JP5890730B2 - Welding method - Google Patents

Welding method Download PDF

Info

Publication number
JP5890730B2
JP5890730B2 JP2012086827A JP2012086827A JP5890730B2 JP 5890730 B2 JP5890730 B2 JP 5890730B2 JP 2012086827 A JP2012086827 A JP 2012086827A JP 2012086827 A JP2012086827 A JP 2012086827A JP 5890730 B2 JP5890730 B2 JP 5890730B2
Authority
JP
Japan
Prior art keywords
welding
root gap
gap opening
ratio
opening displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012086827A
Other languages
Japanese (ja)
Other versions
JP2013215757A (en
Inventor
岡田 誠司
誠司 岡田
上田 和哉
和哉 上田
昭弘 山内
昭弘 山内
幸太郎 猪瀬
幸太郎 猪瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
IHI Infrastructure Systems Co Ltd
Original Assignee
IHI Corp
IHI Infrastructure Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp, IHI Infrastructure Systems Co Ltd filed Critical IHI Corp
Priority to JP2012086827A priority Critical patent/JP5890730B2/en
Priority to PCT/JP2013/002322 priority patent/WO2013150793A1/en
Priority to EP13772079.3A priority patent/EP2835206B1/en
Priority to US14/383,481 priority patent/US9623508B2/en
Publication of JP2013215757A publication Critical patent/JP2013215757A/en
Application granted granted Critical
Publication of JP5890730B2 publication Critical patent/JP5890730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0294Consumable guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3026Mn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/0026Arc welding or cutting specially adapted for particular articles or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/23Arc welding or cutting taking account of the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

本発明は、例えば鋼板の突合せ溶接等に用いられるガスシールドアーク溶接方法に関する。   The present invention relates to a gas shielded arc welding method used, for example, for butt welding of steel plates.

近年、交通量の増加や車両重量の増加による既設橋梁の損傷に伴い、補修や補強が行われてきている。また、交通量や車両重量の増加に対応するため、拡幅(車線数の増加)、二等橋(14t車対応)から一等橋(20t車対応)への格上げ等の機能向上が図られてきている。   In recent years, repair and reinforcement have been carried out in accordance with damage to existing bridges due to an increase in traffic volume and vehicle weight. In order to cope with the increase in traffic and vehicle weight, functions such as widening (increasing the number of lanes) and upgrading from second-class bridges (for 14t cars) to first-class bridges (for 20t cars) have been attempted. ing.

一般に、橋梁は工場へ持ち帰ることが不可能であるため、前述の各種施工は橋梁の設置場所で実施される。これらの施工に伴って交通止めを行う場合、地域社会や経済に及ぼす影響を低減するために、比較的交通量が少ない夜間のみに行うか、少なくとも1車線は走行可能とすることが求められる。その結果、施工作業の時間的制約、作業者の安全確保、周辺住民に及ぼす影響(例えば騒音)等の問題が顕著になってきている。   In general, since the bridge cannot be taken back to the factory, the various constructions described above are performed at the bridge installation location. When stopping traffic in connection with these constructions, in order to reduce the influence on the local community and economy, it is necessary to carry out only at night when the traffic volume is relatively low, or at least one lane should be able to travel. As a result, problems such as time constraints on construction work, ensuring worker safety, and effects on surrounding residents (for example, noise) have become prominent.

そこで、交通止めを行わない供用下での施工に対する要望が高まってきている。このような供用下で施工を行う場合、例えば鋼板の接合方法として、溶接接合と高力ボルト接合とがあるが、従来、橋梁については高力ボルト接合が主として用いられてきている。その理由は、供用中の橋梁では走行車両による振動や開先の変位が生じているため、このような条件下で溶接を行った場合、溶接継手の信頼性が保証されないと考えられてきたからである。   Therefore, there is an increasing demand for construction in service without stopping traffic. When construction is performed under such a service, for example, as a method for joining steel plates, there are welding joining and high-strength bolt joining. Conventionally, high-strength bolt joining has been mainly used for bridges. The reason for this is that it has been thought that the reliability of welded joints cannot be guaranteed when welding is performed under such conditions because the bridges in service are subject to vibration and displacement of the groove due to traveling vehicles. is there.

図7は、鋼床版げた橋上を車両が走行している様子を示している。図7に示す橋梁部分は、左車線ブロック11と右車線ブロック12及び13とを含む。左車線ブロック11と右車線ブロック12及び13のそれぞれとが溶接接合されていると共に、右車線ブロック12及び13が互いに溶接接合されている。ここで、左車線ブロック11上を車両15が走行すると、各溶接部に振動や開先の変位が生じる。   FIG. 7 shows a state in which the vehicle is traveling on the steel floor slab bridge. The bridge portion shown in FIG. 7 includes a left lane block 11 and right lane blocks 12 and 13. The left lane block 11 and the right lane blocks 12 and 13 are welded to each other, and the right lane blocks 12 and 13 are welded to each other. Here, when the vehicle 15 travels on the left lane block 11, vibration and groove displacement occur in each welded portion.

ところが、高力ボルト接合でも、荷重作用下、振動下で施工する場合の継手の力学的性能は必ずしも明確になっているわけではない。また、溶接接合と高力ボルト接合とを比較した場合、それぞれの接合法から明らかなように、溶接接合の方が構造的にシンプルで自由度も高く、接合効率も優れている。従って、供用下での溶接が可能となれば、その効果は大きいため、例えば特許文献1には、供用下での溶接方法が提案されている。   However, even in high-strength bolted joints, the mechanical performance of the joint when constructed under load and vibration is not always clear. Further, when comparing the welding joint and the high-strength bolt joint, as is apparent from the respective joining methods, the welding joint is structurally simpler, has a higher degree of freedom, and has superior joining efficiency. Therefore, since the effect is great if welding under service is possible, for example, Patent Document 1 proposes a welding method under service.

特開平6−170539号公報JP-A-6-170539

特許文献1に提案されている溶接方法は、溶接棒を用いた被覆アーク溶接等の溶接施工を前提としている。このような溶接施工を、例えば図7に示すような鋼床版げたの溶接に適用した場合、長距離に亘って連続する溶接部を形成するためには、多数の溶接棒が必要となり、作業効率が悪くなる。また、溶接棒の更新の度に一旦作業を中断することになるため、作業が不連続になることに起因して、溶接部に欠陥が生じる可能性が高くなる。   The welding method proposed in Patent Document 1 is premised on welding work such as covered arc welding using a welding rod. When such welding construction is applied to, for example, welding of a steel floor slab as shown in FIG. 7, a large number of welding rods are required to form a continuous welded portion over a long distance. Inefficiency. In addition, since the operation is temporarily interrupted every time the welding rod is updated, there is a high possibility that a defect occurs in the welded portion due to the discontinuity of the operation.

それに対して、能率の良い溶接法として、アーク点をガスでシールドして溶接を行うガスシールドアーク溶接が知られている。ガスシールドアーク溶接では、1回の溶接施工距離が短い被覆アーク溶接棒等の溶接棒ではなく、1回の溶接施工距離に実質的に制限のないワイヤ等の溶接材料が用いられる。これにより、長距離に亘って連続する溶接部を作業中断なく形成することが可能となる。   On the other hand, gas shielded arc welding, in which welding is performed by shielding arc points with gas, is known as an efficient welding method. In the gas shielded arc welding, a welding material such as a wire that is not substantially limited to one welding operation distance is used instead of a welding electrode such as a covered arc welding rod having a short one welding operation distance. Thereby, it becomes possible to form the welding part which continues over a long distance without work interruption.

しかしながら、被覆アーク溶接とガスシールドアーク溶接とでは、それぞれの溶接メカニズムの違いから、仮に両者の溶接材料における化学組成が同じであったとしても、形成される溶接部の特性は同じにはならない。従って、特許文献1に提案されている溶接方法を、供用下でのガスシールドアーク溶接にそのまま適用することはできない。   However, because of the difference in the welding mechanism between the covering arc welding and the gas shielded arc welding, even if the chemical compositions of the two welding materials are the same, the characteristics of the formed welded portion are not the same. Therefore, the welding method proposed in Patent Document 1 cannot be directly applied to gas shielded arc welding under service.

前記に鑑み、本発明は、供用下でのガスシールドアーク溶接を可能とし、それにより、長距離に亘って連続する溶接部を高強度で効率良く形成できるようにすることを目的とする。   In view of the above, an object of the present invention is to enable gas shielded arc welding in service and thereby to form a welded portion continuous over a long distance with high strength and efficiency.

前記の目的を達成するために、本発明に係る溶接方法は、変動応力下で溶接を行う方法であって、溶接開始前のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位に対応したMn/S比及びMn/Si比を持つ溶接材料を、被覆アーク溶接棒よりも1回の溶接施工距離が長いガスシールドアーク溶接用材料の中から選定して用いる。   In order to achieve the above object, a welding method according to the present invention is a method of performing welding under variable stress, and measures the root gap opening displacement before the start of welding and corresponds to the measured root gap opening displacement. The welding material having the Mn / S ratio and the Mn / Si ratio thus selected is selected from the materials for gas shielded arc welding having a welding distance one time longer than that of the coated arc welding rod.

本発明に係る溶接方法によると、溶接開始前のルートギャップ開口変位の計測結果に基づいて、溶接材料におけるMn/S比及びMn/Si比を決めているため、想定される変動応力下において十分な割れ耐性を持つ溶接材料を選定することができる。従って、ガスシールドアーク溶接による供用下での溶接が可能となるため、長距離に亘って連続する溶接部を高強度で効率良く形成することが可能となる。   According to the welding method of the present invention, the Mn / S ratio and the Mn / Si ratio in the welding material are determined based on the measurement result of the root gap opening displacement before the start of welding. Welding materials with good crack resistance can be selected. Therefore, since welding under gas shield arc welding is possible, it is possible to efficiently form a welded portion continuous over a long distance with high strength.

本発明に係る溶接方法において、溶接時のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位が、前記溶接材料の選定で想定した許容値を超えた場合、該許容値を超えた時刻に形成された溶接部の品質確認を行ってもよい。   In the welding method according to the present invention, the root gap opening displacement at the time of welding is measured, and when the measured root gap opening displacement exceeds the allowable value assumed in the selection of the welding material, the time when the allowable value is exceeded. You may confirm the quality of the welding part formed in this.

このようにすると、現場での溶接施工時にルートギャップ開口変位が許容値を超えて溶接部に品質劣化が生じた場合にも、該劣化箇所を特定して検査及び補修(必要に応じて)を簡単に行うことができる。   In this way, even if the root gap opening displacement exceeds the allowable value and quality degradation occurs in the welded part during welding on site, the degraded part is identified and inspected and repaired (if necessary). It can be done easily.

本発明に係る溶接方法において、前記溶接材料の選定をルートギャップに基づいて行ってもよい。   In the welding method according to the present invention, the welding material may be selected based on a root gap.

このようにすると、溶接開始前のルートギャップ開口変位の計測結果に加えて、ルートギャップ自体も考慮して、より適切な溶接材料の選定を行うことができる。   In this way, in addition to the measurement result of the root gap opening displacement before the start of welding, it is possible to select a more appropriate welding material in consideration of the root gap itself.

本発明によると、供用下でのガスシールドアーク溶接が可能となり、それによって、長距離に亘って連続する溶接部を高強度で効率良く形成することができる。   According to the present invention, it is possible to perform gas shielded arc welding under service, and thereby, a welded portion continuous over a long distance can be efficiently formed with high strength.

図1は、本願出願人らによるトランスバレストレイン試験の対象とした溶接棒の化学組成を示している。FIG. 1 shows the chemical composition of a welding rod that was the subject of the transbarestrain test by the present applicants. 図2は、本願出願人らによるトランスバレストレイン試験により判明した、溶接棒におけるMn/S比及びMn/Si比と割れ耐性との関係を示している。FIG. 2 shows the relationship between the Mn / S ratio and Mn / Si ratio and the cracking resistance of the welding rod, which has been found by the transbarestrain test by the present applicants. 図3(a)及び(b)は、本願発明者らが実施した、供用下でのガスシールドアーク溶接の適用可能性を調べる試験の様子を示している。FIGS. 3A and 3B show a test conducted by the inventors of the present application to examine the applicability of in-service gas shield arc welding. 図4は、図3(a)及び(b)に示す溶接試験に用いた溶接材料の化学組成を示している。FIG. 4 shows the chemical composition of the welding material used in the welding test shown in FIGS. 3 (a) and 3 (b). 図5は、図4に示す溶接材料を用いて、図3(a)及び(b)に示す溶接試験を行った結果を示している。FIG. 5 shows the result of the welding test shown in FIGS. 3A and 3B using the welding material shown in FIG. 図6は、実施形態に係る溶接方法のフローを示している。FIG. 6 shows a flow of the welding method according to the embodiment. 図7は、鋼床版げた橋上を車両が走行している様子を示している。FIG. 7 shows a state in which the vehicle is traveling on the steel floor slab bridge.

(本発明の前提事項)
本願出願人らは、図1に示すような種々の化学組成(単位:wt%)を持つ複数の溶接棒(φ4mm)について、トランスバレストレイン試験を用いて、歪みを加えた際の割れに対する耐性を調査してきた。その結果、溶接棒におけるMn/Si比及びMn/S比の割れに対する影響が大きいことを確認した。
(Premise of the present invention)
The applicants of the present application are resistant to cracking when a strain is applied to a plurality of welding rods (φ4 mm) having various chemical compositions (unit: wt%) as shown in FIG. Have been investigating. As a result, it was confirmed that the effect of the Mn / Si ratio and the Mn / S ratio on the welding rod on the crack was great.

具体的には、図2に示すように、溶接棒におけるMn/S比及びMn/Si比が高くなるに従って、変動荷重下での割れに対する耐性が向上することを確認した。   Specifically, as shown in FIG. 2, it was confirmed that the resistance to cracking under a variable load was improved as the Mn / S ratio and the Mn / Si ratio in the welding rod were increased.

そこで、本願発明者らは、Mn/S比及びMn/Si比が異なる溶接材料(具体的には、被覆アーク溶接棒等の溶接棒よりも1回の溶接施工距離が長いワイヤ等のガスシールドアーク溶接用材料)を用いて、供用下でのガスシールドアーク溶接の適用可能性を調べるために、ルートギャップ(G)及びルートギャップ開口変位(Δδ)を色々変化させながら、溶接試験を行った。   Therefore, the inventors of the present application have proposed a welding material having a different Mn / S ratio and Mn / Si ratio (specifically, a gas shield such as a wire having a longer welding distance than a welding rod such as a coated arc welding rod). In order to investigate the applicability of in-service gas shielded arc welding using a material for arc welding, a welding test was performed while changing the root gap (G) and the root gap opening displacement (Δδ) in various ways. .

具体的には、図3(a)に示すように、厚さTの母材1及び2をルートギャップGで突合せ、図3(b)に示すように、母材1及び2の開先の底部に裏当て3を設け、炭酸ガスを用いてガスシールドアーク溶接を行うことにより、溶接部4を形成して母材1及び2を接合した。   Specifically, as shown in FIG. 3A, the base materials 1 and 2 having a thickness T are abutted at the root gap G, and as shown in FIG. A backing 3 was provided on the bottom, and gas shield arc welding was performed using carbon dioxide gas to form a weld 4 and the base materials 1 and 2 were joined.

また、溶接材料としては、図4に示す化学組成を持つ溶接材料A(Mn/S比=160、Mn/Si比=2.98)及び溶接材料B(Mn/S比=130、Mn/Si比=26)を用いた。   Further, as the welding material, the welding material A (Mn / S ratio = 160, Mn / Si ratio = 2.98) and the welding material B (Mn / S ratio = 130, Mn / Si) having the chemical composition shown in FIG. Ratio = 26) was used.

また、母材1及び2としては、厚さTが16mmの圧延鋼材SM490Aを用いた。また、ルートギャップGを4mm及び10mmの2通りに設定すると共に、各ルートギャップGの値においてルートギャップ開口変位Δδ(溶接前)を0.2mm、0.3mm及び0.4mmの3通りに設定して、溶接試験を行った。ルートギャップ開口変位Δδについては、母材1及び2の開先側の反対側を保持したサーボ機構を用いて母材1及び2を変位させると共に該変位を変位計を用いて測定することにより、前述の所定値に設定した。尚、本溶接試験では、ルートギャップ開口変位Δδの周波数を、走行車両が誘起する振動の周波数に近い3.7Hzに設定した。   Further, as the base materials 1 and 2, a rolled steel material SM490A having a thickness T of 16 mm was used. In addition, the route gap G is set in two ways of 4 mm and 10 mm, and the route gap opening displacement Δδ (before welding) is set in three ways of 0.2 mm, 0.3 mm, and 0.4 mm in each route gap G value. Then, a welding test was conducted. For the root gap opening displacement Δδ, by displacing the base materials 1 and 2 using a servo mechanism that holds the opposite side of the groove side of the base materials 1 and 2, and measuring the displacement using a displacement meter, The predetermined value was set as described above. In this welding test, the frequency of the root gap opening displacement Δδ was set to 3.7 Hz, which is close to the frequency of vibration induced by the traveling vehicle.

図5は、前述の溶接材料を用いた溶接試験の結果を示している。ここで、結果判定は、超音波探傷検査(UT)及び放射線透過検査(RT)により溶接部に割れやブローホール(BH)等の欠陥が生じているかどうかを調べることにより行った。尚、図5において、欠陥が無い場合を○、欠陥が有る場合を×としている。また、エンドタブの設置により防止できる端部割れは、欠陥に含めなかった。   FIG. 5 shows the result of a welding test using the above-described welding material. Here, the result determination was performed by examining whether or not a defect such as a crack or a blow hole (BH) occurred in the welded portion by ultrasonic flaw detection inspection (UT) and radiation transmission inspection (RT). In FIG. 5, the case where there is no defect is indicated by ◯, and the case where there is a defect is indicated by ×. Moreover, the edge crack which can be prevented by installation of an end tab was not included in the defect.

図5に示すように、溶接材料Aを用いた場合、ルートギャップGが一般的な値である4mmであれば、ルートギャップ開口変位Δδが比較的大きい0.4mmであっても、欠陥が生じないという結果が得られた。また、施工における十分なマージンを考慮してルートギャップGを10mmに設定した場合にも、ルートギャップ開口変位Δδが0.2mmであれば、溶接材料Aを用いて欠陥無く溶接可能であった。   As shown in FIG. 5, when the welding material A is used, if the root gap G is 4 mm which is a general value, a defect occurs even if the root gap opening displacement Δδ is 0.4 mm which is relatively large. No results were obtained. Further, even when the root gap G was set to 10 mm in consideration of a sufficient margin in the construction, if the root gap opening displacement Δδ was 0.2 mm, welding was possible without using the welding material A.

一方、溶接材料Bを用いた場合、ルートギャップGが4mmであれば、ルートギャップ開口変位Δδが0.2mmであっても、欠陥は生じないが、ルートギャップGが10mmになると、ルートギャップ開口変位Δδが0.2mmで欠陥が生じた。   On the other hand, when the welding material B is used, if the root gap G is 4 mm, no defect occurs even if the root gap opening displacement Δδ is 0.2 mm. However, if the root gap G is 10 mm, the root gap opening Defects occurred when the displacement Δδ was 0.2 mm.

以上に説明した溶接試験の結果から、本願発明者らは、溶接開始前のルートギャップ開口変位を計測し、該計測結果に対応したMn/S比及びMn/Si比を持つ溶接材料を、被覆アーク溶接棒よりも1回の溶接施工距離が長いガスシールドアーク溶接用材料の中から選定して用いることにより、変動応力下でのガスシールドアーク溶接が可能となることを見出した。また、現場での実際の溶接施工時にもルートギャップ開口変位を計測し、該計測したルートギャップ開口変位が溶接材料選定時に想定した許容値を超えた場合、該許容値を超えた時刻に形成された溶接部の品質確認を行うことによって、劣化箇所を特定して検査及び補修(必要に応じて)を容易に行えることを見出した。さらに、溶接材料選定に際して、溶接開始前のルートギャップ開口変位の計測値に加えて、ルートギャップ自体を考慮することにより、より適切な溶接材料の選定を行うことができることを見出した。   From the results of the welding test described above, the present inventors measured the root gap opening displacement before the start of welding, and coated the welding material having a Mn / S ratio and a Mn / Si ratio corresponding to the measurement results. It has been found that gas shield arc welding under variable stress becomes possible by selecting and using a gas shield arc welding material that has a longer welding distance than an arc welding rod. Also, the root gap opening displacement is measured during actual welding work on site, and when the measured root gap opening displacement exceeds the allowable value assumed when selecting the welding material, it is formed at the time when the allowable value is exceeded. By checking the quality of the welded part, it was found that the deteriorated part can be identified and easily inspected and repaired (if necessary). Furthermore, when selecting a welding material, it has been found that a more appropriate welding material can be selected by considering the route gap itself in addition to the measured value of the root gap opening displacement before the start of welding.

(実施形態)
以下、本発明の一実施形態に係る溶接方法について、図面を参照しながら説明する。本実施形態に係る溶接方法は、前述の「本発明の前提事項」で述べた知見に基づく、供用下(つまり変動応力下)でのガスシールドアーク溶接方法である。
(Embodiment)
Hereinafter, a welding method according to an embodiment of the present invention will be described with reference to the drawings. The welding method according to the present embodiment is a gas shielded arc welding method under service (that is, under fluctuating stress) based on the knowledge described in the above-mentioned “premise of the present invention”.

図6は、本実施形態に係る溶接方法のフロー図である。   FIG. 6 is a flowchart of the welding method according to the present embodiment.

まず、ステップS1において、例えば工事計画等に基づき、溶接対象となる継手の鋼種、形状、寸法等を確認する。   First, in step S1, the steel type, shape, dimensions, etc. of the joint to be welded are confirmed based on, for example, a construction plan.

次に、ステップS2において、ステップS1で確認した継手について、供用時のルートギャップ開口変位Δδ(溶接前)を計測する。   Next, in step S2, the root gap opening displacement Δδ (before welding) at the time of service is measured for the joint confirmed in step S1.

次に、ステップS3において、ステップS2で計測したルートギャップ開口変位Δδに対応可能なMn/S比及びMn/Si比を持つ溶接材料(被覆アーク溶接棒等の溶接棒よりも1回の溶接施工距離が長いワイヤ等のガスシールドアーク溶接用材料)を選定する。具体的には、ルートギャップ開口変位Δδの計測結果に基づき、Δδの最大値(許容値)を設定し、該許容値でも十分な割れ耐性を発揮するMn/S比及びMn/Si比を持つ溶接材料を選定する。   Next, in step S3, a welding material having a Mn / S ratio and a Mn / Si ratio that can correspond to the root gap opening displacement Δδ measured in step S2 (the welding operation is performed once more than a welding rod such as a coated arc welding rod) Select a gas shielded arc welding material such as a long distance wire. Specifically, based on the measurement result of the root gap opening displacement Δδ, the maximum value (allowable value) of Δδ is set, and the Mn / S ratio and Mn / Si ratio exhibiting sufficient crack resistance even with the allowable value. Select the welding material.

例えば工事計画等でルートギャップGが4mm以下と決められている場合、ルートギャップ開口変位Δδの許容値が0.2mmであれば、前述の溶接材料A及びBのいずれも用いることが可能である一方、ルートギャップ開口変位Δδの許容値が0.4mmであれば、前述の溶接材料Aを用いることが可能である。また、ルートギャップ開口変位Δδの許容値が0.4mmを超える場合、該許容値でも十分な割れ耐性を発揮する溶接材料、つまり、前述の溶接材料AよりもMn/S比及びMn/Si比が大きい溶接材料を別途選定して用いる必要がある。   For example, when the route gap G is determined to be 4 mm or less in a construction plan or the like, if the allowable value of the route gap opening displacement Δδ is 0.2 mm, any of the above-described welding materials A and B can be used. On the other hand, if the allowable value of the root gap opening displacement Δδ is 0.4 mm, the above-mentioned welding material A can be used. Further, when the allowable value of the root gap opening displacement Δδ exceeds 0.4 mm, a welding material that exhibits sufficient cracking resistance even at the allowable value, that is, the Mn / S ratio and the Mn / Si ratio than the welding material A described above. It is necessary to select and use a welding material having a large size.

また、ルートギャップGが任意に設定可能である場合は、ルートギャップGも考慮して、溶接材料の選定を行う。例えば、ルートギャップ開口変位Δδの許容値が0.2mmである場合においてルートギャップGを4mmに設定する場合、前述の溶接材料A及びBのいずれも用いることが可能である一方、ルートギャップ開口変位Δδの許容値が同じく0.2mmである場合においてルートギャップGを10mmに設定する場合、前述の溶接材料Aを用いることが可能である。   In addition, when the root gap G can be arbitrarily set, the welding material is selected in consideration of the root gap G. For example, when the allowable value of the root gap opening displacement Δδ is 0.2 mm and the root gap G is set to 4 mm, both of the above-mentioned welding materials A and B can be used, while the root gap opening displacement In the case where the allowable value of Δδ is also 0.2 mm, when the root gap G is set to 10 mm, the above-described welding material A can be used.

次に、ステップS4において、ステップS3で選定した溶接材料を用いて、溶接対象となる継手にガスシールドアーク溶接を実施する。   Next, in step S4, gas shield arc welding is performed on the joint to be welded using the welding material selected in step S3.

以上に説明したように、本実施形態によると、溶接開始前のルートギャップ開口変位Δδの計測結果に基づいて、溶接材料におけるMn/S比及びMn/Si比を決めているため、想定される変動応力下において十分な割れ耐性を持つ溶接材料を選定することができる。従って、ガスシールドアーク溶接による供用下での溶接が可能となるため、長距離に亘って連続する溶接部を高強度で効率良く形成することが可能となる。   As described above, according to the present embodiment, the Mn / S ratio and the Mn / Si ratio in the welding material are determined based on the measurement result of the root gap opening displacement Δδ before the start of welding. It is possible to select a welding material having sufficient crack resistance under variable stress. Therefore, since welding under gas shield arc welding is possible, it is possible to efficiently form a welded portion continuous over a long distance with high strength.

尚、本実施形態において、ステップS4でガスシールドアーク溶接を実施する際に、溶接時のルートギャップ開口変位Δδを計測し、該計測値が、溶接材料の選定で想定した許容値を超えた場合、該許容値を超えた時刻に形成された溶接部の品質確認を行ってもよい。このようにすると、現場での溶接施工時にルートギャップ開口変位Δδが許容値を超えて溶接部に品質劣化が生じた場合にも、該劣化箇所を特定して補強することを簡単に行うことができる。   In this embodiment, when the gas shield arc welding is performed in step S4, the root gap opening displacement Δδ at the time of welding is measured, and the measured value exceeds the allowable value assumed in the selection of the welding material. The quality of the weld formed at the time when the allowable value is exceeded may be checked. In this way, even when the root gap opening displacement Δδ exceeds the allowable value during the welding operation in the field and the quality deteriorates in the welded portion, it is possible to easily identify and reinforce the deteriorated portion. it can.

また、本実施形態において、例えばステップS2のルートギャップ開口変位Δδの計測結果によれば、Δδの許容値が0.4mmを超えているが、選定可能な溶接材料としては、Δδの許容値が0.4mm以下の材料しかない場合、以下のようにしてもよい。すなわち、例えば拘束板の設置や交通規制等を実施することにより、ルートギャップ開口変位Δδの低減を図った後、再度、ステップS2でルートギャップ開口変位Δδの計測を行う。以降、Δδの許容値が0.4mm以下になるまで、前述の拘束条件や規制内容等を順次厳しくしていく。ここで、ルートギャップGが可変である場合は、ルートギャップGを小さくしていってもよい。   In the present embodiment, for example, according to the measurement result of the root gap opening displacement Δδ in step S2, the allowable value of Δδ exceeds 0.4 mm. However, as a selectable welding material, the allowable value of Δδ is When there is only material of 0.4 mm or less, it may be as follows. That is, for example, the route gap opening displacement Δδ is measured again in step S2 after reducing the route gap opening displacement Δδ by, for example, installing a restraint plate or restricting traffic. Thereafter, until the allowable value of Δδ becomes equal to or less than 0.4 mm, the above-described constraint conditions and regulation contents are made stricter sequentially. Here, when the route gap G is variable, the route gap G may be reduced.

また、本実施形態において、溶接対象となる継手の種類、継手となる鋼材の種類や厚さ等は特に限定されるものではない。例えば、SM490Aの強度と同程度又はそれ以下の強度を持つ鋼材、例えばJIS G 3106のSM400A、SM400B、SM490B、SM490YA、SM490YBを厚さ16mm以下で突合せ溶接に用いてもよい。   Moreover, in this embodiment, the kind of joint used as welding object, the kind of steel materials used as a joint, thickness, etc. are not specifically limited. For example, a steel material having a strength comparable to or less than that of SM490A, such as SM400A, SM400B, SM490B, SM490YA, and SM490YB of JIS G 3106 may be used for butt welding with a thickness of 16 mm or less.

また、本実施形態において、ガスシールドアーク溶接に用いる溶接材料におけるMn/S比及びMn/Si比は、特に限定されるものではない。但し、Mn/S比及びMn/Si比が高ければ高いほど、歪みを加えた際の割れに対する耐性は向上するものの、溶接材料に含まれるMn量が多くなるに従って、該材料に要するコストが増大すると共に、溶接時の溶滴の粘度が高くなって溶接部の均一性確保等が困難になる。従って、溶接開始前のルートギャップ開口変位Δδの計測結果に対応可能な範囲でMn/S比及びMn/Si比が低い溶接材料を用いた方がコストや作業性等の点で有利である。また、図1に示す化学組成を持つ溶接棒を用いた本願出願人らによる調査によれば、溶接材料に含まれるC、Si、P、Sの量はなるべく少なくした方が良い。   In the present embodiment, the Mn / S ratio and the Mn / Si ratio in the welding material used for gas shield arc welding are not particularly limited. However, the higher the Mn / S ratio and the Mn / Si ratio, the better the resistance to cracking when strain is applied, but as the amount of Mn contained in the welding material increases, the cost required for the material increases. In addition, the viscosity of the droplets during welding becomes high, and it becomes difficult to ensure the uniformity of the welded portion. Therefore, it is advantageous in terms of cost, workability, and the like to use a welding material having a low Mn / S ratio and Mn / Si ratio within a range that can correspond to the measurement result of the root gap opening displacement Δδ before the start of welding. Further, according to the investigation by the applicants of the present application using a welding rod having the chemical composition shown in FIG. 1, it is preferable to reduce the amounts of C, Si, P, and S contained in the welding material as much as possible.

また、本実施形態において、ガスシールドアーク溶接に用いるシールドガスの種類も特に限定されるものではない。但し、シールドガスにおける不活性ガス(例えばAr)の含有量が高いほど、スパッタ低減等の効果が得られる一方、該不活性ガスの含有量が高くなるに従って、シールドガスに要するコストが増大してしまう。   In the present embodiment, the type of shield gas used for gas shield arc welding is not particularly limited. However, as the content of the inert gas (for example, Ar) in the shield gas is higher, the effect of reducing spatter can be obtained. On the other hand, as the content of the inert gas increases, the cost required for the shield gas increases. End up.

ところで、供用下での溶接施工において多層溶接を行う場合、最も割れが発生しやすいのは初層である一方、2層目以降についてはルートギャップ開口変位Δδが大きく低下する。従って、多層溶接を行う場合、全ての層について本実施形態のガスシールドアーク溶接を行ってもよいし、或いは、例えば初層のみについて本実施形態のガスシールドアーク溶接を行ってもよい。言い換えると、2層目以降については、Mn/S比及びMn/Si比がより小さい溶接材料を用いてもよい。   By the way, when performing multi-layer welding in a welding operation under service, the crack is most likely to occur in the first layer, while the root gap opening displacement Δδ greatly decreases in the second and subsequent layers. Therefore, when performing multilayer welding, you may perform the gas shield arc welding of this embodiment about all the layers, or you may perform the gas shield arc welding of this embodiment only about the first layer, for example. In other words, for the second and subsequent layers, a welding material having a smaller Mn / S ratio and Mn / Si ratio may be used.

また、本実施形態の溶接方法の適用対象は、供用下での溶接施工の要求が高い橋梁に限定されるものではなく、例えば外部環境起因の変動応力を受ける他の鋼構造物、例えば鉄塔や海洋構造物等においても本実施形態の溶接方法を適用することによる効果は大きい。   In addition, the application target of the welding method of the present embodiment is not limited to a bridge that is highly required for in-service welding. For example, other steel structures that are subject to fluctuating stress caused by the external environment, such as a steel tower or the like The effect by applying the welding method of this embodiment is great also in offshore structures and the like.

本発明は、例えば鋼板の突合せ溶接等に用いられるガスシールドアーク溶接方法として有用である。   The present invention is useful as a gas shielded arc welding method used, for example, for butt welding of steel plates.

1 母材
2 母材
3 裏当て
4 溶接部
11 左車線ブロック
12 右車線ブロック
13 右車線ブロック
15 車両
DESCRIPTION OF SYMBOLS 1 Base material 2 Base material 3 Backing 4 Welding part 11 Left lane block 12 Right lane block 13 Right lane block 15 Vehicle

Claims (2)

変動応力下で溶接を行う方法であって、
ルートギャップ4mmにおける溶接開始前のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位に対応したMn/S比が160以上でかつMn/Si比が2.98以上の溶接材料をガスシールドアーク溶接用材料の中から選定する工程と、
供用下における前記ガスシールドアーク溶接用材料による溶接時のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位が、前記溶接材料の選定で想定した許容値0.4mmを超えた場合、該許容値を超えた時刻に形成された溶接部を劣化箇所として特定する工程と、
前記劣化箇所の検査又は補修を行う工程とを含む
ことを特徴とする溶接方法。
A method of welding under variable stress,
Measure the root gap opening displacement before the welding start in the root gap 4 mm, gas the measured root gap opening Mn / S ratio corresponding to displacement and Mn / Si ratio is 160 or more 2.98 or more welding material A process of selecting from shield arc welding materials ;
When the root gap opening displacement at the time of welding with the gas shielded arc welding material in service is measured, and the measured root gap opening displacement exceeds the allowable value 0.4 mm assumed in the selection of the welding material, A process of identifying a weld formed at a time exceeding the allowable value as a deteriorated part;
And a step of inspecting or repairing the deteriorated portion .
変動応力下で溶接を行う方法であって、A method of welding under variable stress,
ルートギャップ10mmにおける溶接開始前のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位に対応したMn/S比が160以上でかつMn/Si比が2.98以上の溶接材料をガスシールドアーク溶接用材料の中から選定する工程と、The root gap opening displacement before the start of welding at the root gap of 10 mm is measured, and a welding material having a Mn / S ratio of 160 or more and a Mn / Si ratio of 2.98 or more corresponding to the measured root gap opening displacement is gas shielded. A process of selecting from arc welding materials;
供用下における前記ガスシールドアーク溶接用材料による溶接時のルートギャップ開口変位を計測し、該計測したルートギャップ開口変位が、前記溶接材料の選定で想定した許容値0.2mmを超えた場合、該許容値を超えた時刻に形成された溶接部を劣化箇所として特定する工程と、Measure the root gap opening displacement at the time of welding with the gas shielded arc welding material under service, and the measured root gap opening displacement exceeds the allowable value 0.2 mm assumed in the selection of the welding material, A process of identifying a weld formed at a time exceeding the allowable value as a deteriorated part;
前記劣化箇所の検査又は補修を行う工程とを含むA step of inspecting or repairing the deteriorated portion.
ことを特徴とする溶接方法。A welding method characterized by the above.
JP2012086827A 2012-04-05 2012-04-05 Welding method Active JP5890730B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012086827A JP5890730B2 (en) 2012-04-05 2012-04-05 Welding method
PCT/JP2013/002322 WO2013150793A1 (en) 2012-04-05 2013-04-03 Welding method
EP13772079.3A EP2835206B1 (en) 2012-04-05 2013-04-03 Method of performing welding under fluctuating stresses
US14/383,481 US9623508B2 (en) 2012-04-05 2013-04-03 Welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012086827A JP5890730B2 (en) 2012-04-05 2012-04-05 Welding method

Publications (2)

Publication Number Publication Date
JP2013215757A JP2013215757A (en) 2013-10-24
JP5890730B2 true JP5890730B2 (en) 2016-03-22

Family

ID=49300296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012086827A Active JP5890730B2 (en) 2012-04-05 2012-04-05 Welding method

Country Status (4)

Country Link
US (1) US9623508B2 (en)
EP (1) EP2835206B1 (en)
JP (1) JP5890730B2 (en)
WO (1) WO2013150793A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346109A (en) * 2016-11-17 2017-01-25 湖北鸿路钢结构有限公司 Welding flux welding method applicable to ship welding line or fillet welding line
JP6923876B2 (en) 2017-03-28 2021-08-25 株式会社ワイテック Front body structure of the car
CN113857707B (en) * 2021-09-22 2023-04-18 中铁宝桥(扬州)有限公司 Welding deviation rectifying method for mounting axis of all-welded polygonal steel tower

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1052869A (en) * 1975-03-18 1979-04-17 Kobe Steel Vertical welding methods
US4803340A (en) * 1986-04-23 1989-02-07 Kawasaki Steel Corp. Covered arc-welding electrode
JPS63157764A (en) * 1986-12-19 1988-06-30 Kawasaki Steel Corp Method and device for initial layer welding under vibration
JPH0677868B2 (en) * 1987-10-01 1994-10-05 川崎製鉄株式会社 Crack repair method for steel structures under fluctuating stress
JPH06170539A (en) * 1992-03-16 1994-06-21 Ishikawajima Harima Heavy Ind Co Ltd Welding method of steel structure in service
JPH05305476A (en) * 1992-04-30 1993-11-19 Nippon Steel Weld Prod & Eng Co Ltd Solid wire for gas shielded arc welding
US5686002A (en) 1996-08-12 1997-11-11 Tri Tool Inc. Method of welding
JP3436142B2 (en) * 1998-07-23 2003-08-11 Jfeスチール株式会社 Gas shielded arc welding wire
JP2001293595A (en) * 2000-04-12 2001-10-23 Daido Steel Co Ltd Arc welding method
JP2003126959A (en) * 2001-10-19 2003-05-08 Mitsubishi Heavy Ind Ltd Field welding method using low transportation temperature welding material and structure welded thereby
JP2009202201A (en) * 2008-02-28 2009-09-10 Katayama Stratec Kk Method for repairing and reinforcing steel structure under service by welding

Also Published As

Publication number Publication date
EP2835206B1 (en) 2017-03-01
WO2013150793A1 (en) 2013-10-10
US20150048055A1 (en) 2015-02-19
JP2013215757A (en) 2013-10-24
US9623508B2 (en) 2017-04-18
EP2835206A4 (en) 2015-11-04
EP2835206A1 (en) 2015-02-11

Similar Documents

Publication Publication Date Title
JP5890730B2 (en) Welding method
KR20210133279A (en) Suspension parts for automobiles
Kueppers et al. Assessment of the fatigue behaviour of welded aluminium joints under multiaxial spectrum loading by a critical plane approach
Wang et al. Attributes of modern linepipes and their implications on girth weld strain capacity
Westin et al. Austenitic stainless steel bismuth-free flux-cored wires for high-temperature applications
JP2009202201A (en) Method for repairing and reinforcing steel structure under service by welding
Wang et al. Integrity management of ground movement hazards
CN109202336B (en) Preparation method of welding material deposited metal SOHIC test piece
Anderson et al. Cyclic testing of moment connections upgraded with weld overlays
Bonnett et al. Giving new life to fatigue life-expired critical details
Joshi et al. A comparative study on application of design codes for prediction of fatigue life of a mining dragline cluster
JP7468460B2 (en) Box welded joint and box welding method having excellent fatigue strength
RU2611609C2 (en) Circumferential welding joint of main pipe, method for fabrication of circumferential welding joint of main pipe and main pipe
Andrews et al. Guidance for mechanized GMAW of onshore pipelines.
Scutelnicu et al. Mechanical behaviour of welded joints achieved by multi-wire submerged arc welding
KR100804548B1 (en) Repair and strengthening method of steel bridge
Guillén et al. Structural Integrity Assessment of the Welded SAE/AISI 1045 Steel for Structural Use
Clubley et al. On the fatigue and fracture of site splice welds at the River Mardle Viaduct
Baas Should Socket Welds be Used in Sour Service Process Environments and What are the Quality Control Requirements?
JPH07204841A (en) Preventing method for bent shape defect of penetration welding bead route toe part provided with asymmetric throat
Devallée et al. High Temperature Carbon Steel Weld Preferential Corrosion
Sieber et al. Weldability of old mild steels in maintenance of historical steel structures
Dorling et al. Pipeline Welding from the Perspective of Safety and Integrity
Cheifet et al. Fitness-for-Service of Heavy Structural Steel Weldments
Sieber et al. 02.06: Weldability of old mild steels within the rehabilitation of historical steel structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160219

R150 Certificate of patent or registration of utility model

Ref document number: 5890730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250