JP5886113B2 - Method for producing monocarboxylic anhydride - Google Patents

Method for producing monocarboxylic anhydride Download PDF

Info

Publication number
JP5886113B2
JP5886113B2 JP2012092823A JP2012092823A JP5886113B2 JP 5886113 B2 JP5886113 B2 JP 5886113B2 JP 2012092823 A JP2012092823 A JP 2012092823A JP 2012092823 A JP2012092823 A JP 2012092823A JP 5886113 B2 JP5886113 B2 JP 5886113B2
Authority
JP
Japan
Prior art keywords
acid
catalyst
reaction
anhydride
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012092823A
Other languages
Japanese (ja)
Other versions
JP2013221006A (en
Inventor
直輝 大鑄
直輝 大鑄
鈴木 叙芳
叙芳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2012092823A priority Critical patent/JP5886113B2/en
Publication of JP2013221006A publication Critical patent/JP2013221006A/en
Application granted granted Critical
Publication of JP5886113B2 publication Critical patent/JP5886113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、モノカルボン酸を原料とするモノカルボン酸無水物の製造方法に関する。更に詳しくは、界面活性剤などの中間原料として好適に用いられるモノカルボン酸無水物の製造方法に関する。   The present invention relates to a method for producing a monocarboxylic acid anhydride using a monocarboxylic acid as a raw material. More specifically, the present invention relates to a method for producing a monocarboxylic acid anhydride that is suitably used as an intermediate material such as a surfactant.

カルボン酸を原料として対応する酸無水物を製造する方法としては、無水酢酸、塩化チオニル、オキシ塩化リン等の脱水剤を用いる方法が良く知られているが、これらの方法は脱水剤を化学量論量で用いる必要があり、また、脱水剤の残渣や中和によって生成する塩等の大量の副生物を除去する必要があるため、経済的ではない。   As a method for producing a corresponding acid anhydride using carboxylic acid as a raw material, methods using a dehydrating agent such as acetic anhydride, thionyl chloride, phosphorus oxychloride, etc. are well known. It is not economical because it is necessary to use a stoichiometric amount and to remove a large amount of by-products such as a residue of a dehydrating agent and a salt generated by neutralization.

一方、脱水剤を用いずに、カルボン酸から直接脱水してカルボン酸無水物を得る方法も知られているが、これは一般に高温を必要とするため、多量のエネルギーを消費する。そこでこの問題の解決策として、脱水反応に触媒を用いる方法が提案されている。   On the other hand, a method is also known in which a carboxylic acid anhydride is obtained by directly dehydrating from a carboxylic acid without using a dehydrating agent. However, since this generally requires a high temperature, a large amount of energy is consumed. Therefore, as a solution to this problem, a method using a catalyst for the dehydration reaction has been proposed.

例えば特許文献1には、イタコン酸の脱水及び異性化反応によりシトラコン酸無水物を得る反応において、アルカリ金属硫酸塩やアルカリ金属二水素リン酸塩を用いる方法が開示されている。また、特許文献2には同じくイタコン酸から無水シトラコン酸を得る反応において、酸のアミン塩等を触媒として用いる方法が開示されている。さらに非特許文献1には、ジカルボン酸の環状無水物の合成において、触媒としてアルミニウム置換モンモリロナイト等の粘土鉱物を用いる方法が開示されている。   For example, Patent Document 1 discloses a method of using an alkali metal sulfate or alkali metal dihydrogen phosphate in a reaction for obtaining citraconic anhydride by dehydration and isomerization of itaconic acid. Similarly, Patent Document 2 discloses a method of using an acid amine salt or the like as a catalyst in a reaction for obtaining citraconic anhydride from itaconic acid. Furthermore, Non-Patent Document 1 discloses a method of using a clay mineral such as aluminum-substituted montmorillonite as a catalyst in the synthesis of a cyclic anhydride of a dicarboxylic acid.

しかしながら、上記の例はすべて、もともと無触媒でも比較的容易に酸無水物が得られるジカルボン酸の分子内脱水による環状酸無水物の製造方法に関するものであり、モノカルボン酸の無水物の製造には適用できない。   However, all of the above examples relate to a method for producing a cyclic acid anhydride by intramolecular dehydration of a dicarboxylic acid, which can be obtained with relative ease even without a catalyst. Is not applicable.

