”,金載浩,石原正統,古賀義紀,津川和夫,長谷川雅考,飯島澄男,特願2010-060055,2010/03/17.
5. “透明導電膜積層体の製造方法および透明導電膜積層体”石原正統,金載浩,山田貴壽、古賀義紀,長谷川雅考,特願2011-103370, 2011/05/06.
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, unless it exceeds the main point of this invention, it is not limited to an Example. Moreover, the graphene synthesized by surface plasma CVD used in the comparative examples and examples was manufactured according to the following non-public patents.
1. “Transparent Conductive Carbon Film Manufacturing Method and Transparent Conductive Carbon Film”, Hiroshi Kanami, Masanori Ishihara, Yoshinori Koga, Kazuo Tsugawa, Masanori Hasegawa, Sumio Iijima, Takahiro Yamada, Japanese Patent Application 2011-041749, 2011/02 / 28.
2. “Method of manufacturing transparent conductive carbon film and transparent conductive carbon film”, Hiroshi Kane, Masanori Ishihara, Yoshinori Koga, Kazuo Tsukawa, Masanori Hasegawa, Sumio Iijima, Takahiro Yamada, Japanese Patent Application 2011-009616, 2011/01 / 20.
3. “Transparent Conductive Carbon Film Manufacturing Method and Transparent Conductive Carbon Film”, Hiroshi Kane, Masanori Ishihara, Yoshinori Koga, Kazuo Tsugawa, Masanori Hasegawa, Sumio Iijima, Takaaki Yamada, Japanese Patent Application 2010-200901, 2010/09 / 08.
4. “Manufacturing method of transparent conductive carbon film and transparent conductive carbon film”, Hiroshi Kanami, Masanori Ishihara, Yoshinori Koga, Kazuo Tsukawa, Masanori Hasegawa, Sumio Iijima, Japanese Patent Application 2010-060055, 2010/03/17.
5. “Method for producing transparent conductive film laminate and transparent conductive film laminate”, Masanori Ishihara, Hiroshi Kane, Takaaki Yamada, Yoshinori Koga, Masanori Hasegawa, Japanese Patent Application 2011-103370, 2011/05/06.

<比較例1>グラフェン付石英基板の製造
表面プラズマCVD法により作成した銅箔グラフェン(グラフェン層数10層程度、大きさ25x25mm)を純水中に浸した後、超音波洗浄機で1分処理し、グラフェン上の炭素粒子や製膜中に付着した埃を除去した。この銅箔グラフェンを乾燥した後、弱剥離シート(「E−MASKR TW100」日東電工(株)製)を気泡がつかないように貼りあわせた。貼りあわせたフィルムを10%塩化鉄(和光純薬(株)製)水溶液に浸潤させ銅箔をエッチングした。この時グラフェンは弱剥離シート側に転写される。このグラフェン付保護シートを溶融石英板(2cmx2cm、厚み1mm、(株)アトック製)に貼りあわせ、2日間室温にて乾燥させた。乾燥を確認した後、弱剥離シートを除去してグラフェンを石英板に転写した。転写したグラフェン組成物の表面抵抗を4端子4探針法抵抗測定機(「ロレスタGP MCP−T600型」(株)三菱アナリテック製)、透過率はヘイズメーター(「NDH5000SP」,日本電色工業(株)製)で測定した。結果を表1に示す。
<Comparative example 1> Manufacture of a quartz substrate with graphene Copper foil graphene (number of graphene layers of about 10 layers, size: 25x25 mm) prepared by surface plasma CVD method is immersed in pure water, and then treated with an ultrasonic cleaner for 1 minute Then, carbon particles on the graphene and dust adhered during film formation were removed. After the copper foil graphene was dried, a weak release sheet (“E-MASKR TW100” manufactured by Nitto Denko Corporation) was attached so as not to cause bubbles. The laminated film was immersed in a 10% aqueous solution of iron chloride (manufactured by Wako Pure Chemical Industries, Ltd.) to etch the copper foil. At this time, the graphene is transferred to the weak release sheet side. This protective sheet with graphene was attached to a fused quartz plate (2 cm × 2 cm, thickness 1 mm, manufactured by Atock Co., Ltd.) and dried at room temperature for 2 days. After confirming the drying, the weak release sheet was removed and the graphene was transferred to the quartz plate. The surface resistance of the transferred graphene composition was measured using a 4-terminal 4-probe resistance measuring machine ("Loresta GP MCP-T600 type" manufactured by Mitsubishi Analitech Co., Ltd.), and the transmittance was a haze meter ("NDH5000SP", Nippon Denshoku Industries Co., Ltd.) (Made by Co., Ltd.). The results are shown in Table 1.

