JP5896105B2 - pH measuring device - Google Patents

pH measuring device Download PDF

Info

Publication number
JP5896105B2
JP5896105B2 JP2011154107A JP2011154107A JP5896105B2 JP 5896105 B2 JP5896105 B2 JP 5896105B2 JP 2011154107 A JP2011154107 A JP 2011154107A JP 2011154107 A JP2011154107 A JP 2011154107A JP 5896105 B2 JP5896105 B2 JP 5896105B2
Authority
JP
Japan
Prior art keywords
sensitivity
calibration
data
measurement
measurement value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011154107A
Other languages
Japanese (ja)
Other versions
JP2013019804A (en
Inventor
鈴木 隆之
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2011154107A priority Critical patent/JP5896105B2/en
Publication of JP2013019804A publication Critical patent/JP2013019804A/en
Application granted granted Critical
Publication of JP5896105B2 publication Critical patent/JP5896105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置に関するものである。   The present invention relates to a reference pH calibration solution that is executed at predetermined time intervals or at any time with respect to pH conversion calculation means for inputting a measurement value of a glass electrode type pH sensor whose pH measurement sensitivity of a solution to be measured changes with time. The present invention relates to a pH measurement apparatus that passes calibration sensitivity data acquired in the calibration work by the method and corrects the pH measurement sensitivity.

図6は、従来のpH測定装置の構成例を示す機能ブロック図である。測定装置10において、pHセンサ11による測定液12の測定値Xは、pH変換演算手段13入力され、演算されてpH値に変換される。   FIG. 6 is a functional block diagram showing a configuration example of a conventional pH measurement device. In the measuring apparatus 10, the measured value X of the measuring liquid 12 by the pH sensor 11 is input to the pH conversion calculating means 13 and is calculated and converted into a pH value.

pHセンサの測定感度をa、ゼロ点を示すバイアス値をbとしたとき、pH変換演算手段13の出力pHは、pH=aX+bとなる。しかしながら、pHセンサの測定感度aは、稼動時間と共に変化する。   When the measurement sensitivity of the pH sensor is a and the bias value indicating the zero point is b, the output pH of the pH conversion calculation means 13 is pH = aX + b. However, the measurement sensitivity a of the pH sensor changes with the operating time.

この感度変化を補うために、所定の時間間隔または随時に実施されるpHセンサ11の校正によって取得される校正感度a´(t)により、感度補正手段13aで補正演算した、pH=a´(t)X+bを出力させる処理を必要とする。バイアス値bが時間と共に変動する場合にも校正を必要とするが、説明の簡単のため、ここでは固定定数として説明する。   In order to compensate for this change in sensitivity, the correction value is calculated by the sensitivity correction means 13a based on the calibration sensitivity a ′ (t) acquired by calibration of the pH sensor 11 performed at a predetermined time interval or at any time, pH = a ′ ( t) A process for outputting X + b is required. Calibration is also required when the bias value b fluctuates with time, but for the sake of simplicity of explanation, it will be explained here as a fixed constant.

校正装置20は、pH値が既知の校正液22を備える。所定の時間間隔または随時にpHセンサ11によりこの校正液22を測定した離散的に求められる測定値Xを、pH変換演算手段23に入力して得たpHの変換演算出力pH=a´(t)X+bを、校正感度抽出手段24に渡し、校正感度a´(t)を抽出する。   The calibration device 20 includes a calibration liquid 22 having a known pH value. A pH conversion calculation output pH = a ′ (t obtained by inputting the measured value X obtained by discretely measuring the calibration liquid 22 by the pH sensor 11 to the pH conversion calculation means 23 at a predetermined time interval or at any time. ) X + b is passed to the calibration sensitivity extraction means 24 to extract the calibration sensitivity a ′ (t).

校正感度抽出手段24で抽出された離散的に得られる過去の校正感度a´(t)は、校正履歴保存手段25に保存される。感度変化曲線予測手段26は、校正履歴保存手段25に保存されるトレンドデータを読み出して、校正実施日とその時点での感度の履歴データから、平均的な時間経過対感度変化近似曲線である感度変化曲線を導く。この感度変化曲線は、実際の感度変化により近い曲線を導くことが目的である。   The past calibration sensitivity a ′ (t) obtained discretely extracted by the calibration sensitivity extraction unit 24 is stored in the calibration history storage unit 25. The sensitivity change curve prediction unit 26 reads the trend data stored in the calibration history storage unit 25, and based on the calibration date and the sensitivity history data at that time, the sensitivity that is an average time course versus sensitivity change approximate curve. Guide the change curve. The purpose of this sensitivity change curve is to derive a curve closer to the actual sensitivity change.

従って、この曲線は直線であっても次数の多い多次曲線であってもかまわない。近似曲線を導くにあたり、その手法は、直近の2回の校正データを用いて直線近似を行う、あるいは直近の3個以上の校正データにより最小二乗近似法を用いて直線近似を行うなど、演算の手法はいくつか考えられる。   Therefore, this curve may be a straight line or a multi-order curve having many orders. In deriving an approximate curve, the method is such that linear approximation is performed using the two most recent calibration data, or linear approximation is performed using the least square approximation method using the latest three or more calibration data. Several methods are conceivable.

測定装置10のpH演算変換手段13は、感度変化曲線予測手段26により予測される感度変化曲線より連続的に求められる感度補正値a″(t)を入力し、感度補正手段13aにより感度補正した、pH=a″(t)X+bを演算して出力する。   The pH calculation conversion means 13 of the measuring apparatus 10 inputs the sensitivity correction value a ″ (t) obtained continuously from the sensitivity change curve predicted by the sensitivity change curve prediction means 26, and the sensitivity correction is performed by the sensitivity correction means 13a. , PH = a ″ (t) X + b is calculated and output.

図7は、図6に示した従来のpH測定装置の感度変化曲線を示す特性図である。稼動開始時刻t1での校正感度a1より実際の感度変化曲線を点線F1で示す。時刻t2、t3で実施された校正により取得された校正感度をa2、a3で示す。   FIG. 7 is a characteristic diagram showing a sensitivity change curve of the conventional pH measuring apparatus shown in FIG. An actual sensitivity change curve is indicated by a dotted line F1 from the calibration sensitivity a1 at the operation start time t1. The calibration sensitivities acquired by the calibration performed at times t2 and t3 are denoted by a2 and a3.

校正により得られた感度曲線を実線F2で示す。F2は、時刻t1よりt2までは、t1で取得した校正感度a1を維持し、時刻t2よりt3までは、t2で取得した校正感度a2を維持し、以下同様に校正毎にステップ変化する離散的なデータとなる。   The sensitivity curve obtained by calibration is indicated by a solid line F2. F2 maintains the calibration sensitivity a1 acquired at t1 from time t1 to t2, maintains the calibration sensitivity a2 acquired at t2 from time t2 to t3, and so on. Data.

感度変化曲線予測手段26によって予測される感度変化曲線は、太線の実線で示すF3である。図に示す感度変化曲線F3は、時刻t2で得られる校正感度a2と時刻t3で得られる校正感度a3を結んだ直線で近似されている。   The sensitivity change curve predicted by the sensitivity change curve prediction unit 26 is F3 indicated by a bold solid line. The sensitivity change curve F3 shown in the figure is approximated by a straight line connecting the calibration sensitivity a2 obtained at time t2 and the calibration sensitivity a3 obtained at time t3.

予測される感度変化曲線F3と実際の感度変化曲線F1は近接しているので、次の校正タイミング前の時刻t4で発生する感度偏差Δa´は、離散データで示される最大偏差Δaよりも小さくすることができる。   Since the predicted sensitivity change curve F3 and the actual sensitivity change curve F1 are close to each other, the sensitivity deviation Δa ′ generated at time t4 before the next calibration timing is made smaller than the maximum deviation Δa indicated by the discrete data. be able to.

特開平5−164736号公報Japanese Patent Laid-Open No. 5-164736

従来構成のpH測定装置では、離散的な校正データの補間機能として、蓄積された校正データから近似式を用いて校正データを予測している。この手法では、pHセンサとしてガラス電極型pHセンサを用いた場合、その劣化要因であるインピーダンス変化、測定溶液の温度変化などが考慮されていないために、実際の感度変化曲線と感度予測曲線間の偏差を縮小することに限界がある。即ち、蓄積データによる近似となるため、校正作業自体をなくすことは難しい。   In the conventional pH measuring apparatus, as an interpolation function for discrete calibration data, calibration data is predicted from the accumulated calibration data using an approximate expression. In this method, when a glass electrode type pH sensor is used as the pH sensor, the impedance change and the temperature change of the measurement solution, which are degradation factors, are not considered. There is a limit to reducing the deviation. In other words, since the approximation is based on accumulated data, it is difficult to eliminate the calibration work itself.

本発明の目的は、従来の感度変化の前方予測機能の偏差をより小さくし、校正回数の大幅な削減、または校正レスを可能とするpH測定装置を実現することにある。   An object of the present invention is to realize a pH measuring device that can reduce the deviation of the conventional forward prediction function of the sensitivity change, greatly reduce the number of calibrations, or eliminate calibration.

このような課題を達成するために、本発明は次の通りの構成になっている。
(1) 被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置において、
経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力する感度係数推論手段と、
被測定液のpH測定中に前記ガラス電極型pHセンサのインピーダンスを測定して測定値をオンラインで前記感度係数推論手段に与えるインピーダンス検出手段と、
を備え、
前記感度係数推論手段は、前記の校正感度データの取得から次回の校正感度データの取得までの間における校正感度を予測し、前記pH変換演算手段に校正感度データとして渡すことを特徴とするpH測定装置。
In order to achieve such a subject, the present invention has the following configuration.
(1) For a pH conversion calculation means for inputting a measured value of a glass electrode pH sensor in which the pH measurement sensitivity of the liquid to be measured changes with time, using a calibration solution for a reference pH that is executed at predetermined time intervals or as needed. In the pH measurement device for correcting the pH measurement sensitivity by passing calibration sensitivity data acquired in the calibration operation,
The elapsed time, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode type pH sensor are used as learning data, and back of calibration sensitivity data acquired in the calibration operation. Sensitivity coefficient reasoning means for inputting data as teacher data;
Impedance detection means for measuring the impedance of the glass electrode type pH sensor during pH measurement of the liquid to be measured and providing the measured value to the sensitivity coefficient inference means online ;
With
The sensitivity coefficient inference means predicts the calibration sensitivity between the acquisition of the calibration sensitivity data and the next acquisition of the calibration sensitivity data, and passes it as calibration sensitivity data to the pH conversion calculation means. apparatus.

(2)前記感度係数推論手段は、オフライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする(1)に記載のpH測定装置。 (2) In the offline state, the sensitivity coefficient inference means uses the elapsed time, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode pH sensor as learning data. The pH measurement apparatus according to (1), wherein back data of calibration sensitivity data acquired in the calibration operation is input as teacher data to learn an inference algorithm.

(3)前記感度係数推論手段は、オンライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする(1)または(2)に記載のpH測定装置。 (3) In the online state, the sensitivity coefficient inference means uses the elapsed time, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode pH sensor as learning data. The pH measurement apparatus according to (1) or (2), wherein back data of calibration sensitivity data acquired in the calibration operation is input as teacher data to learn an inference algorithm.

(4)前記感度係数推論手段は、ニューラルネットワークにより構成されることを特徴とする(1)乃至(3)のいずれかに記載のpH測定装置。 (4) The pH measurement device according to any one of (1) to (3), wherein the sensitivity coefficient inference means is configured by a neural network.

本発明によれば、次のような効果を期待することができる。
(1)pHセンサの劣化要因を学習データとし、校正実績データを教師データとする、ニューラルネットワークなどで実現可能な感度係数推論手段により感度変化の前方予測を行うことで、実際の感度変化との偏差をより小さくすることができる。
According to the present invention, the following effects can be expected.
(1) Predicting the change in sensitivity by means of sensitivity coefficient reasoning means that can be realized by a neural network or the like using the degradation factor of the pH sensor as learning data and the calibration result data as teacher data, The deviation can be made smaller.

(2)また、バックデータの精度が確保できる場合、設置された環境、アプリケーションを覚えるために数回の校正を行えば、その後は校正レスで感度予測していくことが可能である。 (2) If the accuracy of the back data can be ensured, sensitivity can be predicted without calibration after performing calibration several times to learn the installed environment and application.

本発明を適用したpH測定装置の一実施例を示す機能ブロック図である。It is a functional block diagram which shows one Example of the pH measuring apparatus to which this invention is applied. ニューラルネットワークによる学習動作を説明する模式図である。It is a schematic diagram explaining the learning operation | movement by a neural network. ニューラルネットワークによる稼動中での予測動作を説明する模式図である。It is a schematic diagram explaining the prediction operation in operation by the neural network. ガラス電極pHセンサのインピーダンス測定回路図である。It is an impedance measurement circuit diagram of a glass electrode pH sensor. 本発明によるpH測定装置の感度変化曲線を示す特性図である。It is a characteristic view which shows the sensitivity change curve of the pH measuring apparatus by this invention. 従来のpH測定装置の構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the conventional pH measuring apparatus. 従来のpH測定装置の感度変化曲線を示す特性図である。It is a characteristic view which shows the sensitivity change curve of the conventional pH measuring apparatus.

以下本発明を、図面を用いて詳細に説明する。図1は、本発明を適用したpH測定装置の一実施例を示す機能ブロック図である。図6で説明した従来構成と同一要素には同一符号を付して説明を省略する。   Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 is a functional block diagram showing an embodiment of a pH measuring device to which the present invention is applied. The same elements as those in the conventional configuration described with reference to FIG.

図6に示した従来構成の測定装置10に追加される本発明の特徴部は、pH変換演算手段13の感度補正手段13aに渡す感度係数a″(t)を前方予測するための感度係数推論手段100を設けた構成にある。   The feature of the present invention added to the measurement apparatus 10 having the conventional configuration shown in FIG. 6 is sensitivity coefficient inference for forward prediction of the sensitivity coefficient a ″ (t) passed to the sensitivity correction means 13 a of the pH conversion calculation means 13. The means 100 is provided.

感度係数推論手段100としては周知のニューラルネットワークを採用することが可能であるが、これに限定されるものではなく、多数のプロセス値から直接計測が困難なプロセス性状を予測する、実用化されている周知の多変数モデル予測制御パッケージなどの採用が可能である。以下、ニューラルネットワークを用いた実施例を説明する。   A known neural network can be adopted as the sensitivity coefficient inference means 100, but is not limited to this, and has been put into practical use for predicting process properties that are difficult to measure directly from a large number of process values. It is possible to employ a known multivariable model predictive control package. An embodiment using a neural network will be described below.

ニューラルネットワークによる感度係数推論手段100は、経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zなどのパラメータを劣化要因の学習データとして入力すると共に、校正履歴保存手段25から得られる感度データのバックデータa´(t)を教師データとして入力し、予測される感度係数a″(t)を出力し、感度補正手段13aに渡す。   Sensitivity coefficient inference means 100 using a neural network learns deterioration factors such as elapsed time t, output pH value of pH conversion calculation means, temperature measurement value T of measurement liquid 12, and glass electrode impedance measurement value Z of pH sensor 11. While inputting as data, back data a ′ (t) of sensitivity data obtained from the calibration history storage unit 25 is input as teacher data, and a predicted sensitivity coefficient a ″ (t) is output, to the sensitivity correction unit 13a. hand over.

ガラス電極インピーダンス測定値Zは、インピーダンス検出手段14により定周期処理で測定される。温度測定値Tは。測定液12に接する温度センサ15を用いた温度検出手段16で測定される。   The glass electrode impedance measurement value Z is measured by the periodic detection process by the impedance detection means 14. What is the temperature measurement T? The temperature is measured by temperature detection means 16 using a temperature sensor 15 in contact with the measurement liquid 12.

図2は、ニューラルネットワークによる学習動作を説明する模式図である。ニューラルネットワークによる感度係数推論手段100は、学習データのパラメータとして経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zを入力すると共に、感度データのバックデータa´(t)を教師データとして入力し、推論のアルゴリズムを最適化するための学習をする。   FIG. 2 is a schematic diagram for explaining a learning operation by the neural network. Sensitivity coefficient inference means 100 using a neural network inputs elapsed time t, output pH value of pH conversion calculation means, temperature measurement value T of measurement liquid 12, and glass electrode impedance measurement value Z of pH sensor 11 as learning data parameters. At the same time, the back data a ′ (t) of the sensitivity data is input as teacher data, and learning is performed to optimize the inference algorithm.

ニューラルネットワークの学習方法としては、開発時にオフライン状態において入力パラメータである経過時間、pH測定値、温度測定値、インピーダンス測定値等に対する感度変化のバックデータを測定し、その感度変化のバックデータを教師データとして学習する。   As a learning method of the neural network, the back data of the sensitivity change with respect to the elapsed time, pH measurement value, temperature measurement value, impedance measurement value, etc. which are input parameters in the offline state during development is measured, and the back data of the sensitivity change is instructed. Learn as data.

このバックデータはなるべく多くのデータで学習されることが望ましい。また、オンラインで稼働中もユーザが校正する度にその校正データにより学習させ、そのアプリケーションに特化した環境にも対応できるようにする。   This back data is preferably learned with as much data as possible. In addition, every time the user calibrates while operating online, the user learns from the proofreading data so that it can cope with an environment specialized for the application.

図3は、ニューラルネットワークによる稼動中での予測動作を説明する模式図である。ニューラルネットワークによる感度係数推論手段100への入力データとしては、オフラインでの学習データと同じ経過時間t、pH変換演算手段の出力pH値,測定液12の温度測定値T、pHセンサ11のガラス電極インピーダンス測定値Zをオンラインで入力すると共に、感度データのバックデータa´(t)をオンラインの教師データとして入力し、出力データとして予測感度係数a″(t)をオンラインで算出し、感度補正手段13aに渡す。   FIG. 3 is a schematic diagram for explaining a prediction operation during operation by the neural network. As input data to the sensitivity coefficient inference means 100 by the neural network, the same elapsed time t as the offline learning data, the output pH value of the pH conversion calculation means, the temperature measurement value T of the measurement liquid 12, the glass electrode of the pH sensor 11 The impedance measurement value Z is input online, the back data a ′ (t) of sensitivity data is input as online teacher data, the predicted sensitivity coefficient a ″ (t) is calculated online as output data, and sensitivity correction means Pass to 13a.

図4は、ガラス電極pHセンサのインピーダンス測定回路図である。ガラス電極pHセンサの等価回路は、液アースとガラス電極間に接続された、起電力VgとインピーダンスZの直列回路で表記できる。pH測定の直流の起電力に影響しないようにCPUからの指令で100Hzの方形波信号Vを液アース側に印加し、電極側では、測定したいインピーダンスZと固定抵抗Rの分圧Vinをサンプルホールドした電圧VoをAD変換してCPUに入力する。   FIG. 4 is an impedance measurement circuit diagram of the glass electrode pH sensor. An equivalent circuit of the glass electrode pH sensor can be expressed by a series circuit of an electromotive force Vg and an impedance Z connected between the liquid earth and the glass electrode. A 100Hz square wave signal V is applied to the liquid earth side in response to a command from the CPU so as not to affect the DC electromotive force in the pH measurement. On the electrode side, the impedance Z to be measured and the partial voltage Vin of the fixed resistor R are sampled and held. The converted voltage Vo is AD converted and input to the CPU.

図5は、本発明によるpH測定装置の感度変化曲線を示す特性図である。図7に示した従来構成の予測による感度変化曲線F3と、本発明の予測による感度変化曲線F3´との対比で明らかなように、時刻t4における感度偏差Δa´はより小さくなり、予測の精度が向上している。   FIG. 5 is a characteristic diagram showing a sensitivity change curve of the pH measuring device according to the present invention. As is clear from the contrast between the sensitivity change curve F3 according to the prediction of the conventional configuration shown in FIG. 7 and the sensitivity change curve F3 ′ according to the prediction of the present invention, the sensitivity deviation Δa ′ at time t4 becomes smaller and the accuracy of the prediction is reduced. Has improved.

本発明の手法によれば、実際の感度変化曲線F1に対し、予測感度変化曲線F3´を高精度で近似させることが可能となる。これにより、校正の頻度を従来構成に比較して少なくすることができ、所定期間の学習を実行した後に校正レスの運転に移行することも可能となる。   According to the method of the present invention, the predicted sensitivity change curve F3 ′ can be approximated with high accuracy to the actual sensitivity change curve F1. Thereby, the frequency of calibration can be reduced as compared with the conventional configuration, and it is also possible to shift to a calibration-less operation after performing learning for a predetermined period.

10 測定装置
11 pHセンサ
12 測定液
13 pH変換演算手段
13a 感度補正手段
14 インピーダンス検出手段
15 温度センサ
16 温度検出手段
20 校正装置
22 校正液
23 pH変換演算手段
24 校正感度抽出手段
25 校正履歴保存手段
100 感度係数推論手段
DESCRIPTION OF SYMBOLS 10 Measuring apparatus 11 pH sensor 12 Measuring liquid 13 pH conversion calculating means 13a Sensitivity correction means 14 Impedance detecting means 15 Temperature sensor 16 Temperature detecting means 20 Calibration apparatus 22 Calibration solution 23 pH conversion calculating means 24 Calibration sensitivity extracting means 25 Calibration history saving means 25 100 Sensitivity coefficient reasoning means

Claims (4)

被測定液のpH測定感度が時間と共に変化するガラス電極型pHセンサの測定値を入力するpH変換演算手段に対して、所定の時間間隔または随時に実行される基準pHの校正液による校正作業で取得される校正感度データを渡して前記pH測定感度を補正させるpH測定装置において、
経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力する感度係数推論手段と、
被測定液のpH測定中に前記ガラス電極型pHセンサのインピーダンスを測定して測定値をオンラインで前記感度係数推論手段に与えるインピーダンス検出手段と、
を備え、
前記感度係数推論手段は、前記の校正感度データの取得から次回の校正感度データの取得までの間における校正感度を予測し、前記pH変換演算手段に校正感度データとして渡すことを特徴とするpH測定装置。
For the pH conversion calculation means for inputting the measured value of the glass electrode type pH sensor whose pH measurement sensitivity of the liquid to be measured changes with time, the calibration work with the calibration solution of the reference pH that is executed at a predetermined time interval or at any time In a pH measurement device that passes the acquired calibration sensitivity data and corrects the pH measurement sensitivity,
The elapsed time, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode type pH sensor are used as learning data, and back of calibration sensitivity data acquired in the calibration operation. Sensitivity coefficient reasoning means for inputting data as teacher data;
Impedance detection means for measuring the impedance of the glass electrode type pH sensor during pH measurement of the liquid to be measured and providing the measured value to the sensitivity coefficient inference means online ;
With
The sensitivity coefficient inference means predicts the calibration sensitivity between the acquisition of the calibration sensitivity data and the next acquisition of the calibration sensitivity data, and passes it as calibration sensitivity data to the pH conversion calculation means. apparatus.
前記感度係数推論手段は、オフライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする請求項1に記載のpH測定装置。   The sensitivity coefficient inference means uses the elapsed time in the offline state, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode pH sensor as learning data, and 2. The pH measuring apparatus according to claim 1, wherein back data of calibration sensitivity data acquired in a calibration operation is input as teacher data to learn an inference algorithm. 前記感度係数推論手段は、オンライン状態において前記経過時間、前記pH変換演算手段のpH測定値、前記測定液の温度測定値、前記ガラス電極型pHセンサのインピーダンス測定値を学習データとすると共に、前記校正作業で取得される校正感度データのバックデータを教師データとして入力し、推論のアルゴリズムを学習することを特徴とする請求項1または2に記載のpH測定装置。   The sensitivity coefficient inference means uses the elapsed time in the online state, the pH measurement value of the pH conversion calculation means, the temperature measurement value of the measurement liquid, and the impedance measurement value of the glass electrode type pH sensor as learning data, and The pH measuring apparatus according to claim 1 or 2, wherein the back data of the calibration sensitivity data acquired in the calibration operation is input as teacher data to learn an inference algorithm. 前記感度係数推論手段は、ニューラルネットワークにより構成されることを特徴とする請求項1乃至3のいずれかに記載のpH測定装置。   4. The pH measuring device according to claim 1, wherein the sensitivity coefficient inference means is constituted by a neural network.
JP2011154107A 2011-07-12 2011-07-12 pH measuring device Active JP5896105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011154107A JP5896105B2 (en) 2011-07-12 2011-07-12 pH measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011154107A JP5896105B2 (en) 2011-07-12 2011-07-12 pH measuring device

Publications (2)

Publication Number Publication Date
JP2013019804A JP2013019804A (en) 2013-01-31
JP5896105B2 true JP5896105B2 (en) 2016-03-30

Family

ID=47691380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011154107A Active JP5896105B2 (en) 2011-07-12 2011-07-12 pH measuring device

Country Status (1)

Country Link
JP (1) JP5896105B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596887A (en) * 2016-12-06 2017-04-26 中国地质调查局水文地质环境地质调查中心 Deep aquifer multiparameter in-situ monitoring apparatus and method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HRP20221081T1 (en) * 2015-10-30 2022-11-25 F. Hoffmann - La Roche Ag Identification of calibration deviations of ph-measuring devices
KR102056219B1 (en) 2018-03-27 2019-12-16 재단법인 대구경북첨단의료산업진흥재단 pH DETECTING MICRO-STRUCTURED STICKER AND THE MANUFACTURING METHOD THEREOF
DE102018218045A1 (en) * 2018-10-22 2020-04-23 Robert Bosch Gmbh ADVANCED POTENTIOMETRY FOR A RECALIBRATION-FREE ION SELECTIVE ELECTRODE SENSOR
DE102019107625A1 (en) * 2018-12-20 2020-06-25 Endress+Hauser Conducta Gmbh+Co. Kg Method for in-process adjustment of a potentiometric sensor of a measuring arrangement
CN111289597A (en) * 2020-03-25 2020-06-16 上海博取环境技术有限公司 Method for transmitting calibration parameters of PH sensor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2850514B2 (en) * 1990-09-26 1999-01-27 横河電機株式会社 PH meter with life expectancy display
JPH04131764U (en) * 1991-05-27 1992-12-04 電気化学計器株式会社 Ion concentration measuring device
JP2597861Y2 (en) * 1993-04-02 1999-07-19 電気化学計器株式会社 Ion concentration measurement device
JPH1014402A (en) * 1996-06-28 1998-01-20 Sanyo Electric Works Ltd Soil nutrient measuring instrument
DE102004063468A1 (en) * 2004-12-23 2006-07-06 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Method for monitoring the function of a sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596887A (en) * 2016-12-06 2017-04-26 中国地质调查局水文地质环境地质调查中心 Deep aquifer multiparameter in-situ monitoring apparatus and method thereof

Also Published As

Publication number Publication date
JP2013019804A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5896105B2 (en) pH measuring device
CN108629419B (en) Machine learning device and thermal displacement correction device
EP3109648B1 (en) Method and system for on-line monitoring an electrolytic capacitor condition
JP5641008B2 (en) Motor control device and electric power steering device equipped with the same
JP7282184B2 (en) Systems and methods for detecting and measuring anomalies in signals originating from components used in industrial processes
CN107797446B (en) Model prediction control device, control method, and recording medium
JP6490096B2 (en) Shunt current measurement with temperature compensation
JP7408653B2 (en) Automatic analysis of unsteady mechanical performance
JP6199886B2 (en) How to monitor a broadband lambda sensor
EP2561411A1 (en) A method and system for updating a model in a model predictive controller
CN110109441B (en) Laser inertial measurement unit fault prediction method and system
CN111433689B (en) Generation of control systems for target systems
JP2009181392A (en) Model prediction control method and model prediction control device
KR20200063338A (en) Prediction system based on parameter improvement through learning and method thereof
CN117310348B (en) Power adapter fault real-time monitoring method and system
Chen et al. Soft sensor model maintenance: A case study in industrial processes
JP2011237354A (en) Calibration device for chemical sensor
JP7182059B2 (en) Measurement value prediction module, measurement value prediction program, and measurement value prediction method
Ni et al. Recursive GPR for nonlinear dynamic process modeling
Hofmeister et al. Prognostic health management (PHM) of electrical systems using condition-based data for anomaly and prognostic reasoning
JP4898550B2 (en) Gas alarm
CN112528227A (en) Sensor abnormal data identification method based on mathematical statistics
WO2023213417A1 (en) Time-series anomaly detection
US20210293733A1 (en) Method for operating a gas sensor device and gas sensor device for ascertaining pieces of information about an air quality
JP2009254104A (en) Conductor monitor for power receiving and distributing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160216

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5896105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150