他方、特許文献3にはモノカルボン酸の脱水反応に、触媒としてパラジウムやコバルト等の遷移金属の酢酸塩を用いる方法が開示されている。しかしながら、特許文献3で用いる触媒の遷移金属は高価であり、また短鎖のオクタン酸では30%程度の収率があるものの、比較的鎖長の長いラウリン酸においては収率が低く(300mmolのラウリン酸から14-16mmolの酸無水物)、より長鎖の脂肪酸では収率はさらに悪化するものと考えられる。   On the other hand, Patent Document 3 discloses a method of using a transition metal acetate such as palladium or cobalt as a catalyst in the dehydration reaction of a monocarboxylic acid. However, although the transition metal of the catalyst used in Patent Document 3 is expensive and has a yield of about 30% for short-chain octanoic acid, the yield is low for lauric acid having a relatively long chain length (300 mmol). 14-16 mmol acid anhydride from lauric acid), longer chain fatty acids, the yield is expected to be even worse.

米国特許第2966498号明細書US Pat. No. 2,966,498 特開平9−132572号公報JP-A-9-132572 米国特許第4477382号明細書U.S. Pat. No. 4,477,382 Richard W. McCABE他, “Clay- and Zeolite-catalysed Cyclic Anhydride Formation”, J. Chem. Research, 1985, 356-357Richard W. McCABE et al., “Clay- and Zeolite-catalysed Cyclic Anhydride Formation”, J. Chem. Research, 1985, 356-357

本発明は、高価な触媒を用いることなしに、モノカルボン酸の酸無水物を経済的に製造可能な方法を提供することを課題としている。   An object of the present invention is to provide a method capable of economically producing a monocarboxylic acid anhydride without using an expensive catalyst.

本発明者らはかかる方法の反応条件について種々検討した結果、特定の酸触媒を用いて特定の温度で反応を行うことにより、上記課題を解決し得ることを見出した。   As a result of various studies on the reaction conditions of such a method, the present inventors have found that the above-described problems can be solved by performing a reaction at a specific temperature using a specific acid catalyst.

すなわち本発明は、炭素数10〜22のモノカルボン酸を、酸触媒の存在下に、150℃〜300℃の反応温度で無水物化反応させる、モノカルボン酸無水物の製造方法であって、
前記酸触媒が、硫酸、燐酸、燐タングステン酸、パラトルエンスルホン酸、ゼオライト、粘土鉱物、アルミナ、及び硫酸化ジルコニアからなる群から選ばれる1種または2種以上である、モノカルボン酸無水物の製造方法
を提供するものである。
That is, the present invention is a method for producing a monocarboxylic acid anhydride, in which a monocarboxylic acid having 10 to 22 carbon atoms is subjected to an anhydride reaction at a reaction temperature of 150 ° C. to 300 ° C. in the presence of an acid catalyst,
Monocarboxylic acid anhydride, wherein the acid catalyst is one or more selected from the group consisting of sulfuric acid, phosphoric acid, phosphotungstic acid, paratoluenesulfonic acid, zeolite, clay mineral, alumina, and sulfated zirconia. A manufacturing method is provided.

本発明の製造方法によれば、界面活性剤等の中間原料として好適に用いられるモノカルボン酸無水物を、従来のように高価な触媒を用いることなく、経済的に製造することができる。また本発明の製造方法においては反応が容易に進行するため、水と沸点の低い共沸混合物を形成するような溶媒を用いなくとも、カルボン酸無水物を製造することができる。また、比較的低温で反応できることから、経済的にも環境的にも有利である。   According to the production method of the present invention, it is possible to economically produce a monocarboxylic anhydride that is suitably used as an intermediate raw material such as a surfactant without using an expensive catalyst as in the prior art. Further, in the production method of the present invention, the reaction proceeds easily, so that a carboxylic acid anhydride can be produced without using a solvent that forms an azeotropic mixture with water having a low boiling point. Moreover, since it can react at a comparatively low temperature, it is economically and environmentally advantageous.

また特に、触媒として固体触媒を用いた場合の本発明の方法によれば、系中に可溶性の夾雑物がない状態で酸無水物が得られるため、次いで得られた酸無水物を脱カルボニル化して対応するオレフィンを製造するといった、他の反応を組み合わせて実施することができる。   In particular, according to the method of the present invention when a solid catalyst is used as a catalyst, an acid anhydride is obtained without any soluble impurities in the system. Other reactions, such as producing the corresponding olefins.

本発明の特定の酸触媒がモノカルボン酸の無水物化反応を促進する理由は明らかではないが、酸触媒による酸無水物化はプロトン付加と脱離が協奏的に進行する反応であり、特に本発明に用いる酸触媒が固体酸触媒の場合は、固体酸点の距離が適当であり、複数のサイトで協奏的にプロトン付加・脱付加が行われることが一因と考えられる。   The reason why the specific acid catalyst of the present invention promotes the monocarboxylic acid anhydride reaction is not clear, but acid anhydride-induced acid catalysis is a reaction in which proton addition and elimination proceed in concert, and in particular, the present invention. When the acid catalyst used in the step is a solid acid catalyst, the distance between the solid acid points is appropriate, and it is considered that proton addition / deaddition is performed in concert at a plurality of sites.

本発明に用いられる炭素数10〜22のモノカルボン酸の構造は特に限定されず、飽和体でも不飽和体でも、一部環状になったものでも、ヘテロ原子を含むものであってもよいが、飽和モノカルボン酸が好ましく、直鎖飽和モノカルボン酸がより好ましい。   The structure of the monocarboxylic acid having 10 to 22 carbon atoms used in the present invention is not particularly limited, and may be saturated, unsaturated, partially cyclic, or contain a heteroatom. Saturated monocarboxylic acids are preferred, and linear saturated monocarboxylic acids are more preferred.

本発明に用いられるモノカルボン酸は、炭素数10以上22以下が好ましく、炭素数14以上20以下がより好ましく、炭素数16以上18以下がさらに好ましい。   The monocarboxylic acid used in the present invention preferably has 10 to 22 carbon atoms, more preferably 14 to 20 carbon atoms, and still more preferably 16 to 18 carbon atoms.

モノカルボン酸の具体例としては、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、エイコサン酸、ベヘン酸、10−ウンデセン酸、オレイン酸、2,4−ヘキサデカジエン酸、6−オクタデシン酸、ヒドノカルピン酸、ゴルリン酸、リシノール酸等が挙げられる。   Specific examples of monocarboxylic acids include capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, eicosanoic acid, behenic acid, 10-undecenoic acid, oleic acid, 2,4-hexadecadienoic acid, 6-octadecin Examples thereof include acids, hydnocarpic acid, gol phosphoric acid, and ricinoleic acid.

本発明において用いる触媒は、硫酸、燐酸、燐タングステン酸、パラトルエンスルホン酸、ゼオライト、粘土鉱物、アルミナ、及び硫酸化ジルコニアから選ばれる1種または2種以上の酸触媒である。反応速度の観点からは、硫酸、粘土鉱物、アルミナ、硫酸化ジルコニアがより好ましく、活性白土のような粘土鉱物や、硫酸化ジルコニアがさらに好ましい。また、低温における反応性の観点からは、ゼオライトが特に好ましい。   The catalyst used in the present invention is one or more acid catalysts selected from sulfuric acid, phosphoric acid, phosphotungstic acid, paratoluenesulfonic acid, zeolite, clay mineral, alumina, and sulfated zirconia. From the viewpoint of reaction rate, sulfuric acid, clay mineral, alumina and sulfated zirconia are more preferable, and clay mineral such as activated clay and sulfated zirconia are more preferable. Also, zeolite is particularly preferable from the viewpoint of reactivity at low temperatures.

触媒除去等のハンドリング性の観点からは、濾過、遠心分離等で容易に除去できる固体酸触媒が好ましい。なお、ここで固体酸触媒とは、反応系に対して実質的に不溶であるものを指し、ゼオライト、粘土鉱物、アルミナ、硫酸化ジルコニアからなる群から選ばれる1種または2種以上が好ましく用いられる。   From the viewpoint of handling properties such as catalyst removal, a solid acid catalyst that can be easily removed by filtration, centrifugation, or the like is preferable. Here, the solid acid catalyst refers to a catalyst that is substantially insoluble in the reaction system, and one or more selected from the group consisting of zeolite, clay mineral, alumina, and sulfated zirconia are preferably used. It is done.

硫酸としては濃硫酸が好適に用いられるが、ハンドリング性向上の観点から、適当な濃度に希釈された水溶液を使用し、後で水を除いてもよい。   Concentrated sulfuric acid is preferably used as the sulfuric acid, but from the viewpoint of improving handling properties, an aqueous solution diluted to an appropriate concentration may be used, and water may be removed later.

燐酸としては正リン酸、メタリン酸、ポリリン酸等を用いることができる。この場合もハンドリング性向上の観点から、適当な濃度に希釈された水溶液を使用して、後で水を除いてもよい。   As phosphoric acid, orthophosphoric acid, metaphosphoric acid, polyphosphoric acid and the like can be used. Also in this case, from the viewpoint of improving handling properties, an aqueous solution diluted to an appropriate concentration may be used, and water may be removed later.

ゼオライトは分子サイズの空孔を多数有するアルミノケイ酸化合物であり、特定の合成ゼオライトはモレキュラーシーブとしても知られている。本発明の方法においては、3A、4A、Y、13X、ZSM−5等のものが好適に用いられるが、反応性の観点からはY型のものが好ましい。ゼオライトの形状としては、1〜100μmの粉体状、100〜1000μmの粒状、あるいはニードル、ペレット等の成形体が好適に用いられる。   Zeolite is an aluminosilicate compound with many molecular-sized pores, and certain synthetic zeolites are also known as molecular sieves. In the method of the present invention, those of 3A, 4A, Y, 13X, ZSM-5 and the like are suitably used, but those of Y type are preferred from the viewpoint of reactivity. As the shape of the zeolite, a molded body such as a powder of 1 to 100 μm, a particle of 100 to 1000 μm, or a needle or a pellet is preferably used.

粘土鉱物としては、活性白土、モンモリロナイト、ベントナイト等のスメクタイト類、カオリナイト等が挙げられ、反応性の観点から活性白土、モンモリロナイトが好ましい。粘土鉱物の粒径に特に制限はないが、通常0.1μm〜1mmである。触媒活性の向上のために鉱酸等で処理したり、反応系への分散性向上のために有機化処理をしたものであってもよい。   Examples of the clay mineral include smectites such as activated clay, montmorillonite and bentonite, kaolinite and the like, and activated clay and montmorillonite are preferred from the viewpoint of reactivity. Although there is no restriction | limiting in particular in the particle size of a clay mineral, Usually, they are 0.1 micrometer-1 mm. It may be treated with a mineral acid or the like for improving catalytic activity, or may be subjected to organic treatment for improving dispersibility in the reaction system.

硫酸化ジルコニアは、ジルコニアに適量の硫酸を含浸させた後、焼成して得られる。好ましい硫酸の処理量はジルコニアに対して1〜100質量%であり、焼成温度は300〜800℃である。   Sulfated zirconia is obtained by impregnating zirconia with an appropriate amount of sulfuric acid and then baking. A preferable treatment amount of sulfuric acid is 1 to 100% by mass with respect to zirconia, and a firing temperature is 300 to 800 ° C.

本発明において、酸触媒の使用量は、モノカルボン酸に対して0.001〜100質量%が好ましく、0.1〜10質量%がより好ましく、1〜5質量%がさらに好ましい。   In this invention, 0.001-100 mass% is preferable with respect to monocarboxylic acid, and, as for the usage-amount of an acid catalyst, 0.1-10 mass% is more preferable, and 1-5 mass% is further more preferable.

本発明の無水化反応は実質的に溶媒を含まないが、原料を溶解させるなどの観点から、溶媒を用いてもよい。反応効率の観点から、原料/(原料+溶媒)の質量比は、1/26〜1/1が好ましく、1/5〜1/1がより好ましく、1/2〜1/1がさらに好ましい。   The dehydration reaction of the present invention does not substantially contain a solvent, but a solvent may be used from the viewpoint of dissolving the raw materials. From the viewpoint of reaction efficiency, the mass ratio of raw material / (raw material + solvent) is preferably 1/26 to 1/1, more preferably 1/5 to 1/1, and further preferably 1/2 to 1/1.

溶媒としては、反応に悪影響を与えないものであれば任意のものを用いることができる。例えば、ドデシルベンゼン等の芳香族炭化水素類、スクアラン等の脂肪族炭化水素類、シクロデカン等の脂環式炭化水素類、エチレングリコール等のアルコール類、エチレングリコールジメチルエーテル等のエーテル類などを用いることができる。   Any solvent can be used as long as it does not adversely affect the reaction. For example, aromatic hydrocarbons such as dodecylbenzene, aliphatic hydrocarbons such as squalane, alicyclic hydrocarbons such as cyclodecane, alcohols such as ethylene glycol, ethers such as ethylene glycol dimethyl ether, etc. may be used. it can.

本発明において、反応温度は、反応速度向上の観点から150℃以上が好ましく、180℃以上がより好ましく、200℃以上が更に好ましく、275℃以上が更に好ましい。また、触媒寿命の観点から反応温度は300℃以下が好ましく、275℃以下がより好ましく、250℃以下が更に好ましく、225℃以下が更に好ましい。   In the present invention, the reaction temperature is preferably 150 ° C. or higher, more preferably 180 ° C. or higher, further preferably 200 ° C. or higher, further preferably 275 ° C. or higher, from the viewpoint of improving the reaction rate. From the viewpoint of catalyst life, the reaction temperature is preferably 300 ° C. or lower, more preferably 275 ° C. or lower, further preferably 250 ° C. or lower, and further preferably 225 ° C. or lower.

反応時間には特に制限はないが、通常0.5時間〜24時間である。また反応は窒素、アルゴン等の不活性ガス雰囲気下に行うことが好ましい。反応時の圧力は、効率的に水を除いて反応速度を向上する観点から0.1〜100kPaが好ましく、0.5〜30kPaがより好ましく、1〜5kPaがさらに好ましい。   Although there is no restriction | limiting in particular in reaction time, Usually, it is 0.5 to 24 hours. Moreover, it is preferable to perform reaction in inert gas atmosphere, such as nitrogen and argon. The pressure during the reaction is preferably from 0.1 to 100 kPa, more preferably from 0.5 to 30 kPa, and even more preferably from 1 to 5 kPa from the viewpoint of efficiently removing water and improving the reaction rate.

上記反応によって得られる酸無水物はそのまま、あるいは適当な精製を行った後、次の反応に用いることができる。精製方法としては、均一系酸触媒の場合は吸着剤等によって酸触媒を除去することができ、固体酸触媒の場合は濾過、遠心分離等によって酸触媒を除去することができる。また、未反応カルボン酸を蒸発留去した後、蒸留や再結晶によって純粋な酸無水物を得ることもできる。   The acid anhydride obtained by the above reaction can be used in the next reaction as it is or after appropriate purification. As a purification method, in the case of a homogeneous acid catalyst, the acid catalyst can be removed by an adsorbent or the like, and in the case of a solid acid catalyst, the acid catalyst can be removed by filtration, centrifugation or the like. It is also possible to obtain a pure acid anhydride by distillation or recrystallization after evaporating off the unreacted carboxylic acid.

本発明により得られるモノカルボン酸無水物は、界面活性剤などの中間原料として好適に用いることができる。   The monocarboxylic anhydride obtained by the present invention can be suitably used as an intermediate raw material such as a surfactant.

実施例1−1
攪拌子を入れた50mLナス型フラスコに、ステアリン酸(花王(株)製 LUNAC S98)50g(175mmol)、及び硫酸化ジルコニア(和光純薬工業(株)製)1gを加え、窒素置換した後、2.6kPaを維持しながら、250℃で攪拌し、無水物化反応を行った。6時間後、加熱を止め、固体触媒をろ過して除いた後、1H−NMR(バリアン社製 MERCURY400)測定を行った。原料脂肪酸のα位のメチレンプロトンと脂肪酸無水物のα位のメチレンプロトンの積分比を比較することにより無水物収率を算出したところ、ステアリン酸無水物が収率39.1%で得られていることがわかった。
Example 1-1
To a 50 mL eggplant-shaped flask containing a stir bar, 50 g (175 mmol) of stearic acid (LUNAC S98 manufactured by Kao Corporation) and 1 g of sulfated zirconia (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the atmosphere was replaced with nitrogen. While maintaining 2.6 kPa, the mixture was stirred at 250 ° C. to conduct an anhydride reaction. After 6 hours, heating was stopped and the solid catalyst was removed by filtration, and then 1 H-NMR (MERCURY 400 manufactured by Varian) was measured. The anhydride yield was calculated by comparing the integral ratio of the α-position methylene proton of the raw fatty acid and the α-position methylene proton of the fatty acid anhydride. As a result, stearic anhydride was obtained in a yield of 39.1%. I found out.

実施例1−2〜1−9、比較例1−1〜1−2
硫酸化ジルコニアを表1に示す酸触媒1gに変えた以外は実施例1−1と同様に反応を行い、生成物の分析を行った。なお、均一系の酸触媒を用いた場合は触媒の除去はせず、そのままNMR分析を行った。その結果を表1に示す。
Examples 1-2 to 1-9, Comparative Examples 1-1 to 1-2
The reaction was conducted in the same manner as in Example 1-1 except that the sulfated zirconia was changed to 1 g of the acid catalyst shown in Table 1, and the product was analyzed. When a homogeneous acid catalyst was used, the catalyst was not removed and the NMR analysis was performed as it was. The results are shown in Table 1.

Figure 0005886113
Figure 0005886113

実施例2−1〜2−6、比較例2−1〜2−3
表2に示す酸触媒を用い、反応温度を200℃、反応時の圧力を1.3kPaとした以外は実施例1−1と同様に反応を行い、生成物の分析を行った。結果を表2に示す。
Examples 2-1 to 2-6, Comparative Examples 2-1 to 2-3
Using the acid catalyst shown in Table 2, the reaction was conducted in the same manner as in Example 1-1 except that the reaction temperature was 200 ° C. and the pressure during the reaction was 1.3 kPa, and the product was analyzed. The results are shown in Table 2.

Figure 0005886113
Figure 0005886113

以上のように本発明によれば、比較例で用いたような従来の触媒を使用する場合と比べて、モノカルボン酸無水物を経済的に製造できる。特に表2に示すように、無触媒や従来用いられていた触媒を使用する場合には反応が全く進行しない温度、圧力条件においても、比較的長鎖のモノカルボン酸を反応させて対応する酸無水物とすることができる。   As described above, according to the present invention, it is possible to economically produce a monocarboxylic acid anhydride as compared with the case where a conventional catalyst as used in the comparative example is used. In particular, as shown in Table 2, when a non-catalyst or a conventionally used catalyst is used, the corresponding acid can be obtained by reacting a relatively long chain monocarboxylic acid even under temperature and pressure conditions where the reaction does not proceed at all. It can be an anhydride.

Claims (4)

炭素数10〜22のモノカルボン酸を、酸触媒の存在下に、150℃〜300℃の反応温度で無水物化反応させる、モノカルボン酸無水物の製造方法であって、
前記酸触媒が、ゼオライト、粘土鉱物、アルミナ、及び硫酸化ジルコニアからなる群から選ばれる1種または2種以上の固体酸触媒である、モノカルボン酸無水物の製造方法。
A method for producing a monocarboxylic acid anhydride, in which a monocarboxylic acid having 10 to 22 carbon atoms is subjected to an anhydride reaction in the presence of an acid catalyst at a reaction temperature of 150 ° C to 300 ° C,
Wherein the acid catalyst is, Ze zeolite is one or more solid acid catalyst selected from the group consisting of clay minerals, alumina, and sulfated zirconia, method for producing a monocarboxylic acid anhydride.
前記固体酸触媒がゼオライトである、請求項記載のモノカルボン酸無水物の製造方法。 Method for producing the solid acid catalyst is a zeolite according to claim 1 monocarboxylic acid anhydrides according. 前記反応温度が200℃〜275℃である、請求項1又は2記載のモノカルボン酸無水物の製造方法。 The manufacturing method of the monocarboxylic acid anhydride of Claim 1 or 2 whose said reaction temperature is 200 to 275 degreeC. 前記無水物化反応を、実質的に溶媒の存在しない条件下で行う、請求項1〜の何れか1項記載のモノカルボン酸無水物の製造方法。 The method for producing a monocarboxylic acid anhydride according to any one of claims 1 to 3 , wherein the anhydration reaction is carried out under substantially no solvent.
JP2012092823A 2012-04-16 2012-04-16 Method for producing monocarboxylic anhydride Active JP5886113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012092823A JP5886113B2 (en) 2012-04-16 2012-04-16 Method for producing monocarboxylic anhydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012092823A JP5886113B2 (en) 2012-04-16 2012-04-16 Method for producing monocarboxylic anhydride

Publications (2)

Publication Number Publication Date
JP2013221006A JP2013221006A (en) 2013-10-28
JP5886113B2 true JP5886113B2 (en) 2016-03-16

Family

ID=49592246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012092823A Active JP5886113B2 (en) 2012-04-16 2012-04-16 Method for producing monocarboxylic anhydride

Country Status (1)

Country Link
JP (1) JP5886113B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109225262A (en) * 2018-09-27 2019-01-18 江苏师范大学 It is a kind of for synthesizing the catalyst of 2-aminopyridine -3- carboxylic acid
CN108997207A (en) * 2018-09-27 2018-12-14 江苏师范大学 A kind of synthetic method of 2-aminopyridine -3- carboxylic acid

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3510035A1 (en) * 1985-03-20 1986-09-25 Basf Ag, 6700 Ludwigshafen METHOD FOR THE CONTINUOUS PRODUCTION OF CARBONIC ACID ANHYDRIDES
JP2526963B2 (en) * 1988-01-20 1996-08-21 日本油脂株式会社 Method for producing acid anhydride
JP4363952B2 (en) * 2003-10-21 2009-11-11 共栄社化学株式会社 Solid acid catalyst for producing carboxylic anhydride and method for producing carboxylic anhydride using the same
JP4369209B2 (en) * 2003-11-21 2009-11-18 花王株式会社 Method for producing carboxylic anhydride

Also Published As

Publication number Publication date
JP2013221006A (en) 2013-10-28

Similar Documents

Publication Publication Date Title
US10065180B2 (en) Process for preparing modified V—Ti—P catalysts for synthesis of 2,3-unsaturated carboxylic acids
JP5480286B2 (en) Carbonylation process catalyzed by mordenite supported on inorganic oxide
CN102227401B (en) Carbonylation process for production of methyl acetate
JP5659164B2 (en) Carbonylation method using bound silver and / or copper mordenite catalyst
JP2012526786A (en) Carbonylation process
JP2015506943A5 (en)
JP5554968B2 (en) Production method of olefin
EP3154927A1 (en) Method for producing muconic acids and furans from aldaric acids
JP2016515039A5 (en)
JP5886113B2 (en) Method for producing monocarboxylic anhydride
CN108097286B (en) Catalyst for preparing acrylic acid and methyl acrylate
JP2016216360A (en) Method for producing 2-cyanopyridine
JP2008174483A (en) Method for producing carboxylic acid polyhydric alcohol ester
JP2016529220A (en) Process for producing furan and its derivatives
KR102055927B1 (en) Process for preparing acrolein
KR102052708B1 (en) Catalyst for dehydration of glycerin, preparing method thereof and production method of acrolein using the catalyst
US10195593B2 (en) Method for preparing a sodium faujasite catalyst and its use in producing acrylic acid
JP6267238B2 (en) Catalyst for glycerol dehydration reaction, method for producing the same, and method for producing acrolein
US9393554B2 (en) Method for producing saturated aldehyde from 1,2-alkanediol
US8269036B2 (en) Processes for producing an oxalate by coupling of CO
JP2014034023A (en) Catalyst for manufacturing acrylic acid from glycerine and manufacturing method of the catalyst
JP6290580B2 (en) Catalyst composition for reduction reaction, method for producing 1,6-hexanediol, method for producing aminobenzene compound
JP2013001696A (en) METHOD FOR PRODUCING α-HYDROXYCARBOXYLIC ACID
JP2015044787A (en) Method for producing polyene
JP2018070528A (en) Method for producing bicyclic amines

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160210

R151 Written notification of patent or utility model registration

Ref document number: 5886113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250