JP5894666B2 - Method for mutagenesis of Schizochytrium sp. And mutants produced therefrom - Google Patents

Method for mutagenesis of Schizochytrium sp. And mutants produced therefrom Download PDF

Info

Publication number
JP5894666B2
JP5894666B2 JP2014516178A JP2014516178A JP5894666B2 JP 5894666 B2 JP5894666 B2 JP 5894666B2 JP 2014516178 A JP2014516178 A JP 2014516178A JP 2014516178 A JP2014516178 A JP 2014516178A JP 5894666 B2 JP5894666 B2 JP 5894666B2
Authority
JP
Japan
Prior art keywords
schizochytrium
strain
dha
mutant
untreated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014516178A
Other languages
Japanese (ja)
Other versions
JP2014522635A (en
Inventor
ベルナール ポーラ
ベルナール ポーラ
ジエ チョウ
ジエ チョウ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roquette Freres SA
Original Assignee
Roquette Freres SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roquette Freres SA filed Critical Roquette Freres SA
Publication of JP2014522635A publication Critical patent/JP2014522635A/en
Application granted granted Critical
Publication of JP5894666B2 publication Critical patent/JP5894666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/02Preparation of hybrid cells by fusion of two or more cells, e.g. protoplast fusion
    • C12N15/03Bacteria
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/152Milk preparations; Milk powder or milk powder preparations containing additives
    • A23C9/1528Fatty acids; Mono- or diglycerides; Petroleum jelly; Paraffine; Phospholipids; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • A23L17/60Edible seaweed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/40Complete food formulations for specific consumer groups or specific purposes, e.g. infant formula
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor
    • C12N1/125Unicellular algae isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • C12P7/6434Docosahexenoic acids [DHA]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/89Algae ; Processes using algae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Pediatric Medicine (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)

Description

本出願は微生物遺伝育種技術及び微生物発酵技術に関し、特にDHA(ドコサヘキサエン酸)を産生するための微生物藻類の変異体又は突然変異体に関する。   The present application relates to microbial genetic breeding techniques and microbial fermentation techniques, and in particular to microbial algae mutants or mutants for producing DHA (docosahexaenoic acid).

DHA(ドコサヘキサエン酸、C22:6、(omega−3))は、必須の脂肪酸、すなわち長鎖脂肪酸であり、それは人体内で合成できず、かつ重要な生理機能を有する。DHAはヒトの脳及び網膜における主要な成分であり、全DHAの20%が大脳皮質に存在し、網膜中に最大50%まで存在する。従って、DHAは神経系及び視覚系の発育に、及び正常な知性機能及び視覚機能の維持に重要な役割を果たす。DHAはまた、心血管疾患、癌、肉芽種生成などの予防に生理学的機能を有する。加えてDHAは種々の海洋魚の成長及び発育に必要とされる必須脂肪酸でもあり、稚魚の生存率を向上させ、色素欠乏症の発生率を低減することができる。従来、DHAは魚油から得られる。しかしながら、ポリ不飽和脂肪酸(PUFA)を魚油から抽出するには、抽出量が不安定である、収率が低い、コスト高である、及びその他のω−6PUFAの混入などの幾つかの問題点がある。漁業資源の制約が増えているために、DHAの従来の資源は、市場におけるDHAの需要増加に対処できない。従って、DHAの新資源の開発に関心が寄せられている。   DHA (docosahexaenoic acid, C22: 6, (omega-3)) is an essential fatty acid, that is, a long-chain fatty acid, which cannot be synthesized in the human body and has important physiological functions. DHA is a major component in the human brain and retina, with 20% of all DHA present in the cerebral cortex and up to 50% in the retina. Thus, DHA plays an important role in the development of the nervous and visual systems and in the maintenance of normal intelligence and visual functions. DHA also has physiological functions in the prevention of cardiovascular disease, cancer, granulation seed production and the like. In addition, DHA is an essential fatty acid required for the growth and development of various marine fish, and can improve the survival rate of juvenile fish and reduce the incidence of pigment deficiency. Traditionally, DHA is obtained from fish oil. However, extracting polyunsaturated fatty acids (PUFA) from fish oil has several problems, such as unstable extraction, low yield, high cost, and other ω-6 PUFA contamination There is. Due to the increasing constraints on fishery resources, conventional DHA resources cannot cope with increasing demand for DHA in the market. Therefore, there is an interest in developing new DHA resources.

シゾキトリウム属(Schizochytrium sp.)は、海洋微細藻類(又は擬似真菌)であり、DHA及びその他のポリ不飽和脂肪酸(PUFA)の産生用の商業的供給源として開発されてきた。シゾキトリウム属(Schizochytrium sp.)の生物安全性は証明されている。Hammondらはラット及び兎に対してそれを用いた一連の試験を実施し、副作用がないことを見出した。   Schizochytrium sp. Is a marine microalgae (or mimic fungus) that has been developed as a commercial source for the production of DHA and other polyunsaturated fatty acids (PUFA). The biosafety of Schizochytrium sp. Has been demonstrated. Hammond et al. Conducted a series of tests using it on rats and rabbits and found no side effects.

しかしながら、発酵プロセスでは、シゾキトリウム属(Schizochytrium sp.)株の品質劣化が避けられず、これによりDHAの収率低下がもたらされる。従って株品質(主に成長速度、特にDHA含量)の継続的な改善が、シゾキトリウム属(Schizochytrium sp.)産業における持続的な開発を促進するために重要である。   However, in the fermentation process, quality degradation of the Schizochytrium sp. Strain is unavoidable, leading to a reduction in DHA yield. Therefore, continuous improvement in strain quality (mainly growth rate, especially DHA content) is important to promote sustainable development in the Schizochytrium sp. Industry.

アセチル−CoAカルボキシラーゼ(ACC、(EC6.4.1.2)が、脂肪酸合成において重要な酵素であり、かつ除草剤キザロホップ(Quizalofop){2−[4−(6−クロロ−2−キノキサリン−オキシ)−フェノキシ]プロピオネート}はこの酵素の阻害剤である。キザロホップの存在下では、細胞は脂肪酸の生合成の撹乱に起因して成長が遅くなりさらには死亡する。   Acetyl-CoA carboxylase (ACC, (EC 6.4.1.2) is an important enzyme in fatty acid synthesis and the herbicide Quizalofop {2- [4- (6-chloro-2-quinoxaline-oxy ) -Phenoxy] propionate} is an inhibitor of this enzyme, and in the presence of quizalofop, cells slow down and even die due to disturbances in fatty acid biosynthesis.

最近では、一部の研究によりキザロホップを使用して、増加したEPA含量を有する株のための突然変異された微細藻類を選抜できることが示された。   Recently, some studies have shown that quizalofop can be used to select mutated microalgae for strains with increased EPA content.

Chaturvediら(2004年)は、MNNGでナンノクロロプシス・オキュラタ(Nannochloropsis oculata)を突然変異させ、キザロホップ−耐性株のために選抜試験した。選抜された株からの結果は顕著に増加したEPA含量を示した。   Chaturvedi et al. (2004) mutated Nannochloropsis oculata at MNNG and screened for quizalofop-resistant strains. Results from the selected strains showed a significantly increased EPA content.

更に、Chaturvediら(2006年)は、EMSでナンノクロロプシス・オキュラタ(Nannochloropsis oculata)を突然変異させ、セルレニン及びエリスロマイシンに耐性のある株のための選抜試験をした。得られた株は29%及び12%だけ増加したEPA収率を示した。   In addition, Chaturvedi et al. (2006) mutated Nannochloropsis oculata with EMS and conducted a selection test for strains resistant to cerulenin and erythromycin. The resulting strain showed an EPA yield increased by 29% and 12%.

Cao Xiaohongら(2007年)は、珪藻植物ニツシア・レビス(Nitzschia laevis)をDMSO及びキザロホップで処理し、藻類のEPA含量が3.00%から3.58%に増加した結果になる。   Cao Xiaohong et al. (2007) resulted in the treatment of the diatom plant Nitzschia laevis with DMSO and kizarohop, increasing the alga EPA content from 3.00% to 3.58%.

これまで、キザロホップに耐性のあるシゾキトリウム属(Schizochytrium sp.)変異体は報告されていない。たとえそのようなシゾキトリウム属(Schizochytrium sp.)突然変異体が存在したとしても、EPA又はDHAの含量が、キザロホップ選抜を受ける突然変異体に対して増加されるかどうかはまだ不明である。更に、紫外線照射で誘発されたシゾキトリウム属(Schizochytrium sp.)変異体がキザロホップ選抜を耐えることができるか否かは明確ではない。   So far, no Schizochytrium sp. Mutant resistant to quizalofop has been reported. Even if such a Schizochytrium sp. Mutant exists, it is still unclear whether the content of EPA or DHA is increased for mutants undergoing quizalofop selection. Furthermore, it is not clear whether Schizochytrium sp. Mutants induced by UV irradiation can withstand quizalofop selection.

本出願の発明者は意外にも、増加したDHA含量を有するシゾキトリウム属(Schizochytrium sp.)変異体又は突然変異体が、シゾキトリウム属(Schizochytrium sp.)株への紫外線照射の突然変異体誘導を適用し、次に脂肪酸合成(例えばアセチル補酵素A カルボキシラーゼ)における主要酵素に対する阻害剤(キザロホップを含むがそれに限定されない)を使用して方向性選択を実施することによって得ることができることを発見した。更に、得られた変異体又は突然変異体は、高いDHA含量、並びに未処置のシゾキトリウム属(Schizochytrium sp.)株と比較して向上した成長速度を有する。   The inventor of the present application surprisingly applied Schizochytrium sp. Mutants or mutants with increased DHA content applied mutant induction of UV irradiation to Schizochytrium sp. Strains. And then found that it can be obtained by performing directional selection using inhibitors (including but not limited to quizalofop) to key enzymes in fatty acid synthesis (eg, acetyl coenzyme A carboxylase). Furthermore, the resulting mutant or mutant has a high DHA content and an improved growth rate compared to an untreated Schizochytrium sp. Strain.

従って、第一の態様において、未処置のシゾキトリウム属(Schizochytrium sp.)株と比較して増加したDHA含量を有する変異体シゾキトリウム属(Schizochytrium sp.)株を産生する方法が提供され、その方法には、突然変異株を産生するために紫外線照射を用いてシゾキトリウム属(Schizochytrium sp.)株における突然変異誘導を誘発すること、その突然変異株をアセチル補酵素Aカルボキシラーゼ阻害剤と接触させること、及び未処置のシゾキトリウム属(Schizochytrium sp.)株と比較して増加したDHA含量を有するシゾキトリウム属(Schizochytrium sp.)株の変異体を選択すること、が含まれる。   Accordingly, in a first aspect, there is provided a method for producing a mutant Schizochytrium sp. Strain having an increased DHA content compared to an untreated Schizochytrium sp. Strain, the method comprising: Inducing mutagenesis in a Schizochytrium sp. Strain using ultraviolet radiation to produce a mutant strain, contacting the mutant strain with an acetyl coenzyme A carboxylase inhibitor, and Selecting a mutant of the Schizochytrium sp. Strain having an increased DHA content compared to an untreated Schizochytrium sp. Strain.

本明細書に開示した実施形態では、アセチル補酵素Aカルボキシラーゼに対する阻害剤はキザロホップである。特定な実施形態では、増加したDHA含量を有する選択された変異体はまた、成長速度が未処置のシゾキトリウム属(Schizochytrium sp.)株の成長速度と比較して増加しており、その結果DHA産生効率は未処置のシゾキトリウム属(Schizochytrium sp.)株のDHA産生効率と比較して増加される。   In an embodiment disclosed herein, the inhibitor for acetyl coenzyme A carboxylase is quizalofop. In certain embodiments, selected mutants with increased DHA content also have an increased growth rate compared to the growth rate of an untreated Schizochytrium sp. Strain, resulting in DHA production. Efficiency is increased compared to the DHA production efficiency of an untreated Schizochytrium sp. Strain.

本明細書にて開示した別の実施形態では、シゾキトリウム属(Schizochytrium sp.)株の変異体のDHA含量は、始発株の場合又は未処置のシゾキトリウム属(Schizochytrium sp.)株のものと比較して、より高い。典型的には、シゾキトリウム属(Schizochytrium sp.)株の変異体のDHA含量は、アセチル補酵素Aに対する阻害剤の使用による選択を伴う又は伴わない場合の紫外線照射誘発の突然変異誘導後の始発株又は未処置株のものと比較して、より高い。   In another embodiment disclosed herein, the DHA content of a mutant of the Schizochytrium sp. Strain is compared to that of the initial or untreated Schizochytrium sp. Strain. Higher. Typically, the DHA content of a mutant of a Schizochytrium sp. Strain is the starting strain after mutagenesis induced by UV radiation with or without selection by use of an inhibitor to acetyl coenzyme A Or higher compared to that of the untreated strain.

第二の態様では、シゾキトリウム属(Schizochytrium sp.)株の変異体が提供され、例えば、2011年1月21日に中国典型培養物保蔵センター(Chinese Center for Type Culture Collection)(CCTCC)において寄託され、かつ、ブダペスト条約に基づく寄託への移管請求が受領された、寄託参照番号CCTCC M 2011024である株2010−0321である。
In a second aspect, a mutant of a Schizochytrium sp. Strain is provided, for example deposited at the Chinese Center for Type Culture Collection (CCTCC) on January 21, 2011. And the strain 2010-0321 having the deposit reference number CCTCC M 2011024, on which the request for transfer to the deposit under the Budapest Treaty has been received .

一実施形態では、本明細書にて提供した変異体株は、未処置シゾキトリウム属(Schizochytrium sp.)株の場合と比較して増加したDHA含量を有した。別の実施形態では、本明細書にて提供した変異体は本明細書に開示したような方法で得られ、その方法は、突然変異株を産生するために紫外線照射を用いてシゾキトリウム属(Schizochytrium sp.)株における突然変異誘導を誘発し、かつ突然変異株をアセチル補酵素A カルボキシラーゼ阻害剤と接触させること、及び未処置シゾキトリウム属(Schizochytrium sp.)株と比較して増加したDHA含量及び/又は向上した成長速度を有するシゾキトリウム属(Schizochytrium sp.)株の変異体を選択することを含む。   In one embodiment, the mutant strain provided herein had an increased DHA content compared to that of an untreated Schizochytrium sp. Strain. In another embodiment, the mutants provided herein are obtained by a method as disclosed herein, which method comprises using ultraviolet radiation to produce a mutant strain, Schizochytrium. sp.) and inducing mutation induction in the strain and contacting the mutant strain with an acetyl-coenzyme A carboxylase inhibitor, and increased DHA content and / or compared to an untreated Schizochytrium sp. Or selecting a variant of a Schizochytrium sp. Strain having an improved growth rate.

第三の態様では、DHAを産生する方法が提供され、その方法は、培養媒体中で本明細書に開示したようなシゾキトリウム属(Schizochytrium sp.)株の変異体を培養することを含み、かつ任意選択でシゾキトリウム属(Schizochytrium sp.)株の培養した変異体のバイオマス、又はその培養媒体からDHAを採取することを含む。一実施形態によると、本発明はまた、この方法により産生したバイオマスに関する。   In a third aspect, a method of producing DHA is provided, the method comprising culturing a mutant of a Schizochytrium sp. Strain as disclosed herein in a culture medium, and Optionally, harvesting DHA from the cultured mutant biomass of a Schizochytrium sp. Strain, or culture medium thereof. According to one embodiment, the present invention also relates to biomass produced by this method.

別の態様では、食品製品が提供される。詳細には、その食品製品はバイオマス(すなわち、未処置のシゾキトリウム属(Schizochytrium sp.)株と比較してDHAの増加した濃度を有する)又は本明細書に開示した方法により産生したDHAを含有する。   In another aspect, a food product is provided. Specifically, the food product contains biomass (ie, having an increased concentration of DHA compared to an untreated Schizochytrium sp. Strain) or DHA produced by the methods disclosed herein. .

は、シゾキトリウム属(Schizochytrium sp.)に関する紫外線照射の致死効果を示す。Shows the lethal effect of ultraviolet irradiation on Schizochytrium sp. は、キザロホップの濃度と対応するシゾキトリウム属(Schizochytrium sp.)の致命率との関係を示す。Shows the relationship between the concentration of quizalofop and the lethality of the corresponding Schizochytrium sp. は、対照株(又は未処置株)及び幾つかの変異体株の成長速度及びDHA含量を示す。Shows the growth rate and DHA content of the control strain (or untreated strain) and several mutant strains. は、対照株と50Lの発酵槽実験における3種の変異体との成長速度とDHA含量を示す。Shows the growth rate and DHA content of the control strain and the three variants in a 50 L fermentor experiment. は、対照株と変異体株2010−0321との間の18S rRNA配列の配列比較を示す。Shows the alignment of the 18S rRNA sequence between the control strain and the mutant strain 2010-0321.

本明細書に記載の用語「株」は、任意の培養物を表し、一般的には、単一細胞又は単離されたコロニーから得られたシゾキトリウム属(Schizochytrium sp.)株を含む藻類又は微細藻類などの微生物の純粋培養物を表す。   As used herein, the term “strain” refers to any culture, generally algae or microbes containing a Schizochytrium sp. Strain obtained from a single cell or an isolated colony. Represents a pure culture of microorganisms such as algae.

本明細書に記載の用語である、参照株Xの「変異体」又は「突然変異体」は、参照株Xから得られた任意の株を表す。本出願の関連において、用語「変異体」はより詳細には、参照株Xに実行された主に突然変異及び選択によって得られた株を表し、並びに用語「突然変異体」はより詳細には、参照株Xに適用されたランダムな又は直接的な突然変異誘導(例えば、紫外線照射)によって得られた株を表す。   The term “variant” or “mutant” of reference strain X, as described herein, refers to any strain derived from reference strain X. In the context of this application, the term “variant” more particularly refers to a strain obtained mainly by mutation and selection carried out on the reference strain X, and the term “mutant” more particularly , Represents a strain obtained by random or direct mutagenesis (eg UV irradiation) applied to reference strain X.

突然変異体又は変異体が、一度本明細書に開示した種々の態様による特徴、具体的には未処置の藻類又は微細藻類種、具体的にはシゾキトリウム属(Schizochytrium sp.)株、と比較してより高い又は増加したDHA含量という特徴を所有すると、そのことは本出願にて特許請求された保護範囲内に含まれる。   The mutant or variant is once compared to features according to the various aspects disclosed herein, specifically untreated algae or microalgal species, specifically a Schizochytrium sp. Strain. Possessing the characteristic of higher or increased DHA content is within the scope of protection claimed in this application.

本明細書に記載の用語「食品製品」は、ヒト又は動物に栄養摂取を与えることを意図した任意の製品を表す。詳細には、食品製品には乳児、子供、若者及び成人に食べさせることを意図した製品が挙げられる。本明細書に開示された食品製品の全て又は一部は、本明細書に開示した方法によって得られた少なくとも1種のバイオマス又はDHAを含有することができる。本明細書に開示した食品製品はまた、通常的に農業又は食品産業において使用されているその他の含有物、例えば添加物、防腐剤、果実又は果実エキス、香味剤、着色剤、増粘剤、オオムギ、チョコレートなどを含有することができる。   As used herein, the term “food product” refers to any product intended to provide nutrition to a human or animal. In particular, food products include products intended for feeding infants, children, young people and adults. All or a portion of the food product disclosed herein can contain at least one biomass or DHA obtained by the methods disclosed herein. The food products disclosed herein also include other ingredients commonly used in agriculture or the food industry, such as additives, preservatives, fruits or fruit extracts, flavoring agents, colorants, thickeners, Can contain barley, chocolate and the like.

特定の実施形態では、食品製品は乳製品である。   In certain embodiments, the food product is a dairy product.

本明細書に記載の用語「乳製品」は、ミルクに加えて、ミルクから誘導されるあらゆる製品、例えばミルク粉、クリーム、アイスクリーム、バター、チーズ、ヨーグルト、発酵乳など、又はミルクから誘導された副製品、例えば乳清及びカゼイン並びに主含有成分としてミルク又は乳汁成分を含有する各種調理済み食品製品を表す。ミルクは一般的に乳牛由来であるが、他の動物、例えばヤギ、雌羊、雌馬、らくだ、又は野牛などからも得られる。乳製品は本明細書に開示した方法によって産生したバイオマス又はDHAを利用する。   As used herein, the term “dairy product” refers to any product derived from milk in addition to milk, such as milk powder, cream, ice cream, butter, cheese, yogurt, fermented milk, etc., or milk. Secondary products such as whey and casein and various cooked food products containing milk or milk components as the main ingredients. Milk is generally derived from dairy cows, but can also be obtained from other animals such as goats, ewes, mares, camels, or wild cows. Dairy products utilize biomass or DHA produced by the methods disclosed herein.

本明細書に開示した、始発株又は未処置/対照株として機能を果たす、又は変異体/突然変異誘導及び/又は選択に好適な微生物には、シゾキトリウム(Schizochytrium)属のメンバーを含む、従属栄養性微細藻類(heterotrophic microalgae)が挙げられる。シゾキトリウム(Schizochytrium)属の具体的なメンバーは、シゾキトリウム・リマシナム(Schizochytrium limacinum)である。好適な微生物は、自然環境からの収集を含む、多数の公的に利用可能な資源から得ることができる。例えば、本出願に使用され得るシゾキトリウム属(Schizochytrium sp.)には、シゾキトリウム・リマシナム(Schizochytrium limacinum)SR21、シゾキトリウム属(Schizochytrium sp.)(S8)(ATCC 20889)、シゾキトリウム属(Schizochytrium sp.)(LC−RM)(ATCC18915)及びシゾキトリウム・リマシナム(Schizochytrium limacinum)IFO32693(Honda et Yokochi、発酵研究所(IFO:Institute for Fermentation)、日本、大阪)が含まれる。シゾキトリウム・リマシナム(Schizochytrium limacinum)SR21又はシゾキトリウム・リマシナム(Schizochytrium limacinum)IFO32693がより好適である。   Microorganisms disclosed herein that serve as primary strains or untreated / control strains, or suitable for mutant / mutagenesis and / or selection, include members of the genus Schizochytrium. For example, heterotrophic microalgae. A specific member of the genus Schizochytrium is Schizochytrium limacinum. Suitable microorganisms can be obtained from a number of publicly available resources, including collection from the natural environment. For example, Schizochytrium sp. That can be used in the present application includes Schizochytrium limacinum SR21, Schizochytrium sp. (S8) (ATCC 208z, SCC LC-RM) (ATCC 18915) and Schizochytrium limacinum IFO 32693 (Honda et Yokochi, IFO: Institute for Fermentation, Osaka, Japan). Schizochytrium limacinum SR21 or Schizochytrium limacinum IFO 32693 is more preferred.

本明細書で使用する場合、いずれの微生物又はいずれの生物体にも野生タイプの株、変異体株又は組み換え型菌株が含まれる。   As used herein, any microorganism or any organism includes wild type strains, mutant strains or recombinant strains.

本明細書に記載の用語「バイオマス」は、本明細書で開示したように、藻類又は微細藻類の種、例えば、シゾキトリウム属(Schizochytrium sp.)株、シゾキトリウム属(Schizochytrium sp.)株の変異体などの培養媒体における培養物又は細胞を表す。或いは用語「バイオマス」は、少なくとも部分的に脱水された藻類又は微細藻類、又は脱水された培養物を表す。   As used herein, the term “biomass” refers to a species of algae or microalgae, eg, a Schizochytrium sp. Strain, a Schizochytrium sp. Variant. Represents a culture or cells in a culture medium such as Alternatively, the term “biomass” refers to an at least partially dehydrated algae or microalgae, or a dehydrated culture.

本明細書に記載の用語「約」又は「近似的に」は、数字の値と連結して使用する際には参照した数字の1、5又は10%の変動の内にある任意の値を表す。   As used herein, the term “about” or “approximately”, when used in conjunction with a numerical value, refers to any value that is within 1, 5 or 10% variation of the referenced numerical value. Represent.

本明細書に記載の動詞「含む」及びその活用は、非限定的な意味で使用され、かつ続く事項が含まれ、特別に言及されない事項は除かれないことを意味する。   As used herein, the verb “including” and its conjugations are used in a non-limiting sense and mean that the following items are included, and items not specifically mentioned are not excluded.

更に、不定冠詞「a」または「an」に従う要素は、文脈中で明確に示す/結び付けることがない限り、1つまたは複数の要素が存在する可能性を排除しない。従って、不定冠詞「a」又は「an」は通常は「少なくとも1つ」を意味する。   Furthermore, an element following the indefinite article “a” or “an” does not exclude the possibility of one or more elements being present unless clearly indicated / linked in context. Thus, the indefinite article “a” or “an” usually means “at least one”.

シゾキトリウム属(Schizochytrium sp.)の突然変異の実施形態では、シゾキトリウム属(Schizochytrium sp.)株は、約10〜140秒、好ましくは約20〜120秒、更に好ましくは約30〜100秒、及び最も好ましくは約70〜90秒の間紫外線照射にさらされる。特定の実施形態では、シゾキトリウム属(Schizochytrium sp.)株は、約70、71、72、73、74、75、76、77、78、79、80、81、82、83、84、85、86、87、88、89、及び90秒からなる群の中から選択される期間で紫外線照射にさらされる。生き延びたコロニーを収集し、例えばキザロホップなどのアセチル補酵素Aカルボキシラーゼ阻害剤による方向性選択に使用する。   In a mutant embodiment of Schizochytrium sp., A Schizochytrium sp. Strain is about 10-140 seconds, preferably about 20-120 seconds, more preferably about 30-100 seconds, and most Preferably, it is exposed to ultraviolet radiation for about 70 to 90 seconds. In certain embodiments, the Schizochytrium sp. Strain is about 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86. , 87, 88, 89, and 90 seconds. Surviving colonies are collected and used for directional selection with acetyl coenzyme A carboxylase inhibitors such as quizalofop.

一実施形態では、キザロホップ−耐性の株を選択するために、キザロホップを特定の濃度で培養媒体へ添加する。選択に使用されるキザロホップの濃度は、培養媒体の中で約5μモル/L〜約100μモル/L、又は約10μモル/L〜約90μモル/L、又は約50μモル/L〜80μモル/Lの範囲である。特定の実施形態では、キザロホップの濃度は、培養媒体の中で約51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79及び80μモル/Lからなる群から選択される。特定の実施形態ではキザロホップは、キザロホップ−p{(R)−2−[4−(6−クロロ−2−キノキサリニル)オキシ]フェノキシ}プロパノエート}、例えばキザロホップエチルである。   In one embodiment, quizalofop is added to the culture medium at a specific concentration to select quizalofop-resistant strains. The concentration of quizalofop used for selection is about 5 μmol / L to about 100 μmol / L, or about 10 μmol / L to about 90 μmol / L, or about 50 μmol / L to 80 μmol / L in the culture medium. L range. In certain embodiments, the concentration of quizalofop is about 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67 in the culture medium. 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79 and 80 μmol / L. In a particular embodiment, the quizalofop is quizalofop-p {(R) -2- [4- (6-chloro-2-quinoxalinyl) oxy] phenoxy} propanoate}, for example quizalofop ethyl.

特定の実施形態では、キザロホップ−耐性のシゾキトリウム属(Schizochytrium sp.)コロニーの選択は、キザロホップを含有する固体の培養媒体中で実施される。次に生き延びたコロニーを固体の培養媒体から選び出し、続いてキザロホップ耐性を確認するためにキザロホップを含有する、液体又は半固体の培養媒体中で培養する。   In certain embodiments, the selection of quizalofop-resistant Schizochytrium sp. Colonies is performed in a solid culture medium containing quizalofop. The surviving colonies are then picked from the solid culture medium and subsequently cultured in a liquid or semi-solid culture medium containing quizalofop to confirm quizalofop resistance.

選択されたキザロホップ−耐性のコロニーは、シゾキトリウム属(Schizochytrium sp.)株などの未処置の株と比較して成長速度の増加及びDHA含量の増加に対する選抜を更に受ける。   The selected quizalofop-resistant colonies are further selected for increased growth rate and increased DHA content compared to untreated strains, such as Schizochytrium sp.

それ故に、紫外線照射及びキザロホップ選択を含む本明細書に開示した方法によって得られる、シゾキトリウム属(Schizochytrium sp.)変異体は、始発株又は未処置シゾキトリウム属(Schizochytrium sp.)株と比較してより高い又は増加した量のDHAを産生することができる。特定の実施形態では、シゾキトリウム属(Schizochytrium sp.)変異体は、始発株又は未処置株によって産生される量よりも高い量のDHAを、3〜7日又は5日の培養物又はバイオマスにおいて、少なくとも約10、20、25、30、35、40%、又は少なくとも約20、25、30、35、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70%、より高いDHAの量を産生できる。一実施形態では、シゾキトリウム属(Schizochytrium sp.)変異体によって産生されるDHAの量は、シゾキトリウム属(Schizochytrium sp.)変異体のバイオマスの乾燥重量に基づいて、少なくとも1.0%(w/w)、2.0%(w/w)、3.0%(w/w)、3.5%(w/w)、4.0%(w/w)、4.5%(w/w)、5.0%(w/w)、5.5%(w/w)、6.0%(w/w)、又は6.5%(w/w)、又は3.0〜6.5%(w/w)である。   Therefore, Schizochytrium sp. Mutants obtained by the methods disclosed herein, including ultraviolet irradiation and quizalofop selection, are more in comparison to the initial or untreated Schizochytrium sp. Strains. High or increased amounts of DHA can be produced. In certain embodiments, a Schizochytrium sp. Variant has a higher amount of DHA in a 3-7 day or 5 day culture or biomass than the amount produced by the starting or untreated strain, At least about 10, 20, 25, 30, 35, 40%, or at least about 20, 25, 30, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70%, higher amounts of DHA can be produced. In one embodiment, the amount of DHA produced by a Schizochytrium sp. Mutant is at least 1.0% (w / w) based on the dry weight of the Schizochytrium sp. ), 2.0% (w / w), 3.0% (w / w), 3.5% (w / w), 4.0% (w / w), 4.5% (w / w) ), 5.0% (w / w), 5.5% (w / w), 6.0% (w / w), or 6.5% (w / w), or 3.0-6. 5% (w / w).

別の実施形態では、選択したシゾキトリウム属(Schizochytrium sp.)変異体の成長速度は、好ましくは3〜7日にわたる培養物、更に好ましくは5日にわたる培養物において、始発株又は未処置株の成長速度よりも、少なくとも約3、4、5、6、7、8、9又は10%高い。   In another embodiment, the growth rate of the selected Schizochytrium sp. Is preferably increased in growth of the starting or untreated strain in cultures over 3-7 days, more preferably over 5 days. At least about 3, 4, 5, 6, 7, 8, 9 or 10% higher than the speed.

その他の実施形態では、選択したシゾキトリウム属(Schizochytrium sp.)変異体は、始発株又は未処置株と比較して異なった培養条件、例えば異なったグルコース濃度、異なった窒素供給源及び異なったpH値の下において、安定した成長速度で及び高い量でDHAを産生する能力を有する。   In other embodiments, the selected Schizochytrium sp. Variant has different culture conditions, such as different glucose concentrations, different nitrogen sources and different pH values compared to the starting or untreated strain. Has the ability to produce DHA at a stable growth rate and in high amounts.

任意選択的な実施形態では、シゾキトリウム属(Schizochytrium sp.)変異体の18S RNAを分析し、始発株又は未処理株と比較して遺伝的変異を識別することができる。   In an optional embodiment, 18S RNA of a Schizochytrium sp. Variant can be analyzed to identify genetic variation compared to the starting or untreated strain.

一実施例では、シゾキトリウム属(Schizochytrium sp.)変異体の例は、321−1、2010−0321、及び303−11、とりわけ2010−0321を含むがそれに限定されない。   In one example, examples of Schizochytrium sp. Mutants include, but are not limited to 321-1, 2010-0321, and 303-11, especially 2010-0321.

一実施形態では、より高いDHAの量を有するバイオマスを産生するために、本明細書に開示したシゾキトリウム属(Schizochytrium sp.)変異体、とりわけ、株321―1、2010−0321、303−11、からなる群から選択される株、及びそれらの任意の組み合わせ、又は株2010−0321は、シゾキトリウム属(Schizochytrium sp.)を培養するのに好適な培養条件の下で培養される。   In one embodiment, to produce biomass with higher amounts of DHA, a Schizochytrium sp. Variant disclosed herein, among others, strains 321-1, 2010-0321, 303-11, A strain selected from the group consisting of, and any combination thereof, or strain 2010-0321 is cultured under culture conditions suitable for culturing Schizochytrium sp.

実施形態において、培養条件は、本明細書にその全体が参照として組み込まれる米国特許第5、130、242号明細書及び同第7、022、512号明細書に開示される方法を含む当技術分野で周知の培養方法に従って確立することができ、最適な培養条件は当業者によって容易に決定できる。その他の実施形態では、培養は、撹拌タンク発酵槽又は酸素源が供給されるエアリフト発酵槽などの任意の好適な発酵槽で実施できる。微生物を所定濃度で撹拌することができ、その結果溶解酸素の濃度は培養物の成長及びDHAの産生を支持するに十分であり、かつ同時にその撹拌は微生物をせん断することがないか損傷することがない。溶解酸素の好適な濃度は空気の飽和濃度の少なくとも10%である。より詳細には溶解酸素濃度は空気の飽和濃度の約10%〜約50%に維持される。本明細書に開示した方法で使用される代表的発酵槽は、約70〜100rpmの回転速度を用いて1VVMの通気速度が与えられる。   In embodiments, the culture conditions include those disclosed in US Pat. Nos. 5,130,242 and 7,022,512, which are incorporated herein by reference in their entirety. It can be established according to culture methods well known in the art, and optimal culture conditions can be easily determined by those skilled in the art. In other embodiments, culturing can be performed in any suitable fermentor, such as an agitated tank fermentor or an airlift fermentor supplied with an oxygen source. Microorganisms can be agitated at a given concentration so that the dissolved oxygen concentration is sufficient to support culture growth and DHA production, and at the same time the agitation will not shear or damage the microorganisms There is no. A preferred concentration of dissolved oxygen is at least 10% of the saturation concentration of air. More specifically, the dissolved oxygen concentration is maintained at about 10% to about 50% of the air saturation concentration. A typical fermentor used in the methods disclosed herein is provided with an aeration rate of 1 VVM using a rotational speed of about 70-100 rpm.

一実施形態では、発酵槽の容量は少なくとも10〜60L、例えば10、20、30、40、50又は60Lである。最大で100又はさらに150Lの容量の発酵槽が使用できる。   In one embodiment, the capacity of the fermentor is at least 10-60 L, such as 10, 20, 30, 40, 50 or 60 L. Fermenters with a capacity of up to 100 or even 150 L can be used.

培養は微生物の生存を維持する任意の好適な温度で実施できる。具体的には微生物は約15℃〜約34℃の温度で培養され得る。好ましくは培養温度は約20℃〜約28℃に維持され、より好ましくは約22℃〜約27℃である。   Culturing can be carried out at any suitable temperature that maintains the survival of the microorganism. Specifically, the microorganism can be cultured at a temperature of about 15 ° C to about 34 ° C. Preferably, the culture temperature is maintained at about 20 ° C to about 28 ° C, more preferably about 22 ° C to about 27 ° C.

一実施形態では、発酵中の培養媒体のpHは4〜10、例えば5〜8、好ましくは6〜7であることができる。   In one embodiment, the pH of the culture medium during fermentation can be 4-10, such as 5-8, preferably 6-7.

一般的には、発酵は10日間以内、又は9日間以内、又は8日間以内で継続される。一部の実施形態では、発酵継続期間は少なくとも3、4、5、6、又は7日であってもよい。   In general, fermentation is continued within 10 days, or within 9 days, or within 8 days. In some embodiments, the fermentation duration may be at least 3, 4, 5, 6, or 7 days.

任意選択で、発酵継続期間は150〜200時間、例えば160〜190時間又は170〜180時間であってもよい。   Optionally, the fermentation duration may be 150-200 hours, such as 160-190 hours or 170-180 hours.

実施形態では、本明細書に開示したシゾキトリウム属(Schizochytrium sp.)変異体を培養する方法に使用される媒体は液体媒体であり、そのものは商業的に実施できる規模において成長及びDHAの産生を促進できる成分を含むことができ、それらの成分には、その全てが参照として本明細書にそれらの全体が組み込まれる米国特許第5、130、242号明細書及び同第7、022、512号明細書の中に開示されているそれら成分が挙げられる。   In an embodiment, the medium used in the method of culturing a Schizochytrium sp. Variant disclosed herein is a liquid medium, which itself promotes growth and production of DHA on a commercially viable scale. Components, which can be included and are incorporated by reference in their entirety, U.S. Pat. Nos. 5,130,242 and 7,022,512, all of which are hereby incorporated by reference in their entirety. Those components disclosed in the document are mentioned.

特に、DHAを産生するために本明細書に開示したシゾキトリウム属(Schizochytrium sp.)変異体を培養するのに使用される媒体は、炭素供給源、及び有機又は無機の窒素供給源を含む。   In particular, the medium used to culture the Schizochytrium sp. Mutants disclosed herein to produce DHA includes a carbon source and an organic or inorganic nitrogen source.

一実施形態では炭素供給源には、グルコース、各種澱粉、糖蜜、粉砕トウモロコシ、又はそれらの組み合わせが含まれる。別の実施形態では、窒素供給源には、硝酸塩、尿素、アンモニウム塩、アミノ酸、酵母抽出物などが挙げられるがこれらに限定されない。同化性リン化合物(例えばリン酸塩)及び/又は硫黄(例えば、硫酸塩)の供給源もその媒体中に供給されてもよい。   In one embodiment, the carbon source includes glucose, various starches, molasses, ground corn, or combinations thereof. In another embodiment, the nitrogen source includes, but is not limited to, nitrates, ureas, ammonium salts, amino acids, yeast extracts, and the like. Sources of assimilable phosphorus compounds (eg phosphates) and / or sulfur (eg sulfates) may also be provided in the medium.

媒体は、発酵を促進するためにその他の物質、例えばキレート化剤(例えば、クエン酸)、消泡剤(例えば、ダイズ油)、ビタミン(例えば、チアミン/リボフラビン)重要な触媒金属(例えば、マグネシウムまたはカルシウムなどのアルカリ土類、または亜鉛又は鉄及び/又はコバルト及び銅等のその他の金属)をさらに含有してもよい。   The medium can be other materials such as chelating agents (eg citric acid), antifoaming agents (eg soybean oil), vitamins (eg thiamine / riboflavin) important catalytic metals (eg magnesium) to promote fermentation. Or an alkaline earth such as calcium, or other metals such as zinc or iron and / or cobalt and copper).

その他の実施形態では、媒体はまた、単細胞微生物の従属栄養性の増殖を増進することができる、特定化されていない又は特定化されている化合物である微生物増殖因子の供給源を含有することができる。   In other embodiments, the medium may also contain a source of microbial growth factor that is an unspecified or specified compound that can enhance heterotrophic growth of unicellular microorganisms. it can.

シゾキトリウム属(Schizochytrium sp.)を培養するための代表的媒体は、Jiang及びChenによるProcess Biochemistry、35(2000)1205−1209;Jiang及びChenによるJournal of Industrial Microbiology & Biotechnology、(1999)Vol.23、508−513;Vazhappilly及びChenによるJournal of the American Oil Chemists Society、(1998)Vol.75、No.3p393−397、に見出すことができる。   Representative media for culturing Schizochytrium sp. Are Process Biochemistry by Jiang and Chen, 35 (2000) 1205-1209; Journal of Biooligol, 19 by Jiang and Chen, Biobiol. 23, 508-513; Journal of the American Oil Chemistry Society by Vazhappilly and Chen, (1998) Vol. 75, no. 3p393-397.

一例としては、本明細書に開示した方法の中で使用される媒体は、グルコース40〜60、酵母抽出物10〜15、グルタミン酸4〜8、食塩2.4〜4.0、にが塩3.0〜6.0、及び硫酸アンモニウム3.0〜6.0(g/L媒体)を含有する。一実施形態では、本明細書に開示した方法に使用される媒体は、グルコース40〜60、酵母抽出物10〜15、グルタミン酸ナトリウム4〜8、食塩2.4〜4.0、にが塩3.0〜6.0、及び硫酸アンモニウム3.0〜6.0(g/L媒体)からなる。本明細書に使用される媒体の一例は、グルコース60.0、酵母抽出物15.0、グルタミン酸ナトリウム4.0、食塩3.0、にが塩5.0、及び硫酸アンモニウム5.0(g/L媒体)からなる。   As an example, the medium used in the methods disclosed herein is glucose 40-60, yeast extract 10-15, glutamic acid 4-8, salt 2.4-4.0, and salt 3 0.0 to 6.0 and ammonium sulfate 3.0 to 6.0 (g / L medium). In one embodiment, the medium used in the methods disclosed herein is glucose 40-60, yeast extract 10-15, sodium glutamate 4-8, sodium chloride 2.4-4.0, and salt 3 0.0 to 6.0, and ammonium sulfate 3.0 to 6.0 (g / L medium). Examples of media used herein include glucose 60.0, yeast extract 15.0, sodium glutamate 4.0, salt 3.0, niga salt 5.0, and ammonium sulfate 5.0 (g / L medium).

生物体又はバイオマスは、例えば、遠心分離、凝集沈殿、又はろ過などの手段によって採取でき、直ちに加工することも将来の加工用に乾燥することもできる。任意選択で、脂質を抽出することができる。本明細書で使用する用語「脂質」には、ホスホリピド;遊離脂肪酸;脂肪酸エステル;トリアシルグリセロール;ジアシルグリセライド;モノアシルグリセリド;リゾホスホリド;石鹸;ホスファチド;ステロール及びステロールエステル;カロチノイド;キサントフィル(例えばオキシカロチノイド);炭化水素;及び当分野における当業者に公知のその他の脂質が挙げられる。当業者により十分理解されるように、本明細書に開示したDHAはこれら各種脂質の形態で存在することができ、かつ本明細書に開示した食品製品中の形態であってもよい遊離脂肪酸に限定されない。脂質の異なった形態又は分画物は、使用される抽出技術に依存するが、抽出可能である。   The organism or biomass can be harvested by means such as, for example, centrifugation, coagulation sedimentation, or filtration, and can be processed immediately or dried for future processing. Optionally, lipids can be extracted. As used herein, the term “lipid” includes phospholipids; free fatty acids; fatty acid esters; triacylglycerols; diacyl glycerides; monoacyl glycerides; lysophospholides; soaps; ); Hydrocarbons; and other lipids known to those skilled in the art. As will be appreciated by those skilled in the art, the DHA disclosed herein may exist in the form of these various lipids and may be in the form of free fatty acids that may be in the food product disclosed herein. It is not limited. Different forms or fractions of lipids can be extracted, depending on the extraction technique used.

脂質は有効的な量の溶媒を用いて抽出できる。抽出に使用される好適な溶媒の中で、極性脂質(例えば、ホスホリピド)は一般的に極性溶媒(例えば、クロロホルム/メタノール)で抽出され、中性脂質(例えば、トリアシルグリセロール)は一般的に非極性の溶媒(例えば、ヘキサン)で抽出される。特別な溶媒は純粋ヘキサンである。ヘキサンと乾燥バイオマスとの好適な比率は、1kgの乾燥バイオマス当たり約4リットル(L)のヘキサンである。特別な実施形態では、ヘキサンは約50℃の温度で約2時間撹拌反応器中でバイオマスと混合される。混合後、バイオマスはろ過され、油分含有ヘキサンから分離される。ヘキサンは蒸留技術によって油分から除去される。通常の脂肪種子加工装置が、ろ過、分離及び蒸留を実施するのに好適である。特定の用途向けに必要又は所望であれば、追加の処理工程が実施できる。脂質の回収のための別の方法は以下の参照文献に記載され、それら文献は参照として本明細書にそれら全体が組み込まれる。文献は、国際公開第01/76715号パンフレット、名称「油分及び極性脂質を含有する天然原材料の分画方法(Method for the Fractionation of Oil and Polar Lipid−Containing Native Raw Materials)」;国際公開第01/76385号パンフレット、名称「油分及び極性脂質を含有する天然原材料のアルコール及び遠心分離の使用による分画方法(Method For The Fractionation OfOil And Polar Lipid−Containing Native Raw Materials Using Alcohol And Centrifugation)」;国際公開第00/153512号パンフレット、名称「無溶媒抽出方法(Solventless Extraction Process)」、である。   Lipids can be extracted using an effective amount of solvent. Among suitable solvents used for extraction, polar lipids (eg phospholipids) are generally extracted with polar solvents (eg chloroform / methanol) and neutral lipids (eg triacylglycerol) are generally Extract with a non-polar solvent (eg, hexane). A special solvent is pure hexane. A suitable ratio of hexane to dry biomass is about 4 liters (L) of hexane per kg of dry biomass. In a special embodiment, hexane is mixed with biomass in a stirred reactor at a temperature of about 50 ° C. for about 2 hours. After mixing, the biomass is filtered and separated from the oil-containing hexane. Hexane is removed from the oil by distillation techniques. Conventional oilseed processing equipment is suitable for carrying out filtration, separation and distillation. Additional processing steps can be performed if necessary or desired for a particular application. Alternative methods for lipid recovery are described in the following references, which are hereby incorporated by reference in their entirety: The document is WO 01/76715, entitled “Method for the Fractionation of Oil and Polar Lipid-Containing Native Raw Materials”; WO 01/76715; No. 76385, title “Method For The Fractionation Of Oil And Polar Lipid-Containing Native Raw Materials US Public Alcohol Publication”. 00/153512 Pamphlet , Entitled "solventless extraction process (Solventless Extraction Process)", it is.

本出願は、特定の生物体及び方法を使用して実証してきたが、本明細書に開示した教示に照らして得られる方法及び生物体の全てを包含することを意図している。当業界の当業者であれば、本発明の範囲及び趣旨から逸脱することなく、任意の置換、変更および最適化が容易に分かるであろう。加えて本明細書に関与する任意の要素、例えば工程、条件、又は菌株などは、本発明の目的を達成するために必要に応じて任意の方式で組み合わせできるであろう。   While this application has been demonstrated using specific organisms and methods, it is intended to encompass all of the methods and organisms obtained in light of the teachings disclosed herein. Those skilled in the art will readily recognize any permutations, modifications and optimizations without departing from the scope and spirit of the present invention. In addition, any element involved in the specification, such as a process, condition, or strain, may be combined in any manner as necessary to achieve the objectives of the present invention.

以下の実施例は単に例示する目的のために提供し、特許請求したような対象の範囲を制限することを意図していない。   The following examples are provided for illustrative purposes only and are not intended to limit the scope of the subject matter as claimed.

実施例1 シゾキトリウム属(Schizochytrium sp.)に対する紫外線照射の突然変異効果
シゾキトリウム・リマシナム(Schizochytrium limacinum)SR21(これは以降の実施例において対照株又は未処置株としても使用される)を皿の上で平板培養し、紫外線照射にそれぞれ、0秒(対照)、30秒、40秒、50秒、60秒、70秒、80秒、90秒、及び100秒(実験群)間暴露した。照射後、皿を暗所に24時間保持し、各皿上のコロニーの数を数えた。対照群におけるコロニーの数を100%と規定し、かつそれに基づいて各実験群における致死率を計算した(図1)。図1に見られるように、照射期間が延びるにつれてシゾキトリウム属(Schizochytrium sp.)においてより高い致死率が観測され、容量依存性の効果が示された。具体的には、70〜90秒の照射継続は(結果的にシゾキトリウム属(Schizochytrium sp.)における致死率は60%〜80%であり)、それはシゾキトリウム属(Schizochytrium sp.)における突然変異誘導を誘発するために使用された。
EXAMPLE 1 Mutation effect of UV irradiation on Schizochytrium sp. Schizochytrium limacinum SR21 (which is also used as a control or untreated strain in the following examples) on a dish Plated and exposed to UV irradiation for 0 seconds (control), 30 seconds, 40 seconds, 50 seconds, 60 seconds, 70 seconds, 80 seconds, 90 seconds, and 100 seconds (experimental group), respectively. After irradiation, the dishes were kept in the dark for 24 hours and the number of colonies on each dish was counted. The number of colonies in the control group was defined as 100%, and the mortality in each experimental group was calculated based on that (FIG. 1). As can be seen in FIG. 1, higher lethality was observed in Schizochytrium sp. As the irradiation period was extended, indicating a dose-dependent effect. Specifically, continued irradiation for 70 to 90 seconds (resulting in a mortality rate of 60 to 80% in Schizochytrium sp.), Which leads to mutation induction in Schizochytrium sp. Used to trigger.

培養条件は、
A.培養媒体であって、
グルコース 55g/L
酵母抽出物 10g/L
グルタミン酸ナトリウム 5g/L
塩化ナトリウム 2.4g/L
にが塩 4.0g/L
硫酸アンモニウム 4.0g/L
水 残部
からなる培養媒体、
B.培養温度:22〜27℃、及び
C.初期pH:5.0〜7.0
である。
The culture conditions are
A. A culture medium,
Glucose 55g / L
Yeast extract 10g / L
Sodium glutamate 5g / L
Sodium chloride 2.4g / L
4.0 g / L of salt
Ammonium sulfate 4.0 g / L
A culture medium consisting of the remainder of the water,
B. Culturing temperature: 22-27 ° C. and C.I. Initial pH: 5.0-7.0
It is.

実施例2 シゾキトリウム属(Schizochytrium sp.)に対するキザロホップ選定
キザロホップエチルをシゾキトリウム属(Schizochytrium sp.)を培養する媒体の中に濃度0μモル/L、10μモル/L、30μモル/L、50μモル/L、70μモル/L、80μモル/L、及び90μモル/Lで添加した。対照群(0μモル/L)におけるコロニーの数を100%として規定した。各群におけるコロニーを数え、かつ対照群におけるコロニーの数に基いて致死率を計算した(図2)。図2に見られるように、実験の範囲内でシゾキトリウム属(Schizochytrium sp.)致死率とキザロホップの濃度との間に正の相関関係が観察された。耐性株を選択するために使用したキザロホップの濃度は、50μモル/L〜80μモル/Lに設定した。
Example 2 Selection of quizalofop for Schizochytrium sp. Concentration 0 μmol / L, 10 μmol / L, 30 μmol / L, 50 μmol of quizalofopethyl in a medium for culturing Schizochytrium sp. / L, 70 μmol / L, 80 μmol / L, and 90 μmol / L. The number of colonies in the control group (0 μmol / L) was defined as 100%. The colonies in each group were counted and the mortality was calculated based on the number of colonies in the control group (FIG. 2). As seen in FIG. 2, a positive correlation was observed between Schizochytrium sp. Lethality and the concentration of quizalofop within the scope of the experiment. The concentration of quizalofop used to select resistant strains was set at 50 μmol / L to 80 μmol / L.

操作を容易にするため、クザロホップを媒体の中に添加し、かつ紫外線照射を生き延びた株を更なる方向性選択のために平板培養した。   For ease of manipulation, kuzarohop was added into the medium and strains that survived UV irradiation were plated for further directional selection.

選択された株は、液体又は半固体のキザロホップを含有する媒体中で培養し、それらのキザロホップ耐性を実証することができる。   The selected strains can be cultured in a medium containing liquid or semi-solid quizalofop to demonstrate their quizalofop resistance.

培養条件は、
A.培養媒体であって、
グルコース 60g/L
酵母抽出物 15g/L
グルタミン酸ナトリウム 4g/L
塩化ナトリウム 3g/L
にが塩 5.0g/L
硫酸アンモニウム 5.0g/L
水 残部
からなる培養媒体、
B.培養温度:22〜27℃、及び
C.初期pH:5.0〜7.0
である。
The culture conditions are
A. A culture medium,
Glucose 60g / L
Yeast extract 15g / L
Sodium glutamate 4g / L
Sodium chloride 3g / L
Niga salt 5.0g / L
Ammonium sulfate 5.0 g / L
A culture medium consisting of the remainder of the water,
B. Culturing temperature: 22-27 ° C. and C.I. Initial pH: 5.0-7.0
It is.

実施例3 未処置株と変異体株との間における成長速度とDHA含量との相違
実施例2における選定及び実証の後に、200種を超えるキザロホップ耐性のシゾキトリウム属(Schizochytrium sp.)株を得た。次にこれらのキザロホップ耐性のシゾキトリウム属(Schizochytrium sp.)株をより高い成長速度及びDHA含量に関して2つの巡回に対して選抜した。第1の巡回後で20〜50種の株を選別し、かつ第2の巡回後では3種の株を選別した。その3種の株の各々の成長速度及びDHA含量は、対照の(未処置の)株よりも10%を超えて高かった。
Example 3 Difference in growth rate and DHA content between untreated and mutant strains After selection and demonstration in Example 2, more than 200 quizalofop-resistant Schizochytrium sp. Strains were obtained. . These quizalofop-resistant Schizochytrium sp. Strains were then selected for two rounds for higher growth rate and DHA content. After the first round, 20 to 50 strains were selected, and after the second round, three strains were selected. The growth rate and DHA content of each of the three strains was more than 10% higher than the control (untreated) strain.

培養条件は、
A.培養媒体であって、
グルコース 60g/L
酵母抽出物 15g/L
グルタミン酸ナトリウム 4g/L
塩化ナトリウム 3g/L
にが塩 5.0g/L
硫酸アンモニウム 5.0g/L
水 残部
からなる培養媒体、
B.培養温度:22〜27℃、
C.初期pH:5.0〜7.0
である。
The culture conditions are
A. A culture medium,
Glucose 60g / L
Yeast extract 15g / L
Sodium glutamate 4g / L
Sodium chloride 3g / L
Niga salt 5.0g / L
Ammonium sulfate 5.0 g / L
A culture medium consisting of the remainder of the water,
B. Culture temperature: 22-27 ° C
C. Initial pH: 5.0-7.0
It is.

図3は、対照株(最も左)と、紫外線照射突然変異誘導に続いてキザロホップ選択を受けた変異体の幾つかとのバイオマス及びDHA含量を示す。図3に示すように、突然変異株の一部(例えば321−6、321−7及び321−8)の成長速度及びDHA含量は対照株のそれよりも低く、かつ一部(例えば321−4、321−5及び321−19)の成長速度及びDHA含量は対照の株のそれとは顕著に異なってはいない。突然変異体の中で、それらの多くは増加したDHA含量を有した(例えば、321−1、2010−0321、321−12、321−13、321−14、321−15、321−16、321−17及び321−18)。目立った株は、321−1及び2010−0321であり、それらはそれぞれ、10.5%及び31.5%増加した成長速度を有し、かつそれぞれ64.5%及び66.4%増加したDHA含量を有した。   Figure 3 shows the biomass and DHA content of the control strain (leftmost) and some of the mutants that received quizalofop selection following UV irradiation mutagenesis. As shown in FIG. 3, the growth rate and DHA content of some of the mutant strains (eg 321-6, 321-7 and 321-8) are lower than that of the control strain and some (eg 321-4 The growth rate and DHA content of 321-5 and 321-19) are not significantly different from those of the control strain. Among the mutants, many of them had increased DHA content (eg, 321-1, 2010-0321, 321-12, 321-13, 321-14, 321-15, 321-16, 321 -17 and 321-18). Prominent strains are 321-1 and 2010-0321, which have growth rates increased by 10.5% and 31.5%, respectively, and DHA increased by 64.5% and 66.4%, respectively. Had a content.

これら2種の突然変異株に加えて、突然変異株303−11もまた、良好な成長速度及びDHA含量を示した。   In addition to these two mutants, mutant 303-11 also showed good growth rate and DHA content.

3種の変異体株、すなわち2010−0321、321−1及び321−11は、実施例4〜7に記載の試験用に選択され、本出願の方法によって得られた変異体が高いDHA含量と成長速度との特性を有し、かつ上記特性が異なった培養条件下で安定的に維持できるということを実証した。   Three mutant strains, 2010-0321, 321-1 and 321-11, were selected for the tests described in Examples 4-7, and the mutants obtained by the method of the present application had a high DHA content. It has been demonstrated that it has characteristics with growth rate and that the above characteristics can be stably maintained under different culture conditions.

実施例4〜7における実験に使用された一般的な培養条件は、
A.培養媒体であって、
グルコース 60g/L
酵母抽出物 15g/L
グルタミン酸ナトリウム 4g/L
塩化ナトリウム 3g/L
にが塩 5.0g/L
硫酸アンモニウム 5.0g/L
水 残部
からなる培養媒体、
B.培養温度:22〜27℃、
C.初期pH:5.0〜7.0、
D.1VVMの通気速度及び70〜100rpmの回転速度を有した50Lの発酵槽、
E.培養期間:4〜7日
である。
The general culture conditions used for the experiments in Examples 4-7 are:
A. A culture medium,
Glucose 60g / L
Yeast extract 15g / L
Sodium glutamate 4g / L
Sodium chloride 3g / L
Niga salt 5.0g / L
Ammonium sulfate 5.0 g / L
A culture medium consisting of the remainder of the water,
B. Culture temperature: 22-27 ° C
C. Initial pH: 5.0-7.0,
D. A 50 L fermentor with an aeration rate of 1 VVM and a rotational speed of 70-100 rpm,
E. Culture period: 4-7 days.

実施例4 異なった濃度のグルコースの下で培養された、対照株及び321−1、2010−0321並びに303−11についての成長速度及びDHA含量
グルコースの濃度以外は、培養条件は上記の一般的な条件のものと同一である。
Example 4 Growth Rate and DHA Content for Control Strains and 321-1, 2010-0321 and 303-11, Cultured under Different Concentrations of Glucose Other than the concentration of glucose, the culture conditions were as described above. Same as condition.

対照(未処置)株と突然変異株321−1、2010−0321及び303−11の異なった培養条件に対する反応を比較するため、かつ選択した株の対照株に勝る利点を更に確証するために、一連の試験及び比較を実施した。この実施例では、炭素供給源の異なった濃度下で培養された対照株と突然変異株との成長速度及びDHA含量を比較し(表1)、ここで、初期の媒体における炭素供給源を異なった試験濃度の炭素供給源で置換した。表1に示したように、異なった濃度のグルコース(50g/L、60g/L及び70g/Lの下で培養した場合、全ての3種の突然変異体において観察された結果は、対照株における結果よりも優れていて、その中で2010−0321がベストであり、続いて321−1及び303−11であった。   To compare the response of the control (untreated) strain to the mutant strains 321-1, 2010-0321 and 303-11 to different culture conditions and to further confirm the advantages of the selected strain over the control strain, A series of tests and comparisons were performed. This example compares the growth rate and DHA content of control and mutant strains cultured under different concentrations of carbon source (Table 1), where the carbon source in the initial medium is different. Replaced with carbon sources at different test concentrations. As shown in Table 1, when cultured under different concentrations of glucose (50 g / L, 60 g / L and 70 g / L), the results observed in all three mutants are Outstanding than the results, among them, 2010-0321 was the best, followed by 321-1 and 303-11.

Figure 0005894666
Figure 0005894666

実施例5 異なった窒素供給源中で培養した対照株と株321−1、2010−0321及び303−11との成長速度及びDHA含量
窒素供給源以外は、培養条件は上記の一般的な条件と同一である。
Example 5 Growth rate and DHA content of control strains and strains 321-1, 2010-0321 and 303-11 cultured in different nitrogen sources The culture conditions were the same as those described above except for the nitrogen source. Are the same.

異なった窒素供給源中で培養した、対照(未処置)株と突然変異株321−1、2010−0321及び303−11の成長速度及びDHA含量を比較するために本実施例を実施した。初期媒体中における窒素供給源を以下の窒素供給源と置換した:(a)酵母抽出物(20g/L);(b)酵母抽出物(20g/L)+グルタミン酸ナトリウム(10g/L);(c)酵母抽出物(40g/L)+グルタミン酸ナトリウム(10g/L)、及び(d)コーンシロップ(40g/L)+グルタミン酸ナトリウム(10g/L)。表2に示したように、異なった窒素供給源中で培養した場合、突然変異株321−1と2010−0321との成長速度及びDHA含量は対照株のそれらを上回り、その中で株2010−0321がDHA含量において株321−1より優れ、一方株303−11は対照株と比較してより高いDHA含量を示した。   This example was performed to compare the growth rate and DHA content of control (untreated) strains and mutant strains 321-1, 2010-0321 and 303-11 cultured in different nitrogen sources. The nitrogen source in the initial medium was replaced with the following nitrogen sources: (a) yeast extract (20 g / L); (b) yeast extract (20 g / L) + sodium glutamate (10 g / L); c) Yeast extract (40 g / L) + sodium glutamate (10 g / L), and (d) corn syrup (40 g / L) + sodium glutamate (10 g / L). As shown in Table 2, when grown in different nitrogen sources, the growth rate and DHA content of mutant strains 321-1 and 2010-0321 exceeded those of the control strain, among which strain 2010- 0321 was superior to strain 321-1 in DHA content, while strain 303-11 showed a higher DHA content compared to the control strain.

Figure 0005894666
Figure 0005894666

実施例6 異なったpH値の下で培養した対照株と株321−1、2010−0321及び303−11の成長速度及びDHA含量
pH値以外は、培養条件は上記の一般的な条件のものと同一である。
Example 6 Growth rate and DHA content of control strains and strains 321-1, 2010-0321 and 303-11 cultured under different pH values Except for the pH value, the culture conditions were those of the above general conditions Are the same.

異なったpHの下で培養した対照(未処置)株と3種の突然変異株との成長速度及びDHA含量を評価するために本実施例を実施した(表3)。表3に示したように、株2010−0321及び321−1では、成長速度及びDHAの蓄積は対照株のものよりも高いことを示し、一方突然変異株303−11は対照株と比較して、DHAの蓄積において僅かの利点を示し、成長速度においては利点がないことを示した。   This example was performed to evaluate the growth rate and DHA content of control (untreated) and three mutant strains cultured under different pH (Table 3). As shown in Table 3, strains 2010-0321 and 321-1 showed higher growth rates and accumulation of DHA than that of the control strain, while mutant strain 303-11 was compared to the control strain. , Showed a slight advantage in DHA accumulation and no advantage in growth rate.

Figure 0005894666
Figure 0005894666

実施例7 50L発酵槽において培養して対照株と株321−1、2010−0321及び303−11との成長速度及びDHA含量
50L発酵槽において培養した対照(未処置)株と株321−1、2010−0321、及び303−11との成長速度及びDHAの蓄積を評価するために実施例7を実施した(図4)。株は上記で説明したような一般的条件下で培養した。対照株と比較して、株321−1では9.5%増加したバイオマス、及び16.7%増加したDHA含量を、それぞれ示した。株2010−0321に関しては、バイオマス及びDHA含量はそれぞれ、6.7%及び48.1%増加した。株303−11については、バイオマスは対照株とほぼ同じであり、DHA含量は僅か7.9%増加した。3種の突然変異株の間で総合的に比較すると、2010−0321が最も優れ、特にDHA含量に関して最も優れていた。
Example 7 Growth rate and DHA content of control strains and strains 321-1, 2010-0321 and 303-11 cultured in a 50 L fermentor Control (untreated) strain and strain 321-1 cultured in a 50 L fermentor Example 7 was performed to evaluate the growth rate and DHA accumulation with 2010-0321 and 303-11 (FIG. 4). Strains were cultured under general conditions as described above. Compared to the control strain, strain 321-1 showed a 9.5% increased biomass and a 16.7% increased DHA content, respectively. For strain 2010-0321, the biomass and DHA content increased by 6.7% and 48.1%, respectively. For strain 303-11, the biomass was almost the same as the control strain, and the DHA content increased only 7.9%. Comprehensive comparison among the three mutant strains, 2010-0321 was the best, especially with respect to DHA content.

実施例8 生化学的組成における対照株と株2010−0321との間の相違
表4及び表5は、タンパク質、アミノ酸及び脂肪酸の組成を含む生化学的組成における、対照(未処置)株と株2010−0321との間の相違を示した。タンパク質の含量はケルダール法によって決定した。アミノ酸の含量は、アミノ酸分析装置によって定量した。脂肪の含量は脂質分析装置によって分析した。
Example 8 Differences between control strain and strain 2010-0321 in biochemical composition Tables 4 and 5 show control (untreated) strains and strains in biochemical composition including protein, amino acid and fatty acid composition The difference with 2010-0321 was shown. The protein content was determined by the Kjeldahl method. The amino acid content was quantified by an amino acid analyzer. The fat content was analyzed by a lipid analyzer.

表4に示したように、株2010−0321でのタンパク質含量(23.8%)は、対照株のもの(22.3%)よりも高かった。継続して、株2010−0321は、大部分のアミノ酸含量に関して対照株よりも高い濃度を示した。   As shown in Table 4, the protein content (23.8%) in strain 2010-0321 was higher than that of the control strain (22.3%). Continuing, strain 2010-0321 showed higher concentrations than the control strain for most amino acid content.

表5に示したように、株2010−0321では脂肪酸の組成が対照株とは顕著に異なった。第1に、株2010−0321ではC16:0含量(8.2%)が対照株のそれ(7.7%)よりも高かった。第2に、2010−0321ではC16:1は存在せず、一方対照株のC16:1含量は1.0%であった。第3に、株2010−0321ではDHA(C22:6)含量は対照株のそれよりも顕著に高かった。   As shown in Table 5, the strain 2010-0321 was significantly different in fatty acid composition from the control strain. First, the strain 2010-0321 had a higher C16: 0 content (8.2%) than that of the control strain (7.7%). Secondly, C16: 1 was not present in 2010-0321, while the C16: 1 content of the control strain was 1.0%. Third, the strain 2010-0321 had a significantly higher DHA (C22: 6) content than that of the control strain.

Figure 0005894666
Figure 0005894666

Figure 0005894666
Figure 0005894666

実施例9 対照株と株2010−0321との間における18SrRNA遺伝子の配列の比較
全RNAを溶解法によって試験株から抽出した。cDNAに逆転写した後で、18S RNA遺伝子を順方向プライマー5’−CCAACCTGGTTGATCCTGCCAGTA−3’(配列番号3)及び逆方向プライマー5’−CCTTGTTACGACTTCACCTTCCTCT−3’(配列番号4)で増幅した。単位複製配列(アンプリコン)を回収し、大腸菌(E.coli)DH5α コンピテント細胞を形質転換するために使用した。陽性のコロニーを配列決定用に選択した。対照(未処置)と株2010−0321との18SRNA遺伝子の配列をBlastソフトウエアで整列化及び比較した。結果を図5に示した。
Example 9 Comparison of 18S rRNA gene sequence between control strain and strain 2010-0321 Total RNA was extracted from the test strain by the lysis method. After reverse transcription into cDNA, the 18S RNA gene was amplified with forward primer 5′-CCAACCTGGTTGATCCTGCCAGTA-3 ′ (SEQ ID NO: 3) and reverse primer 5′-CCTTGTTACGAACTTCACCTCTCCTCT-3 ′ (SEQ ID NO: 4). Amplicons (amplicons) were collected and used to transform E. coli DH5α competent cells. Positive colonies were selected for sequencing. The sequences of the 18S RNA gene of the control (untreated) and strain 2010-0321 were aligned and compared with Blast software. The results are shown in FIG.

図5には、対照株と株2010−0321との相同性比較のために18SrRNA遺伝子の整列配置を示した。図に示されるように、対照株(配列番号1)の18SrRNA遺伝子は1757bp長さであり、一方株2010−0321(配列番号2)の18SrRNA遺伝子は1751bp長さでありその中の9個の塩基対が変化していた。対照株の18SrRNA遺伝子と株2010−0321の18SrRNA遺伝子との間の%相同性は99%であった。   FIG. 5 shows the alignment of 18S rRNA genes for homology comparison between the control strain and strain 2010-0321. As shown in the figure, the 18S rRNA gene of the control strain (SEQ ID NO: 1) is 1757 bp long, while the 18S rRNA gene of the strain 2010-0321 (SEQ ID NO: 2) is 1751 bp long and contains 9 bases The pair was changing. The% homology between the control strain 18S rRNA gene and the strain 2010-0321 18S rRNA gene was 99%.

Claims (21)

2010−0321として識別され、かつCCTCC M 2011024の寄託参照番号を有して中国典型培養物保蔵センターにおいて寄託されているシゾキトリウム属(Schizochytrium sp.)株。   Schizochytrium sp. Strain identified as 2010-0321 and deposited at the Chinese Traditional Culture Storage Center with the deposit reference number of CCTCC M 2011024. 前記シゾキトリウム属株が、未処置のシゾキトリウム属(Schizochytrium sp.)株と比較して、増加したDHA含量及び/又は向上した成長速度の特性を有する、請求項1に記載のシゾキトリウム属株。   The Schizochytrium strain according to claim 1, wherein the Schizochytrium strain has an increased DHA content and / or improved growth rate characteristics compared to an untreated Schizochytrium sp. Strain. 前記シゾキトリウム属株が、未処置のシゾキトリウム属(Schizochytrium sp.)株と比較して、異なったタンパク質含量、アミノ酸組成の異なるタンパク質及び/又は異なった脂肪酸組成を有する、請求項1又は2に記載のシゾキトリウム属株。   3. The Schizochytrium strain has a different protein content, a different amino acid composition and / or a different fatty acid composition compared to an untreated Schizochytrium sp. Strain. Schizochytrium sp. シゾキトリウム属(Schizochytrium sp.)株の変異体を産生する方法であって、
前記シゾキトリウム属(Schizochytrium sp.)株を紫外線照射に暴露させシゾキトリウム属(Schizochytrium sp.)株において突然変異誘導を誘発し、突然変異株を産生すること、
前記突然変異株をアセチル補酵素Aカルボキシラーゼ阻害剤と接触させること、
未処置シゾキトリウム属(Schizochytrium sp.)株と比較して、増加したDHA含量及び/又は向上した成長速度を有するシゾキトリウム属(Schizochytrium sp.)株の変異体を選択すること、を含む方法。
A method for producing a mutant of a Schizochytrium sp. Strain, comprising:
Exposing the Schizochytrium sp. Strain to ultraviolet radiation to induce mutation induction in the Schizochytrium sp. Strain to produce a mutant strain;
Contacting the mutant strain with an acetyl coenzyme A carboxylase inhibitor;
Selecting a mutant of the Schizochytrium sp. Strain having an increased DHA content and / or an improved growth rate compared to an untreated Schizochytrium sp. Strain.
前記アセチル補酵素Aカルボキシラーゼ阻害剤がキザロホップである、請求項4に記載の方法。   5. The method of claim 4, wherein the acetyl coenzyme A carboxylase inhibitor is quizalofop. 前記キザロホップが、10μモル/L〜90μモル/Lの範囲内の濃度において使用される、請求項5に記載の方法。   6. The method of claim 5, wherein the quizalofop is used at a concentration in the range of 10 [mu] mol / L to 90 [mu] mol / L. 前記変異体が増加したDHA含量及び向上した成長速度を有する、請求項4から6のいずれか一項に記載の方法。   7. A method according to any one of claims 4 to 6, wherein the variant has an increased DHA content and an improved growth rate. 前記変異体が異なったタンパク質含量、アミノ酸組成の異なるタンパク質及び/又は異なった脂肪酸組成を有する、請求項4〜7のいずれか一項に記載の方法。   The method according to any one of claims 4 to 7, wherein the variants have different protein contents, proteins with different amino acid compositions and / or different fatty acid compositions. 前記シゾキトリウム属(Schizochytrium sp.)株が、紫外線照射に30秒〜100秒の間で暴露される、請求項4〜8のいずれか一項に記載の方法。   9. The method according to any one of claims 4 to 8, wherein the Schizochytrium sp. Strain is exposed to ultraviolet radiation for between 30 seconds and 100 seconds. DHAを産生する方法であって、
請求項1〜3のいずれか一項に記載のシゾキトリウム属(Schizochytrium sp.)株を、DHAを産生するためのシゾキトリウム属(Schizochytrium sp.)株を培養するのに好適な条件下で培養すること
を含む、方法。
A method for producing DHA comprising:
A Schizochytrium sp. Strain according to any one of claims 1 to 3 is cultured under conditions suitable for culturing a Schizochytrium sp. Strain for producing DHA. Including a method.
DHAを産生する方法であって、
シゾキトリウム属(Schizochytrium sp.)株を紫外線照射に暴露させシゾキトリウム属(Schizochytrium sp.)株において突然変異誘導を誘発し、突然変異株を産生すること、
前記突然変異株をアセチル補酵素Aカルボキシラーゼ阻害剤と接触させること、
未処置シゾキトリウム属(Schizochytrium sp.)株と比較して、増加したDHA含量及び/又は向上した成長速度を有するシゾキトリウム属(Schizochytrium sp.)株の変異体を選択すること、
前記変異体をDHAを産生するためのシゾキトリウム属(Schizochytrium sp.)株を培養するのに好適な条件下で培養すること、
を含む、方法。
A method for producing DHA comprising:
Exposing a Schizochytrium sp. Strain to ultraviolet radiation to induce mutagenesis in the Schizochytrium sp. Strain to produce a mutant strain;
Contacting the mutant strain with an acetyl coenzyme A carboxylase inhibitor;
Selecting a mutant of a Schizochytrium sp. Strain having an increased DHA content and / or an improved growth rate compared to an untreated Schizochytrium sp. Strain,
Culturing the mutant under conditions suitable for culturing a Schizochytrium sp. Strain for producing DHA,
Including a method.
シゾキトリウム属(Schizochytrium sp.)株若しくは変異体の前記培養された変異体のバイオマス、又はシゾキトリウム属(Schizochytrium sp.)株の培養媒体からDHAを収集すること、
をさらに含む、請求項10又は11に記載の方法。
Collecting DHA from the biomass of the cultured mutant of a Schizochytrium sp. Strain or variant, or from the culture medium of a Schizochytrium sp. Strain,
The method according to claim 10 or 11, further comprising:
前記条件が、
50〜70g/Lの炭素供給源、及び10〜20g/Lの窒素供給源を含む培養媒体、20℃〜28℃の培養温度、
及び/又は
pH:3〜10、
を含む、請求項10又は11に記載の方法。
The condition is
A culture medium comprising a carbon source of 50 to 70 g / L and a nitrogen source of 10 to 20 g / L, a culture temperature of 20 ° C. to 28 ° C.,
And / or pH: 3 to 10,
The method according to claim 10 or 11, comprising:
前記培養媒体が、g/Lで
グルコースを 50〜70、
酵母抽出物を 10〜30、
グルタミン酸ナトリウムを 10〜20
塩化ナトリウムを 2.4〜4.0、
にが塩を 3.0〜6.0、
硫酸アンモニウムを 3.0〜6.0、
含む、請求項13に記載の方法。
The culture medium is 50 to 70 glucose in g / L,
10-30 yeast extracts
10-20 sodium glutamate
Sodium chloride from 2.4 to 4.0,
3.0 to 6.0 salt
3.0 to 6.0 ammonium sulfate,
14. The method of claim 13, comprising.
バイオマスを産生する方法であって、  A method for producing biomass,
請求項1〜3のいずれか一項に記載のシゾキトリウム属(Schizochytrium sp.)株を、バイオマスを産生するためのシゾキトリウム属(Schizochytrium sp.)株を培養するのに好適な条件下で培養することCulturing the Schizochytrium sp. Strain according to any one of claims 1 to 3 under conditions suitable for culturing a Schizochytrium sp. Strain for producing biomass.
を含む、方法。Including a method.
請求項1〜3のいずれか一項に記載のシゾキトリウム属(Schizochytrium sp.)株の培養媒体における培養物又は細胞である、バイオマス。  Biomass, which is a culture or a cell in a culture medium of the Schizochytrium sp. Strain according to any one of claims 1 to 3. 請求項16に記載の前記バイオマスを含む食品製品であって、前記食品製品が乳児、子供、若者及び成人に食べさせることを意図した製品を含む、又は前記食品製品が乳製品である、食品製品。 17. A food product comprising the biomass of claim 16 , wherein the food product comprises a product intended to feed infants, children, adolescents and adults, or the food product is a dairy product. . 請求項1〜3のいずれか一項に記載のシゾキトリウム属株であって、前記シゾキトリウム属株若しくは変異体により、3〜7日にわたる培養で産生されDHAの量が、未処置シゾキトリウム属(Schizochytrium sp.)株によって産生されDHAの量よりも、少なくとも10%高い、シゾキトリウム属株What Schizochytrium Shokukabu der according to any one of claims 1 to 3, by the Schizochytrium Shokukabu or mutant, the amount of DHA which Ru produced in cultures over 3-7 days, untreated Schizochytrium genus ( Schizochytrium sp.) than the amount of DHA which Ru produced by strain, at least 10% higher, Schizochytrium Shokukabu. 請求項4〜14のいずれか一項に記載の方法であって、前記シゾキトリウム属株若しくは変異体により、3〜7日にわたる培養で産生されるDHAの量が、未処置シゾキトリウム属(Schizochytrium sp.)株によって産生されるDHAの量よりも、少なくとも10%高い、方法 15. The method according to any one of claims 4 to 14, wherein the amount of DHA produced by the Schizochytrium strain or mutant in culture over 3-7 days is reduced to an untreated Schizochytrium sp. ) A method that is at least 10% higher than the amount of DHA produced by the strain . 請求項1〜3及び18のいずれか一項に記載のシゾキトリウム属株であって、3〜7日にわたる培養で、シゾキトリウム属(Schizochytrium sp.)株の前記シゾキトリウム属株若しくは変異体の前記成長速度が、未処置のシゾキトリウム属(Schizochytrium sp.)株の前記成長速度よりも、少なくとも3%高い、シゾキトリウム属株The Schizochytrium strain according to any one of claims 1 to 3 and 18 , wherein the growth rate of the Schizochytrium strain or variant of the Schizochytrium sp. Strain is cultured in 3-7 days. A Schizochytrium strain that is at least 3% higher than the growth rate of the untreated Schizochytrium sp. Strain . 請求項4〜14及び19のいずれか一項に記載の方法であって、3〜7日にわたる培養で、シゾキトリウム属(Schizochytrium sp.)株の前記シゾキトリウム属株若しくは変異体の前記成長速度が、未処置のシゾキトリウム属(Schizochytrium sp.)株の前記成長速度よりも、少なくとも3%高い、方法。  The method according to any one of claims 4 to 14 and 19, wherein the growth rate of the Schizochytrium sp. Or mutant of a Schizochytrium sp. Strain is 3 to 7 days in culture. A method that is at least 3% higher than said growth rate of an untreated Schizochytrium sp. Strain.
JP2014516178A 2011-06-23 2012-06-21 Method for mutagenesis of Schizochytrium sp. And mutants produced therefrom Expired - Fee Related JP5894666B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201110176833.X 2011-06-23
CN201110176833XA CN102839129A (en) 2011-06-23 2011-06-23 Fragmentation chytrid mutagenesis method and variant produced by fragmentation chytrid mutagenesis method
PCT/CN2012/077285 WO2012175027A1 (en) 2011-06-23 2012-06-21 Methods of mutagenesis of schizochytrium sp and variant strains produced thereof

Publications (2)

Publication Number Publication Date
JP2014522635A JP2014522635A (en) 2014-09-08
JP5894666B2 true JP5894666B2 (en) 2016-03-30

Family

ID=47366849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014516178A Expired - Fee Related JP5894666B2 (en) 2011-06-23 2012-06-21 Method for mutagenesis of Schizochytrium sp. And mutants produced therefrom

Country Status (4)

Country Link
JP (1) JP5894666B2 (en)
KR (1) KR20140019840A (en)
CN (3) CN102839129A (en)
WO (1) WO2012175027A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6298770B2 (en) 2013-01-18 2018-03-20 協和発酵バイオ株式会社 Microorganism producing docosahexaenoic acid and use thereof
FR3001736B1 (en) 2013-02-06 2016-03-04 Roquette Freres BIOMASS OF MICROALGUE SCHIZOCHYTRIUM MANGROVEI AND METHOD FOR PREPARING THE SAME
CN104450529A (en) * 2013-09-25 2015-03-25 郭星 Schizochytrium limacinum strain as well as mutagenesis method and application thereof
CN104312929B (en) * 2014-10-27 2017-10-17 山东百龙创园生物科技股份有限公司 One plant height produces DHA schizochytrium limacinums bacterial strain and its cultural method and application
FR3031984B1 (en) * 2015-01-27 2019-05-24 Roquette Freres PROCESS FOR ENRICHING THE BIOMASS OF MICROALGUES OF THE GENUS TRAUSTOCHYTRIUM IN DHA AND IN AMINO ACIDS ARG AND GLU
FR3038913B1 (en) * 2015-07-17 2020-05-01 Fermentalg THRAUSTOCHYTRIDE BIOMASS, CULTURE METHOD AND USES
FR3038914B1 (en) * 2015-07-17 2020-03-13 Fermentalg THRAUSTOCHYTRIDE BIOMASS, CULTURE METHOD AND USES
CN105558305B (en) * 2015-12-10 2019-12-03 新奥科技发展有限公司 Schizochytrium limacinum mutant strain and its application
CN108220167A (en) * 2018-04-10 2018-06-29 中盐工程技术研究院有限公司 Salt algae method for purifying and separating and microalgae method for purifying and separating
CN108587916B (en) * 2018-05-23 2021-09-14 昆明理工大学 Method for quickly flocculating co-cultured monoraphidium under neutral condition
CN108707630B (en) * 2018-06-12 2020-10-16 厦门大学 Regulation and control method for improving EPA content in schizochytrium and application
CN112481348A (en) * 2019-09-11 2021-03-12 天津大学青岛海洋技术研究院 Screening method of high-yield DHA Schizochytrium limacinum mutant strain
CN111235035A (en) * 2019-12-30 2020-06-05 嘉必优生物技术(武汉)股份有限公司 Schizochytrium limacinum mutant strain, and method and application thereof in preparation of docosahexaenoic acid grease
KR102614551B1 (en) * 2020-12-07 2023-12-15 씨제이제일제당 주식회사 Method for preparing biomass comprising protein and omega-3 fatty acids from single microalgae, and the biomass prepared therefrom
CN114164122B (en) * 2021-12-02 2023-06-20 嘉必优生物技术(武汉)股份有限公司 Schizochytrium limacinum with high EPA yield and application thereof
CN114621983B (en) * 2022-05-13 2022-08-16 南京师范大学 Method for improving DHA (docosahexaenoic acid) yield of schizochytrium limacinum and preparation method of microbial oil

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264967C (en) * 2004-12-08 2006-07-19 中国海洋大学 Industrial use of marine fungus fission chytrid OUC88
JP4344827B2 (en) * 2005-11-28 2009-10-14 国立大学法人九州大学 Method for producing phospholipids containing long-chain highly unsaturated fatty acids using microorganisms of the genus Schizochytrium
ES2572833T3 (en) * 2006-08-01 2016-06-02 Dsm Nutritional Products Ag Production process of microbial oil containing polyunsaturated fatty acids
KR20080111586A (en) * 2007-06-19 2008-12-24 이정열 The production method of docosahexanoic acid(dha) with schizochytrium mangrovei mm103
CN101591617B (en) * 2009-06-15 2011-03-23 南京工业大学 Docosahexaenoic acid-producing strain and mutation and screening method and application thereof
CN101892160B (en) * 2010-01-06 2012-10-03 吉林省希玛生物科技有限公司 Schizochytrium LX0809 (marine fungus) and industrial application thereof
CN101914581B (en) * 2010-07-27 2012-05-23 南京工业大学 Method for increasing fermentation yield of polyenoic unsaturated fatty acid

Also Published As

Publication number Publication date
CN102839129A (en) 2012-12-26
WO2012175027A1 (en) 2012-12-27
KR20140019840A (en) 2014-02-17
CN103827289A (en) 2014-05-28
CN106244576A (en) 2016-12-21
JP2014522635A (en) 2014-09-08
CN103827289B (en) 2017-07-21

Similar Documents

Publication Publication Date Title
JP5894666B2 (en) Method for mutagenesis of Schizochytrium sp. And mutants produced therefrom
JP3957196B2 (en) Docosahexaenoic acid and compounds containing docosahexaenoic acid
US6582941B1 (en) Microorganisms capable of producing highly unsaturated fatty acids and process for producing highly unsaturated fatty acids by using the microorganisms
JP6208125B2 (en) Fatty acid composition
US9476075B2 (en) Oil enriched with arachidonic acid of microorganisms (unicellular fungus Mortierella alpina) and method for the production thereof
CN109609562A (en) Thraustochytriale, aliphatic acid composition and preparation method and the usage
Fan et al. Production of high-value products by marine microalgae thraustochytrids
JP2000513575A (en) Method for producing docosahexaenoic acid and docosapentaenoic acid
KR20150013667A (en) Eicosapentaenoic acid-producing microorganisms, fatty acid compositions, and methods of making and uses thereof
KR102534491B1 (en) Method for enriching biomass of microalgae of the genus Thraustochytrium with DHA and ARG and GLU amino acids
US20210030024A1 (en) Compositions and methods for introduction of odd-chain fatty acids into poultry eggs
US20170327851A1 (en) Microalgae Aurantiochytrium sp. LA3 (KCTC12685BP) and Method for Preparing Bio-Oil Using the Same
CA2904038C (en) Production of omega-3 fatty acids from pythium species
JP6429162B1 (en) Labyrinthula culture method
JP2015133977A (en) Thraustochytrids, fatty acid compositions, and methods of making and using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160226

R150 Certificate of patent or registration of utility model

Ref document number: 5894666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees