JP5887784B2 - Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part - Google Patents

Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part Download PDF

Info

Publication number
JP5887784B2
JP5887784B2 JP2011203166A JP2011203166A JP5887784B2 JP 5887784 B2 JP5887784 B2 JP 5887784B2 JP 2011203166 A JP2011203166 A JP 2011203166A JP 2011203166 A JP2011203166 A JP 2011203166A JP 5887784 B2 JP5887784 B2 JP 5887784B2
Authority
JP
Japan
Prior art keywords
temperature
boundary
light intensity
image
image data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011203166A
Other languages
Japanese (ja)
Other versions
JP2013064633A (en
Inventor
文夫 松坂
文夫 松坂
山田 雅人
雅人 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011203166A priority Critical patent/JP5887784B2/en
Publication of JP2013064633A publication Critical patent/JP2013064633A/en
Application granted granted Critical
Publication of JP5887784B2 publication Critical patent/JP5887784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は画像分析によって物質の液体から固体へ相変化する状態を検出する相変化検出装置及び温度測定方法及び測定温度校正方法に関するものである。   The present invention relates to a phase change detection device, a temperature measurement method, and a measurement temperature calibration method for detecting a state of phase change of a substance from a liquid to a solid by image analysis.

相変化を伴う物質の温度測定が必要な場合として、例えば溶接があり、溶接では溶接後の冷却速度、熱影響部等が溶接品質に影響し、種々の溶接条件での温度測定が必要である。   As a case where temperature measurement of a substance accompanied by a phase change is necessary, for example, there is welding. In welding, the cooling rate after welding, the heat affected zone, etc. affect the welding quality, and temperature measurement under various welding conditions is necessary. .

相変化を伴う物質温度を測定する場合の、温度を測定する方法として2色測温法がある。2色測温法は、波長の異なる2つの光を用いて同一点の画像を取得し、光強度と測定対象物の放射率から温度を測定するものである。又、放射率は温度の他に測定対象物の状態、固体、液体或は表面状態(表面酸化膜の有無等)等で変化する。2色測温法では、2波長で各画素について温度を光強度と放射率の関数として得ることができる。この時、2波長が近ければ放射率の波長依存性が無視できるほど小さい為、これを利用して光強度の比により測定対象物の温度を測定するものである。   There is a two-color temperature measuring method as a method for measuring the temperature when measuring the temperature of a substance accompanied by a phase change. In the two-color temperature measurement method, images of the same point are acquired using two lights having different wavelengths, and the temperature is measured from the light intensity and the emissivity of the measurement object. In addition to the temperature, the emissivity varies depending on the state of the object to be measured, solid, liquid, or surface state (such as the presence or absence of a surface oxide film). In the two-color temperature measurement method, the temperature can be obtained as a function of light intensity and emissivity for each pixel at two wavelengths. At this time, if the two wavelengths are close, the wavelength dependence of the emissivity is so small that it can be ignored. Therefore, the temperature of the object to be measured is measured based on the ratio of the light intensity.

2色測温法により測定した温度を実際の温度に換算する為には、基準値となる値が必要であり、従来では熱電対等を測定対象物に取付け、実際の温度(以下、真の温度とする)を測定して基準値としていた。この為、真の温度を測定する為の準備、測定に手間が掛っていた。   In order to convert the temperature measured by the two-color temperature measurement method into the actual temperature, a reference value is required. Conventionally, a thermocouple or the like is attached to the object to be measured, and the actual temperature (hereinafter referred to as the true temperature). ) Was measured and used as a reference value. For this reason, it took time and effort to prepare for and measure the true temperature.

尚、特許文献1には、テレビカメラからの映像信号及び放射温度計からの温度信号を画像処理用計算機に入力し、放射温度計の温度信号を用いてテレビカメラの輝度信号を温度に換算し、コークスの温度を算出する構成が開示されている。   In Patent Document 1, a video signal from a television camera and a temperature signal from a radiation thermometer are input to an image processing computer, and the luminance signal of the television camera is converted into a temperature using the temperature signal of the radiation thermometer. A configuration for calculating the temperature of coke is disclosed.

特開平9−256010号公報Japanese Patent Laid-Open No. 9-256010

本発明は斯かる実情に鑑み、測定対象物の相変化を検出し、或は相変化の検出を真の温度の測定に利用し、或は計測温度の校正等に利用しようとするものである。   In view of such circumstances, the present invention is intended to detect a phase change of an object to be measured, or to use the detection of the phase change to measure a true temperature, or to calibrate a measured temperature. .

