JP5896444B2 - Simultaneous measurement of pressure distribution and velocity distribution - Google Patents
Simultaneous measurement of pressure distribution and velocity distribution Download PDFInfo
- Publication number
- JP5896444B2 JP5896444B2 JP2010261437A JP2010261437A JP5896444B2 JP 5896444 B2 JP5896444 B2 JP 5896444B2 JP 2010261437 A JP2010261437 A JP 2010261437A JP 2010261437 A JP2010261437 A JP 2010261437A JP 5896444 B2 JP5896444 B2 JP 5896444B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- distribution
- temperature
- signal
- emission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
- Measuring Fluid Pressure (AREA)
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
本発明は、定常・非定常流の空間情報、すなわち、流れの速度分布に加えた圧力または温度分布を計測する方法に関する。 The present invention relates to a method for measuring spatial information of a steady / unsteady flow, that is, a pressure or temperature distribution applied to a flow velocity distribution.
粒子画像流速測定法は流体中に粒子を注入し、それを追跡することで一様流中の流れ場を計測する。この方法は速度分布計測に限定されており、流体計測で必要とされる圧力・温度については計測が不可能である。それに対し物体表面の圧力・温度分布を計測する方法として、感圧・感温塗料を風洞模型等に塗布して表面の圧力・温度分布計測することが行われている。これらの塗料は蛍光・りん光を圧力・温度に関連づける化学センサである。塗布面の発光量を圧力・温度分布に関連付けるが、それらを抽出するためには圧力・温度分布以外に依存する発光分布(リファレンス)を計測する必要がある。強度法と呼ばれる計測法はそのリファレンス画像と圧力・温度分布を含んだ画像比から圧力・温度のみの情報を抽出するのであるが、流体計測中では圧力・温度分布が生じるため、リファレンス計測は不可能である。そのため粒子の位置が計測時間ごとに変化する粒子画像流速測定では、感圧・感温塗料で必要とされるリファレンスが計測できない。それに対しリファレンスを計測中に取得する方法として寿命法が存在する。これは感圧・感温塗料の発光寿命をリファレンスと圧力・温度に関係づける方法である。しかし、この方法は発光現象の短い時間(ナノ〜マイクロ秒オーダー)で計測する必要があり、また発光現象を計測するため、計測機器に十分な発光信号を与えることができない。そのため、この方法は定常流または周期的な非定常流に限定して行われている。この方法を適用して感温塗料を粒子に塗布・コーティングし、温度分布と速度分布を同時計測する試みがなされている。 The particle image velocimetry method measures a flow field in a uniform flow by injecting particles into a fluid and tracking them. This method is limited to velocity distribution measurement, and pressure and temperature required for fluid measurement cannot be measured. On the other hand, as a method for measuring the pressure / temperature distribution on the surface of an object, a pressure / temperature sensitive paint is applied to a wind tunnel model or the like to measure the pressure / temperature distribution on the surface. These paints are chemical sensors that relate fluorescence and phosphorescence to pressure and temperature. The light emission amount on the coated surface is related to the pressure / temperature distribution, but in order to extract them, it is necessary to measure the light emission distribution (reference) depending on other than the pressure / temperature distribution. The measurement method called the intensity method extracts only pressure / temperature information from the reference image and the image ratio including the pressure / temperature distribution. However, the reference measurement is not possible because the pressure / temperature distribution occurs in the fluid measurement. Is possible. For this reason, in the particle image flow velocity measurement in which the position of the particles changes every measurement time, it is not possible to measure the reference required for the pressure-sensitive / temperature-sensitive paint. On the other hand, there is a lifetime method as a method for acquiring a reference during measurement. This is a method of relating the light-emission life of pressure-sensitive and temperature-sensitive paints to the reference and pressure / temperature. However, in this method, it is necessary to measure in a short time (nano to microsecond order) of the light emission phenomenon, and since the light emission phenomenon is measured, a sufficient light emission signal cannot be given to the measuring device. Therefore, this method is limited to steady flow or periodic unsteady flow. Attempts have been made to simultaneously measure temperature distribution and velocity distribution by applying and coating a temperature-sensitive paint onto particles by applying this method.
上記の計測法である特許文献1に開示された発明の目的は、流れを乱すことなく流れ場の温度、圧力、速度の分布を計測することができる同時計測方法および装置を提供することであって、当該発明の「流れ場の温度、圧力、速度分布の同時計測方法」は、感温塗料と感圧塗料を微細な固体粒子のトレーサとして流れ場に混入して流すトレーサ供給ステップ(A)と、感温塗料と感圧塗料にそれぞれ特定の励起波長の光を照射して励起状態にする励起ステップ(B)と、流れ場にシート状の光を照射しシート面に垂直方向からトレーサの画像を撮影して速度分布を計測する速度計測ステップ(C)と、感温塗料の特定の放出波長W1の光強度I1を計測して温度分布を計測する温度計測ステップ(D)と、感圧塗料の特定の放出波長W2の光強度I2を計測して圧力分布を計測する圧力計測ステップ(E)と、からなることを特徴とする。 The object of the invention disclosed in Patent Document 1 which is the above measurement method is to provide a simultaneous measurement method and apparatus capable of measuring the distribution of temperature, pressure, and velocity of the flow field without disturbing the flow. The “simultaneous measurement method of temperature, pressure, and velocity distribution of the flow field” of the present invention is the tracer supply step (A) in which the temperature-sensitive paint and the pressure-sensitive paint are mixed into the flow field as fine solid particle tracers. Excitation step (B) for irradiating the temperature-sensitive paint and the pressure-sensitive paint with light of a specific excitation wavelength to bring them into an excited state, and irradiating the flow field with sheet-like light and perpendicularly to the sheet surface A speed measurement step (C) for measuring the speed distribution by taking an image, a temperature measurement step (D) for measuring the light intensity I1 of the specific emission wavelength W1 of the temperature-sensitive paint and measuring the temperature distribution, and pressure sensitivity Light with specific emission wavelength W2 of paint And to measure the degree I2 pressure measurement step of measuring a pressure distribution (E), characterized in that it consists.
また、本出願人が先に出願した特許文献2の発明の課題は、周期的な非定常圧力変動場であって、その変動成分が広帯域にわたる成分を持っている場の変動圧力の分布を画像計測する手法を提示すること、また圧力変動が小さい微小圧力場であっても変動圧力成分の分布が計測できるような手法を提示することにある。そして、当該発明の「感圧塗料による非定常圧力場の画像計測方法」は、感圧塗料あるいは感圧コーティングを用いた画像計測であって、取得された感圧塗料あるいは感圧コーティングからの発光データを基にして、該発光データにおける周波数次元での圧力変動成分の分布を画像化して表示するようにした。具体的には、画像取得装置によって得られた感圧塗料あるいは感圧コーティングからの発光データである複数枚の時系列画像を、画像上の2次元の軸と時間軸から成る一連の3次元データとして扱い、周波数解析または時間周波数解析によって非定常変動圧力に関わる状態量を得るようにしたものである。 Further, the problem of the invention of Patent Document 2 previously filed by the present applicant is a periodic unsteady pressure fluctuation field, and the fluctuation pressure distribution in a field in which the fluctuation component has a component over a wide band is imaged. It is to present a method for measuring, and to present a method for measuring the distribution of the fluctuating pressure component even in a micro pressure field with a small pressure fluctuation. Further, the “image measurement method of an unsteady pressure field using a pressure-sensitive paint” according to the present invention is an image measurement using a pressure-sensitive paint or a pressure-sensitive coating, and light emission from the acquired pressure-sensitive paint or pressure-sensitive coating. Based on the data, the distribution of the pressure fluctuation component in the frequency dimension in the emission data is imaged and displayed. Specifically, a plurality of time-series images, which are light emission data from a pressure-sensitive paint or pressure-sensitive coating obtained by an image acquisition device, are converted into a series of three-dimensional data consisting of a two-dimensional axis and a time axis on the image. The state quantity related to the unsteady fluctuating pressure is obtained by frequency analysis or time frequency analysis.
しかし、従来の流れ場の温度、圧力、速度の分布を計測方法における流れは定常流に限定される。圧力計測においては、感圧塗料の特性から温度依存性を含んでいるため、温度計測に比べより計測が困難となるため、圧力分布と速度分布の同時計測は行われていない。特に非定常流れについて、粒子に感圧・感温塗料を塗布・コーティングすることによる圧力・温度分布と速度分布の同時計測は達成されていない。 However, the flow in the conventional method for measuring the temperature, pressure, and velocity distribution of the flow field is limited to a steady flow. In pressure measurement, since temperature dependence is included due to the characteristics of the pressure-sensitive paint, measurement is more difficult than in temperature measurement, so pressure distribution and velocity distribution are not simultaneously measured. Especially for unsteady flows, simultaneous measurement of pressure / temperature distribution and velocity distribution by applying and coating pressure-sensitive and temperature-sensitive paints on particles has not been achieved.
本発明の課題は、定常・非定常流の速度分布に加え、圧力または温度分布を同時に供する計測法を提示し、速度分布と圧力または温度分布の相関関係を得ることも可能とすることにある。 It is an object of the present invention to present a measurement method that simultaneously provides pressure or temperature distribution in addition to steady and unsteady flow velocity distribution, and to obtain a correlation between velocity distribution and pressure or temperature distribution. .
本発明の圧力分布を速度分布と同時に計測する方法は、シグナルに影響されないリファレンスとなる発光と圧力に反応するシグナルとなる2色発光を備えた発光物質であって、リファレンスとシグナルの温度依存性が同一のものを、バインダーを用いることなく表面に塗布した多孔質粒子を流体に混合し、該流体の流れの場に励起光を照射し、リファレンスとシグナルの発光を波長分離して同時に画像計測し、その比により圧力計測時における感圧色素の温度依存性を解消して圧力分布を速度分布と同時に計測するものとした。
また、本発明の圧力分布を速度分布と同時に計測する方法は、励起波長として460nm付近の青色より低波長域用い、リファレンス、シグナル発光を生み出す色素として550nm付近の緑色発光を持つ色素と650nm以上の波長(赤色)での発光を持つ色素を用いるものとした。
また、本発明の圧力分布を速度分布と同時に計測する方法は、上記構成において、リファレンスとシグナルの発光を波長分離して同時に画像計測する赤緑青の3画像で構成される高速カラーカメラを用いて非定常現象を同時取得し、速度分布と圧力分布の相関関係を取ることを特徴とするものとした。
The method for measuring the pressure distribution at the same time as the velocity distribution of the present invention is a luminescent substance having a luminescence that is a reference that is not influenced by a signal and a two-color luminescence that is a signal that reacts to pressure, and the temperature dependence of the reference and the signal. Porous particles coated on the surface without using a binder are mixed with a fluid, and the fluid flow field is irradiated with excitation light. Thus, the temperature dependence of the pressure sensitive dye at the time of pressure measurement was eliminated, and the pressure distribution was measured simultaneously with the velocity distribution.
In addition, the method of measuring the pressure distribution of the present invention simultaneously with the velocity distribution uses a lower wavelength region than the blue wavelength near 460 nm as an excitation wavelength, and a reference and a pigment having a green emission near 550 nm as a pigment that generates signal emission. A dye having light emission at a wavelength (red) was used.
The method for measuring the pressure distribution at the same time as the velocity distribution of the present invention uses the high-speed color camera composed of three images of red, green, and blue in which the reference and signal emission are wavelength-separated and simultaneously image-measured. It is characterized by acquiring unsteady phenomena at the same time and taking a correlation between velocity distribution and pressure distribution.
本発明の圧力分布を速度分布と同時に計測する方法は、圧力分布および速度分布の同時計測が可能となった。また、非定常な流れに対し上記の同時計測が可能となった。そして、同時計測により圧力分布と速度分布の相関関係が取得可能となった。混合する粒子に多孔質粒子を採用したことにより、2種類の色素はバインダーを用いることなく多孔質粒子に混在して吸着でき、バインダーを用いないことにより高速応答性が保たれる。更に、2色発光比を用いることにより圧力計測時に含まれる温度誤差を解消することができた。 The method for measuring the pressure distribution simultaneously with the velocity distribution of the present invention enables simultaneous measurement of the pressure distribution and the velocity distribution. In addition, the above simultaneous measurement is possible for unsteady flows. And the correlation between pressure distribution and velocity distribution can be acquired by simultaneous measurement. By adopting porous particles as the particles to be mixed, two types of dyes can be adsorbed in the porous particles without using a binder, and high-speed response can be maintained by not using a binder. Furthermore, the temperature error included in the pressure measurement could be eliminated by using the two-color emission ratio.
以下、本発明の実施の形態について、詳細に説明する。
感圧・感温塗料からの発光画像は圧力・温度情報以外に励起光が分布を持つことから生じる発光分布、カメラとの位置関係による発光分布を含む。それらをキャンセルし、圧力・温度情報のみ抽出するにはリファレンス画像の取得が必要である。粒子画像流速測定法においてリファレンス画像を取得するには、感圧・感温塗料が適用された粒子が時間的に位置変化することから、前記の背景技術で述べた強度法によるリファレンス画像取得はできない。寿命法では発光量を積算可能な定常流、周期的な非定常現象では適用可能となるが、非定常流では発光量レベル(SN比)が低く、計測が困難となる。そこで本発明者は、一方の発光が圧力・温度に依存しないリファレンス、他方が圧力・温度により発光量が変化するシグナルを持つ2色発光を有する感圧・感温塗料を利用することで上記リファレンス画像取得の問題が解決できないか考えた。
Hereinafter, embodiments of the present invention will be described in detail.
The light emission image from the pressure-sensitive / temperature-sensitive paint includes, in addition to pressure / temperature information, a light emission distribution resulting from the distribution of excitation light and a light emission distribution due to the positional relationship with the camera. In order to cancel them and extract only pressure / temperature information, it is necessary to acquire a reference image. In order to acquire a reference image in the particle image velocimetry, it is impossible to acquire a reference image by the intensity method described in the background art, because the position of the particles to which pressure-sensitive and temperature-sensitive paint is applied changes over time. . The life method can be applied to a steady flow in which the amount of light emission can be integrated and a periodic unsteady phenomenon, but the non-steady flow has a low light emission level (SN ratio) and is difficult to measure. Therefore, the present inventor uses the above-mentioned reference by using a pressure-sensitive / temperature-sensitive paint having two-color light emission in which one light emission does not depend on pressure / temperature and the other has a signal whose light emission amount changes depending on the pressure / temperature. I thought about the problem of image acquisition.
発光を生み出す蛍光またはりん光色素は異なる波長で発光することで2色発光するが、それらは波長分離可能な範囲で発光する必要がある。これらの色素は励起ムラによる発光分布が同一である必要があるため、同じ波長領域で励起可能である必要がある。かつ、励起波長は2色発光の波長領域から分離される必要がある。これらの条件を満たす発光物質を多孔質粒子に適用することで高速応答性を備え、非定常試験への適用も可能となる。本発明者はこれらの知見を基に鋭意実験を重ね、図1に示されるように、励起波長として460nm付近の青色より低波長域用い、リファレンス、シグナル発光を生み出す色素として550nm付近の緑色発光を持つ色素と650nm以上の波長(赤色)での発光を持つ色素を用いることに至った。2種類の色素はバインダーを用いることなく多孔質粒子に混在して吸着される。バインダーを用いないことにより高速応答性が保たれる。 Fluorescent or phosphorescent dyes that produce luminescence emit two colors by emitting at different wavelengths, but they need to emit in a wavelength separable range. Since these dyes need to have the same emission distribution due to uneven excitation, they must be excitable in the same wavelength region. And the excitation wavelength needs to be separated from the wavelength region of two-color emission. By applying a luminescent material satisfying these conditions to the porous particles, it has high-speed response and can also be applied to unsteady tests. Based on these findings, the present inventor has conducted extensive experiments, and as shown in FIG. 1, the excitation wavelength is lower than the blue wavelength near 460 nm, and the reference and signal emission are emitted as a green color near 550 nm. It came to use the pigment | dye which has light emission with the wavelength which has it, and the wavelength (red) of 650 nm or more. The two types of dyes are adsorbed in the porous particles without using a binder. High-speed response can be maintained by not using a binder.
同時分光計測システムは2色の発光分布を同時に計測する機構が必要となる。この手段として高速デジタルカラーカメラを用いた。高速デジタルカラーカメラは赤(R)緑(G)青(B)の3画像で構成される。各画像は干渉フィルターの役割を果たし、上記シグナル画像、リファレンス画像を分光計測する。上記方法で粒子を追跡することで、従来の画像粒子流速法を適用することが可能となる。これにより圧力または温度分布を速度分布と同時に計測することが可能となる。 A simultaneous spectroscopic measurement system requires a mechanism for simultaneously measuring the emission distributions of two colors. A high-speed digital color camera was used as this means. The high-speed digital color camera is composed of three images of red (R), green (G), and blue (B). Each image serves as an interference filter, and the signal image and the reference image are spectrally measured. By tracking the particles by the above method, the conventional image particle flow velocity method can be applied. As a result, the pressure or temperature distribution can be measured simultaneously with the velocity distribution.
[2色発光比を用いたリファレンス画像取得]
高速デジタルカラーカメラで計測される画像は以下に示す式(1)と式(2)で表わされる。
Images measured by the high-speed digital color camera are expressed by the following equations (1) and (2).
[圧力計測における温度誤差の解消]
式(9)および式(10)の係数が以下の関係を示すと仮定する。これはすなわち、シグナルとリファレンスの温度依存性が一致する場合において満たされる条件である。
CS0=CR0 (13)
CS1=CR1 (14)
このとき式(11)および式(12)の温度感度は一致する。温度式についても式(7)と同様にIref_sigを求めると式(15)となる。
Assume that the coefficients of equations (9) and (10) have the following relationship: This is a condition that is satisfied when the temperature dependence of the signal and the reference match.
C S0 = C R0 (13)
C S1 = C R1 (14)
At this time, the temperature sensitivities of the equations (11) and (12) coincide. As for the temperature formula, when I ref_sig is obtained in the same manner as formula (7), formula (15) is obtained.
2色発光を有する感圧・感温塗料の色素を例示すると、リファレンスとして例えば poly [1- (trimetylsilyl) phenyl- 2- phenylacetylene](PTMST)やアントラセンが用いられ、
感圧色素としては例えば、PtTFPL:pt(II)meso-tetra (pentafluorophenyl) porpholactone、PdTMPyP:正式な学術名はPalladium(II)meso-tetrakis(4-N-methylpyridyl)porphyrin]、PtTPP:Platinum Tetraphenyl Porphyrinの他PtTFPP、PdFPP、PtOEP、PdOEP、PdTPP、PdTFPP、ポルフォラクトン等がシグナル検出用に、
感温色素として例えば、PdTMPyP: 正式な学術名はPalladium(II)meso-tetrakis(4-N-methylpyridyl)porphyrin]、Eu四核錯体、例として[Eu4(μ-0)(L1)10](L1=2-hydroxy-4-octyloxybenzophenone)や([Eu4(μ-0)(L2)10](L2=2-hydroxy-4-dodecyloxybenzophenone)の構造式を有するEu四核錯体化合物、ローダミンB誘導体RhoB-MA、ローダミンB(2-(3-Diethylimino-6-diethylamino-3H-xanthen-9-yl)benzoic Acid Chloride)等が温度シグナル検出用に用いられる。
2色発光スペクトルを図2(a)に示す。高速応答性を有する多孔質粒子に適用することで本発明の最良の塗料が構成される。本発明を実施する装置に適した高速デジタルカラーカメラとしてPhantom Miro 4 (商品名)を用いた。このカメラの波長感度を図2(b)に示す。緑画像は発光スペクトルのリファレンスに対応しており、赤画像はシグナルに対応していることが確認できる。現段階では本発明の方法を用いて表面分布計測が可能である。リファレンスとなる発光と圧力または温度に反応するシグナルとなる2色発光を備えた発光物質を表面に塗布した多孔質粒子を流体中に散布し、該流体の流れの場に励起光を照射しつつ、当該カメラで撮影すれば、リファレンスとシグナルの発光を波長分離して同時に画像を得ることができる。このようにして粒子画像計測法による、圧力または温度分布と速度分布の同時計測が可能となる。
Examples of dyes for pressure- and temperature-sensitive paints that emit two colors of light include poly [1- (trimetylsilyl) phenyl-2-phenylacetylene] (PTMST) and anthracene as references,
Examples of pressure-sensitive dyes include PtTFPL: pt (II) meso-tetra (pentafluorophenyl) porpholactone, PdTMPyP: formal scientific name is Palladium (II) meso-tetrakis (4-N-methylpyridyl) porphyrin], PtTPP: Platinum Tetraphenyl Porphyrin Other PtTFPP, PdFPP, PtOEP, PdOEP, PdTPP, PdTFPP, porpholactone, etc. for signal detection
For example, PdTMPyP as a thermosensitive dye: The official scientific name is Palladium (II) meso-tetrakis (4-N-methylpyridyl) porphyrin], Eu tetranuclear complex, for example, [Eu 4 (μ-0) (L 1 ) 10 Eu tetranuclear complexes with structural formulas such as [(L 1 = 2-hydroxy-4-octyloxybenzophenone) and ([Eu 4 (μ-0) (L 2 ) 10 ] (L 2 = 2-hydroxy-4-dodecyloxybenzophenone)) Compounds, rhodamine B derivatives RhoB-MA, rhodamine B (2- (3-Diethylimino-6-diethylamino-3H-xanthen-9-yl) benzoic Acid Chloride) and the like are used for temperature signal detection.
A two-color emission spectrum is shown in FIG. The best coating material of the present invention is constituted by applying to porous particles having high-speed response. Phantom Miro 4 (trade name) was used as a high-speed digital color camera suitable for the apparatus for carrying out the present invention. The wavelength sensitivity of this camera is shown in FIG. It can be confirmed that the green image corresponds to the reference of the emission spectrum, and the red image corresponds to the signal. At the present stage, the surface distribution can be measured using the method of the present invention. Sprinkling porous particles coated with a luminescent material with two-color luminescence that becomes a signal that reacts to the reference luminescence and pressure or temperature in the fluid, while irradiating the fluid flow field with excitation light If an image is taken by the camera, an image can be obtained simultaneously by wavelength separation of reference and signal emission. In this way, simultaneous measurement of pressure or temperature distribution and velocity distribution by the particle image measurement method becomes possible.
本発明の時間変動を伴う圧力・温度分布と速度分布の同時計測法は、流れ場の速度分布情報に加え圧力分布または温度分布を同時に必要とする流体計測分野として航空宇宙、自動車、船舶、都市工学、土木工学、海洋工学分野に適用可能である。 The simultaneous measurement method of pressure / temperature distribution and velocity distribution with time fluctuation according to the present invention is a fluid measurement field that requires pressure distribution or temperature distribution at the same time in addition to flow field velocity distribution information. Applicable to engineering, civil engineering and marine engineering fields.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010261437A JP5896444B2 (en) | 2010-11-24 | 2010-11-24 | Simultaneous measurement of pressure distribution and velocity distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010261437A JP5896444B2 (en) | 2010-11-24 | 2010-11-24 | Simultaneous measurement of pressure distribution and velocity distribution |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012112775A JP2012112775A (en) | 2012-06-14 |
JP5896444B2 true JP5896444B2 (en) | 2016-03-30 |
Family
ID=46497148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010261437A Expired - Fee Related JP5896444B2 (en) | 2010-11-24 | 2010-11-24 | Simultaneous measurement of pressure distribution and velocity distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5896444B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022073276A1 (en) * | 2020-10-09 | 2022-04-14 | 南京工业大学 | Method for displaying and detecting distribution of temperature field on surface of fluid |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102018203833A1 (en) * | 2018-03-14 | 2019-09-19 | Bayerische Motoren Werke Aktiengesellschaft | Method and device for inspecting a component for a motor vehicle |
CN114636487B (en) * | 2022-03-10 | 2022-12-13 | 西安交通大学 | Method for synchronously measuring temperature and speed of droplet group in spray field |
CN118424378A (en) * | 2024-04-25 | 2024-08-02 | 北京航空航天大学 | Method and device for synchronously measuring flow field speed and temperature and storage medium |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3196087B2 (en) * | 1992-04-17 | 2001-08-06 | 大阪瓦斯株式会社 | How to measure fluid flow |
GB9916932D0 (en) * | 1999-07-16 | 1999-09-22 | Funes Gallanzi Marcelo | Method and apparatus for investigating fluid flow variables element characteristics and near-surface temperature and forces |
JP2004163180A (en) * | 2002-11-11 | 2004-06-10 | Ishikawajima Harima Heavy Ind Co Ltd | Simultaneous measuring method and instrument for temperature, pressure and velocity distributions in flow field |
JP2004177312A (en) * | 2002-11-28 | 2004-06-24 | Japan Science & Technology Agency | Three dimensional temperature/velocity simultaneous measuring method of fluid |
DE102008019756B4 (en) * | 2008-04-18 | 2011-03-17 | Lavision Gmbh | Method for simultaneously measuring velocity and state parameter fields in a fluid flow |
-
2010
- 2010-11-24 JP JP2010261437A patent/JP5896444B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022073276A1 (en) * | 2020-10-09 | 2022-04-14 | 南京工业大学 | Method for displaying and detecting distribution of temperature field on surface of fluid |
Also Published As
Publication number | Publication date |
---|---|
JP2012112775A (en) | 2012-06-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Khalil et al. | Dual-luminophor pressure-sensitive paint: I. Ratio of reference to sensor giving a small temperature dependency | |
Ondrus et al. | Europium 1, 3-di (thienyl) propane-1, 3-diones with outstanding properties for temperature sensing | |
Fischer et al. | Referenced Dual Pressure‐and Temperature‐Sensitive Paint for Digital Color Camera Read Out | |
Klein et al. | Application of pressure-sensitive paint for determination of the pressure field and calculation of the forces and moments of models in a wind tunnel | |
Köse et al. | Preparation and spectroscopic properties of multiluminophore luminescent oxygen and temperature sensor films | |
Hradil et al. | Temperature-corrected pressure-sensitive paint measurements using a single camera and a dual-lifetime approach | |
JP5896444B2 (en) | Simultaneous measurement of pressure distribution and velocity distribution | |
Matsuda et al. | ZnS–AgInS2 nanoparticles as a temperature sensor | |
Singh et al. | Rhodamine based organic nanoparticles for sensing of Fe3+ with high selectivity in aqueous medium: application to iron supplement analysis | |
Basu et al. | Study of the mechanism of degradation of pyrene-based pressure sensitive paints | |
Claucherty et al. | An optical-chemical sensor using rhodamine B on anodized-aluminum for surface temperature measurement from 150 to 500 K | |
Egami et al. | Development of fast response bi-luminophore pressure-sensitive paint by means of an inkjet printing technique | |
Matsuda et al. | Fine printing of pressure-and temperature-sensitive paints using commercial inkjet printer | |
Someya | Particle-based temperature measurement coupled with velocity measurement | |
Fischer et al. | Dual sensing of p O 2 and temperature using a water-based and sprayable fluorescent paint | |
Iijima et al. | Platinum porphyrin and luminescent polymer for two-color pressure-and temperature-sensing probes | |
CA2064621A1 (en) | Luminescent pressure sensitive composition | |
JP2005029767A (en) | Pressure/temperature sensitive composite functional paint | |
Stich et al. | Read-out of multiple optical chemical sensors by means of digital color cameras | |
JP5004228B2 (en) | Three-layer pressure-sensitive paint thin film sensor | |
Basu et al. | A novel pyrene-based binary pressure sensitive paint with low temperature coefficient and improved stability | |
JP5424183B2 (en) | Compound molecular sensor | |
Stich et al. | Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints | |
CN108088821B (en) | High-precision air film cooling efficiency testing method based on pressure sensitive paint | |
Sakamura et al. | Development and characterization of a pressure-sensitive luminescent coating based on Pt (II)-porphyrin self-assembled monolayers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20131125 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131127 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140409 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140606 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20141217 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150313 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20150323 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20150515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160225 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5896444 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |