JP5891652B2 - Laser scanning optical device - Google Patents

Laser scanning optical device Download PDF

Info

Publication number
JP5891652B2
JP5891652B2 JP2011183253A JP2011183253A JP5891652B2 JP 5891652 B2 JP5891652 B2 JP 5891652B2 JP 2011183253 A JP2011183253 A JP 2011183253A JP 2011183253 A JP2011183253 A JP 2011183253A JP 5891652 B2 JP5891652 B2 JP 5891652B2
Authority
JP
Japan
Prior art keywords
reflecting member
angle
reflecting
light
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011183253A
Other languages
Japanese (ja)
Other versions
JP2013044977A (en
Inventor
渉 妹尾
渉 妹尾
大木 誠
誠 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2011183253A priority Critical patent/JP5891652B2/en
Publication of JP2013044977A publication Critical patent/JP2013044977A/en
Application granted granted Critical
Publication of JP5891652B2 publication Critical patent/JP5891652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、レーザー走査光学装置、特に、画像データに基づいて変調される光源手段から発せられる直線偏光しているレーザー光束で被走査面上を走査するレーザー走査光学装置に関する。   The present invention relates to a laser scanning optical apparatus, and more particularly to a laser scanning optical apparatus that scans a surface to be scanned with a linearly polarized laser beam emitted from light source means that is modulated based on image data.

通常、この種のレーザー走査光学装置では偏光器(ポリゴンミラー)を用いてレーザー光束を偏向させているが、一の主走査において偏向器への入射角が直線的に変化するため、偏向された光束の強度は偏向角に応じて直線的に変化し、最終的に被走査面での光量むら(シェーディング)となる。被走査面での光量むらを解消するために、従来では、最も被走査面に近い反射部材に偏向器での偏向光束の強度分布を打ち消す又は緩和するよう膜構成を工夫していた。例えば、特許文献1,2参照。   Normally, in this type of laser scanning optical device, a laser beam is deflected by using a polarizer (polygon mirror). However, since the incident angle to the deflector changes linearly in one main scanning, the laser beam is deflected. The intensity of the light beam changes linearly according to the deflection angle, and finally the light amount unevenness (shading) on the surface to be scanned. In order to eliminate unevenness in the amount of light on the surface to be scanned, conventionally, the film configuration has been devised so as to cancel or alleviate the intensity distribution of the deflected light beam at the deflector on the reflecting member closest to the surface to be scanned. For example, see Patent Documents 1 and 2.

しかし、複数の光源手段及び光路を有するタンデム型に対応したレーザー走査光学装置にあっては、光源手段の配置角がそれぞれ異なる場合、複数の被走査面のそれぞれの光量むらを解消させるには、各光源手段に対応する反射部材ごとに偏光特性の異なる膜構成とする必要があり、これではコストアップにつながる。   However, in a laser scanning optical apparatus corresponding to a tandem type having a plurality of light source means and optical paths, in order to eliminate unevenness in the amount of light on each of the plurality of scanned surfaces when the arrangement angles of the light source means are different from each other, Each reflecting member corresponding to each light source means needs to have a film configuration having different polarization characteristics, which leads to an increase in cost.

特許第2727572号公報Japanese Patent No. 2727572 特開2009−169248号公報JP 2009-169248 A

本発明の目的は、各光路における反射部材を共通の膜構成として複数の被走査面上での光量むらを低減できるレーザー走査光学装置を提供することにある。   An object of the present invention is to provide a laser scanning optical device that can reduce unevenness in the amount of light on a plurality of surfaces to be scanned by using a reflecting member in each optical path as a common film configuration.

本発明の一形態であるレーザー走査光学装置は、
直線偏光しているレーザー光束を射出する複数の光源手段と、
前記複数の光源手段のそれぞれから発せられた光束を偏向走査する単一の偏向器と、
前記偏向器により偏向された光束をそれぞれの光源手段に対応する複数の被走査面上に結像させる走査光学素子と、
前記偏向器と前記複数の被走査面との間のそれぞれの光路上に設けられ、前記偏向器により偏向された光束を副走査方向に折り返す反射部材と、
を備えたレーザー走査光学装置において、
少なくとも一つの光路では前記反射部材は複数設置されており、
前記それぞれの光路における最も被走査面に近い位置に配置された反射部材は同じ膜構成からなり、
前記複数の光源手段の直線偏光振動方向は、光束の進行方向に対して時計回りを正として、発光点を含んで前記偏向器の回転軸に垂直な平面に対して+A°と−A°の2種類が存在し、
前記それぞれの光路における最も被走査面に近い位置に配置された反射部材は、直線偏光の異なる振動方向に対しても偏向角変化に伴う前記偏向器での反射率の傾斜を打ち消す反射率傾斜を持つように、前記偏向器による走査方向をY軸としたとき、複数の反射部材からなる光路において、各反射部材の長手方向がY軸に平行であり、前記光路の複数の反射部材のうち、間に反射部材を挟まない連続する二つの反射部材において、光路上において前記偏向器に近い反射部材を前反射部材、被走査面に近い反射部材を後反射部材としたとき、Y軸に垂直な平面上での前反射部材と後反射部材との法線がなす角度が、Y軸に垂直な平面上での前反射部材への入射角をαとしたとき、それぞれの光源手段の配置角に合わせて、(90−α)°〜(180−α)°の間、又は、(180−α)°〜(270−α)°の間に、前記反射部材が配置されていること、
を特徴とする。
A laser scanning optical device according to one aspect of the present invention is
A plurality of light source means for emitting a linearly polarized laser beam;
A single deflector for deflecting and scanning a light beam emitted from each of the plurality of light source means;
A scanning optical element that focuses the light beam deflected by the deflector onto a plurality of scanned surfaces corresponding to the respective light source means;
A reflecting member provided on each optical path between the deflector and the plurality of scanned surfaces, and configured to return the light beam deflected by the deflector in a sub-scanning direction;
In a laser scanning optical device comprising:
A plurality of the reflecting members are installed in at least one optical path,
The reflecting members arranged at positions closest to the scanning surface in the respective optical paths are composed of the same film,
The linearly polarized light oscillation directions of the plurality of light source means are + A ° and −A ° with respect to a plane perpendicular to the rotation axis of the deflector including the light emitting point, with the clockwise direction being positive with respect to the traveling direction of the light beam. There are two types
The reflecting member disposed at a position closest to the scanning surface in each of the optical paths has a reflectance gradient that cancels the reflectance gradient at the deflector due to a change in the deflection angle even with respect to a different vibration direction of linearly polarized light. As described above, when the scanning direction by the deflector is a Y axis, in the optical path composed of a plurality of reflecting members, the longitudinal direction of each reflecting member is parallel to the Y axis, and among the plurality of reflecting members of the optical path, In two consecutive reflecting members with no reflecting member in between, when the reflecting member close to the deflector on the optical path is a front reflecting member and the reflecting member close to the scanned surface is a rear reflecting member, it is perpendicular to the Y axis. The angle formed by the normal lines of the front reflecting member and the rear reflecting member on the plane is the angle of arrangement of the respective light source means when the incident angle to the front reflecting member on the plane perpendicular to the Y axis is α. Together, (90-α) ° to (18 -.alpha.) °, or between, (during the 180-α) ° ~ (270-α) °, that said reflecting member is disposed,
It is characterized by.

前記レーザー走査光学装置においては、配置角の異なる複数の光源手段に対して、反射部材をコ字型配置又はZ型配置とすることで、反射部材における反射率傾斜によって偏向器における反射率傾斜を打ち消す又は緩和させ、各被走査面での光量分布傾斜を低減させている。コ字型配置とは、Y軸に垂直な平面上での前反射部材と後反射部材との法線がなす角度が、Y軸に垂直な平面上での前反射部材への入射角をαとしたとき、それぞれの光源手段の配置角に合わせて、(90−α)°〜(180−α)°の間、に反射部材を配置したことをいう。Z型配置とは、(180−α)°〜(270−α)°の間に反射部材を配置したことをいう。   In the laser scanning optical device, the reflection member is arranged in a U-shape or a Z-shape with respect to a plurality of light source means having different arrangement angles, so that the reflectance inclination in the deflector is caused by the reflectance inclination in the reflection member. By canceling or mitigating, the light quantity distribution inclination on each scanned surface is reduced. The U-shaped arrangement means that the angle formed by the normal line between the front reflecting member and the rear reflecting member on the plane perpendicular to the Y axis is the angle of incidence on the front reflecting member on the plane perpendicular to the Y axis. In other words, the reflecting member is arranged between (90-α) ° and (180-α) ° in accordance with the arrangement angle of each light source means. The Z-type arrangement means that the reflecting member is arranged between (180−α) ° and (270−α) °.

換言すれば、異なる光源手段の配置角に対して、反射部材の二つの配置態様(コ字型配置及びZ型配置)を組み合わせることで、最終反射部材に入射する光束のP偏光比率に分布を持たせ、偏向器で偏向された光束の強度分布を打ち消すような強度分布を持たせている。それゆえ、各光路における最も被走査面に近い位置に配置された反射部材は同じ膜構成とすることができる。   In other words, the distribution of the P-polarization ratio of the light beam incident on the final reflecting member can be achieved by combining two arrangement modes of the reflecting member (the U-shaped arrangement and the Z-shaped arrangement) for different arrangement angles of the light source means. And an intensity distribution that cancels the intensity distribution of the light beam deflected by the deflector. Therefore, the reflecting members arranged at positions closest to the scanning surface in each optical path can have the same film configuration.

本発明によれば、各光路における反射部材を共通の膜構成として複数の被走査面上での光量むらを低減でき、コストダウンが達成される。   According to the present invention, it is possible to reduce unevenness in the amount of light on a plurality of scanned surfaces by using a reflection member in each optical path as a common film configuration, thereby achieving cost reduction.

一実施例であるレーザー走査光学装置を示す斜視図である。It is a perspective view which shows the laser scanning optical apparatus which is one Example. 前記レーザー走査光学装置の副走査方向の立面図である。It is an elevation view of the laser scanning optical device in the sub-scanning direction. 前記レーザー走査光学装置におけるポリゴンミラーでの入射角の変化及び反射率の変化を示すグラフである。It is a graph which shows the change of the incident angle in the polygon mirror in the said laser scanning optical apparatus, and the change of a reflectance. 反射部材のZ型配置とコ字型配置を示す説明図である。It is explanatory drawing which shows Z shape arrangement | positioning and U shape arrangement | positioning of a reflecting member. 入射面に対する偏光の振動方向の角度を示す説明図である。It is explanatory drawing which shows the angle of the vibration direction of polarized light with respect to an entrance plane. Z型配置における入射面のずれを示す斜視図である。It is a perspective view which shows the shift | offset | difference of the entrance plane in Z type | mold arrangement | positioning. コ字型配置における入射面のずれを示す斜視図である。It is a perspective view which shows the shift | offset | difference of the entrance plane in a U-shaped arrangement | positioning. 入射面に対する偏光の振動方向の角度変化を示す説明図である。It is explanatory drawing which shows the angle change of the vibration direction of the polarized light with respect to an entrance plane. 発光素子の配置角と配置の組合せ例1におけるP偏光比率変化を示す説明図である。It is explanatory drawing which shows the P polarization ratio change in the example 1 of the combination angle and arrangement | positioning of a light emitting element. 発光素子の配置角と配置の組合せ例2におけるP偏光比率変化を示す説明図である。It is explanatory drawing which shows the P polarization | polarized-light ratio change in the example 2 of the arrangement angle and arrangement | positioning of a light emitting element. 発光素子の配置角と配置の組合せ例3におけるP偏光比率変化を示す説明図である。It is explanatory drawing which shows the P polarization ratio change in the example 3 of the arrangement angle of a light emitting element, and arrangement | positioning. 発光素子の配置角と配置の組合せ例4におけるP偏光比率変化を示す説明図である。It is explanatory drawing which shows the P polarization | polarized-light ratio change in the example 4 of the arrangement angle and arrangement | positioning of a light emitting element. 最終反射部材の偏光反射率を示すグラフである。It is a graph which shows the polarized light reflectance of a final reflection member. ポリゴンミラーにおける反射率傾斜及び被走査面での光量分布を示すグラフである。It is a graph which shows the reflectance inclination in a polygon mirror, and the light quantity distribution in the to-be-scanned surface. 反射部材の法線がなす角に対する反射部材の入射面がなす角(α=30°)を示すグラフである。It is a graph which shows the angle ((alpha) = 30 degrees) which the incident surface of a reflective member makes with respect to the angle which the normal line of a reflective member makes. 反射部材を3枚設けた場合の入射面に対する直線偏光の振動方向の変化を示す説明図である。It is explanatory drawing which shows the change of the vibration direction of a linearly polarized light with respect to the entrance plane at the time of providing three reflection members. コ字型配置及びZ型配置の各反射部材のなす角度の範囲を示す説明図である。It is explanatory drawing which shows the range of the angle which each reflection member of a U-shaped arrangement | positioning and a Z-type arrangement | positioning makes. 発光素子の配置角及び反射部材の配置による反射部材の反射率の傾斜を示すグラフである。It is a graph which shows the inclination of the reflectance of a reflection member by the arrangement angle of a light emitting element, and arrangement | positioning of a reflection member. 後反射部材の入射時のP偏光比率及び後反射部材の反射率を示すグラフである。It is a graph which shows the P polarization ratio at the time of incidence | injection of a back reflection member, and the reflectance of a back reflection member.

以下、本発明に係るレーザー走査光学装置の実施例について、添付図面を参照して説明する。なお、各図において同じ部材には共通する符号を付し、重複する説明は省略する。   Embodiments of a laser scanning optical apparatus according to the present invention will be described below with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the same member, and the overlapping description is abbreviate | omitted.

(レーザー走査光学装置、図1及び図2参照)
一実施例であるレーザー走査光学装置1は、図1及び図2に示すように、タンデム方式のカラー画像形成装置に用いられるものであり、図1及び図2において、y、m、c、kはイエロー、マゼンタ、シアン、ブラックの各色の光路に配置された部材であることを意味し、説明の文章においていずれの色にも該当する場合には添字としての記載は省略する。
(Laser scanning optical device, see FIGS. 1 and 2)
As shown in FIGS. 1 and 2, a laser scanning optical apparatus 1 according to an embodiment is used in a tandem color image forming apparatus. In FIGS. 1 and 2, y, m, c, k Means a member arranged in the optical path of each color of yellow, magenta, cyan, and black, and the description as a subscript is omitted when any color is applicable in the description.

レーザー走査光学装置1は、四つの感光体ドラム40y,40m,40c,40k上にそれぞれイエロー、マゼンタ、シアン、ブラックの画像を形成するように構成されている。感光体ドラム40上に形成された4色の画像(静電潜像)はトナーにて現像された後、図示しない中間転写ベルト上に1次転写/合成され、記録材上に2次転写される。この種の画像形成プロセスは周知であり、その説明は省略する。   The laser scanning optical device 1 is configured to form yellow, magenta, cyan, and black images on four photosensitive drums 40y, 40m, 40c, and 40k, respectively. The four-color image (electrostatic latent image) formed on the photosensitive drum 40 is developed with toner, and then primary-transferred / combined on an intermediate transfer belt (not shown), and then secondary-transferred onto a recording material. The This type of image forming process is well known and will not be described.

光源光学系10は、主として、レーザダイオードアレイからなる四つの発光素子11y,11m,11c,11kと、コリメータレンズ12y,12m,12c,12kと、開口部(絞り)13y,13m,13c,13kと、シリンダレンズ16とで構成されている。各発光素子11から放射されたレーザー光束(拡散光)は各コリメータレンズ12により平行光とされ、各開口部13を通過する。発光素子11yから放射された光束Byは、光路合成ミラー14yで反射されてミラー15へ向かう。発光素子11mから放射された光束Bmは、光路合成ミラー14mで反射されてミラー15へ向かう。発光素子11cから放射された光束Bcは、光路合成ミラー14cで反射されてミラー15へ向かう。発光素子11kから放射された光束Bkは、光路合成ミラー14kで反射されてミラー15へ向かう。ここで、光路合成ミラー14とは各光束の光路を同一方向(x方向)にするように配置された反射部材である。   The light source optical system 10 mainly includes four light emitting elements 11y, 11m, 11c, and 11k formed of a laser diode array, collimator lenses 12y, 12m, 12c, and 12k, and apertures (diaphragms) 13y, 13m, 13c, and 13k. And the cylinder lens 16. Laser beams (diffused light) emitted from the light emitting elements 11 are converted into parallel light by the collimator lenses 12 and pass through the openings 13. The light beam By emitted from the light emitting element 11 y is reflected by the optical path combining mirror 14 y and travels toward the mirror 15. The light beam Bm emitted from the light emitting element 11m is reflected by the optical path combining mirror 14m and travels toward the mirror 15. The light beam Bc emitted from the light emitting element 11c is reflected by the optical path combining mirror 14c and travels toward the mirror 15. The light beam Bk emitted from the light emitting element 11k is reflected by the optical path combining mirror 14k and travels to the mirror 15. Here, the optical path combining mirror 14 is a reflecting member arranged so that the optical path of each light beam is in the same direction (x direction).

前記ミラー15で反射されたそれぞれの光束は、シリンダレンズ16を透過してポリゴンミラー17の偏向面の近傍で副走査方向zに集光される。ポリゴンミラー17は所定の速度で回転駆動され、それぞれの光束は主走査方向yに偏向走査される。各光束はポリゴンミラー17の回転軸に垂直な面に対して所定の互いに異なる角度で偏向面に入射する。   Each light beam reflected by the mirror 15 passes through the cylinder lens 16 and is condensed in the sub-scanning direction z near the deflection surface of the polygon mirror 17. The polygon mirror 17 is rotationally driven at a predetermined speed, and each light beam is deflected and scanned in the main scanning direction y. Each light beam is incident on the deflecting surface at a predetermined different angle with respect to a surface perpendicular to the rotation axis of the polygon mirror 17.

ポリゴンミラー17から各光束の進行方向xに関しては、走査光学系20として、第1走査レンズ21、第2走査レンズ22、第3走査レンズ23y,23m,23c,23k、反射部材(ミラー)24y,24m,24c,24k,25y,25m,25c,26c、平行平板(防塵用ウインドウガラス)28y,28m,28c,28kが配置されている。   Regarding the traveling direction x of each light beam from the polygon mirror 17, the scanning optical system 20 includes a first scanning lens 21, a second scanning lens 22, third scanning lenses 23y, 23m, 23c, 23k, a reflecting member (mirror) 24y, 24m, 24c, 24k, 25y, 25m, 25c, 26c and parallel flat plates (dust-proof window glass) 28y, 28m, 28c, 28k are arranged.

ポリゴンミラー17の偏向面(反射面)で同時に偏向されたそれぞれの光束は、第1走査レンズ21及び第2走査レンズ22を透過する。光束Byは、反射部材24yで反射され、第3走査レンズ23yを透過し、さらに、反射部材25yで反射され、平行平板28yを透過して感光体ドラム40y上で結像し、主走査方向yに走査する。光束Bmは、反射部材24mで反射され、第3走査レンズ23mを透過し、さらに、反射部材25mで反射され、平行平板28mを透過して感光体ドラム40m上で結像し、主走査方向yに走査する。光束Bcは、反射部材24cで反射され、第3走査レンズ23cを透過し、さらに、反射部材25c,26cで反射され、平行平板28cを透過して感光体ドラム40c上で結像し、主走査方向yに走査する。光束Bkは、第3走査レンズ23kを透過し、反射部材24kで反射され、平行平板28kを透過して感光体ドラム40k上で結像し、主走査方向yに走査する。   The respective light beams simultaneously deflected by the deflection surface (reflection surface) of the polygon mirror 17 are transmitted through the first scanning lens 21 and the second scanning lens 22. The light beam By is reflected by the reflecting member 24y, passes through the third scanning lens 23y, is further reflected by the reflecting member 25y, passes through the parallel plate 28y, forms an image on the photosensitive drum 40y, and is scanned in the main scanning direction y. To scan. The light beam Bm is reflected by the reflecting member 24m, passes through the third scanning lens 23m, is further reflected by the reflecting member 25m, passes through the parallel plate 28m, and forms an image on the photosensitive drum 40m, and the main scanning direction y To scan. The light beam Bc is reflected by the reflecting member 24c, passes through the third scanning lens 23c, is further reflected by the reflecting members 25c and 26c, passes through the parallel plate 28c, forms an image on the photosensitive drum 40c, and performs main scanning. Scan in direction y. The light beam Bk passes through the third scanning lens 23k, is reflected by the reflecting member 24k, passes through the parallel plate 28k, forms an image on the photosensitive drum 40k, and scans in the main scanning direction y.

前記走査光学系20において、走査レンズ21,22は全ての光路y,m,c,kに共通に配置されており、走査レンズ23は各光路y,m,c,kに個別に配置されている。また、光路折返し用の反射部材24,25は光路yには2枚、光路mには2枚、光路cには3枚、光路kには1枚配置されている。図2に示されているように、光路y,mでは反射部材24y,25y,24m,25mがZ型の光路を形成するように配置され、光路cでは反射部材24c,25c,26cがコ字型の光路を形成するように配置されている。光路kでは反射部材24kがZ型の光路を形成するように配置されている。   In the scanning optical system 20, the scanning lenses 21 and 22 are arranged in common for all the optical paths y, m, c, and k, and the scanning lens 23 is individually arranged in each optical path y, m, c, and k. Yes. Further, two reflection members 24 and 25 for turning the optical path are arranged on the optical path y, two on the optical path m, three on the optical path c, and one on the optical path k. As shown in FIG. 2, the reflecting members 24y, 25y, 24m, and 25m are arranged to form a Z-shaped optical path in the optical paths y and m, and the reflecting members 24c, 25c, and 26c are U-shaped in the optical path c. The optical path of the mold is arranged. In the optical path k, the reflecting member 24k is disposed so as to form a Z-shaped optical path.

光源光学系10において、各発光素子(レーザダイオードアレイ)11の配置角(偏向平面を基準として光束の進行方向の時計回りを正とする)は、以下の表1に示すように、素子11yが−45°、素子11mが−45°、素子11cが45°、素子11kが−45°とされている。   In the light source optical system 10, the arrangement angle of each light emitting element (laser diode array) 11 (the clockwise rotation of the light beam with respect to the deflection plane is positive) is as shown in Table 1 below. The element 11m is −45 °, the element 11c is 45 °, and the element 11k is −45 °.

Figure 0005891652
Figure 0005891652

ポリゴンミラー17への入射角の偏向角による変化は図3(A)に示すとおりであり、偏向角による反射率の変化は図3(B)に示すとおりである。   The change of the incident angle to the polygon mirror 17 according to the deflection angle is as shown in FIG. 3A, and the change of the reflectance according to the deflection angle is as shown in FIG. 3B.

反射部材24,25のコ字型配置とZ型配置の副走査方向の断面構成は図4(A),(B)に示すとおりである。Z型配置では(図4(A)参照)、第2反射部材25の出射光線が、複数の任意の第2反射部材25への入射光線を含む平面を基準として、第1反射部材24への入射光線と反対側にある。コ字型配置では(図4(B)参照)、第2反射部材25の出射光線が、複数の任意の第2反射部材25への入射光線を含む平面を基準として、第1反射部材24への入射光線と同じ側にあるように第2反射部材25を配置している。   The cross-sectional configurations in the sub-scanning direction of the U-shaped arrangement and the Z-shaped arrangement of the reflecting members 24 and 25 are as shown in FIGS. In the Z-shaped arrangement (see FIG. 4A), the light beam emitted from the second reflective member 25 is directed to the first reflective member 24 with reference to a plane including incident light rays to the plurality of arbitrary second reflective members 25. On the opposite side of the incident beam. In the U-shaped arrangement (see FIG. 4B), the light beam emitted from the second reflection member 25 is directed to the first reflection member 24 with reference to a plane including light rays incident on the plurality of arbitrary second reflection members 25. The second reflecting member 25 is arranged so as to be on the same side as the incident light beam.

図5では、反射部材に入射するときの入射面に対する偏光の振動方向の角度及びそのときのP偏光成分とS偏光成分を示している。光軸に垂直な平面に投影しており、紙面奥方が光束の進行方向である。縦軸は入射面、横軸は入射面に垂直な平面であり、光軸を原点としている。二重線矢印で表わす反射部材への入射時の偏光振動方向を入射面及び入射面に垂直な平面に投影すると、P偏光比率、S偏光比率が求められる。   FIG. 5 shows the angle of the polarization vibration direction with respect to the incident surface when entering the reflecting member, and the P-polarized component and the S-polarized component at that time. The light is projected onto a plane perpendicular to the optical axis, and the depth of the drawing is the traveling direction of the light beam. The vertical axis is the incident surface, the horizontal axis is a plane perpendicular to the incident surface, and the optical axis is the origin. When the polarization vibration direction at the time of incidence on the reflecting member represented by a double-line arrow is projected onto the incidence plane and a plane perpendicular to the incidence plane, the P polarization ratio and the S polarization ratio are obtained.

ところで、ポリゴンミラー17による主走査の画像走査開始点をSOI(start of image)、画像走査終了点をEOI(end of image)と称する。図6(A),(B)には、本実施例において、SOI及びEOIにおけるZ型配置の第1反射部材24と第2反射部材25に入射する光線及び入射面のずれを立体的に示している。各反射部材24,25の入射面が交差する平面を考えたときの入射面のずれである。入射面のずれは、第1反射部材24の入射面から第2反射部材25の入射面に対する傾きの角度で表わされる。SOI側とEOI側とで入射面のずれ方向は逆になる。   By the way, an image scanning start point of main scanning by the polygon mirror 17 is referred to as SOI (start of image), and an image scanning end point is referred to as EOI (end of image). 6A and 6B three-dimensionally show the light rays incident on the first reflecting member 24 and the second reflecting member 25 in the Z-type arrangement in the SOI and EOI and the deviation of the incident surface in this embodiment. ing. This is the deviation of the incident surface when a plane where the incident surfaces of the reflecting members 24 and 25 intersect is considered. The deviation of the incident surface is represented by an angle of inclination from the incident surface of the first reflecting member 24 to the incident surface of the second reflecting member 25. The direction of deviation of the incident surface is opposite between the SOI side and the EOI side.

図7(A),(B)には、本実施例において、SOI及びEOIにおけるコ字型配置の第1反射部材24と第2反射部材25に入射する光線及び入射面のずれを立体的に示している。各反射部材24,25の入射面が交差する平面を考えたときの入射面のずれである。入射面のずれは、第1反射部材24の入射面から第2反射部材25の入射面に対する傾きの角度で表わされる。SOI側とEOI側とで入射面のずれ方向は逆になる。   7A and 7B, in this embodiment, the light rays incident on the first reflecting member 24 and the second reflecting member 25 in the U-shaped arrangement in the SOI and EOI and the deviation of the incident surface are three-dimensionally shown. Show. This is the deviation of the incident surface when a plane where the incident surfaces of the reflecting members 24 and 25 intersect is considered. The deviation of the incident surface is represented by an angle of inclination from the incident surface of the first reflecting member 24 to the incident surface of the second reflecting member 25. The direction of deviation of the incident surface is opposite between the SOI side and the EOI side.

図8は、反射部材24,25間で入射面がずれた場合の、入射面に対する偏光の振動方向の角度変化を示している。光軸に垂直な平面に投影しており、紙面奥方が光束の進行方向である。縦軸は入射面、横軸は入射面に垂直な平面であり、光軸を原点としている。空間的に偏光の振動方向は変わらないが、入射面のずれによって軸が30°回転し、入射面に対する偏光の振動方向の角度が45°から75°へ変化する。   FIG. 8 shows an angular change in the vibration direction of polarized light with respect to the incident surface when the incident surface is shifted between the reflecting members 24 and 25. The light is projected onto a plane perpendicular to the optical axis, and the depth of the drawing is the traveling direction of the light beam. The vertical axis is the incident surface, the horizontal axis is a plane perpendicular to the incident surface, and the optical axis is the origin. Although the polarization vibration direction does not change spatially, the axis rotates 30 ° due to the deviation of the incident surface, and the angle of the polarization vibration direction with respect to the incident surface changes from 45 ° to 75 °.

図9は、発光素子11の配置角が−45°であり、反射部材24,25がZ型配置の光路において(組合せ例1)、第2反射部材25に入射する際の入射面に対する偏光の振動方向の角度及びS偏光比率を示している。入射面のずれがSOI側は負方向、EOI側は正方向なので、入射面に対する偏光の振動方向の角度変化はSOI側は正、EOI側は負となる。よって、SOI側はP偏光比率が高く、EOI側はP偏光比率が低くなる。   In FIG. 9, the arrangement angle of the light emitting element 11 is −45 °, and the reflection members 24 and 25 are in the Z-type arrangement optical path (combination example 1). The vibration direction angle and S polarization ratio are shown. Since the incident surface is shifted in the negative direction on the SOI side and in the positive direction on the EOI side, the angle change in the vibration direction of polarized light with respect to the incident surface is positive on the SOI side and negative on the EOI side. Therefore, the P-polarization ratio is high on the SOI side, and the P-polarization ratio is low on the EOI side.

図10は、発光素子11の配置角が−45°であり、反射部材24,25がコ字型配置の光路において(組合せ例2)、第2反射部材25に入射する際の入射面に対する偏光の振動方向の角度及びS偏光比率を示している。入射面のずれがSOI側は正方向、EOI側は負方向なので、入射面に対する偏光の振動方向の角度変化はSOI側は負、EOI側は正となる。よって、SOI側はP偏光比率が低く、EOI側はP偏光比率が高くなる。   In FIG. 10, the arrangement angle of the light emitting element 11 is −45 °, and the polarization with respect to the incident surface when entering the second reflection member 25 in the optical path in which the reflection members 24 and 25 are U-shaped arrangement (combination example 2). The angle of the vibration direction and the S polarization ratio are shown. Since the deviation of the incident surface is positive on the SOI side and negative on the EOI side, the change in the angle of polarization oscillation relative to the incident surface is negative on the SOI side and positive on the EOI side. Therefore, the P-polarization ratio is low on the SOI side, and the P-polarization ratio is high on the EOI side.

図11は、発光素子11の配置角が45°であり、反射部材24,25がコ字型配置の光路において(組合せ例3)、第2反射部材25に入射する際の入射面に対する偏光の振動方向の角度及びS偏光比率を示している。入射面のずれがSOI側は正方向、EOI側は負方向なので、入射面に対する偏光の振動方向の角度変化はSOI側は負、EOI側は正となる。よって、SOI側はP偏光比率が高く、EOI側はP偏光比率が低くなる。   In FIG. 11, the arrangement angle of the light emitting element 11 is 45 °, and the polarization of the polarization with respect to the incident surface when entering the second reflecting member 25 in the optical path in which the reflecting members 24 and 25 are U-shaped (combination example 3). The vibration direction angle and S polarization ratio are shown. Since the deviation of the incident surface is positive on the SOI side and negative on the EOI side, the change in the angle of polarization oscillation relative to the incident surface is negative on the SOI side and positive on the EOI side. Therefore, the P-polarization ratio is high on the SOI side, and the P-polarization ratio is low on the EOI side.

図12は、発光素子11の配置角が45°であり、反射部材24,25がZ型配置の光路において(組合せ例4)、第2反射部材25に入射する際の入射面に対する偏光の振動方向の角度及びS偏光比率を示している。入射面のずれがSOI側は負方向、EOI側は正方向なので、入射面に対する偏光の振動方向の角度変化はSOI側は正、EOI側は負となる。よって、SOI側はP偏光比率が低く、EOI側はP偏光比率が高くなる。   In FIG. 12, the arrangement angle of the light emitting element 11 is 45 °, and the vibration of the polarization with respect to the incident surface when entering the second reflecting member 25 in the optical path in which the reflecting members 24 and 25 are in the Z-type arrangement (combination example 4). The direction angle and S polarization ratio are shown. Since the incident surface is shifted in the negative direction on the SOI side and in the positive direction on the EOI side, the angle change in the vibration direction of polarized light relative to the incident surface is positive on the SOI side and negative on the EOI side. Therefore, the P-polarization ratio is low on the SOI side, and the P-polarization ratio is high on the EOI side.

図13は、本実施例における最終反射部材のP偏光反射率及びS偏光反射率を示している。ここで、最終とは、各光路において最も被走査面に近い位置に配置されていることを意味する。   FIG. 13 shows the P-polarized reflectance and the S-polarized reflectance of the final reflecting member in this example. Here, the term “final” means that each optical path is disposed at a position closest to the scanned surface.

図14(A)は、本実施例におけるポリゴンミラー17、第2反射部材25の反射率傾斜を示し、図14(B)は、被走査面における光量分布傾斜を示している。全ての光路において、最も被走査面に近い反射部材の反射率傾斜は、ポリゴンミラー17での反射率傾斜を打ち消す又は軽減しており、被走査面における光量分布傾斜は十分に小さい。   FIG. 14A shows the reflectance inclination of the polygon mirror 17 and the second reflecting member 25 in this embodiment, and FIG. 14B shows the light amount distribution inclination on the surface to be scanned. In all the optical paths, the reflectance gradient of the reflecting member closest to the scanned surface cancels or reduces the reflectance gradient at the polygon mirror 17, and the light amount distribution gradient on the scanned surface is sufficiently small.

図15は、前反射部材の法線と後反射部材の法線とがなす角に対する、前反射部材の入射面と後反射部材の入射面とがなす角を示している。ここで、各光路に配置した複数の反射部材のうち、間に反射部材を挟まない連続する二つの反射部材において、光路上においてポリゴンミラーに近い反射部材を前反射部材、被走査面に近い反射部材を後反射部材と称する。前反射部材の法線と後反射部材の法線とがなす角が180°までは単調増加であり、前反射部材の法線と後反射部材の法線とがなす角が180°のときに前反射部材の入射面と後反射部材の入射面とがなす角は180°となる。このとき、両反射部材の反射面が平行になり、入射面が一致する。前反射部材の法線と後反射部材の法線とがなす角が180°を超えると、単調減少となる。   FIG. 15 shows an angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member with respect to the angle formed by the normal line of the front reflecting member and the normal line of the rear reflecting member. Here, out of a plurality of reflecting members arranged in each optical path, the reflecting member close to the polygon mirror on the optical path is reflected near the front reflecting member and the surface to be scanned. The member is referred to as a back reflecting member. When the angle formed by the normal line of the front reflection member and the normal line of the rear reflection member is monotonically increased up to 180 °, the angle formed by the normal line of the front reflection member and the normal line of the rear reflection member is 180 °. The angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member is 180 °. At this time, the reflecting surfaces of both reflecting members are parallel, and the incident surfaces coincide. When the angle formed by the normal line of the front reflection member and the normal line of the rear reflection member exceeds 180 °, the angle decreases monotonously.

図16は、3枚の反射部材で、第1及び第2反射部材がコ字型配置、第2及び第3反射部材がZ型配置を混在させたとき、それぞれの反射部材の入射面に対する直線偏光の振動方向の変化を示している。第1反射部材で入射面に対する直線偏光の振動方向が+45°のとき、コ字型配置の入射面変化がZ型配置の入射面変化より大きければ、一つの光路において二つの配置を混在させてもよい。   FIG. 16 shows a straight line with respect to the incident surface of each reflecting member when three reflecting members are mixed in a U-shaped arrangement for the first and second reflecting members and a Z-shaped arrangement for the second and third reflecting members. The change of the vibration direction of polarized light is shown. When the vibration direction of the linearly polarized light with respect to the incident surface in the first reflecting member is + 45 °, if the change in the incident surface of the U-shaped arrangement is larger than the change in the incident surface of the Z-shaped arrangement, two arrangements are mixed in one optical path. Also good.

図17は、コ字型配置及びZ型配置における前反射部材24及び後反射部材25のなす角度の範囲を示している。   FIG. 17 shows a range of angles formed by the front reflecting member 24 and the rear reflecting member 25 in the U-shaped arrangement and the Z-shaped arrangement.

図18(A)は、Z型配置とコ字型配置における各反射部材の入射面がなす角を示している。図18(B)は、発光素子の配置角を45°とした場合の入射面に対する偏光の振動方向の角度を示し、図19(A),(B)は同じ場合の後反射部材への入射時のP偏光比率及び後反射部材の反射率を示している。図18(C)は、発光素子の配置角を−45°とした場合の入射面に対する偏光の振動方向の角度を示し、図19(C),(D)は同じ場合の後反射部材への入射時のP偏光比率及び後反射部材の反射率を示している。具体的数値は以下の表2に示すとおりである。   FIG. 18A shows angles formed by the incident surfaces of the reflecting members in the Z-shaped arrangement and the U-shaped arrangement. FIG. 18B shows the angle of the polarization vibration direction with respect to the incident plane when the arrangement angle of the light emitting element is 45 °, and FIGS. 19A and 19B are incident on the post-reflecting member in the same case. The P polarization ratio at the time and the reflectance of the rear reflecting member are shown. FIG. 18C shows the angle of the polarization vibration direction with respect to the incident plane when the arrangement angle of the light emitting element is −45 °, and FIGS. 19C and 19D show the same for the post-reflection member in the same case. The P polarization ratio at the time of incidence and the reflectance of the rear reflecting member are shown. Specific numerical values are as shown in Table 2 below.

Figure 0005891652
Figure 0005891652

以上の構成からなるレーザー走査光学装置において、各発光素子11から放射された光束をポリゴンミラー17で偏向する際、偏向角によってポリゴンミラー17への入射角(入射角は反射面の法線ベクトルと光軸ベクトルとのなす角と定義する)が単調増加又は単調減少する(図3(A)参照)。そのため、ポリゴンミラー17の反射面の角度特性(入射角に対する反射率特性)に従って、ポリゴンミラー17において反射率傾斜(反射率傾斜とは、被走査面上に向かう光束ごとの反射率の差が、偏向角によって略単調増加又は略単調減少している状態)が発生する(図3(B)参照)。   In the laser scanning optical device having the above configuration, when the light beam emitted from each light emitting element 11 is deflected by the polygon mirror 17, the incident angle to the polygon mirror 17 is determined by the deflection angle (the incident angle is the normal vector of the reflecting surface). Defined as an angle formed with the optical axis vector) monotonously increases or monotonously decreases (see FIG. 3A). Therefore, according to the angle characteristics of the reflecting surface of the polygon mirror 17 (reflectance characteristics with respect to the incident angle), the reflectance tilt in the polygon mirror 17 (the reflectance tilt is the difference in reflectance for each light beam traveling on the surface to be scanned is A state in which the deflection angle substantially increases or decreases substantially monotonically) (see FIG. 3B).

また、反射部材に入射する光束は、直線偏光であることが多く、偏光の振動方向を持つ。偏光の振動方向は光軸に対して変化せず、反射する際に入射面(反射面の法線及び入射光線と反射光線を含む面)が定義されると入射面に対する偏光の振動方向の角度が決まる(図5参照)。入射面に対する偏光の振動方向の角度は、光束の進行方向の時計回りを正とする。入射面に対する偏光の振動方向によって、入射光束のP偏光とS偏光の比率が決まる。P偏光とS偏光はそれぞれ反射率特性が異なるため(図13参照)、反射面において、偏向角によって入射光束の偏光比率に傾斜があると、反射率傾斜を生じる。   In addition, the light beam incident on the reflecting member is often linearly polarized light and has a polarization vibration direction. The polarization oscillation direction does not change with respect to the optical axis. When the incident surface (the normal of the reflection surface and the plane including the incident light and the reflected light) is defined when reflecting, the angle of the polarization vibration direction with respect to the incident surface is defined. Is determined (see FIG. 5). The angle of the polarization oscillation direction with respect to the incident surface is positive in the clockwise direction of the light beam traveling direction. The ratio of the P-polarized light and the S-polarized light of the incident light beam is determined by the vibration direction of the polarized light with respect to the incident surface. Since P-polarized light and S-polarized light have different reflectance characteristics (see FIG. 13), if the polarization ratio of the incident light beam is inclined due to the deflection angle on the reflecting surface, the reflectance is inclined.

反射部材の長手方向のベクトルが走査線と略平行に配置されていると想定すると、偏向角による入射光束の偏光比率の傾斜は、各反射部材の各偏向角において入射面が異なるために生じる。COI(center of image)に入射する光路では、各反射部材の法線と入射光線とは常に共通の面内にあるために入射面は同一であり、入射面に対する偏光の振動方向の角度はほぼ変わらず、入射光束の偏光比率もほぼ変わらない。COI以外の偏向角で被走査面に入射する光路では、各反射部材の長手方向ベクトルを軸とした回転角次第で変化するため、反射面の法線と入射光線とで定義される入射面も反射部材間で変化する。また、偏向角に応じた入射面の変化は、COIの入射面を基準として、SOI側とEOI側とで対称となり(図6、図7参照)、偏向角が大きいほど変化も大きい。   Assuming that the vector in the longitudinal direction of the reflecting member is arranged substantially parallel to the scanning line, the inclination of the polarization ratio of the incident light beam due to the deflection angle occurs because the incident surface is different at each deflection angle of each reflecting member. In the optical path incident on the center of image (COI), the normal of each reflecting member and the incident light are always in a common plane, so the incident plane is the same, and the angle of the polarization oscillation direction with respect to the incident plane is almost the same. The polarization ratio of the incident light beam remains almost unchanged. The optical path incident on the surface to be scanned with a deflection angle other than COI changes depending on the rotation angle with the longitudinal vector of each reflecting member as an axis. Therefore, the incident surface defined by the normal of the reflecting surface and the incident ray is also Varies between reflecting members. The change of the incident surface according to the deflection angle is symmetrical between the SOI side and the EOI side with reference to the COI incident surface (see FIGS. 6 and 7), and the change is larger as the deflection angle is larger.

ここで、2枚の反射部材におけるZ型配置、コ字型配置について詳述する。Z型配置とは、ポリゴンミラーによる走査方向をY軸としたとき、複数の反射部材からなる光路において、各反射部材の長手方向がY軸に平行であり、該光路の複数の反射部材のうち、間に反射部材を挟まない連続する二つの反射部材において、ポリゴンミラーに近い反射部材を前反射部材、被走査面に近い反射部材を後反射部材としたとき、Y軸に垂直な平面で考えたときの前反射部材の法線と後反射部材の法線とがなす角度が、Y軸に垂直な平面で考えたときの前反射部材への入射角をα°としたとき、発光素子の配置角に合わせて、(180−α)°〜(270−α)°のときである。このとき、後反射部材の出射光線は、Y軸に垂直な平面で考えたとき、後反射部材の入射光線を基準として、前反射部材の入射光線と反対側にある(図17右側図参照)。   Here, the Z-shaped arrangement and the U-shaped arrangement of the two reflecting members will be described in detail. The Z-shaped arrangement means that the longitudinal direction of each reflecting member is parallel to the Y axis in the optical path composed of a plurality of reflecting members, where the scanning direction by the polygon mirror is the Y axis, and among the plurality of reflecting members in the optical path In the case of two consecutive reflecting members with no reflecting member in between, when the reflecting member close to the polygon mirror is the front reflecting member and the reflecting member close to the scanned surface is the rear reflecting member, the plane is perpendicular to the Y axis. When the angle between the normal line of the front reflecting member and the normal line of the rear reflecting member is α ° when the incident angle to the front reflecting member is a plane perpendicular to the Y axis, This is when (180-α) ° to (270-α) ° according to the arrangement angle. At this time, the outgoing light beam of the rear reflecting member is on the side opposite to the incident light beam of the front reflecting member with reference to the incident light beam of the rear reflecting member when viewed in a plane perpendicular to the Y axis (see the right side view of FIG. 17). .

一方、コ字型配置とは、ポリゴンミラーによる走査方向をY軸としたとき、複数の反射部材からなる光路において、各反射部材の長手方向がY軸に平行であり、該光路の複数の反射部材のうち、間に反射部材を挟まない連続する二つの反射部材において、ポリゴンミラーに近い反射部材を前反射部材、被走査面に近い反射部材を後反射部材としたとき、Y軸に垂直な平面で考えたときの前反射部材の法線と後反射部材の法線とがなす角度が、Y軸に垂直な平面で考えたときの前反射部材への入射角をα°としたとき、発光素子の配置角に合わせて、(90−α)°〜(180−α)°のときである。このとき、後反射部材の出射光線は、Y軸に垂直な平面で考えたとき、後反射部材の入射光線を基準として、前反射部材の入射光線と同じ側にある(図17左側図参照)。   On the other hand, the U-shaped arrangement means that the longitudinal direction of each reflecting member is parallel to the Y axis in the optical path composed of a plurality of reflecting members when the scanning direction of the polygon mirror is the Y axis, and the plurality of reflections of the optical path are reflected. Of the two consecutive reflecting members with no reflecting member in between, when the reflecting member close to the polygon mirror is the front reflecting member and the reflecting member close to the scanned surface is the rear reflecting member, it is perpendicular to the Y axis. When the angle between the normal line of the front reflecting member and the normal line of the rear reflecting member when considered in a plane is α ° when the incident angle to the front reflecting member when considered in a plane perpendicular to the Y axis is α °, This is when (90-α) ° to (180-α) ° according to the arrangement angle of the light-emitting elements. At this time, the outgoing light beam of the rear reflecting member is on the same side as the incident light beam of the front reflecting member with reference to the incident light beam of the rear reflecting member when viewed in a plane perpendicular to the Y axis (see the left side of FIG. 17). .

各偏向角において、反射部材間での入射面の変化によって、入射面に対する偏光の振動方向の角度が変化する(図8参照)。Z型配置の場合、SOI側の角変化は正、EOI側は負となる。一方、コ字型配置の場合は逆転し、SOI側の角変化は負、EOI側は正となる。   At each deflection angle, the angle of the polarization vibration direction with respect to the incident surface changes due to the change of the incident surface between the reflecting members (see FIG. 8). In the case of the Z-type arrangement, the change in angle on the SOI side is positive and the EOI side is negative. On the other hand, in the case of the U-shaped arrangement, the rotation is reversed, and the angular change on the SOI side is negative and the EOI side is positive.

光源手段において、各光路y,m,c,kに対応する発光素子は光源基板に決まった間隔で配置されている。そして、被走査面上で所望の副走査間隔を得るために、光源基板を回転させて調整を行う。副走査方向zの光学倍率は各光路y,m,c,kにおいて同一なので、光源基板上の複数の発光素子の副走査方向間隔を同一とするため、ある発光素子の配置角をA°とすると、A°以外に可能な発光素子の配置間隔は−A°となる。   In the light source means, the light emitting elements corresponding to the respective light paths y, m, c, k are arranged on the light source substrate at predetermined intervals. Then, in order to obtain a desired sub-scanning interval on the surface to be scanned, adjustment is performed by rotating the light source substrate. Since the optical magnification in the sub-scanning direction z is the same in each of the optical paths y, m, c, and k, the arrangement angle of a certain light-emitting element is A ° in order to make the sub-scanning direction intervals of the plurality of light-emitting elements on the light source substrate the same. Then, a possible arrangement interval of light emitting elements other than A ° is −A °.

ここで、発光素子の配置角が−45°前後の場合で、Z型配置を考える(図9参照)。Z型配置の第1反射部材の入射面に対する偏光の振動方向の角度が全偏向角で同様に−45°前後とすると(図9の中央図参照)SOIでは10°〜40°変化し、入射面に対する偏光の振動方向の角度は−35°〜−5°となる(図9左図参照)。一方、EOIでは入射面の変化が対称となり、入射面に対する偏光の振動方向の角度は−85°〜−55°となる(図9右図参照)。入射面に対する偏光の振動方向の角度の絶対値が45°未満のときはP偏光比率が高く、45°を超えるときはP偏光比率が低くなる。P偏光反射率はS偏光反射率よりも低いため、P偏光比率が高い場合は、P偏光比率が低い場合に比べて、反射率が低くなる。即ち、発光素子の配置角が−45°前後のときは、Z型配置の第2反射部材でのSOIの反射率は低く、EOIの反射率は高くなり、反射率傾斜が生じることになる。   Here, a Z-type arrangement is considered when the arrangement angle of the light emitting elements is around −45 ° (see FIG. 9). If the angle of the oscillation direction of polarized light with respect to the incident surface of the first reflecting member having the Z-shaped arrangement is about −45 ° in all deflection angles (see the center diagram in FIG. 9), the SOI changes by 10 ° to 40 ° and is incident. The angle of the vibration direction of the polarized light with respect to the surface is −35 ° to −5 ° (see the left diagram in FIG. 9). On the other hand, in the EOI, the change of the incident surface is symmetric, and the angle of the polarization vibration direction with respect to the incident surface is −85 ° to −55 ° (see the right diagram in FIG. 9). When the absolute value of the vibration direction of polarized light with respect to the incident surface is less than 45 °, the P polarization ratio is high, and when it exceeds 45 °, the P polarization ratio is low. Since the P-polarized reflectance is lower than the S-polarized reflectance, when the P-polarized ratio is high, the reflectance is lower than when the P-polarized ratio is low. In other words, when the arrangement angle of the light emitting element is around −45 °, the reflectivity of SOI at the second reflecting member in the Z-type arrangement is low, the reflectivity of EOI is high, and the reflectivity is inclined.

SOI側に発光素子が配置されているとき、ポリゴンミラーにおけるSOI光路の入射角は小さく、EOI光路の入射角は大きいため、ポリゴンミラーの反射面の角度特性によって、ポリゴンミラーの反射面におけるSOI光路の反射率は高く、EOI光路の反射率は低くなり、Z型配置の第2反射部材とは逆の反射率傾斜になることで、打ち消し又は軽減される。   When the light emitting element is arranged on the SOI side, since the incident angle of the SOI optical path in the polygon mirror is small and the incident angle of the EOI optical path is large, the SOI optical path on the reflective surface of the polygon mirror is determined by the angle characteristics of the reflective surface of the polygon mirror. The reflectance of the EOI optical path is low, and the reflectance slope is opposite to that of the second reflecting member in the Z-type arrangement, thereby canceling or reducing the reflectance.

次に、発光素子の配置角が−45°前後の場合で、コ字型配置を考える(図10参照)。コ字型配置の第1反射部材の入射面に対する偏光の振動方向の角度が全偏向角で同様に−45°前後とすると(図10の中央図参照)SOIでは−10°〜−40°変化し、入射面に対する偏光の振動方向の角度は−85°〜−55°となる(図10左図参照)。一方、EOIでは入射面の変化が対称となり、入射面に対する偏光の振動方向の角度は−35°〜−5°となる(図10右図参照)。即ち、SOI側のP偏光比率が高いため、第2反射部材でのSOIの反射率は高く、EOIの反射率は低くなり、反射率傾斜が生じることになる。但し、SOI側に発光素子が配置されているとき、第2反射部材の反射率傾斜は、ポリゴンミラーの反射率傾斜と同様の傾向であり、反射率傾斜は増幅される。   Next, a U-shaped arrangement is considered in the case where the arrangement angle of the light emitting element is around −45 ° (see FIG. 10). If the angle of the polarization oscillation direction with respect to the incident surface of the first reflecting member having the U-shaped arrangement is about −45 ° in all deflection angles (see the center diagram in FIG. 10), the SOI changes −10 ° to −40 °. The angle of the polarization vibration direction with respect to the incident surface is −85 ° to −55 ° (see the left diagram in FIG. 10). On the other hand, in the EOI, the change of the incident surface is symmetric, and the angle of the polarization vibration direction with respect to the incident surface is −35 ° to −5 ° (see the right diagram in FIG. 10). That is, since the P-polarized light ratio on the SOI side is high, the reflectivity of SOI at the second reflecting member is high, the reflectivity of EOI is low, and a reflectivity gradient occurs. However, when the light emitting element is arranged on the SOI side, the reflectance inclination of the second reflecting member has the same tendency as the reflectance inclination of the polygon mirror, and the reflectance inclination is amplified.

そこで、発光素子の配置角が45°前後の場合で、コ字型配置を考える(図11参照)。コ字型配置の第1反射部材の入射面に対する偏光の振動方向の角度が全偏向角で同様に45°前後とすると(図11の中央図参照)SOIでは−10°〜−40°変化し、入射面に対する偏光の振動方向の角度は5°〜35°となる(図11左図参照)。一方、EOIでは入射面の変化が対称となり、入射面に対する偏光の振動方向の角度は55°〜85°となる(図10右図参照)。即ち、SOI側のP偏光比率が高く、EOI側のP偏光比率が低いため、第2反射部材でのSOIの反射率は低く、EOIの反射率は高くなり、反射率傾斜が生じることになる。SOI側に発光素子が配置されているとき、第2反射部材の反射率傾斜は、ポリゴンミラーの反射率傾斜を打ち消す又は軽減される。   Therefore, a U-shaped arrangement is considered when the arrangement angle of the light emitting elements is around 45 ° (see FIG. 11). If the angle of the polarization oscillation direction with respect to the incident surface of the first reflecting member having the U-shaped arrangement is about 45 ° in all deflection angles (see the center diagram in FIG. 11), the SOI changes by −10 ° to −40 °. The angle of the polarization vibration direction with respect to the incident surface is 5 ° to 35 ° (see the left diagram in FIG. 11). On the other hand, in the EOI, the change of the incident surface is symmetric, and the angle of the polarization vibration direction with respect to the incident surface is 55 ° to 85 ° (see the right side of FIG. 10). That is, since the P-polarization ratio on the SOI side is high and the P-polarization ratio on the EOI side is low, the reflectivity of the SOI at the second reflecting member is low, the reflectivity of the EOI is high, and the reflectivity gradient occurs. . When the light emitting element is arranged on the SOI side, the reflectance inclination of the second reflecting member cancels or reduces the reflectance inclination of the polygon mirror.

また、発光素子の配置角が45°前後の場合で、Z型配置を考える(図12参照)。Z型配置の第1反射部材の入射面に対する偏光の振動方向の角度が全偏向角で同様に45°前後とすると(図12の中央図参照)SOIでは10°〜40°変化し、入射面に対する偏光の振動方向の角度は55°〜85°となる(図12左図参照)。一方、EOIでは入射面の変化が対称となり、入射面に対する偏光の振動方向の角度は5°〜35°となる(図12右図参照)。即ち、SOI側のP偏光比率が低く、EOI側のP偏光比率が高いため、第2反射部材でのSOIの反射率は高く、EOIの反射率は低くなり、反射率傾斜が生じることになる。SOI側に発光素子が配置されているとき、第2反射部材の反射率傾斜は、ポリゴンミラーの反射率傾斜を増幅してしまう。   Further, a Z-type arrangement is considered in the case where the arrangement angle of the light emitting element is around 45 ° (see FIG. 12). If the angle of the oscillation direction of polarized light with respect to the incident surface of the first reflecting member in the Z-shaped arrangement is about 45 ° in all deflection angles (see the center diagram in FIG. 12), the SOI changes by 10 ° to 40 °, and the incident surface The angle of the vibration direction of the polarized light with respect to is 55 ° to 85 ° (see the left diagram in FIG. 12). On the other hand, in the EOI, the change of the incident surface is symmetric, and the angle of the polarization vibration direction with respect to the incident surface is 5 ° to 35 ° (see the right diagram in FIG. 12). That is, since the P-polarization ratio on the SOI side is low and the P-polarization ratio on the EOI side is high, the reflectivity of SOI at the second reflecting member is high, the reflectivity of EOI is low, and the reflectivity gradient occurs. . When the light emitting element is arranged on the SOI side, the reflectance inclination of the second reflecting member amplifies the reflectance inclination of the polygon mirror.

それぞれの発光素子の配置角に対して、Z型配置又はコ字型配置を適切に利用することで、各光路y,m,c,kにおける最も被走査面に近い位置に配置された反射部材を同じ膜構成としても、ポリゴンミラーにおける反射率傾斜を打ち消す又は軽減することができ、被走査面における光量分布傾斜を低減させることができる(図14参照)。これにて、光量分布傾斜の低減のために偏光特性の異なる複数の反射部材が不要となり、換言すれば、同じ膜構成とすることができ、コストダウンにつながる。   Reflective members arranged at positions closest to the surface to be scanned in each of the optical paths y, m, c, and k by appropriately using the Z-shaped arrangement or the U-shaped arrangement for the arrangement angles of the respective light emitting elements. Even if the same film configuration is used, the reflectance gradient in the polygon mirror can be canceled or reduced, and the light amount distribution gradient in the scanned surface can be reduced (see FIG. 14). This eliminates the need for a plurality of reflecting members having different polarization characteristics in order to reduce the amount of light distribution gradient. In other words, the same film configuration can be obtained, leading to cost reduction.

ところで、少なくとも一つの光路に三つの反射部材が配置されているとき、第1反射部材と第2反射部材とがコ字型に配置され、第2反射部材と第3反射部材とがZ型に配置され、第1反射部材の法線と第2反射部材の法線とがなす角度が45°以上であり、第2反射部材の法線と第3反射部材の法線とがなす角度が170°以上であることが好ましい。具体的な配置角及び各反射部材の法線、入射面がなす角は以下の表3、表4に示す。   By the way, when three reflecting members are arranged in at least one optical path, the first reflecting member and the second reflecting member are arranged in a U shape, and the second reflecting member and the third reflecting member are in a Z shape. The angle formed between the normal line of the first reflecting member and the normal line of the second reflecting member is 45 ° or more, and the angle formed between the normal line of the second reflecting member and the normal line of the third reflecting member is 170. It is preferable that it is more than °. Specific arrangement angles, normal lines of the reflecting members, and angles formed by the incident surfaces are shown in Tables 3 and 4 below.

Figure 0005891652
Figure 0005891652

Figure 0005891652
Figure 0005891652

入射面に対する偏光の振動方向の角度の変化は、前記コ字型配置と前記Z型配置とで正負が逆なので、コ字型配置とZ型配置とが混在している場合には、角度変化の絶対値が大きい配置の影響が優勢となる(図16参照)。   The change in the angle of the vibration direction of polarized light with respect to the incident surface is opposite in sign between the U-shaped arrangement and the Z-shaped arrangement. Therefore, when the U-shaped arrangement and the Z-shaped arrangement are mixed, the angle change The influence of arrangement with a large absolute value of becomes dominant (see FIG. 16).

コ字型配置の場合、前反射部材と後反射部材において、Y軸に垂直な平面で投影したときの前反射部材の法線と後反射部材の法線とがなす角は、前反射部材への入射角をα°とすると、(90−α)°〜(180−α)°になる(図17左図参照)。この角度範囲では、前反射部材の入射面と後反射部材の入射面とがなす角は、前反射部材の法線と後反射部材の法線とがなす角に対して必ず右肩上がりとなる(図15参照)。   In the case of the U-shaped arrangement, the angle formed between the normal line of the front reflection member and the normal line of the rear reflection member when projected on a plane perpendicular to the Y axis in the front reflection member and the rear reflection member is to the front reflection member. When the incident angle is α °, the angle is (90−α) ° to (180−α) ° (see the left diagram in FIG. 17). In this angle range, the angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member is always raised to the right with respect to the angle formed by the normal line of the front reflecting member and the normal line of the rear reflecting member. (See FIG. 15).

前反射部材の入射面と後反射部材の入射面とがなす角が180°のときは、それぞれの入射面は一致するため、入射面に対する直線偏光の振動方向を変化させない。また、前反射部材の入射面と後反射部材の入射面とがなす角が90°のときが最も振動方向を変化させる。   When the angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member is 180 °, the respective incident surfaces coincide with each other, so that the vibration direction of the linearly polarized light with respect to the incident surface is not changed. Further, when the angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member is 90 °, the vibration direction is changed most.

Z型配置の場合、コ字型配置をなす前反射部材と後反射部材において、Y軸に垂直な平面で投影したときの前反射部材の法線と後反射部材の法線とがなす角は、前反射部材への入射角をα°とすると、(180−α)°〜(270−α)°になる(図17右図参照)。この角度範囲では、180°を必ず含むため、そのときは、前反射部材の入射面と後反射部材の入射面とがなす角が180°となり、それぞれの入射面は一致し、入射面に対する直線偏光の振動方向を変化させない。また、Y軸に垂直な平面で投影したときの前反射部材の法線と後反射部材の法線とがなす角が180°前後のとき、前反射部材の入射面と後反射部材の入射面とがなす角は180°に近い値となり、入射面に対する直線偏光の振動方向の変化は小さい。   In the case of the Z-shaped arrangement, the angle formed by the normal line of the front reflection member and the normal line of the rear reflection member when projected on a plane perpendicular to the Y axis in the front reflection member and the rear reflection member having the U-shaped arrangement is When the incident angle to the front reflecting member is α °, the angle is (180−α) ° to (270−α) ° (see the right side of FIG. 17). Since this angle range always includes 180 °, at that time, the angle formed by the incident surface of the front reflecting member and the incident surface of the rear reflecting member is 180 °, and the respective incident surfaces coincide with each other and are straight lines with respect to the incident surface. Do not change the direction of polarization oscillation. Further, when the angle formed by the normal line of the front reflecting member and the normal line of the rear reflecting member when projected on a plane perpendicular to the Y axis is around 180 °, the incident surface of the front reflecting member and the incident surface of the rear reflecting member Is a value close to 180 °, and the change in the vibration direction of the linearly polarized light with respect to the incident surface is small.

コ字型配置の前反射部材の入射面と後反射部材の入射面とがなす角が、Z型配置の前反射部材の入射面と後反射部材の入射面とがなす角より大きくするために、各配置の前反射部材の法線と後反射部材の法線とがなす角を規定する。まず、コ字型配置の前反射部材の法線と後反射部材の法線とがなす角を45°以上とする。このとき、コ字型配置の前反射部材の入射面と後反射部材の入射面とがなす角は、20°以上となる。さらに、Z型配置の前反射部材の法線と後反射部材の法線とがなす角を170°以上とする。このとき、Z型配置の前反射部材の入射面と後反射部材の入射面とがなす角は20°以下となる。この角度条件では、常に、コ字型配置の前反射部材の入射面と後反射部材の入射面とがなす角が、Z型配置の前反射部材の入射面と後反射部材の入射面とがなす角よりも大きい。   In order to make the angle formed by the entrance surface of the front reflecting member with the U-shaped arrangement and the entrance surface of the back reflecting member larger than the angle formed by the entrance surface of the front reflecting member with the Z-shaped arrangement and the entrance surface of the rear reflecting member The angle formed between the normal line of the front reflecting member and the normal line of the rear reflecting member in each arrangement is defined. First, the angle formed by the normal line of the front reflecting member and the normal line of the rear reflecting member in the U-shaped arrangement is set to 45 ° or more. At this time, the angle formed between the incident surface of the front reflecting member and the incident surface of the rear reflecting member in the U-shaped arrangement is 20 ° or more. Furthermore, the angle formed by the normal line of the front reflection member and the normal line of the rear reflection member in the Z-shaped arrangement is set to 170 ° or more. At this time, the angle formed by the incident surface of the front reflecting member with the Z-shaped arrangement and the incident surface of the rear reflecting member is 20 ° or less. Under this angle condition, the angle formed by the incident surface of the front reflecting member with the U-shaped arrangement and the incident surface of the rear reflecting member is always the angle between the incident surface of the front reflecting member with the Z-shaped arrangement and the incident surface of the rear reflecting member. It is larger than the angle it makes.

本実施例では、光路cにおいて、第1反射部材と第2反射部材がコ字型配置、第2反射部材と第3反射部材がZ型配置である。Y軸に垂直な平面で考えたときの第1反射部材の法線と第2反射部材の法線とがなす角は92.17°であり、第1反射部材の入射面と第2反射部材の入射面がなす角はSOIにおいて45.07°である(表4参照)。また、Y軸に垂直な平面で考えたときの第2反射部材の法線と第3反射部材の法線とがなす角は203.66°であり、第2反射部材の入射面と第3反射部材の入射面とがなす角はSOIにおいて15.41°である(表4参照)。各反射部材の入射面がなす角の絶対値は第1反射部材と第2反射部材によるコ字型配置が第2反射部材と第3反射部材によるZ型配置より大きいため、入射面に対する直線偏光の振動方向の変化に対して光路cはコ字型配置の影響が大きく、コ字型配置のみと考えることができる。   In the present embodiment, in the optical path c, the first reflecting member and the second reflecting member have a U-shaped arrangement, and the second reflecting member and the third reflecting member have a Z-shaped arrangement. The angle formed between the normal line of the first reflection member and the normal line of the second reflection member when considered in a plane perpendicular to the Y axis is 92.17 °, and the incident surface of the first reflection member and the second reflection member The angle formed by the incident surface is 45.07 ° in SOI (see Table 4). Further, the angle formed by the normal line of the second reflecting member and the normal line of the third reflecting member when considered in a plane perpendicular to the Y axis is 203.66 °, and the incident surface of the second reflecting member and the third angle The angle formed by the incident surface of the reflecting member is 15.41 ° in SOI (see Table 4). The absolute value of the angle formed by the incident surface of each reflecting member is linearly polarized with respect to the incident surface because the U-shaped arrangement of the first reflecting member and the second reflecting member is larger than the Z-shaped arrangement of the second reflecting member and the third reflecting member. The optical path c is greatly influenced by the U-shaped arrangement with respect to the change in the vibration direction, and can be considered to be only the U-shaped arrangement.

なお、本発明に係るレーザー走査光学装置は前記実施例に限定するものではなく、その要旨の範囲内で種々に変更できることは勿論である。   The laser scanning optical apparatus according to the present invention is not limited to the above-described embodiments, and can be variously modified within the scope of the gist thereof.

以上のように、本発明は、レーザー走査光学装置に有用であり、特に、反射部材を共通の膜構成で複数の被走査面上での光量むらを低減できる点で優れている。   As described above, the present invention is useful for a laser scanning optical device, and is particularly excellent in that it can reduce unevenness of light quantity on a plurality of scanned surfaces with a common film configuration of the reflecting member.

1…レーザー走査光学装置
10…光源光学系
11…発光素子
17…ポリゴンミラー
20…走査光学系
21,22,23…走査レンズ
24,25,26…反射部材
40…感光体ドラム
DESCRIPTION OF SYMBOLS 1 ... Laser scanning optical apparatus 10 ... Light source optical system 11 ... Light emitting element 17 ... Polygon mirror 20 ... Scanning optical system 21, 22, 23 ... Scanning lens 24, 25, 26 ... Reflective member 40 ... Photosensitive drum

Claims (4)

直線偏光しているレーザー光束を射出する複数の光源手段と、
前記複数の光源手段のそれぞれから発せられた光束を偏向走査する単一の偏向器と、
前記偏向器により偏向された光束をそれぞれの光源手段に対応する複数の被走査面上に結像させる走査光学素子と、
前記偏向器と前記複数の被走査面との間のそれぞれの光路上に設けられ、前記偏向器により偏向された光束を副走査方向に折り返す反射部材と、
を備えたレーザー走査光学装置において、
少なくとも一つの光路では前記反射部材は複数設置されており、
前記それぞれの光路における最も被走査面に近い位置に配置された反射部材は同じ膜構成からなり、
前記複数の光源手段の直線偏光振動方向は、光束の進行方向に対して時計回りを正として、発光点を含んで前記偏向器の回転軸に垂直な平面に対して+A°と−A°の2種類が存在し、
前記それぞれの光路における最も被走査面に近い位置に配置された反射部材は、直線偏光の異なる振動方向に対しても偏向角変化に伴う前記偏向器での反射率の傾斜を打ち消す反射率傾斜を持つように、前記偏向器による走査方向をY軸としたとき、複数の反射部材からなる光路において、各反射部材の長手方向がY軸に平行であり、前記光路の複数の反射部材のうち、間に反射部材を挟まない連続する二つの反射部材において、光路上において前記偏向器に近い反射部材を前反射部材、被走査面に近い反射部材を後反射部材としたとき、Y軸に垂直な平面上での前反射部材と後反射部材との法線がなす角度が、Y軸に垂直な平面上での前反射部材への入射角をαとしたとき、それぞれの光源手段の配置角に合わせて、(90−α)°〜(180−α)°の間、又は、(180−α)°〜(270−α)°の間、に前記反射部材が配置されていること、
を特徴とするレーザー走査光学装置。
A plurality of light source means for emitting a linearly polarized laser beam;
A single deflector for deflecting and scanning a light beam emitted from each of the plurality of light source means;
A scanning optical element that focuses the light beam deflected by the deflector onto a plurality of scanned surfaces corresponding to the respective light source means;
A reflecting member provided on each optical path between the deflector and the plurality of scanned surfaces, and configured to return the light beam deflected by the deflector in a sub-scanning direction;
In a laser scanning optical device comprising:
A plurality of the reflecting members are installed in at least one optical path,
The reflecting members arranged at positions closest to the scanning surface in the respective optical paths are composed of the same film,
The linearly polarized light oscillation directions of the plurality of light source means are + A ° and −A ° with respect to a plane perpendicular to the rotation axis of the deflector including the light emitting point, with the clockwise direction being positive with respect to the traveling direction of the light beam. There are two types
The reflecting member disposed at a position closest to the scanning surface in each of the optical paths has a reflectance gradient that cancels the reflectance gradient at the deflector due to a change in the deflection angle even with respect to a different vibration direction of linearly polarized light. As described above, when the scanning direction by the deflector is a Y axis, in the optical path composed of a plurality of reflecting members, the longitudinal direction of each reflecting member is parallel to the Y axis, and among the plurality of reflecting members of the optical path, In two consecutive reflecting members with no reflecting member in between, when the reflecting member close to the deflector on the optical path is a front reflecting member and the reflecting member close to the scanned surface is a rear reflecting member, it is perpendicular to the Y axis. The angle formed by the normal lines of the front reflecting member and the rear reflecting member on the plane is the angle of arrangement of the respective light source means when the incident angle to the front reflecting member on the plane perpendicular to the Y axis is α. Together, (90-α) ° to (18 -.alpha.) °, or between, (180-α) ° ~ (270-α) that ° between the reflecting member is disposed,
A laser scanning optical device characterized by the above.
複数の光源手段の直線偏光の振動方向は、発光点を含んで前記偏向器の回転軸に垂直な平面に対して20°〜70°であること、を特徴とする請求項1に記載のレーザー走査光学装置。 2. The laser according to claim 1 , wherein the vibration direction of the linearly polarized light of the plurality of light source means is 20 ° to 70 ° with respect to a plane that includes the light emitting point and is perpendicular to the rotation axis of the deflector. Scanning optical device. 各光路に配置された反射部材の数は同一ではないこと、を特徴とする請求項1又は請求項2に記載のレーザー走査光学装置。   3. The laser scanning optical apparatus according to claim 1, wherein the number of reflecting members arranged in each optical path is not the same. 少なくとも一つの光路には第1反射部材、第2反射部材及び第3反射部材が配置されており、第1反射部材と第2反射部材とがコ字型に配置され、第2反射部材と第3反射部材とがZ型に配置され、第1反射部材の法線と第2反射部材の法線とがなす角度が45°以上であり、第2反射部材の法線と第3反射部材の法線とがなす角度が170°以上であること、を特徴とする請求項1ないし請求項3のいずれかに記載のレーザー走査光学装置。   The first reflecting member, the second reflecting member, and the third reflecting member are disposed in at least one optical path, and the first reflecting member and the second reflecting member are disposed in a U-shape, and the second reflecting member and the second reflecting member The three reflecting members are arranged in a Z shape, and the angle formed by the normal line of the first reflecting member and the normal line of the second reflecting member is 45 ° or more, and the normal line of the second reflecting member and the third reflecting member The laser scanning optical apparatus according to any one of claims 1 to 3, wherein an angle formed by the normal line is 170 ° or more.
JP2011183253A 2011-08-25 2011-08-25 Laser scanning optical device Active JP5891652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011183253A JP5891652B2 (en) 2011-08-25 2011-08-25 Laser scanning optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011183253A JP5891652B2 (en) 2011-08-25 2011-08-25 Laser scanning optical device

Publications (2)

Publication Number Publication Date
JP2013044977A JP2013044977A (en) 2013-03-04
JP5891652B2 true JP5891652B2 (en) 2016-03-23

Family

ID=48008919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011183253A Active JP5891652B2 (en) 2011-08-25 2011-08-25 Laser scanning optical device

Country Status (1)

Country Link
JP (1) JP5891652B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877818B2 (en) * 2013-06-27 2016-03-08 シャープ株式会社 Optical scanning apparatus and image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4330489B2 (en) * 2004-05-17 2009-09-16 コニカミノルタビジネステクノロジーズ株式会社 Laser scanner
JP5251571B2 (en) * 2009-02-10 2013-07-31 株式会社リコー Optical scanning device and image forming apparatus
JP2010191292A (en) * 2009-02-19 2010-09-02 Ricoh Co Ltd Optical scanner and image forming apparatus

Also Published As

Publication number Publication date
JP2013044977A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5034053B2 (en) Optical scanning apparatus and image forming apparatus
JP2011039533A (en) Image forming apparatus
US20110052263A1 (en) Optical scanner and image forming apparatus
KR100765780B1 (en) Laser scanning unit and color laser printer employing the same
JP5891652B2 (en) Laser scanning optical device
JP5746512B2 (en) Apparatus for forming an image on a photosensitive surface
KR20170053584A (en) Optical scanning apparatus
JP5511226B2 (en) Scanning optical device and image forming apparatus using the same
US8754920B2 (en) Scanning optical apparatus and image forming apparatus including the same
JP5169337B2 (en) Laser beam scanning device
JP5364969B2 (en) Optical scanning device
JP6439925B2 (en) Optical scanning apparatus and image forming apparatus
US20080158329A1 (en) Light scanning unit and image forming apparatus having the same
JP2018101028A (en) Optical scanner and image forming apparatus using the same
US20080062495A1 (en) Laser scanning unit and image forming apparatus having the same
US8675036B2 (en) Deflection scanner
JP2010054591A (en) Laser beam scanner
US8305673B2 (en) Light scanning unit
JP5423650B2 (en) Optical scanning device
JP5423760B2 (en) Laser scanning optical device
JP2006323278A (en) Optical scanner
JP5056492B2 (en) Laser beam scanning device
JP6477222B2 (en) Optical scanning apparatus and image forming apparatus
JP2004301974A (en) Scanning optical device
JP2013033121A (en) Laser scanning optical device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150821

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160208

R150 Certificate of patent or registration of utility model

Ref document number: 5891652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20160427

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20160602