本発明は、溶融液部を有する測定対象物を撮像し、画像データを出力可能なカメラと、制御演算装置とを具備し、前記カメラは画素の集合体である撮像素子を有し、前記画像データは前記画素の出力によって構成され、前記制御演算装置は前記画像データに基づき液相部と固相部の境界を検出する相変化検出装置に係るものである。   The present invention includes a camera capable of capturing an image of a measurement object having a melt portion and outputting image data, and a control arithmetic device. The camera includes an image sensor that is an aggregate of pixels, and the image The data is constituted by the output of the pixel, and the control arithmetic device relates to a phase change detection device that detects a boundary between a liquid phase part and a solid phase part based on the image data.

又本発明は、前記制御演算装置は、測定対象物の融点温度データを有し、該融点温度データに基づき前記境界の温度を測定する相変化検出装置に係るものである。   Further, the present invention relates to a phase change detection device in which the control arithmetic device has melting point temperature data of a measurement object and measures the boundary temperature based on the melting point temperature data.

又本発明は、前記制御演算装置は、画像上で溶融液部を横断する光強度検出ラインを設定し、該光強度検出ラインに沿った前記画素からの出力に基づき光強度曲線を作成し、該光強度曲線で得られる光強度極小値を示す位置を液相部と固相部の境界と判断する相変化検出装置に係るものである。   In the present invention, the control arithmetic unit sets a light intensity detection line that crosses the melt portion on the image, creates a light intensity curve based on the output from the pixel along the light intensity detection line, The present invention relates to a phase change detection device that determines a position indicating a light intensity minimum value obtained from the light intensity curve as a boundary between a liquid phase part and a solid phase part.

又本発明は、前記制御演算装置は、画像上で溶融液部を横断する光強度検出ラインを複数設定し、液相部と固相部の境界線を求める相変化検出装置に係るものである。   Further, the present invention relates to the phase change detection device in which the control arithmetic device sets a plurality of light intensity detection lines crossing the melt portion on the image and obtains a boundary line between the liquid phase portion and the solid phase portion. .

又本発明は、前記制御演算装置は、画像全体の画素について変化量を検出し、画像全体での変化量の分布を求めることで、振動している部位と静止している部位とを判断し、振動している部位と静止している部位の境界を液相部と固相部の境界と判断する相変化検出装置に係るものである。   According to the present invention, the control arithmetic unit detects a change amount for pixels of the entire image and obtains a distribution of the change amount in the entire image, thereby determining a vibrating part and a stationary part. The present invention relates to a phase change detection device that determines a boundary between a vibrating part and a stationary part as a boundary between a liquid phase part and a solid phase part.

又本発明は、前記制御演算装置は、時系列に複数の画像からそれぞれ液相部と固相部の境界を求め、該境界の経時的な変化に基づき溶融液部の凝固速度を演算する相変化検出装置に係るものである。   Further, according to the present invention, the control arithmetic device obtains a boundary between the liquid phase part and the solid phase part from a plurality of images in time series, and calculates a solidification rate of the melt part based on a change with time of the boundary. This relates to a change detection device.

又本発明は、画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像中の液相部と固相部の境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有する温度測定方法に係るものである。   The present invention also includes a step of imaging the welded portion with a camera capable of outputting image data, a step of detecting a boundary between the liquid phase portion and the solid phase portion in the image based on the image data output by the camera, And a step of identifying the boundary temperature based on the melting point temperature of the material.

又本発明は、2色測温法に於いて、画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像中の液相部と固相部の境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有する温度測定方法に基づき基準温度を測定し、該基準温度に基づき2色測温法で得られた測温結果を校正する測定温度校正方法に係るものである。   In the two-color temperature measurement method, the present invention also includes a step of imaging the welded portion with a camera capable of outputting image data, and a liquid phase portion and a solid phase portion in the image based on the image data output from the camera. A reference temperature is measured based on a temperature measurement method including a step of detecting a boundary of the substrate and a step of specifying the temperature of the boundary based on a melting point temperature of the base material, and obtained by a two-color temperature measurement method based on the reference temperature The present invention relates to a measurement temperature calibration method for calibrating the measured temperature results.

本発明によれば、溶融液部を有する測定対象物を撮像し、画像データを出力可能なカメラと、制御演算装置とを具備し、前記カメラは画素の集合体である撮像素子を有し、前記画像データは前記画素の出力によって構成され、前記制御演算装置は前記画像データに基づき液相部と固相部の境界を検出するので、前記溶融液部の相変化が検出でき、又相変化の境界が検出されることでも測定対象物の融点温度に基づき境界の真の温度が測定できる。   According to the present invention, it comprises a camera capable of imaging a measurement object having a melt portion and outputting image data, and a control arithmetic device, the camera having an image sensor that is an aggregate of pixels, The image data is constituted by the output of the pixel, and the control arithmetic unit detects the boundary between the liquid phase part and the solid phase part based on the image data, so that the phase change of the melt part can be detected, and the phase change The true temperature of the boundary can be measured based on the melting point temperature of the measurement object even when the boundary is detected.

又本発明によれば、画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像中の液相部と固相部の境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有するので、温度センサを設けることなく、溶接部の液相部と固相部の境界の真の温度を測定できる。   According to the invention, the step of imaging the welded portion with a camera capable of outputting image data, the step of detecting the boundary between the liquid phase portion and the solid phase portion in the image based on the image data output by the camera, And a step of specifying the temperature of the boundary based on the melting point temperature of the base material, so that the true temperature of the boundary between the liquid phase portion and the solid phase portion of the welded portion can be measured without providing a temperature sensor.

又本発明によれば、2色測温法に於いて、画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像中の液相部と固相部の境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有する温度測定方法に基づき基準温度を測定し、該基準温度に基づき2色測温法で得られた測温結果を校正するので、温度センサを設けることなく、2色測温法で得られた測温結果を校正することができるという優れた効果を発揮する。   According to the present invention, in the two-color temperature measurement method, the process of imaging the welded portion with a camera capable of outputting image data, and the liquid phase portion in the image based on the image data output from the camera are fixed. A reference temperature is measured based on a temperature measurement method having a step of detecting a boundary of a phase part and a step of specifying a temperature of the boundary based on a melting point temperature of a base material, and a two-color temperature measurement method based on the reference temperature Since the obtained temperature measurement result is calibrated, the temperature measurement result obtained by the two-color temperature measurement method can be calibrated without providing a temperature sensor.

本発明に係る第1の実施例の概略構成図である。It is a schematic block diagram of the 1st Example which concerns on this invention. (A)は、第1の実施例で取得される画像を示す図であり、(B)は該画像から得られる光強度曲線を示す。(A) is a figure which shows the image acquired in the 1st Example, (B) shows the light intensity curve obtained from this image.

以下、図面を参照しつつ本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明に係る実施例の概略構成図であり、図1中、1は本実施例に係る相変化検出装置であり、2は測定対象物である。   FIG. 1 is a schematic configuration diagram of an embodiment according to the present invention. In FIG. 1, reference numeral 1 denotes a phase change detection apparatus according to this embodiment, and reference numeral 2 denotes a measurement object.

又、図1は、溶接が実行されている場合を模式しており、前記測定対象物2は溶接される母材、3は溶接が実行されている場合の溶融プールを示している。尚、図1中、溶接装置は省略している。   FIG. 1 schematically shows a case where welding is being performed, where the measurement object 2 is a base material to be welded, and 3 is a molten pool when welding is being performed. In FIG. 1, the welding apparatus is omitted.

図1中、11はカメラであり、CCD、CMOSセンサ等、多数の画素の集合体である撮像素子12を具備し、静止画像、連続画像のデジタル画像信号を出力する。又、撮像素子12中の基準位置、例えば撮像素子12の中央とカメラ11の光軸とが合致しており、各画素の位置は前記基準位置に対して位置が特定される様になっている。13は制御演算装置であり、前記撮像素子12からの画像信号に基づき種々の処理、演算を実行して相変化、温度測定、計測温度の校正、冷却速度の測定等を実行する。14は表示装置であり、前記カメラ11で撮像した画像、前記制御演算装置13の演算結果等が表示される。   In FIG. 1, reference numeral 11 denotes a camera, which includes an image sensor 12 that is an aggregate of a large number of pixels, such as a CCD and a CMOS sensor, and outputs digital image signals of still images and continuous images. Further, a reference position in the image sensor 12, for example, the center of the image sensor 12 and the optical axis of the camera 11 coincide with each other, and the position of each pixel is specified with respect to the reference position. . Reference numeral 13 denotes a control arithmetic unit that executes various processes and calculations based on the image signal from the image sensor 12 to execute phase change, temperature measurement, calibration of measured temperature, measurement of cooling rate, and the like. Reference numeral 14 denotes a display device, which displays an image captured by the camera 11, a calculation result of the control calculation device 13, and the like.

前記制御演算装置13は、演算処理部(CPU)15、記憶部16、画像処理部17、操作部18を具備しており、前記記憶部16には画像処理を行う為の画像処理プログラム、前記撮像素子12からの画像信号から各画素毎の光強度或は経時的な偏差を算出し、算出した結果を該撮像素子12内の画素の位置情報に関連付ける画像処理プログラム、算出した光強度に基づき光強度曲線を演算し、偏差に基づき測定対象物2の表面の動的変化を演算する演算プログラム、得られた前記光強度曲線或は表面の動的変化に基づき液相−固相の境界を求めるプログラム等のプログラムが格納されている。又、前記記憶部16には、プログラムを実行する為に必要なデータ、例えば、前記測定対象物2の融点の温度等が格納されている。   The control arithmetic unit 13 includes an arithmetic processing unit (CPU) 15, a storage unit 16, an image processing unit 17, and an operation unit 18. The storage unit 16 has an image processing program for performing image processing, Based on the calculated light intensity, an image processing program for calculating the light intensity or temporal deviation for each pixel from the image signal from the image sensor 12 and associating the calculated result with the position information of the pixel in the image sensor 12 A calculation program for calculating a light intensity curve and calculating a dynamic change of the surface of the measurement object 2 based on the deviation, and a boundary between the liquid phase and the solid phase based on the obtained light intensity curve or the dynamic change of the surface. A program such as a desired program is stored. The storage unit 16 stores data necessary for executing the program, for example, the temperature of the melting point of the measurement object 2.

本実施例では、前記カメラ11によって前記溶融プール3及び該溶融プール3を含む周囲を撮像し、撮像して得られた画像データに基づき、相変化が起きている部位を測定する。   In the present embodiment, the camera 11 images the molten pool 3 and the surrounding area including the molten pool 3, and measures a region where a phase change occurs based on image data obtained by imaging.

以下、第1の実施例を説明する。   The first embodiment will be described below.

物質の温度に起因する放射率は、固体と液体とで異なり、液体が凝固すると温度が低下しているにも拘らず、光強度が増加する。従って、画像上、温度が低下している部位で光強度が増大している点を検出すれば、相変化を生じている部位であることを検出できる。   The emissivity due to the temperature of the substance differs between solid and liquid, and when the liquid solidifies, the light intensity increases despite the temperature decreasing. Therefore, if a point where the light intensity is increased at a part where the temperature is reduced is detected on the image, it can be detected that the part is causing the phase change.

前記カメラ11では所定時間間隔で静止画像が撮像され、或は連続画像が撮像され、撮像された画像は、前記画像処理部17を経て前記演算処理部15に入力され、或は該演算処理部15を経て前記記憶部16に格納される。   The camera 11 captures still images at predetermined time intervals, or continuous images, and the captured images are input to the arithmetic processing unit 15 via the image processing unit 17 or the arithmetic processing unit. 15 and stored in the storage unit 16.

図2(A)は、前記カメラ11で撮像した測定対象物2の画像19であり、画像処理の為に前記記憶部16から呼込まれる。尚、図2(A)中、21は母材(即ち固体部)、22は溶融したプール(即ち液体部)を示している。前記演算処理部15は、前記記憶部16に格納したプログラムにより以下の処理を行う。   FIG. 2A shows an image 19 of the measurement object 2 imaged by the camera 11 and is called from the storage unit 16 for image processing. In FIG. 2A, 21 indicates a base material (that is, a solid portion), and 22 indicates a molten pool (that is, a liquid portion). The arithmetic processing unit 15 performs the following processing using a program stored in the storage unit 16.

前記画像19上で、前記プール22を横断する光強度検出ラインA−A′を設定し、画像デ−タから該光強度検出ラインA−A′にある画素の出力信号を抽出する。更に、画素の出力信号と、画素の番地とから前記光強度検出ラインA−A′に沿った光強度曲線を作成する。   On the image 19, a light intensity detection line A-A 'traversing the pool 22 is set, and an output signal of a pixel in the light intensity detection line A-A' is extracted from the image data. Further, a light intensity curve along the light intensity detection line A-A ′ is created from the output signal of the pixel and the address of the pixel.

得られた光強度曲線は、液相と固相の境界部を横断しているので、固相となった部位で光強度が増大する。又、液相部及び固相部ではそれぞれ温度の低下に対応して光強度は低下する。   Since the obtained light intensity curve crosses the boundary between the liquid phase and the solid phase, the light intensity increases at the site where the solid phase is formed. In the liquid phase part and the solid phase part, the light intensity decreases corresponding to the decrease in temperature.

図2(B)は、光強度曲線23を示しており、Xの範囲は前記プール22の表面での光強度であり、液体の温度に対応し、中央(点O)が光強度が最大であり、周辺に向って温度が低下し、光強度も低下する。   FIG. 2 (B) shows a light intensity curve 23. The range of X is the light intensity on the surface of the pool 22, corresponding to the temperature of the liquid, and the center (point O) has the maximum light intensity. Yes, the temperature decreases toward the periphery, and the light intensity also decreases.

更に、前記光強度曲線23上、点Pで光強度が減少から増加に反転しているが、温度が周辺に向って上昇することはないので、表面での放射率が変化していると判断できる。   Further, on the light intensity curve 23, the light intensity is inverted from decrease to increase at the point P, but the temperature does not increase toward the periphery, so it is determined that the emissivity on the surface has changed. it can.

即ち、点Pで液相から固相に相変化していることを示している。換言すると、液相から固相に相変化する点Pが光強度の極小値を示すことになる。   That is, the point P indicates that the phase is changed from the liquid phase to the solid phase. In other words, the point P at which the phase changes from the liquid phase to the solid phase indicates the minimum value of the light intensity.

Yの範囲は、液相から固相に変化している範囲であり、温度は変化していないにも拘らず、光強度が増加する。更に、点Qで2番目の極大値となるが、固相に完全に変化したと考えられる。点Qを超えると(Zの範囲)、完全に固体となるので、放射率は温度に対応し、温度の低下と共に光強度は減少する。   The range of Y is the range where the liquid phase changes to the solid phase, and the light intensity increases even though the temperature does not change. Furthermore, although it becomes the 2nd maximum value at the point Q, it is thought that it changed into the solid phase completely. Beyond the point Q (Z range), it becomes completely solid, so the emissivity corresponds to the temperature, and the light intensity decreases with decreasing temperature.

而して、前記プール22、即ち液体部を横断する光強度検出ラインA−A′を設定し、該光強度検出ラインA−A′に沿った光強度曲線を取得し、該光強度検出ラインA−A′に於ける光強度の極小値の点Pを求めれば、点Pは液相から固相への変化点であることが測定できる。   Thus, the light intensity detection line A-A ′ crossing the pool 22, that is, the liquid part is set, a light intensity curve along the light intensity detection line A-A ′ is obtained, and the light intensity detection line is obtained. If the minimum point P of the light intensity at A-A ′ is obtained, it can be measured that the point P is a change point from the liquid phase to the solid phase.

次に、融点の温度(液体から固体に相変化する温度)は物質に固有であるので、測定対象物2の融点温度を予め測定しておき、前記記憶部16に格納しておけば、前記点Pの位置の温度が、融点温度であることが直ちに測定できる。   Next, since the melting point temperature (temperature at which the phase changes from liquid to solid) is specific to the substance, if the melting point temperature of the measuring object 2 is measured in advance and stored in the storage unit 16, It can be immediately measured that the temperature at the point P is the melting point temperature.

得られた、点Pの温度は、温度測定で得られた計測温度の校正に利用できる。   The obtained temperature at the point P can be used for calibration of the measured temperature obtained by the temperature measurement.

例えば、2色測温法により測定した温度を実際の温度に換算する為の、基準値として利用できる。   For example, it can be used as a reference value for converting the temperature measured by the two-color temperature measurement method into an actual temperature.

次に、連続画像の各フレーム毎に、或は所定時間間隔で取得した静止画像毎に、前記光強度曲線23を算出し、前記点Pの位置の変化を時系列で観察することで、或は前記点Pの位置の経時的な変化量を時間で除することで、凝固点の移動速度、即ち凝固速度が測定できる。尚、前記静止画像の時間間隔は、測定対象物2の状態変化、例えば凝固速度、或は溶接の速度等に追従できる時間間隔が設定される。   Next, the light intensity curve 23 is calculated for each frame of the continuous image or for each still image acquired at a predetermined time interval, and the change in the position of the point P is observed in time series, or By dividing the amount of change of the position of the point P with time by time, the moving speed of the freezing point, that is, the solidifying speed can be measured. The time interval of the still image is set to a time interval that can follow a change in the state of the measurement object 2, for example, a solidification speed or a welding speed.

更に、前記光強度検出ラインA−A′を1本ではなく、例えば30゜間隔で設定することで、前記プール22の輪郭に沿った凝固点を検出でき、凝固ラインとして2次元での移動速度を測定できる。   Furthermore, by setting the light intensity detection line A-A ′ at intervals of, for example, 30 ° instead of one, the solidification point along the contour of the pool 22 can be detected, and the movement speed in two dimensions as a solidification line can be detected. It can be measured.

尚、溶融した金属が凝固する場合の、凝固速度は金属の性質、機械性能に影響を及すことが知られており、溶接時の溶融プール3の凝固速度を測定することで最適な溶接条件を設定できる。   It is known that when the molten metal solidifies, the solidification rate has an effect on the properties and mechanical performance of the metal, and the optimum welding conditions are determined by measuring the solidification rate of the molten pool 3 during welding. Can be set.

又、上記実施例では、画像を一旦、前記記憶部16に格納し、適宜該記憶部16から読込んで画像処理したが、前記カメラ11で取得した画像を前記画像処理部17で直ちに処理して前記光強度曲線23を求め、凝固点、或は凝固ラインをリアルタイムで測定する様にしてもよい。   In the above embodiment, the image is temporarily stored in the storage unit 16 and read from the storage unit 16 as appropriate, and the image processing is performed. However, the image processing unit 17 immediately processes the image acquired by the camera 11. The light intensity curve 23 may be obtained and the freezing point or the freezing line may be measured in real time.

更に、上記実施例では、測定対象物2の表面の光強度に基づき凝固点を測定したが、第2の実施例として、液部が固化する場合の振動を検出して、凝固点或は凝固ラインを検出することができる。   Furthermore, in the above embodiment, the freezing point is measured based on the light intensity of the surface of the measuring object 2, but as a second embodiment, the vibration when the liquid part solidifies is detected and the freezing point or the freezing line is set. Can be detected.

特に、MIG溶接等フィラーメタルを供給する溶接方法では、溶融プール3表面の振動が顕著であり、表面の振動を画像上から検出する。   In particular, in a welding method for supplying filler metal such as MIG welding, the vibration of the surface of the molten pool 3 is significant, and the vibration of the surface is detected from the image.

第2の実施例に於ける構成は、図1に示した第1の実施例と同様である。以下は、図1を参照して説明する。   The configuration in the second embodiment is the same as that of the first embodiment shown in FIG. The following will be described with reference to FIG.

カメラ11から得られる画像データを動画像であれば1フレーム画像毎に、静止画像であれば1画像毎に、全ての画素について変化量を検出し、画像全体での変化量の分布を求めることで、振動している部位と静止している部位の境界を求めることができる。尚、1画素について得られる変化としては、明度、輝度が得られる。   If the image data obtained from the camera 11 is a moving image, for each frame image, if it is a still image, the amount of change is detected for all pixels, and the distribution of the amount of change in the entire image is obtained. Thus, the boundary between the vibrating part and the stationary part can be obtained. Note that brightness and luminance are obtained as changes obtained for one pixel.

或は、予め閾値を設定しておき、閾値より少ない変位では静止、閾値より大きい変位では振動と判断して静止と振動の境界を求めてもよい。或は、変位を各画素ではなく、所定画素数毎、例えば10×10画素を一単位として、単位毎に変化量を求めて振動の有無を検出してもよい。   Alternatively, a threshold value may be set in advance, and a boundary between the stationary state and the vibration may be obtained by determining that the displacement is smaller than the threshold value and stationary, and that the displacement larger than the threshold value is vibration. Alternatively, the presence / absence of vibration may be detected by determining the amount of change for each unit, not for each pixel but for each predetermined number of pixels, for example, 10 × 10 pixels as a unit.

上記した様に、本発明では液相から固相に変化する際の凝固点、凝固ラインを検出でき、更に凝固速度を測定できるが、測定された凝固速度に基づき凝固速度の制御を行ってもよい。   As described above, in the present invention, it is possible to detect a freezing point and a solidification line when changing from a liquid phase to a solid phase and further measure a solidification rate. However, the solidification rate may be controlled based on the measured solidification rate. .

例えば、鋳型に湯を注入し、凝固させる場合に、鋳型の形状により速く凝固する部分と遅く凝固する部分が生じる。凝固速度が速い部分と遅い部分が混在すると品質の不均一が生じる可能性があり、例えば第1の実施例を用いて、凝固ラインを検出し、凝固速度を測定することで、凝固速度の速い部分については加熱を行い、凝固速度を遅らせる等し、凝固速度を全体で均一化することができる。   For example, when hot water is poured into a mold and solidified, a part that solidifies faster and a part that solidifies later occur depending on the shape of the mold. If a portion having a high solidification rate is mixed with a portion having a low solidification rate, non-uniform quality may occur. For example, by using the first embodiment, the solidification line is detected and the solidification rate is measured. The portion can be heated, and the solidification rate can be made uniform by delaying the solidification rate.

又本発明を2色測温法により測定した温度を実際の温度に換算する為の、基準値となる真の温度を測定する方法、及び2色測温法により測定した温度を実際の温度に校正する方法として実施することができる。   In addition, the present invention converts the temperature measured by the two-color temperature measurement method into the actual temperature, a method for measuring the true temperature as a reference value, and the temperature measured by the two-color temperature measurement method as the actual temperature. It can be implemented as a calibration method.

2色測温法では、測定対象物2について波長の異なる光線で2種類の画像を取得するが、取得したいずれか一方の画像に基づき、本発明を実施して液相、固相の境界を検出し、測定対象物2の融点温度に基づき境界の温度を特定し、特定した温度を基準温度として2色測温法で得られた温度を校正することができる。   In the two-color temperature measurement method, two types of images are acquired for the measurement object 2 with light beams having different wavelengths. Based on one of the acquired images, the present invention is implemented to determine the boundary between the liquid phase and the solid phase. It is possible to detect and identify the boundary temperature based on the melting point temperature of the measurement object 2, and calibrate the temperature obtained by the two-color temperature measurement method using the identified temperature as a reference temperature.

2色測温法に本発明を実施した場合は、基準温度を測定する為の温度検出器を別途設けることなく、基準温度が簡便に測定でき装置コストの低減、測定作業の簡易化が図れる。   When the present invention is applied to the two-color temperature measuring method, the reference temperature can be easily measured without separately providing a temperature detector for measuring the reference temperature, and the apparatus cost can be reduced and the measurement work can be simplified.

尚、2色測温法にて2波長で得られた画像それぞれについて、液相、固相の境界を検出し、得られた2つの検出結果を平均化する等して測定精度を向上させてもよい。   For each image obtained at two wavelengths by the two-color temperature measurement method, the boundary between the liquid phase and the solid phase is detected, and the obtained two detection results are averaged to improve the measurement accuracy. Also good.

1 相変化検出装置
2 測定対象物
3 溶融プール
11 カメラ
12 撮像素子
13 制御演算装置
14 表示装置
15 演算処理部
16 記憶部
17 画像処理部
18 操作部
19 画像
21 母材
22 プール
23 光強度曲線
DESCRIPTION OF SYMBOLS 1 Phase change detection apparatus 2 Measurement object 3 Molten pool 11 Camera 12 Image sensor 13 Control arithmetic device 14 Display apparatus 15 Arithmetic processing part 16 Storage part 17 Image processing part 18 Operation part 19 Image 21 Base material 22 Pool 23 Light intensity curve

Claims (7)

溶融液部を有する測定対象物を撮像し、画像データを出力可能なカメラと、前記測定対象物の融点温度データを有する制御演算装置とを具備し、前記カメラは画素の集合体である撮像素子を有し、前記画像データは前記画素の出力によって構成され、前記制御演算装置は前記画像データに基づき画像上で前記溶融液部を横断する光強度検出ラインを設定し、該光強度検出ラインに沿った前記画素からの出力に基づき光強度曲線を作成し、該光強度曲線で得られる光強度極小値を示す位置を液相部と固相部の境界と判断し、前記融点温度データに基づき前記境界の温度を測定することを特徴とする相変化検出装置。 An imaging device comprising: a camera capable of imaging a measurement object having a melt portion and outputting image data; and a control arithmetic device having melting point temperature data of the measurement object , wherein the camera is an aggregate of pixels. And the image data is constituted by the output of the pixel, and the control arithmetic unit sets a light intensity detection line across the melt portion on the image based on the image data, and the light intensity detection line A light intensity curve is created based on the output from the pixels along, and the position indicating the light intensity minimum value obtained by the light intensity curve is determined as the boundary between the liquid phase part and the solid phase part, and based on the melting point temperature data A phase change detection device for measuring a temperature of the boundary . 前記制御演算装置は、画像上で溶融液部を横断する光強度検出ラインを複数設定し、液相部と固相部の境界線を求める請求項1の相変化検出装置。 The phase change detection device according to claim 1, wherein the control arithmetic device sets a plurality of light intensity detection lines crossing the melt portion on the image to obtain a boundary line between the liquid phase portion and the solid phase portion. 溶融液部を有する測定対象物を撮像し、画像データを出力可能なカメラと、前記測定対象物の融点温度データを有する制御演算装置とを具備し、前記カメラは画素の集合体である撮像素子を有し、前記画像データは前記画素の出力によって構成され、前記制御演算装置は前記画像データに基づき画像全体の前記画素について変化量を検出し、画像全体での変化量の分布を求めることで、振動している部位と静止している部位とを判断し、振動している部位と静止している部位の境界を液相部と固相部の境界と判断し、前記融点温度データに基づき前記境界の温度を測定することを特徴とする相変化検出装置。 An imaging device comprising: a camera capable of imaging a measurement object having a melt portion and outputting image data; and a control arithmetic device having melting point temperature data of the measurement object , wherein the camera is an aggregate of pixels. The image data is constituted by the output of the pixel, and the control arithmetic unit detects a change amount for the pixel of the entire image based on the image data, and obtains a distribution of the change amount in the entire image. Determining the vibrating part and the stationary part, determining the boundary between the vibrating part and the stationary part as the boundary between the liquid phase part and the solid phase part, and based on the melting point temperature data A phase change detection device for measuring a temperature of the boundary . 前記制御演算装置は、時系列に複数の画像からそれぞれ液相部と固相部の境界を求め、該境界の経時的な変化に基づき溶融液部の凝固速度を演算する請求項1〜請求項3のいずれかの相変化検出装置。 The control arithmetic unit, when each seeking the boundaries of the liquid phase and the solid phase portion of a plurality of images in sequence, claims 1 to calculating the solidification rate of the melt portion based on the temporal change of the boundary 4. The phase change detection device according to any one of 3 ). 画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像上で溶融液部を横断する光強度検出ラインを設定し、該光強度検出ラインに沿った画素からの出力に基づき光強度曲線を作成し、該光強度曲線で得られる光強度極小値を示す位置を液相部と固相部の境界と判断し、画像中の前記液相部と前記固相部の前記境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有することを特徴とする温度測定方法。 The step of imaging the welded portion with a camera capable of outputting image data, and setting a light intensity detection line that crosses the melted portion on the image based on the image data output by the camera , along the light intensity detection line was created on the basis of light intensity curve of an output from a pixel, the position of an optical intensity minimum value obtained by the optical intensity curve is determined that the boundary between liquid phase and solid phase portion, and the liquid phase portion in the image temperature measurement method comprising: the step of detecting the boundary of the solid phase portion, and a step of identifying the temperature of the boundary on the basis of the melting point temperature of the base material. 画像データを出力可能なカメラにより溶接部を撮像する工程と、前記カメラにより出力される画像データに基づき画像全体の画素について変化量を検出し、画像全体での変化量の分布を求めることで、振動している部位と静止している部位とを判断し、振動している部位と静止している部位の境界を液相部と固相部の境界と判断し、画像中の前記液相部と前記固相部の前記境界を検出する工程と、母材の融点温度に基づき前記境界の温度を特定する工程とを有することを特徴とする温度測定方法。 By imaging the welded portion with a camera capable of outputting image data, and detecting the amount of change for the pixels of the entire image based on the image data output by the camera , and obtaining the distribution of the amount of change over the entire image, determining a portion which is stationary with sites oscillating, the boundaries of the site which is stationary with sites oscillating determines the boundary of the liquid phase and the solid phase portion, the liquid phase portion of the image wherein the step of detecting the boundary of the solid phase portion, the temperature measuring method characterized by a step of identifying the temperature of the boundary on the basis of the melting point temperature of the base material and. 2色測温法に於いて、請求項5又は請求項6の温度測定方法に基づき基準温度を測定し、該基準温度に基づき2色測温法で得られた測温結果を校正することを特徴とする測定温度校正方法。 In the two-color temperature measurement method, the reference temperature is measured based on the temperature measurement method of claim 5 or claim 6 , and the temperature measurement result obtained by the two-color temperature measurement method is calibrated based on the reference temperature. A characteristic measuring temperature calibration method.
JP2011203166A 2011-09-16 2011-09-16 Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part Active JP5887784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011203166A JP5887784B2 (en) 2011-09-16 2011-09-16 Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011203166A JP5887784B2 (en) 2011-09-16 2011-09-16 Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part

Publications (2)

Publication Number Publication Date
JP2013064633A JP2013064633A (en) 2013-04-11
JP5887784B2 true JP5887784B2 (en) 2016-03-16

Family

ID=48188270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011203166A Active JP5887784B2 (en) 2011-09-16 2011-09-16 Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part

Country Status (1)

Country Link
JP (1) JP5887784B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI819402B (en) 2020-12-22 2023-10-21 財團法人工業技術研究院 System and method for monitoring and controlling multi-phase condition of reactant in manufacturing process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2094429B9 (en) * 2006-11-04 2017-08-16 TRUMPF Werkzeugmaschinen GmbH + Co. KG Method and device for process monitoring during the working of a material

Also Published As

Publication number Publication date
JP2013064633A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Seppala et al. Infrared thermography of welding zones produced by polymer extrusion additive manufacturing
Cheng et al. Melt pool sensing and size analysis in laser powder-bed metal additive manufacturing
JP4913264B2 (en) Material defect detection method and system
JP2016540895A (en) Method for monitoring the energy density of a laser beam by image analysis and corresponding apparatus
CN103134599A (en) Method and system for real-time monitoring of molten bath state in direct molding process of laser metal
US20190134709A1 (en) Correction of non-imaging thermal measurement devices
CN108856664A (en) A kind of conticaster crystallizer automatic slag system and control method
JP2018004918A5 (en)
JP2005016991A (en) Infrared structure diagnosis system
JP2015094899A5 (en)
JP6931548B2 (en) Information processing equipment, temperature measurement system, information processing equipment control method, and control program
Cheng et al. Melt pool dimension measurement in selective laser melting using thermal imaging
JP2012247381A (en) Device for measuring temperature of weld zone
JP5887784B2 (en) Phase change detecting device, temperature measuring method and measuring temperature calibration method for measuring object having molten liquid part
JP6318853B2 (en) Temperature calibration method and temperature calibration apparatus
JP5979065B2 (en) Temperature measuring apparatus and temperature measuring method
JP5920277B2 (en) Temperature measuring apparatus and temperature measuring method
KR102098770B1 (en) Apparatus and method of managing image for measuring height of molten streel in electric furnace
JP6689650B2 (en) Infrared imaging device
JP5515080B2 (en) Temperature measuring device for moving objects
JP2007101326A (en) Method and instrument for measuring ductility value of metal material
JP2010016650A5 (en)
JP2003260551A (en) Method for measuring dimension of continuous cast piece
KR101638882B1 (en) Method and apparatus for maintain image brightness of ultrahigh temperature object
JPH09192794A (en) Production of rapid cooled metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R151 Written notification of patent or utility model registration

Ref document number: 5887784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250