<比較例2>グラフェン付PET基板の製造
使用した基板をPETにした以外は、比較例1に記載の石英基板と同様に実験を行った。結果を表1に示す。
<Comparative Example 2> Manufacture of graphene-attached PET substrate An experiment was conducted in the same manner as the quartz substrate described in Comparative Example 1 except that the substrate used was PET. The results are shown in Table 1.

<比較例3>グラフェン付PMMA基板の製造
表面プラズマCVD法により作成した銅箔グラフェン(グラフェン層数10層程度、大きさ25x25mm)を純水中に浸した後、超音波洗浄機で1分処理し、グラフェン上の炭素粒子や製膜中に付着した埃を除去した。この銅箔グラフェンを乾燥した後、20重量%濃度のポリメタクリル酸メチル(PMMA、東京化成(株)製)クロロホルム溶液をガラス棒で塗布した。このポリマー付銅箔を140℃で1時間加熱処理をした。貼りあわせたフィルムの銅箔背面をサンドペーパで研磨し、過剰のPMMAを除去した。このフィルムを10%塩化鉄(和光純薬(株)製)水溶液に浸潤させ銅箔をエッチングした。この時グラフェンはPMMA側に転写される。エッチングしたフィルムを純水で3回洗浄した後、PETフィルムで掬い上げて乾燥させた。このグラフェン組成物の表面抵抗を4端子4探針法抵抗測定機(「ロレスタGP MCP−T600型」(株)三菱アナリテック製)、透過率はヘイズメーター(「NDH5000SP」,日本電色工業(株)製)で測定した。結果を表1に示す。
<Comparative Example 3> Manufacture of graphene-attached PMMA substrate After immersing copper foil graphene (number of graphene layers of about 10 layers, size: 25 x 25 mm) prepared by surface plasma CVD in pure water, it was treated with an ultrasonic cleaner for 1 minute Then, carbon particles on the graphene and dust adhered during film formation were removed. After the copper foil graphene was dried, a 20% strength by weight polymethyl methacrylate (PMMA, manufactured by Tokyo Chemical Industry Co., Ltd.) chloroform solution was applied with a glass rod. This polymer-attached copper foil was heat-treated at 140 ° C. for 1 hour. The copper foil back surface of the bonded film was polished with sandpaper to remove excess PMMA. The film was infiltrated with a 10% iron chloride (Wako Pure Chemical Industries, Ltd.) aqueous solution to etch the copper foil. At this time, the graphene is transferred to the PMMA side. The etched film was washed three times with pure water, then scooped up with PET film and dried. The surface resistance of this graphene composition was measured using a 4-terminal 4-probe resistance measuring machine (“Loresta GP MCP-T600 type” (manufactured by Mitsubishi Analitech Co., Ltd.)), and the transmittance was a haze meter (“NDH5000SP”, Nippon Denshoku Industries ( Measured by the company). The results are shown in Table 1.

<比較例4>グラフェン付CYTOP基板の製造
表面プラズマCVD法により作成した銅箔グラフェン(グラフェン層数10層程度、大きさ25x25mm)を純水中に浸した後、超音波洗浄機で1分処理し、グラフェン上の炭素粒子や製膜中に付着した埃を除去した。この銅箔グラフェンを乾燥した後、アモルファスフッ素樹脂CYTOP(「Mシリーズ」旭硝子(株)製)をガラス棒で塗布した。この銅箔を140℃で1時間加熱処理をした。貼りあわせたフィルムの銅箔背面をサンドペーパで研磨し、過剰のフッ素系ポリマーを除去した。このフィルムを10%塩化鉄(和光純薬(株)製)水溶液に浸潤させ銅箔をエッチングした。この時グラフェンはCYTOP側に転写される。エッチングしたフィルムを純水で3回洗浄した後、PETフィルムで掬い上げて乾燥させた。このグラフェン組成物の表面抵抗を4端子4探針法抵抗測定機(「ロレスタGP MCP−T600型」(株)三菱アナリテック製)、透過率はヘイズメーター(「NDH5000SP」,日本電色工業(株)製)で測定した。結果を表1に示す。
<Comparative Example 4> Manufacture of CYTOP substrate with graphene Copper foil graphene (number of graphene layers of about 10 layers, size: 25x25 mm) created by surface plasma CVD method is immersed in pure water, and then treated with an ultrasonic cleaner for 1 minute Then, carbon particles on the graphene and dust adhered during film formation were removed. After drying the copper foil graphene, an amorphous fluororesin CYTOP (“M series” manufactured by Asahi Glass Co., Ltd.) was applied with a glass rod. This copper foil was heat-treated at 140 ° C. for 1 hour. The back surface of the copper foil of the bonded film was polished with sandpaper to remove excess fluorine-based polymer. The film was infiltrated with a 10% iron chloride (Wako Pure Chemical Industries, Ltd.) aqueous solution to etch the copper foil. At this time, the graphene is transferred to the CYTOP side. The etched film was washed three times with pure water, then scooped up with PET film and dried. The surface resistance of this graphene composition was measured using a 4-terminal 4-probe resistance measuring machine (“Loresta GP MCP-T600 type” (manufactured by Mitsubishi Analitech Co., Ltd.)), and the transmittance was a haze meter (“NDH5000SP”, Nippon Denshoku Industries ( Measured by Co., Ltd.). The results are shown in Table 1.

<比較例5>グラフェン付エポキシ基板の製造
表面プラズマCVD法により作成した銅箔グラフェン(グラフェン層数10層程度、大きさ25x25mm)を純水中に浸した後、超音波洗浄機で1分処理し、グラフェン上の炭素粒子や製膜中に付着した埃を除去した。この銅箔グラフェンを乾燥した後、弱剥離シート(「E-MASKRTW100シリーズ」日東電工(株)製)を気泡がつかないように貼りあわせた。貼りあわせたフィルムを10%塩化鉄(和光純薬(株)製)水溶液に浸潤させ銅箔をエッチングした。この時グラフェンは弱剥離シート側に転写される。この積層フィルムにエポキシ樹脂(「クリスタルレジン」日清レジン(株)製)1mLをバーコーダーで塗布し、0.5MPaで3時間、50℃で終夜反応させ、硬化させた。この時グラフェンはエポキシ樹脂側に転写される。エッチングしたフィルムを純水で3回洗浄した後、PETフィルムで掬い上げて乾燥させた。このグラフェン組成物の表面抵抗を4端子4探針法抵抗測定機(「ロレスタGP MCP−T600型」(株)三菱アナリテック製)、透過率はヘイズメーター(「NDH5000SP」,日本電色工業(株)製)で測定した。結果を表1に示す。
<Comparative Example 5> Manufacture of epoxy substrate with graphene Copper foil graphene (number of graphene layers of about 10 layers, size: 25 x 25 mm) prepared by surface plasma CVD method is immersed in pure water, and then treated with an ultrasonic cleaner for 1 minute Then, carbon particles on the graphene and dust adhered during film formation were removed. After the copper foil graphene was dried, a weak release sheet (“E-MASKRTW100 series” manufactured by Nitto Denko Corporation) was attached so as not to cause bubbles. The laminated film was immersed in a 10% aqueous solution of iron chloride (manufactured by Wako Pure Chemical Industries, Ltd.) to etch the copper foil. At this time, the graphene is transferred to the weak release sheet side. 1 mL of an epoxy resin (“Crystal Resin” manufactured by Nissin Resin Co., Ltd.) was applied to the laminated film with a bar coder, and reacted at 0.5 MPa for 3 hours at 50 ° C. overnight to be cured. At this time, the graphene is transferred to the epoxy resin side. The etched film was washed three times with pure water, then scooped up with PET film and dried. The surface resistance of this graphene composition was measured using a 4-terminal 4-probe resistance measuring machine (“Loresta GP MCP-T600 type” (manufactured by Mitsubishi Analitech Co., Ltd.)), and the transmittance was a haze meter (“NDH5000SP”, Nippon Denshoku Industries ( Measured by Co., Ltd.). The results are shown in Table 1.

次に、グラフェンのドーピング方法の実施例を示す。
(実施例1)FTSによるグラフェンのドーピング実験(石英)
比較例1のグラフェン付石英基板の作成方法に従って調整したグラフェンを、減圧乾燥オーブンに入れ、減圧下(103Pa程度)、100 ℃で一時間乾燥した。乾燥後グラフェンフィルムをデシケーターに入れた。デシケーター内に0.2 mLのTrichloro− (1H,1H,2H,2H−tridecafluoro−n−octyl)silane(以後FTS)(東京化成(株)製)をガラス製シャーレに入れてデシケーターの蓋をし、室温、減圧条件(103Pa程度)にて表面処理を行った。反応終了後、デシケーターからサンプルを取り出し、グラフェン積層体の表面抵抗を4端子4探針法抵抗測定機(「ロレスタGP MCP−T600型」(株)三菱アナリテック製)、透過率、ヘイズはヘイズメーター(「NDH5000SP」,日本電色工業(株)製)、接触角計は(「DMs−400Hi」協和界面化学(株)製) にて測定した。結果を表1に示す。
Next, an example of a graphene doping method will be described.
Example 1 Graphene Doping Experiment with FTS (Quartz)
Graphene prepared according to the method for producing a graphene-attached quartz substrate of Comparative Example 1 was placed in a vacuum drying oven and dried at 100 ° C. for 1 hour under reduced pressure (about 10 3 Pa). After drying, the graphene film was placed in a desiccator. Place 0.2 mL of Trichloro- (1H, 1H, 2H, 2H-tridecafluoro-n-octyl) silane (hereinafter FTS) (manufactured by Tokyo Chemical Industry Co., Ltd.) in a glass petri dish and cover the desiccator. Surface treatment was performed at room temperature under reduced pressure conditions (about 10 3 Pa). After completion of the reaction, a sample was taken out from the desiccator, and the surface resistance of the graphene laminate was measured using a 4-terminal 4-probe resistance measuring instrument (“Loresta GP MCP-T600 type” manufactured by Mitsubishi Analitech Co., Ltd.), transmittance, haze haze A meter (“NDH5000SP”, manufactured by Nippon Denshoku Industries Co., Ltd.) and a contact angle meter (“DMs-400Hi” manufactured by Kyowa Interface Chemical Co., Ltd.) were used. The results are shown in Table 1.

(実施例2)FTSによるグラフェンのドーピング実験(PET)
比較例2で作成したグラフェン付PET基板を実施例1と同様の方法でドーピングを行った。結果を表1に示す。
Example 2 Graphene Doping Experiment with FTS (PET)
The graphene-coated PET substrate prepared in Comparative Example 2 was doped by the same method as in Example 1. The results are shown in Table 1.

(実施例3)FTSによるグラフェンのドーピング実験(PMMA)
比較例3で作成したグラフェン付PMMA基板を実施例1と同様の方法でドーピングを行った。結果を表1に示す。
(Example 3) Graphene doping experiment by FTS (PMMA)
The PMMA substrate with graphene prepared in Comparative Example 3 was doped by the same method as in Example 1. The results are shown in Table 1.

(実施例4)FTSによるグラフェンのドーピング実験(CYTOP)
比較例2で作成したグラフェン付CYTOP基板を実施例1と同様の方法でドーピングを行った。結果を表1に示す。
(Example 4) Graphene doping experiment by FTS (CYTOP)
The graphene-attached CYTOP substrate prepared in Comparative Example 2 was doped by the same method as in Example 1. The results are shown in Table 1.

(実施例5)FTSによるグラフェンのドーピング実験(Epoxy)
比較例2で作成したグラフェン付エポキシ基板を実施例1と同様の方法でドーピングを行った。結果を表1に示す。
(Example 5) Graphene doping experiment by FTS (Epoxy)
The graphene-attached epoxy substrate prepared in Comparative Example 2 was doped by the same method as in Example 1. The results are shown in Table 1.

上記比較例1〜5および実施例1〜5に記載したグラフェン積層体の接触角、表面抵抗、透過率を表1にまとめた。   Table 1 shows the contact angle, surface resistance, and transmittance of the graphene laminates described in Comparative Examples 1 to 5 and Examples 1 to 5.

比較例1〜5と比較し、実施例1〜6についてはその表面抵抗は減少している。また透過率はドーピング前後で大きく変化しておらず10%以下である。   Compared with Comparative Examples 1-5, about Examples 1-6, the surface resistance is reducing. Further, the transmittance is not greatly changed before and after doping and is 10% or less.

Claims (10)

基板(A)上の透明導電性炭素膜(B)に、下記化学式(I)、(II)または(III)で示されるシランカップリング剤を少なくとも1種使用して薄膜活性化層(C)を設け、前記透明導電性炭素膜(B)をドーピングすることを特徴とする透明導電性炭素膜積層体の表面抵抗の低下方法。
〔但しXは加水分解性基である。R 1 ,R 2 、R 3 は、それぞれ同一または異なって、水素原子の一部または全部がフッ素原子で置換されていてもよい炭素数1〜18の炭化水素基を表す。〕
Thin film activated layer (C) using at least one silane coupling agent represented by the following chemical formula (I), (II) or (III ) on transparent conductive carbon film (B) on substrate (A) the provided method of reducing the surface resistance of the transparent conductive carbon film laminate characterized by doping to Rukoto the transparent conductive carbon film (B).
[However, X is a hydrolyzable group. R 1 , R 2 and R 3 are the same or different and each represents a hydrocarbon group having 1 to 18 carbon atoms in which some or all of the hydrogen atoms may be substituted with fluorine atoms. ]
前記透明導電性炭素膜(B)が、グラフェン又はグラファイトである請求項1に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。The method for reducing the surface resistance of a transparent conductive carbon film laminate according to claim 1, wherein the transparent conductive carbon film (B) is graphene or graphite. 基板(A)として、金属、金属酸化物、ガラス、シリコンウエハ、SiCウエハ、およびポリマーフィルムからなる群より選択される材料からなることを特徴とする、請求項1又は2に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The transparent conductive material according to claim 1 or 2 , wherein the substrate (A) is made of a material selected from the group consisting of metal, metal oxide, glass, silicon wafer, SiC wafer, and polymer film. A method for reducing the surface resistance of a carbon film laminate. 透明導電性炭素膜(B)が、厚さ0.1〜1000nm、面積0.1cm2以上のものであることを特徴とする、請求項1〜3のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The transparent conductive carbon film (B) having a thickness of 0.1 to 1000 nm and an area of 0.1 cm 2 or more, wherein the transparent conductive carbon film is a transparent conductive carbon film according to any one of claims 1 to 3 . A method for reducing the surface resistance of a carbon film laminate. 薄膜活性化層(C)の厚さが0.01〜1000nmであることを特徴とする、請求項1〜のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The method for reducing the surface resistance of a transparent conductive carbon film laminate according to any one of claims 1 to 4 , wherein the thickness of the thin film activation layer (C) is 0.01 to 1000 nm. . 薄膜活性化層(C)の屈折率が透明導電炭素膜(B)よりも低いことを特徴とする、請求項1〜のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The surface resistance of the transparent conductive carbon film laminate according to any one of claims 1 to 5 , wherein the refractive index of the thin film activation layer (C) is lower than that of the transparent conductive carbon film (B). Method of lowering. 薄膜活性化層(C)上の接触角が60〜150°であることを特徴とする、請求項1〜のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The method for reducing the surface resistance of a transparent conductive carbon film laminate according to any one of claims 1 to 6 , wherein the contact angle on the thin film activation layer (C) is 60 to 150 °. . (A)〜(C)からなる積層体の光線透過率が70%以上であることを特徴とする、請求項1〜のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 The surface resistance of the transparent conductive carbon film laminate according to any one of claims 1 to 7 , wherein the laminate comprising (A) to (C) has a light transmittance of 70% or more. Method of lowering. (A)、(B)からなる積層体と、(A)〜(C)からなる積層体の透過率の差が10%以下であることを特徴とする、請求項1〜のいずれか1項に記載の透明導電性炭素膜積層体の表面抵抗の低下方法。 (A), (B) and the laminate consisting of, wherein the at (A) the difference between the transmittance of ~ (C) a laminate is 10% or less, any one of the claims 1-8 The method for reducing the surface resistance of the transparent conductive carbon film laminate according to the item. 請求項1〜のいずれか1項に記載の表面抵抗の低下方法によって透明導電性炭素膜積層体を製造する方法 Method for manufacturing a transparent conductive carbon film laminate by a reduction method of the surface resistance according to any one of claims 1-9.
JP2012112736A 2012-05-16 2012-05-16 Method for reducing surface resistance of transparent conductive carbon film laminate Expired - Fee Related JP5898565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012112736A JP5898565B2 (en) 2012-05-16 2012-05-16 Method for reducing surface resistance of transparent conductive carbon film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012112736A JP5898565B2 (en) 2012-05-16 2012-05-16 Method for reducing surface resistance of transparent conductive carbon film laminate

Publications (2)

Publication Number Publication Date
JP2013239385A JP2013239385A (en) 2013-11-28
JP5898565B2 true JP5898565B2 (en) 2016-04-06

Family

ID=49764242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012112736A Expired - Fee Related JP5898565B2 (en) 2012-05-16 2012-05-16 Method for reducing surface resistance of transparent conductive carbon film laminate

Country Status (1)

Country Link
JP (1) JP5898565B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774856A (en) * 2022-04-28 2022-07-22 常州二维碳素科技股份有限公司 Preparation method of graphene heat-conducting film

Also Published As

Publication number Publication date
JP2013239385A (en) 2013-11-28

Similar Documents

Publication Publication Date Title
Zhang et al. Constructing mechanochemical durable and self-healing superhydrophobic surfaces
Qing et al. Towards large-scale graphene transfer
Ma et al. Graphene‐based transparent conductive films: material systems, preparation and applications
Wang et al. Preparation of graphene sheets by electrochemical exfoliation of graphite in confined space and their application in transparent conductive films
US8722442B2 (en) Nitrogen-doped transparent graphene film and manufacturing method thereof
Qi et al. Simple approach to wafer-scale self-cleaning antireflective silicon surfaces
US10737476B2 (en) Methods for transferring graphene films and substrates comprising graphene films
Shi et al. Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction
Chen et al. Hydroxyapatite nanowire-based all-weather flexible electrically conductive paper with superhydrophobic and flame-retardant properties
EP2864238A1 (en) Covalently-bonded graphene coating and its applications thereof
KR102074004B1 (en) Laminated structure manufacturing method, laminated structure, and electronic apparatus
US20150024122A1 (en) Graphene ink and method for manufacturing graphene pattern using the same
MY192479A (en) Film having low refractive index film and method for producing the same, anti-reflection film and method for producing the same, coating liquid set for low refractive index film, substrate having microparticle-laminated thin film and method for producing the same, and optical member
CN104882223A (en) Oxidized graphene/silver nanowire composite transparent conducting thin film and preparation method thereof
CN106251946B (en) A kind of compound transparent electricity conductive film and preparation method thereof
Gan et al. Polymer-coated graphene films as anti-reflective transparent electrodes for Schottky junction solar cells
TWI530965B (en) Graphene transparent conductive film
CN102730671A (en) Copper-graphene composite material and method for preparation of graphene film on copper-based metal surface
Qiu et al. Enhanced anti-icing and anti-corrosion properties of wear-resistant superhydrophobic surfaces based on Al alloys
Mafra et al. Facile graphene transfer directly to target substrates with a reusable metal catalyst
CN104751934A (en) Flexible transparent conducting thin film based on graphene sandwich structure and preparation method thereof
WO2018040955A1 (en) Preparation of chemical grafting-modified pet/nano silver wire transparent conductive film
CN101831633A (en) Method for preparing composite film of graphene and amorphous carbon
CN103280541B (en) A kind of process preparing flexible device and flexible substrate on CVD Graphene
Xu et al. Microskeleton magnetic nanofiller composite with highly reliable superhydrophobic protection for long-lived electromagnetic interface shielding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20160120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160304

R150 Certificate of patent or registration of utility model

Ref document number: 5898565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees